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This article presents a nonparametric penalized likelihood approach for variable selection and model building, called likelihood basis pursuit
(LBP). In the setting of a tensor product reproducing kernel Hilbert space, we decompose the log-likelihood into the sum of different func-
tional components such as main effects and interactions, with each component represented by appropriate basis functions. Basis functions
are chosen to be compatible with variable selection and model building in the context of a smoothing spline ANOVA model. Basis pursuit
is applied to obtain the optimal decomposition in terms of having the smallest /; norm on the coefficients. We use the functional L; norm
to measure the importance of each component and determine the “threshold” value by a sequential Monte Carlo bootstrap test algorithm.
As a generalized LASSO-type method, LBP produces shrinkage estimates for the coefficients, which greatly facilitates the variable selec-
tion process and provides highly interpretable multivariate functional estimates at the same time. To choose the regularization parameters
appearing in the LBP models, generalized approximate cross-validation (GACV) is derived as a tuning criterion. To make GACV widely
applicable to large datasets, its randomized version is proposed as well. A technique “slice modeling” is used to solve the optimization
problem and makes the computation more efficient. LBP has great potential for a wide range of research and application areas such as
medical studies, and in this article we apply it to two large ongoing epidemiologic studies, the Wisconsin Epidemiologic Study of Diabetic
Retinopathy (WESDR) and the Beaver Dam Eye Study (BDES).
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1. INTRODUCTION

Variable selection, or dimension reduction, is fundamental
to multivariate statistical model building. Not only does judi-
cious variable selection improve the model’s predictive ability,
it also generally provides a better understanding of the underly-
ing concept that generates the data. Due to recent proliferation
of large, high-dimensional databases, variable selection has be-
come the focus of intensive research in several areas such as
text processing, environmental sciences, and genomics, partic-
ularly gene expression array data involving tens or hundreds of
thousands of variables.

Traditional variable selection approaches, such as stepwise
selection and best subset selection, are built in linear regres-
sion models, and the well-known criteria like Mallows’s Cp,
the Akaike information criterion (AIC) and the Bayesian in-
formation criterion (BIC) are often used to penalize the num-
ber of nonzero parameters (see Linhart and Zucchini 1986 for
an introduction). To achieve better prediction and reduce the
variances of estimators, many shrinkage estimation approaches
have been proposed. Bridge regression was introduced by Frank
and Friedman (1993), which is a constrained least squares
method subject to an L, penalty with p > 1. Two special cases
of bridge regression are the LASSO proposed by Tibshirani
(1996) when p = 1 and the ridge regression when p = 2. Due
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to the nature of the L; penalty, the LASSO tends to shrink
small coefficients to 0 and hence gives concise models. It also
exhibits the stability of ridge regression estimates. Fu (1998)
made a thorough comparison between the bridge model and
the LASSO. Knight and Fu (2000) proved some asymptotic re-
sults for LASSO-type estimators. In the case of wavelet regres-
sion, this L penalty approach is called “basis pursuit.” Chen,
Donoho, and Saunders (1998) discussed atomic decomposition
by basis pursuit in some detail. (A related development can
be found in Bakin 1999.) Gunn and Kandola (2002) proposed
a structural modeling approach with sparse kernels. Recently,
Fan and Li (2001) suggested a nonconcave penalized likelihood
approach with the smoothly clipped absolute deviation (SCAD)
penalty function, which resulted in an unbiased, sparse, and
continuous estimator. Our motivation of this study is to pro-
vide a flexible nonparametric alternative to the parametric ap-
proaches for variable selection as well as model building. Yau,
Kohn, and Wood (2003) presented a Bayesian method for vari-
able selection in a nonparametric manner.

Smoothing spline analysis of variance (SS—ANOVA) pro-
vides a general framework for nonparametric multivariate func-
tion estimation and has been studied intensively for Gaussian
data. Wahba, Wang, Gu, Klein, and Klein (1995) gave a gen-
eral setting for applying the SS—ANOVA model to exponential
families. Gu (2002) provided a comprehensive review of the
SS—ANOVA and some recent progress. In this work we have
developed a unified model that appropriately combines the
SS—ANOVA model and basis pursuit for variable selection and
model building.

The article is organized as follows. Section 2 introduces
the notation and illustrates the general structure of the likeli-
hood basis pursuit (LBP) model. We focus on the main-effects
model and the two-factor interaction model, then generalize
the models to incorporate categorical variables. Section 3 dis-
cusses the important issue of adaptively choosing regularization
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parameters. An extension of generalized approximate cross-
validation (GACYV) proposed by Xiang and Wahba (1996) is
derived as a tuning criterion. Section 4 proposes the measure
of importance for the variables and, if desired, their interac-
tions. We develop sequential Monte Carlo bootstrap test algo-
rithm to determine the selection threshold. Section 5 covers the
numerical computation issue. Sections 6—8 present several sim-
ulation examples and the applications of LBP to two large epi-
demiologic studies. We carry out a data analysis for the 4-year
risk of progression of diabetic retinopathy in the Wisconsin
Epidemiologic Study of Diabetic Retinopathy (WESDR) and
for the 5-year risk of mortality in the Beaver Dam Eye Study
(BDES). The final section contains some concluding remarks.
Proofs are relegated to Appendixes A and B.

2. LIKELIHOOD BASIS PURSUIT
2.1 Smoothing Spline ANOVA for Exponential Families

We are interested in estimating the dependence of Y on
the covariates X = (X, ..., X@) Typically, X is in a
high-dimensional space X = XD @...0 XD where X@,
a=1,...,d,is some measurable space and ® denotes the ten-
sor product operation. Conditioning on X, assume that Y is
from an exponential family with density of form A(y|x) =
expl{yf(x) — b(f(x))}/a(p) + c(y, $)], where a > 0, b, and
¢ are known functions, f(x) is the parameter of interest depen-
dent on x, and ¢ is either known or a nuisance parameter in-
dependent of x. We denote the observations of Y;|x; ~ h(y|Xx;),
i=1,...,n, by the vectory = (y1, ..., y»)'. The scaled condi-
tional log-likelihood is

n

1
£y, == [l f&xl]

i=1

n
= %Z[—yif(x» +b{f (x)}]- (1)

i=1
Although the methodology proposed here is general and valid
for any exponential family, we use the Bernoulli case as our
working example. In Bernoulli data, Y takes on values {0, 1}
with the conditional probability p(x) = Pr(Y = 1|1X = x).
The logit function f(x) = log( l—pi)x()x))’ and the log-likelihood
I(y, f) = yf —log(l +ef). Many parametric approaches, such
as those of Tibshirani (1996), Fu (1998), and Fan and Li (2001),
assume f(x) to be a linear function of x. Instead, we allow f
to vary in a high-dimensional function space, which leads to
a more flexible estimate for the target function. In this sec-
tion and Section 2.2, we assume that all of the covariates are
continuous. Later in Section 2.3, we take categorical variables
into account. Similar to the classical ANOVA, for any function
fx) =fxD, ..., x@D)ona product domain X', we can define

its functional ANOVA decomposition as

d
f®) =bo+ Y fu(x®)

a=1
+ 3 fup (x@, x®)
a<p

+ all higher-order interactions, 2)
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where by is constant, fy’s are the main effects, and fug’s
are the two-factor interactions. The identifiability of the terms
is ensured by side conditions through averaging operators.
We are to estimate each f, in an reproducing kernel Hilbert
space (RKHS) H®), each f,s in the tensor product space
H@ ® H® and so on. The full model space is then the dth-
order tensor product space ®z: 1 H® . Each functional com-
ponent in the decomposition (2) falls in the corresponding
subspace of ®g=1 H@,

For any continuous covariate x@_ we scale it onto [0, 1] and
choose H@ to be the second-order Sobolev space W>[O0, 1],
which is defined as {g:g(z), g’(¢r) are absolutely continu-
ous, g”(t) € £5[0,1]}. When endowed with a certain inner
product, W[0,1] is an RKHS with the reproducing ker-
nel (RK) 1+ Ko(s,t) + Ki(s,t). Here Ko(s,t) = k1(s)k1(¢)
and Ki(s,1) = ka()ka(t) — ka(ls — t]), with k1 (1) =t — 3,
ka(1) = 3 (k7 (1) = 7). and ka(t) = 53 (K} (1) — 3k (0) + 7).
Notice that H@ = [1] ® Hy(f‘) ® ’Hﬁa), with [1] the constant
subspace, ’Hffa) the “parametric” subspace generated by K
consisting of linear functions, and Hﬁa) the “nonparametric”
subspace generated by K consisting of smooth functions. The
reproducing kernel of ®z:1 H@ is

d
[T +k (s ) (¢@) + Ko (s, ). 3)

a=l1

Correspondingly, ®Z:1 H@ can be decomposed into the ten-
sor sum of parametric main-effect subspaces, and smooth main-
effect subspaces, and two-factor interaction subspaces of three
possible forms: parametric ® parametric, smooth ® parametric,
and smooth ® smooth, and similarly for three-factor or higher
interaction subspaces. The RKs for these subspaces are given by
the corresponding terms in the expansion of (3) and, the terms
in (2) can be expanded in terms corresponding to those RKs
in the expansion of (3). Therefore, our model encompasses the
linear model as a special case (see Wahba 1990 for more de-
tails). In various situations, the ANOVA decomposition in (2)
and in the expansion of (3) is truncated at some point. In this
work we consider truncation for the continuous variables no
later than after the two-factor interactions. The remaining RKs
will be used to construct an overcomplete set of basis functions
for the likelihood basis pursuit, via details given later.

2.2 Likelihood Basis Pursuit Models

Basis pursuit is a principle for decomposing a signal into an
optimal superposition of dictionary elements, where “optimal”
means having the smallest /; norm of the coefficients among
all such decompositions. Chen et al. (1998) illustrated atomic
decomposition by basis pursuit in wavelet regression. In this
article we apply basis pursuit to the negative log-likelihood in
the context of a dictionary based on the SS—~ANOVA decom-
position, then select the important components using the mul-
tivariate function estimates. Let 7 be the model space after
truncation. The variational problem for the LBP model is

n

1
min — Z[—l(yi, F&))]+ (), 4)

feH n 4
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where J, (f) denotes the /; norm of the coefficients of the ba-
sis functions in the representation of f. It is a generalization
of the LASSO penalty in the context of nonparametric mod-
els. The /1 penalty often produces coefficients that are exactly 0
and therefore gives sparse solutions. This sparsity helps dis-
tinguish important variables from unimportant ones easily and
more effectively. (See Tibshirani 1996 and Fan and Li 2001
for comparison of the /] penalty with other forms of penalty.)
The regularization parameter A balances the fitness in the like-
lihood and the penalty part.

For the usual smoothing spline modeling, the penalty J, is
a quadratic norm or seminorm in an RKHS. Kimeldorf and
Wahba (1971) showed that the minimizer f for the traditional
smoothing spline model falls in a finite-dimensional space,
although the model space is of infinite dimension. For the penal-
ized likelihood approach with a nonquadratic penalty like the
[1 penalty, it is very hard to obtain analytic solutions. In light of
the results for the quadratic penalty situation, we propose using
a sufficiently large number of basis functions to span the model
space and estimate the target function in that space. If all of the
data {xi,...,X,} are used to generate the bases, the resulting
functional space demands intensive computation, and the ap-
plication is limited for large-scale problems. Thus we adopt the
parsimonious bases approach used by Xiang and Wahba (1998),
Ruppert and Carroll (2000), Lin et al. (2000), and Yau et al.
(2003). Gu and Kim (2001) showed that the number of basis
terms can be much smaller than n» without degrading the per-
formance of the estimation. For N < n, we subsample N points
{X14, ..., Xy«} from the original data and use them to generate
basis functions that then span the model space H.. Notice that
we are not wasting any data resource here, because all of the
data points are used for model fitting, although only a subset of
them are selected to generate basis functions.

The issue of choosing N and the subsamples is important.
In practice, we generally start with a reasonably large N. It is
well known that “reasonably large” is not actually very large
(see Lin et al. 2000). In principle, the subspace spanned by
the chosen basis terms needs to be rich enough to provide a
decent fit to the true curve. In this article we use the simple
random sampling technique to choose the subsamples. Alterna-
tively, a cluster algorithm may be used, as done by Xiang and
Wahba (1998) and Yau et al. (2003). Its basic idea involves two
steps. First, we group the data into N clusters that have max-
imum separation, by some good algorithm. Then within each
cluster we randomly choose one data point as a representative
to be included in the base pool. This scheme usually provides
well-separated subsamples.

2.2.1 Main-Effects Model. The main-effects model, also
known as the additive model, is a sum of d functions of
one variable. The function space is the tensor sum of con-
stant and the main effect subspaces of ® | H®. Define

Mo =115, spanfk) (x@), Ki (x@, x!?), j=1,....N} =
[1] @a I’H(a) where k1(-) and K(-, -) are as defined in Sec-
tion 2.1. Then any component function fa € Hia) has the rep-

resentation fy (x®)) = byki (x@) 4+ Z —1 Ca i K (x@, x(a))
The LBP estimate f € H, is obtained by minimizing

n
l [_ +)\n |ba|+)\s Icot]| (%)
i=1

a=1j=1

l()’i, f(xz
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where f(x) =bg + Zgzl fo (x@Y and (A, 1) are the regu-
larization parameters. Here and in the sequel we have chosen to
group terms of similar types (here “parametric” and “smooth”)
and to allow distinct A’s for different groups. Of course,
we could choose to set A, = A. Note that Ay = oo yields a para-
metric model. Alternatively, we could choose different A’s for
each coefficient if we decide to incorporate some prior knowl-
edge of certain variables or their effects.

2.2.2 Two-Factor Interaction Model. Two-factor inte-
ractions arise in many practical problems. (See Hastie and
Tibshirani 1990, sec. 9.5.5, or Lin et al. 2000, figs. 9 and 10,
for interpretable plots of two-factor interactions with contin-
uous variables.) In the LBP model, the two-factor interaction
space consists of the “parametric” part and the “smooth” part.
The parametric part is generated by d parametric main-effect
terms and @ parametric—parametric interaction terms.
The smooth part is the tensor sum of the subspaces gener-
ated by smooth main-effect terms, parametric—smooth inter-
action terms, and smooth—smooth interaction terms. For each
pair o # B, the two-factor interaction subspace is kaaﬁ ) =
span{k; (x @)k (x @), K (x@, xﬁi>>k1(x<ﬁ>>k1(x§§>), Ky(x@,

(“))Kl(x(/s) (ﬂ)) ji=1,
f /g;(x(“) x®)) has the representation

Jup = bapk (x @)k (x )

+Z

, N}, and the interaction term

JTS K

B K ) (e ()

?)Kl (x(ﬂ),xﬁi)).

N
s (
SR
j=1

The whole function space is H, = [1]€BZ=1 HY +
b B<a kaaﬁ ). The LBP optimization problem is

+)Ln<oé|ba|>

n

min 1 Z[—Z(Yh Fx))]

feH. N 4
i=1

+knn(2|baﬁ|> +Am<22'6aﬂf )

a<p a#p j=1

+ g (ZDcM)Hm(ZDcQﬁ,) 6)

a=1 j=I a<p j=1

Note that different penalties are allowed for the five different
types of terms.

2.3 Incorporating Categorical Variables

In real applications, some covariates may be categorical, such
as sex, race, and smoking history in many medical studies. In
previous sections we proposed the main-effects model (5) and
the two-factor interaction model (6) for continuous variables
only. Now we generalize these models to incorporate categor-
ical variables, which are denoted by Z = (Z1, ..., Z®). For
simplicity, we assume that each Z*) has two categories {7, F}
for y =1,...,r. The following idea is easily extended to the
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situation when some variables have more than two categories.
Define the mapping @, by

ifZ()/) =T
@y(z(y)) =

if z") =F.

Generally the mapping is chosen to make the range of categori-
cal variables comparable with that of continuous variables. For
any variable with C > 2 categories, C — 1 contrasts are needed.

The main-effects model that incorporates the categori-
cal variables is as follows:
Minimize

d r
—Z (yi» f i, 2))] +An(2|ba| +Z|By|>
y=I

d N
+hs ) D leajle ()

a=1 j=I

where f(x,z) = by + Zgzl bk (x@) 4+ >-1By x

@, (z)) + Zgzl Z;-V:l Ca, iK1 (x("‘),x;‘fk)). For each y,
the function ®, can be considered as the main effect of
the covariate Z(*). Thus we choose to associate the coef-
ficients | B|’s and |b|’s with the same parameter A .
Adding two-factor interactions with categorical vari-
ables to a model that already includes parametric and
smooth terms adds a number of additional terms to the
general model. Compared with (6), four new types of
terms are involved when we take into account categorical
variables: categorical main effects, categorical—categorical
interactions, “parametric continuous”—categorical interac-
tions, and “smooth continuous”—categorical interactions.
The modified two-factor interaction model is as follows:
Minimize

n d r
%Z[_l()’bf(xi»zi))]+)tn<2|ba| +Z|By|>
i=1 a=I y=1
d r
+xm<2 |baﬁ|+Z|By9|+ZZ|Pay|>

a<p y <6 a=1ly=1

HJZiwaZZWJ

a#B j=1 a=ly=1j=1

xs<2d:§: |co,,,~|)+xm<22|caﬁj> (8)

a=1 j=1 a<pf j=1
where
d r
f(x,z) = by + Zbakl (x(a)) + Z By ®, (Z(y))
a=1 y=1
+ Z bagki (x(o‘))k] (x(ﬁ))

a<p

+ Z B)/@(D

y <6

(27) 0y ()
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d r
15 3) WAIINED
a=1y=1
N
+ 20 2 cap K@ 2D (¢ O (x]f)
ap j=1
d r N
20202l K ) @y ()
a=ly=1j=1
d N
P K (1, 11)
a=1j=1
159 S )
a<fj

We assign different regularization parameters for main-
effect terms, parametric—parametric interaction terms,
parametric—smooth interaction terms, and smooth—smooth
interaction terms. In particular, the coefficients | B, |’s and
| Py |’s are associated with the same parameter A, and
the coefficients |c | s and |c | s are associated with
the same parameter Ans

3. GENERALIZED APPROXIMATE
CROSS—-VALIDATION

Regularization parameter selection has been a very active
field of research. Ordinary cross-validation (OCV) (Wahba and
Wold 1975), generalized cross-validation (GCV) (Craven and
Wahba 1979), and GACV (Xiang and Wahba 1996) are widely
used in various contexts of smoothing spline models. We derive
the GACYV to select A’s in the LBP models. Here we present the
GACYV score and its derivation only for the main-effects model;
the extension to high-order interaction models is straightfor-
ward. With an abuse of notation, we use A to represent the col-
lective set of tuning parameters; in particular, > = (A, As) for
the main-effects model and A = (Ay, Agz, Axs, As, Ags) for the
two-factor interaction model.

3.1 Approximate Cross-Validation

Let p be the “true” but unknown probability function and
let p, be its estimate associated with A. Similarly, let f and u
denote the true logit and mean functions, and let fj and u;
denote the corresponding estimates. Kullback—Leibler (KL)
distance, also known as the relative entropy, is often used to
measure the distance between two probability distributions.
For Bernoulli data, we have KL(p, py) = Ex[5{1(f — f.) —
B(f)—=b(f)}], withb(f) =log(1 —i—ef).Removingthequan—
tity that does not depend on X from the KL distance expression,
we get the comparative KL (CKL) distance Ex[—ufy. + b(fi)]-
The ordinary leave-one-out cross validation (CV) for CKL is

n

1 i
D) EUEF R CO R ICACH)) N

i=1

CVQL) =

where f;!71 is the minimizer of the objective function with
the ith data point omitted. CV is commonly used as a roughly
unbiased estimate for CKL (see Xiang and Wahba 1996;
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Gu 2002). Direct calculation of CV involves computing n leave-
one-out estimates, which is expensive and almost infeasible for
large-scale problems. Thus we derive a second-order approxi-
mate cross-validation (ACV) score to the CV. (See Xiang and
Wahba 1996; Lin et al. 2000; Gao, Wahba, Klein, and Klein
2001 for the ACV in traditional smoothing spline models.)
We first establish the leave-one-out lemma for the LBP mod-
els. The proof of Lemma 1 is given in Appendix A.

Lemma 1 (Leave-One-Out Lemma). Denote the objective
function in the LBP model by

L(fy) =Ly, )+ ().

Let f;7/1 be the minimizer of I,(f,y) with the ith obser-
vation omitted and let ,uk ’]() be the mean function corre-
spondmg to f)\ (). For any v € R, we define the vector
=15 Yie1> U, Yitl, - ..,y,,) Let 4, (i, v, -) be the mini-
mizeroflk(f V); then A (i, 1l (xi), ) = 7).

Using Taylor series approximations and Lemma 1, we can
derive (in App. B) the ACV score,

(10)

n

1
=D [=vifix) + b))

i=1

ACV()) =

. (Xi))

4 - Zhu Vi (yt ,

cr/\lh,, (11)
where afl. = pa(x;)(1 — pa(x;)) and h;; is the iith entry of
the matrix H defined in (B.9) (more details have been given in
Zhang 2002). Let W be the diagonal matrix with 0)\21' in the iith
position. By replacing h;; with %ZL] h; = %tr(H) and re-
placing 1 — o h;; with 1 tr{T— (WY/2HW!/2)] in (11), we ob-
tain the GACV score,

n

1
=D [y fa i)+ b(f i)

i=1

GACV()) =

Jrtr(H)Z —1 Vi (i — pa (X))
n t[l—WI/ZHW!/2] °

12)

3.2 Randomized GACV

Direct computation of (12) involves the inversion of a large-
scale matrix, whose size depends on sample size n, basis
size N, and dimension d. Large values of n, N, or d may make
the computation expensive and produce unstable solutions.
Thus the randomized GACV (ranGACYV) score is proposed as
a computable proxy for GACV. Essentially, we use the random-
ized trace estimates for tr(H) and tr[/ — %(Wl/ ZHW!/2)] based
on the following theorem (which has been exploited by numer-
ous authors, e.g., Girard 1998):

If A is any square matrix and € is a mean O ran-
dom n- vector with independent components with
variance a then E eTAe =tr(A).

Let € = (€1, ..., €;) be a mean 0 random n-vector of inde-
pendent components with variance 03. Let f)f’ and f)f’ *€ be the
minimizer of (5) using the original data y and the perturbed
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data y + €. Using the derivation procedure of Lin et al. (2000),
we get the ranGACYV score for the LBP estimates,

ranGACV())

1 n
= Zi—)’i fr(xi) +b(fi.(x:))]
i=l1

T(nyre i (X))

m
In addition, two ideas help reduce the variance of the second
term in (13):

7 Y i —

n € e—eTW(nyre

13)

1. Choose € as Bernoulli (.5), taking values in {4+0¢, —0¢}.
This guarantees that the randomized trace estimate has the
minimal variance given a fixed 03 (see Hutchinson 1989).

2. Generate U independent perturbations eW yu=1,...,U,
and compute U replicated ranGACVs. Then use their av-
erage to compute the GACV estimate.

4. SELECTION CRITERIA FOR MAIN-EFFECTS
AND TWO-FACTOR INTERACTIONS

4.1 The Ly Importance Measure

After choosing the optimal A by the GACV or ranGACV
criteria, the LBP estimate i is obtained by minimizing (5),
(6), (7), or (8). How to measure the importance of a particu-
lar component in the fitted model is a key question. We pro-
pose using the functional L norm as the importance measure.
The sparsity in the solutions will help distinguish the signifi-
cant terms from insignificant ones effectively, and thus improve
the performance of our importance measure. In practice, for
each functional component, its L| norm is empirically calcu-
lated as the average of the function values evaluated at all of
the data points, for instance, Li(fy) = % " fa (xl.(a))| and

Li(fap) = %Z?:i | fap (xi(a), xl.(ﬁ))|. For the categorical vari-
ables in model (7), the empirical L; norm of the main ef-
fect f, is Li(fy) = 230 1B, ®, ") for y = 1,...,r
The norms of the interaction terms involved with categorical
variables are defined similarly. The rank of the L norm scores
is used to rank the relative importance of functional compo-
nents. For instance, the component with the largest L; norm
is ranked as the most important one, and any component with
azero or tiny L1 norm is ranked as an unimportant one. We have
also tried using the functional L, norm to rank the components;
this gave almost identical results in terms of the set of variables
selected in numerous simulation studies (not reproduced here).

4.2 Choosing the Threshold

In this section we focus on the main-effects model. Using
the chosen parameter . X, we obtain the estimated main- effects
components f], .. fd and calculate their L; norms Lq( f1

L Li( fd) We use a sequential procedure to select 1mp0rtant
terms. Denote the decreasingly ordered norms by L(] Yoo L(d)
and the corresponding components by f(l), .. f(d) A uni-
versal threshold value is needed to differentiate the impor-
tant components from unimportant ones. Call the threshold g.
Only variables with their L; norms greater than or equal to ¢
are “important.”
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Now we develop a sequential Monte Carlo bootstrap test
procedure to determine g. Essentially we test the variables’
importance one by one in their L norm rank order. If one
variable passes the test (hence “important”), then it enters the
null model for testing the next variable; otherwise, the proce-
dure stops. After the first n (0 < n < d — 1) variables enter
the model, it is a one-sided hypothesis-testing problem to de-
cide whether the next component f(n+1) is important or not.
When n = 0, the null model f is the constant, say f = b, and
the hypotheses are Hy: L) = 0 versus Hj: L(l) > 0. When
1 <n<d—1, the null model is f = b() + f(]) + - 4 f('?)’
and the hypotheses are Hy: L(;41) =0 versus H; .L(,,+]) > 0.
Let the desired one-sided test level be «. If the null distribu-
tion of L(n+]) were known,then we could get the critical value
a-percentile and make a decision of rejection or acceptance.
In practice, calculating the exact «-percentile is difficult or im-
possible; however, the Monte Carlo bootstrap test provides a
convenient approximation to the full test. Conditional on the

original covariates {Xy, ..., X,}, we generate {» *(m) ...,y;f(")}

(response 0 or 1) using the null model f = bo+ f<1) +--+ f(n)
as the true logit function. We sample a total of 7 independent
sets of data (xl,y*(n)) .y (Xn, y:(,")) t=1,...,T, from the
null model f, fit the main- effects model for each set, and com-
pute L*("H) =1,..., T.Ifexactly k of the simulated LrotD
values exceed L(n+1) and none equals it, then the Monte Carlo

kL (See Davison and Hinkley 1997 for an intro-

p value is 777.
duction to the Monte Carlo bootstrap test.)

Sequential Monte Carlo Bootstrap Test Algorithm

Stepl. Let n =0 and f = l;(). Test Ho: Ly =0 ver-
sus Hy:L¢) > 0. Generate T independent sets of

0
G i, =1,

f= bo. Fit the LBP main-effects model and com-
pute the Monte Carlo p value pg. If pp < «, then go
to step 2; otherwise stop and define ¢ as any number
slightly larger than I:(l).

Letn=n-+1and f =bo+ fay+---+ fop- Test
Hy:Lg41) = 0 versus Hy: L1y > 0. Generate
T independent sets of data (x, y;k (tn)) e, (Xn, y;,k <;’))
based on f, fit the main-effects model, and com-
pute the Monte Carlo p value, p;. If p;, <o and
n <d —1, then repeat step 2, and if p, < o and
n=d — 1, then go to step 3; otherwise, stop and de-
fine q = i(,,).

data, (x1,y, t)) T, from

Step 2.

Step 3. Stop the procedure and define g = I:(d).

The order of entry for sequential testing of the terms being
entertained for the model is determined by the magnitude of
the component L norms. There are other reasonable ways to
determine the order of entry, and the particular strategy used
can affect the results, as is the case for any stepwise procedure.
For the LBP approach, the relative ranking among the impor-
tant terms usually does not affect the final component selection
solution as long as the important terms are all ranked higher
than the unimportant terms. Thus our procedure usually can dis-
tinguish between important and unimportant terms, as in most
of our examples. When the distinction between important and
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unimportant terms is ambiguous with our method, the ambigu-
ous terms can be recognized, and further investigation will be
needed on these terms.

5. NUMERICAL COMPUTATION

Because the objective function in either (5) or (6) is not dif-
ferentiable with respect to the coefficients b’s and c’s, some
numerical methods for optimization fail to solve this kind of
problem. We can replace the /1 norms in the objective func-
tion by nonnegative variables constrained linearly to be the
corresponding absolute values using standard mathematical
programming techniques, and then solve a series of programs
with nonlinear objective functions and linear constraints. Many
optimization methods can solve such problems. We use MINOS
(Murtagh and Saunders 1983), because it generally performs
well with the linearly constrained models and returns consis-
tent results.

Consider choosing the optimal A by selecting the grid point
for which ranGACV achieves a minimum. For each A, to
find ranGACYV, the program (5), (6), (7), or (8) must be solved
twice—once with y (the original problem) and once with 'y + €
(the perturbed problem). This often results in hundreds or
thousands of individual solves, depending on the range for A.
To obtain solutions in a reasonable amount of time, we use an
efficient solving approach known as slice modeling (see Ferris
and Voelker 2000, 2001). Slice modeling is an approach to solv-
ing a series of mathematical programs with the same structure
but different data. Because for LBP we can consider the val-
ues (X,y) to be individual slices of data (because only these
values change between solves), the program can be reduced to
an example of nonlinear slice modeling. By applying slice mod-
eling ideas (namely, maintaining the common program struc-
ture and “core” data shared between solves and using previous
solutions as starting points for late solves), we can improve ef-
ficiency and make the grid search feasible. We have developed
efficient code for the main-effects and two-way interaction LBP
models. The code is easy to use and runs fast. For example,
in one simulation example with n = 1,000, d = 10, and A fixed,
the main-effects model takes less than 2 seconds, and the two-
way interaction model takes less than 50 seconds.

6. SIMULATION
6.1 Simulation 1: Main-Effects Model

In this example there are a total of d = 10 covariates:
xM . x10), They are taken to be uniformly distributed
in [0, 1] independently. The sample size n = 1,000. We use the
simple random subsampling technique to select N = 50 basis
functions. The perturbation € is distributed as Bernoulli(.5) tak-
ing two values {+.25, —.25}. Four variables, XM, X(3), X(G),
and X (8), are important, and the others are noise variables.
The true conditional logit function is

2 o
e—1

We fit the main-effects LBP model and search the parameters
(Az, As) globally. Because the true f is known, both CKL and

ranGACYV can be used for choosing the A’s. Figure 1 depicts the
values of CKL(\) and ranGACV()\) as functions of (A, Ay)

fx) = (])+7rs1n(7rx(3))+8( ©) 4 —5.
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Figure 1. Contours and Three-Dimensional Plots for CKL(x) and GACV/(}.).

within the region of interest 27202711 x [2729, 2711, In the
top row are the contours for CKL(A) and ranGACV (L), where
the white cross “x” indicates the location of the optimal regular-
ization parameter. Here )ALCKL =217 2715 and XranGACV =
(27%,2715). The bottom row shows their three-dimensional
plots. In general, ranGACV (L) approximates CKL(A) quite
well globally.

Using the optimal parameters we fit the main-effects model
and calculate the L1 norm scores for the individual components
fl ey f]o. Figure 2 plots two sets of L1 norm scores, obtained
using XCKL and ):ranGAcv, in their decreasing order. The dashed
line indicates the threshold chosen by the proposed sequen-
tial Monte Carlo bootstrap test algorithm. Using this threshold,

X6 X3 X1 X8 X2 X10 X5 X9 X4 X7

Figure 2. Ly Norm Scores for the Main-Effects Model (-o- CKL;
-= GACV).

variables X© X® XM and X® are selected as “important”
variables correctly.

Figure 3 depicts the procedure of the sequential bootstrap
tests to determine g. We fit the main-effects model using
):ranGAcv and sequentially test the hypotheses Hy : L;) = 0 ver-
sus Hy: L) >0,n=1,...,10. In each plot of Figure 3, gray

circles denote the L norms for the variables in the null model,

e

8 =2 10 5 9

4 7

Figure 3. Monte Carlo Bootstrap Tests for Simulation 1. [(a) -~ orig-
inal, o boot 1; (b) —= original, o boot 2; (c) —= original, o boot 3;
(d) —=- original, o boot 4, (e) -=- original, o boot 5.]
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Logit
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Figure 4. True (---) and Estimated (—) Univariate Logit Compo-
nents: (a) X1, (b) X3; (c) X6; (d) X8.

and black circles denote the L norms for those not in the null
model. (In a color plot, gray circles are shown in green and
black circles are shown in blue). Along the horizontal axis, the
variable being tested for importance is bracketed by a pair of *.
Our experiment shows that the null hypotheses of the first four
tests are all rejected at level & = .05 based on their Monte Carlo
p value 1/51 = .02. However, the null hypothesis for the fifth
component f> is accepted with the p value 10/51 = .20. Thus
fe, f3, f1, and fg are selected as “important” components and
q = L(4) =.21.

In addition to selecting important variables, LBP also pro-
duces functional estimates for the individual components in the
model. Figure 4 plots the true main effects fi, f3, fs, and f3
and their estimates fitted using )A\ranGACV. In each panel, the
dashed line denoted the true curve and the solid line denotes
the corresponding estimate. In general, the fitted main-effects
model provides a reasonably good estimate for each important
component. Altogether we generated 20 datasets and fitted the
main-effects model for each dataset with regularization para-
meters tuned separately. Throughout all of these 20 runs, vari-
ables XD, X® x© and X® are always the four top-ranked

variables. The results and figures shown here are based on the
first dataset.

6.2 Simulation 2: Two-Factor Interaction Model

There are d = 4 continuous covariates, independently and
uniformly distributed in [0, 1]. The true model is a two-factor
interaction model, and the important effects are X M, x@ and
their interaction. The true logit function f is

fx) =4xV 47 sin(nx(l)) +6x?@

—8(x@) +cos(27 (x M — x@)) — 4.

We choose n = 1,000 and N = 50, and use the same perturba-
tion € as in the previous example. There are five tuning para-
meters (Ax, Azz, As, Azs, and Agg) in the two-factor interaction
model. In practice, extra constraints may be added on the pa-
rameters for different needs. Here we penalize all of the two-
factor interaction terms equally by setting Ap; = Ags = Ags.
The optimal parameters are Ackp = (27102710 215,

Journal of the American Statistical Association, September 2004

1.4 T T

X2

1 L L L L 1
X1 X12 X14 X13 X23 X4 X24 X34 X13

Figure 5. Ly Norm Scores for the Two-Factor Interaction Model
(e~ CKL; = GACV).

2—10’ 2—10) and iranGACV — (2—20’ 2—20’ 2—18’ 2—20’ 2—20).
Figure 5 plots the ranked L1 norm scores. The dashed line rep-
resents the threshold g chosen by the Monte Carlo bootstrap
test procedure. The LBP two-factor interaction model, using ei-
ther )ALCKL or ):GACV, selects all of the important effects X M,
X®@ | and their interaction effect correctly.

There is a strong interaction effect between variables XV
and X, which is shown clearly by the cross-sectional plots in
Figure 6. The solid lines are the cross-sections of the true logit
function f(x(]), x(z)) at distinct values xV) = .2, .5, .8, and the
dashed lines are their corresponding estimates given by the LBP
model. The parameters are tuned by the ranGACV criterion.

6.3 Simulation 3: Main-Effects Model Incorporating
Categorical Variables

In this example, among the 12 covariates, XD  x10 gpe
continuous and Z(" and Z® are categorical. The continuous

(©

25

x1=05

-4.5
]

0.5
x2

Figure 6. Cross-Sectional Plots for the Two-Factor Interaction Model:
(a) x=.2; (b) x=.5; (c) x=.8 (--- true; — estimate).
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Figure 7. L; Norm Scores for the Main-Effects Model Incorporating
Categorical Variables (- CKL,; = GACV).

variables are uniformly distributed in [0, 1], and the categori-
cal variables are Bernoulli(.5) with values {0, 1}. The true logit
function is

f(x) = %x(l) + 7 sin(rx®) + 8(x(6))5

2 ®)

+ +4z0 -7,

e —
The important main effects are XD, x® x© x® andz®,
The sample size is n = 1,000, and the basis size is N = 50.
We use the same perturbation € as in the previous exam-
ples. The main-effects model incorporating categorical vari-
ables in (7) is fitted. Figure 7 plots the ranked L; norm scores
for all of the covariates. The LBP main-effects models using
)ALCKL and )A»GACV both select the important continuous and cat-
egorical variables correctly.

7. WISCONSIN EPIDEMIOLOGIC STUDY OF
DIABETIC RETINOPATHY

The Wisconsin Epidemiologic Study of Diabetic Retinopa-
thy (WESDR) is an ongoing epidemiologic study of a cohort
of patients receiving their medical care southern Wisconsin.
All younger-onset diabetic persons (defined as under age 30
of age at diagnosis and taking insulin) and a probability sam-
ple of older-onset persons receiving primary medical care in an
11-county area of southwestern Wisconsin in 1979-1980 were
invited to participate. Among 1,210 identified younger onset
patients, 996 agreed to participate in the baseline examination
in 1980-1982; of those, 891 participated in the first follow-up
examination. Details about the study have been given by Klein,
Klein, Moss, Davis, and DeMets (1984a,b, 1989), Klein, Klein,
Moss, and Cruickshanks (1998), and others. A large number
of medical, demographic, ocular, and other covariates were
recorded in each examination. A multilevel retinopathy score
was assigned to each eye based on its stereoscopic color fundus
photographs. This dataset has been extensively analyzed using
a variety of statistical methods (see, e.g., Craig, Fryback, Klein,
and Klein 1999; Kim 1995).

In this section we examine the relation of a large number
of possible risk factors at baseline to the 4-year progression of
diabetic retinopathy. Each person’s retinopathy score was de-
fined as the score for the worse eye, and 4-year progression of
retinopathy was considered to occur if the retinopathy score de-
graded two levels from baseline. Wahba et al. (1995) examined
risk factors for progression of diabetic retinopathy on a subset
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of the younger-onset group, whose members had no or nonpro-
liferative retinopathy at baseline; the dataset comprised 669 per-
sons. A model of the risk of progression of diabetic retinopathy
in this population was built using a SS—~ANOVA model (which
has a quadratic penalty functional), using the predictor variables
glycosylated hemoglobin (gly), duration of diabetes (dur), and
body mass index (bmi); these variables are described further
in Appendix B. That study began with these variables and two
other (nonindependent) variables, age at baseline and age at di-
agnosis; these latter two were eliminated at the start. Although
it was not discussed by Wahba et al. (1995), we report here
that that study began with a large number (perhaps about 20)
of potential risk factors, which were reduced to gly, dur, and
bmi as likely the most important after many extended and la-
borious parametric and nonparametric regression analyses of
small groups of variables at a time and by linear logistic re-
gression by the authors and others. At that time it was recog-
nized that a (smoothly) nonparametric model selection method
that could rapidly flag important variables in a dataset with
many candidate variables was very desirable. For the purposes
of the present study, we make the reasonable assumption that
gly, dur, and bmi are the “truth” (i.e., the most important risk
factors in the analyzed population), and thus we are presented
with a unique opportunity to examine the behavior of the LBP
method in a real dataset where, arguably, the truth is known,
by giving it many variables in this dataset and comparing the
results to those of Wahba et al. (1995). Minor corrections and
updatings of that dataset have been made, (but are not believed
to affect the conclusions), and we have 648 persons in the up-
dated dataset used here.

We performed some preliminary winnowing of the many
potential prediction variables available, reducing the set for
examination to 14 potential risk factors. The continuous covari-
ates are dur, gly, bmi, sys, ret, pulse, ins, sch, iop, and the cate-
gorical covariates are smk, sex, asp, famdb, mar; the full names
for these are given in Appendix C. Because the true f is not
known for real data, only ranGACYV is available for tuning A.
Figure 8 plots the L1 norm scores of the individual functional
components in the fitted LBP main-effects model. The dashed
line indicates the threshold ¢ = .39, which is chosen by the se-
quential bootstrap tests.

We note that the LBP picks out three most important vari-
ables, gly, dur, and bmi, specified by Wahba et al. (1995).
The LBP also chose sch (highest year of school/college com-
pleted). This variable frequently shows up in demographic stud-
ies, when one looks for it, because it is likely a proxy for other
variables related to disease, such as lifestyle and quality of med-
ical care. It did show up in preliminary studies of Wahba et al.

1 1 1 L L L 1 1 L L L 1
gly dur sch bmi puls ret sys iop ins sex smk asp famdb mar

Figure 8. Ly Norm Scores for the WESDR Main-Effects Model.
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Figure 9. Estimated Logit Component for dur.

(1995) (not reported there) but was not included, because it was
not considered a direct cause of disease itself. The sequential
Monte Carlo bootstrap tests for gly, dur, sch, and bmi all have
p value 1/51 = .02; thus these four covariates are selected as
important risk factors at the significance level o = .05.

Figure 9 plots the estimated logit for dur. The risk of progres-
sion of diabetic retinopathy increases up to a duration of about
15 years, then decreases thereafter, which generally agrees with
the analysis of Wahba et al. (1995). The linear logistic regres-
sion model (using the function g/m in the R package) shows that
dur is not significant at level o« = .05. The curve in Figure 9 ex-
hibits a hilly shape, which means that a quadratic function fits
the curve better than a linear function. We refit the linear lo-
gistic model by intentionally including dur?; the term dur? is
significant with a p value of .02. This fact confirms the discov-
ery of the LBP, and shows that LBP can be a valid screening
tool to aid in determining the appropriate functional form for
the individual covariate.

When fitting the two-factor interaction model in (6) with the
constraints Ay, = Ags = Ay, We did not find the dur—bmi inter-
action of Wahba et al. (1995) here. We note that the interaction
terms tend to be washed out if there are only a few interactions.
However, further exploratory analysis may be done by rearrang-
ing the constraints and/or varying the tuning parameters subjec-
tively. Note that the solution to the optimization problem is very
sparse. In this example, we observed that approximately 90% of
the coefficients are 0’s in the solution.

8. BEAVER DAM EYE STUDY

The Beaver Dam Eye Study (BDES) is an ongoing popula-
tion-based study of age-related ocular disorders. It aims to
collect information related to the prevalence, incidence, and
severity of age-related cataract, macular degeneration, and di-
abetic retinopathy. Between 1987 and 1988, 5,924 eligible
people (age 43-84 years) were identified in Beaver Dam,
Wisconsin; and of those, 4,926 (83.1%) participated in the
baseline exam. 5- and 10-year follow-up data have been col-
lected, and results are being reported. Many variables of various
kinds have been collected, including mortality between base-
line and the follow-ups. A detailed description of the study has
been given by Klein, Klein, Linton, and DeMets (1991); recent
reports include that of Klein, Klein, Lee, Cruickshanks, and
Chappell (2001).

We are interested in the relation between the 5-year mor-
tality occurrence for the nondiabetic study participants and
possible risk factors at baseline. We focus on the nondiabetic
participants, because the pattern of risk factors for people with
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diabetes and the rest of the population differs. We consider
10 continuous and 8 categorical covariates; the detailed in-
formation for which is given in Appendix D. The abbreviated
names of continuous covariates are pky, sch, inc, bmi, glu, cal,
chl, hgb, sys, and age, and those of the categorical covariates
are cv, sex, hair, hist, nout, mar, sum, and vtim. We deliberately
take into account some “noisy” variables in the analysis, in-
cluding hair, nout, and sum, which are not directly related to
mortality in general. We include these to show the performance
of the LBP approach, and they are not expected to be picked
out eventually by the model. Y is assigned a value of 1 if a per-
son participated in the baseline examination and died before
the start of the first 5-year follow-up and O otherwise. There
are 4,422 nondiabetic study participants in the baseline exam-
ination, 395 of whom have missing data in the covariates. For
the purpose of this study, we assume that the missing data are
missing at random; thus these 335 subjects are not included
in our analysis. This assumption is not necessarily valid, be-
cause age, blood pressure, body mass index, cholesterol, sex,
smoking, and hemoglobin may well affect the missingness, but
a further examination of the missingness is beyond the scope
of the present study. In addition, we exclude another 10 partic-
ipants who have either outlier values pky > 158 or very abnor-
mal records bmi > 58 or hgb < 6. Thus we report an analysis
of the remaining 4,017 nondiabetic participants from the base-
line population.

We fit the main-effects model incorporating categorical vari-
ables in (7). The sequential Monte Carlo bootstrap tests for six
covariates, age, hgb, pky, sex, sys, and cv, all have Monte Carlo
p values 1/51 = .02, whereas the test for glu is not signifi-
cant with a p value 9/51 = .18. The threshold is chosen as
q = L) = .25. Figure 10 plots the L; norm scores for all of
the potential risk factors. Using the threshold (dashed line) .25,
chosen by the sequential bootstrap test procedure, the LBP
model identifies six important risk factors, age, hgb, pky, sex,
sys, and cv, for the 5-year mortality.

Compared with the LBP model, the linear logistic model with
stepwise selection using the AIC, implemented by the func-
tion glm in R, misses the variable sys but selects three more
variables, inc, bmi, and sum. Figure 11 depicts the estimated
univariate logit components for the important continuous vari-
ables selected by the LBP model. All of the curves can be ap-
proximated reasonably well by linear models except sys, whose
functional form exhibits a quadratic shape. This explains why
sys is not selected by the linear logistic model. When we refit
the logistic regression model by including sys? in the model,
the stepwise selection picked out both sys and sys?.

1

age hgb pky sex sys cv glu inc chl bmi sum wed hist vim nout hair sch cal

Figure 10. Ly Norm Scores for the BDES Main-Effects Model.
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Figure 11. Estimated Univariate Logit Components for Important
Variables: (a) age; (b) hgb; (c) pky; (d) sys.

9. DISCUSSION

‘We have proposed the LBP approach for variable selection in
high-dimensional nonparametric model building. In the spirit of
LASSO, LBP produces shrinkage functional estimates by im-
posing the /1 penalty on the coefficients of the basis functions.
Using the proposed measure of importance for the functional
components, LBP effectively selects important variables, and
the results are highly interpretable. LBP can handle continuous
variables and categorical variables simultaneously. Although in
this article our continuous variables have all been on subsets of
the real line, it is clear that other continuous domains are possi-
ble. We have used LBP in the context of the Bernoulli distribu-
tion, but it can be extended to other exponential distributions as
well (of course, to Gaussian data). We expect that larger num-
bers of variables than that considered here may be handled, and
we expect that there will be many other scientific applications
of the method. We plan to provide freeware for public use.

We believe that this method is a useful addition to the toolbox
of the data analyst. It provides a way to examine the possible
effects of a large number of variables in a nonparametric man-
ner, complementary to standard parametric models in its ability
to find nonparametric terms that may be missed by paramet-
ric methods. It has an advantage over quadratically penalized
likelihood methods when the aim is to examine a large number
of variables or terms simultaneously, inasmuch as the /; penal-
ties result in sparse solutions. In practice, it can be an efficient
tool for examining complex datasets to identify and prioritize
variables (and, possibly, interactions) for further study. Based
only on the variables or interactions identified by the LBP, one
can build more traditional parametric or penalized likelihood
models, for which confidence intervals and theoretical proper-
ties are known.
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APPENDIX A: PROOF OF LEMMA 1

For i =1,....n, we have 1), v = = )T+ bo).
Let f5,171 be the minimizer of the objective function
—Z (vj- &)+ I (). (A1)
J#
Because
[—i]
(=, (%), 7)) —i .
b =y ) b
T
and

021l x), 1)

=b(t)>0
o7 ()

we see that —/ (/L[[l](x,'), 7) achieves its unique minimum at 7 that

satisfies b(F) = ;/.Ef"](x,'). Sot= f)ffi](x,'). Then for any f, we have

_l(,t,L)L (xz) f[ ’](x ) ( [*i](xi)’f(xl_)). (A2)
Deﬁney*":(yl,,.,,ylfl /’LA (Xl) yl+1,...,yn)/. For any f,
L(f,y™
1 —i
=171 ](X")’f(xi))+Z[_l(y.i’f(xj))]}+Jx(f)
Jj#i
1 > »
e U CRRCON ](X"))JFZ[_l(yj’f(Xj))]}+Jx(f)
Jj#i
l _ [—i], . [—il . _ ) [—i] '
= = e £ w0) + [0 T )]
Jj#i
+ 5 (1),

The first inequality comes from (A.2). The second inequality is due
to the fact that Vi [71]( ) is the minimizer of (A.1). Thus we have that

Tx). )—f,\
APPENDIX B: DERIVATION OF ACV

Here we derive the ACV in (11) for the main-effects model; the
derivation for two- or higher-order interaction models is similar. Write
un(x) = E(Y|X =x) and 02(x) = var(Y|X = x). For the functional
estimate f, we define f; = f(x;) and u; = u(x;) fori =1,...,n
To emphasize that an estimate is associated with the parameter X,
we also use fj; = fi.(x;) and wy; = uy (X;). Now define

1 n
. Z [ —vi foi +b(fi)]-

i=1

hy (i, MA

OBS(\) =

This is the observed CKL, which, because y; and f;; are usually pos-
itively correlated, tends to underestimate the CKL. To correct this,
we use the leave-one-out CV in (9),

n

1 »
Vi) =~ Z[—yifu[ T4 b(fii)]
i=1
1 & ,
= OBS() + > il — £l
i=1
[—i]
] n
= 0BS() + — Zw%
n . [—i]
i=1 Yi — /’L)\,
x Ji ““ . (B.1)

1= Gui — 1l = ul7h
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For exponential families, we have u;; = b(f;;) and 0)%1. =b(fiy)-
If we approximate the finite difference by the functional derivative,
then we get

[—i]

woi — 1l b(h) =BT
i — ME\,” vi — b7
—i]
.. fi—f!
~ b(fo) L
|
Yi A
—i]
fi—fii
=} [{ll_] (B.2)
i A
Denote
[—i]
G =2 f[ o (B.3)
Vi — My,
then from (B.2) and (B.1), we get
CV(A) ~ OBS(.) + ~ ZG M. (B.4)
1_] -G UAI

Now we proceed to approximate G;. Consider the main-effects
model with

d d N
f(x) =by + Z bakl(x(a)) + Z an’jl(l (x(“),xj.i)).

a=1 a=1j=1
Let m = Nd. Define the vectors b = (b(),b],...,bd)/ and ¢ =
(c1.1s---s¢ca,N) =(c1,....cm) . Fora=1,...,d, define the n x N
matrix Ry = (K1 (), xj.i))). LetR=[R;,...,Ry] and
1 d
1 k) ki (\ @)
T=1: :
1 k) )

Define f = (f1,..., fu)’, then f = Tb + Re. The objective function
in (10) can be expressed as

1 n d+1
u(b,c,y>=;Z[ yl<ZTmba+2Ruq>

i=1

d+1
+b(z Tioba + ZR,,(;])}

d+1

+Ad2|ba\+xs2\cj

With the observed response y, we denote the minimizer of (B.5)
by (b, ¢). When a small perturbation & is imposed on the response,
we denote the minimizer of /) (b, ¢,y + €) by (f), ¢). Then we have
f{ =Tb+ R¢ and f{+€ =Tb + Ré. The I penalty in (B.5) tends to
produce sparse solutions; that is, many components of b and ¢ are ex-
actly 0 in the solution. For simplicity of explanation, we assume that
the first s components of b and the first r components of € are nonzero,
that is,

(B.5)

A

b:(é], "ES’£S+]""’£d+])/
#0 =0

and

).

C=(Cly- s Cr Cryls-.-

#0 =0
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The general case is similar but notationally more complicated.

The O’s in the solutions are robust against a small perturbation in
data. That is, when the magnitude of perturbation & is small enough,
the O elements will stay at 0. This can be seen by transforming the
optimization problem (B.5) into a nonlinear programming problem
with a differentiable convex objective function and linear constraints,
and considering the Karush—Kuhn-Tucker (KKT) conditions (see, e.g.,
Mangasarian 1969). Thus it is reasonable to assume that the solution
of (B.5) with the perturbed data y + & has the form

b=(by,....bs,bs11,....bg41)
D e —
#0 =0
and
52(517~-~75r75r+17~-~75m)/~
#0 =0

For convenience, we denote the first s components of b by b* and
the first r components of ¢ by ¢*. Correspondingly, let T* be the sub-
matrix containing the first s columns of T and let R* be the submatrix
consisting of the first » columns of R. Then

y+e oy ~ A N " N b* — p*
i, -6 =Thb-b)+R(C€-¢)=[T* R*] ot |- (B.6)
Now
an, AL
[ ); —i] : =0 and
Jb ac (b,E,y+s) (B 7)
[ oL, ol ]’ —o
db* ’ ac* (B,é,y) '
The first-order Taylor approximation of [ gl{i , géﬁl ](b - at (B, ¢,y)
gives
|: al, dly ]
Jb* ’ ac* (B,E,y+€)
ol 321, 321, A
b+ ab*ab*  3b* ac* b* —b*
A ®.8.3) R 91, o —o*
* ,C, —_— oA
o y acrob¥  ac*ac? d(b,&y)
921,
ab* oy’
+[ az,j} y+e-y), (B.3)
dc* ay’ (f) c,y)
when the magnitude of & is small. Define
921, 921,
U= | a*ap  ab* o
T 8% 321, .
actab¥  deroct’ H(b,Ly)
and
921,
_ _ | ab*ay
= 221, A .
ac* 3y’ 4 (b,¢y)
From (B.7) and (B.8), we have
b* — b*
U[é* —é*] ~ Ve.
Then (B.6) gives us fy ~ He, where
H=[T* R*]U"'V. (B.9)
Now consider a special form of perturbation g = (0, ..., “E\z i Vis
.,0)’; then fy+€° fy ~ go; H.;, where €p; = ,U,Ed iy Lemma 1
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in Section 3 shows that fk 1is the minimizer of I (f,y+€g). There-

fore G; in (B.3) is

o _hi= it B
B £0i

From (B.4), an ACV score is then

X hij.

1 I, v — i)
ACV(L) = o Z[_Yi Sai +0(fri)] + - Zhii T_o2h.
i=1 i=1 i ltii
(B.10)

APPENDIX C: WISCONSIN EPIDEMIOLOGIC STUDY
OF DIABETIC RETINOPATHY

o Continuous covariates:

X1:  (dur) duration of diabetes at the time of baseline
examination, years
Xo: (gly) glycosylated hemoglobin, a measure of hy-
perglycemia, %
X3:  (bmi) body mass index, kg/ m?
X4t (sys) systolic blood pressure, mm Hg
Xs5:  (ret) retinopathy level
Xe:  (pulse) pulse rate, count for 30 seconds
X7 (ins) insulin dose, kg/day
Xg:  (sch) years of school completed
Xog:  (iop) intraocular pressure, mm Hg
e Categorical covariates:
Z1: (smk) smoking status (0 = no, 1 = any)
Zy:  (sex) gender (0 = female, 1 = male)
Z3:  (asp) use of at least one aspirin for (0 = no,
1 =yes)
at least three months while diabetic
Z4:  (famdb) family history of diabetes (0 = none,
1 =yes)
Zs:  (mar) marital status (0 = no, 1 = yes/ever).
APPENDIX D: BEAVER DAM EYE STUDY
e Continuous covariates:
Xi: (pky) pack  years smoked, (packs  per
day/20)xyears smoked
Xo: (sch)  highest year of school/college completed,
years
X3: (inc)  total household personal income,
thousands/month
Xq: (bmi)  body mass index, kg/ m?
X5: (glu)  glucose (serum), mg/dL
Xe6: (cal)  calcium (serum), mg/dL
X7: (chl) cholesterol (serum), mg/dL
Xg: (hgb)  hemoglobin (blood), g/dL
Xog: (sys)  systolic blood pressure, mm Hg
X10: (age) age at examination, years.
e Categorical covariates:
Z1: (cev) history of cardiovascular disease (0 =no, 1 =
yes)
Zyr:  (sex) gender (0 = female, 1 = male)
Z3:  (hair)  hair color (0 = blond/red, 1 = brown/black)
Z4:  (hist)  history of heavy drinking (0 = never,
1 = past/currently)
Zs:  (nout) winter leisure time (0 = indoors,
1 = outdoors)
Ze:  (mar)  marital status (O =no, 1 = yes/ever)
Z7:  (sum) part of day spent outdoors in summer

(0=<1/4 day, 1 => 1/4 day)

Zg:  (vtm) vitamin use (0 =no, 1 = yes).
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