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Abstract

Lack of adequate statistical methods for the analysis of microarray data remains the most critical
deterrent to uncovering the true potential of these promising techniques in basic and translational bio-
logical studies. The popular practice of drawing important biological conclusions from just one replicate
(slide) should be discouraged. In this paper, we discuss some modern trends in statistical analysis of mi-
croarray data with a special focus on statistical classification (pattern recognition) and variable selection.
In addressing these issues we consider the utility of some distances between random vectors and their
nonparametric estimates obtained from gene expression data. Performance of the proposed distances is
tested by computer simulations and analysis of gene expression data on two different types of human
leukemia. In experimental settings, the error rate is estimated by cross-validation, while a control sample
is generated in computer simulation experiments aimed at testing the proposed gene selection procedures
and associated classification rules.
Keywords: statistical inference, nonparametric methods, pattern recognition, data adjustment, proba-
bility distance

1 Introduction

Microarray technology offers an exciting opportunity to simultaneously monitor the expression pattern of
thousands of distinct genes. Researchers can track the effects of interventions or natural processes on gene
expression levels thus identifying the functions of genes and the biochemical pathways they participate in. To
attack this biologically intriguing problem one needs to address a wide spectrum of issues of general method-
ological interest in statistical analysis of gene expression data; these include (i) the reduction of experimental
noise in the data, (ii) the identification of subsets of “marker” genes (target subsets) to characterize specific
signaling pathways (data reduction, variable selection, unsupervised learning), and (iii) the classification of
gene expression patterns (pathways) into known classes (supervised learning).

There are two daunting difficulties that make the analysis of microarray data extraordinarily challenging:
(1) A very high variability between slides (even for the same tissue sample) makes it difficult to detect
biologically significant changes in gene expression. Much of this variability comes from the probe labeling
process and instability of experimental conditions (humidity, temperature, hybridization pattern, etc.). (2)
The set of microarray data on p distinct genes represents a random vector X = X1, . . . , Xp with mutually
dependent components. The dimension of X is extremely high relative to the number of observations
(replicates of experiments). This unusual feature of microarray data prevents maximization of the posterior
Bayes risk based on the adaptive kernel estimation of the class-conditional probability densities and other
conventional discriminant analysis techniques using X as the feature vector. Therefore, the identification of
a feature subvector of much lower dimension than that of X becomes the most crucial step on the road to
efficient decision rules of pattern recognition with microarray data.
∗Author for correspondence: Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah,

2000 Circle of Hope, Salt Lake City, UT 84112-5550, ph: (801)585-5182, fax: (801)585-5357, e-mail: aniko.szabo@hci.utah.edu

1



The general problem of statistical pattern recognition can be formulated within the framework of dis-
criminant analysis [1]. In discriminant analysis, each pattern is considered as an entity which belongs to one
of a number of predefined classes or groups of patterns (tissues) and can be represented by a vector, Y, of
features of the pattern. Suppose there is a finite number of distinct classes or groups, G1, . . . , Gk, whose
existence is known a priori. An entity (tissue sample) is assumed to belong to one and only one of these
classes. Let I be an indicator of the group membership, that is I = i implies that the given entity belongs
to class Gi, i = 1, . . . , k. Let the d-dimensional vector y = (y1, . . . , yd) represent the measurements on d fea-
tures of the entity. The vector y is a sample realization of the corresponding random vector Y = Y1, . . . , Yd
known as the feature vector.

In the predictive setting of discriminant analysis (supervised learning), the intent is to assign the unknown
entity to one of the k classes on the basis of individual values of measurements. In other words, the problem is
to estimate the function I from the observed values of y. In the descriptive setting (unsupervised learning), no
allocation of the entity to one of the classesG1, . . . , Gk is intended, but the prime goal is to provide insight into
the structure of possible predictor variables. The predictive and descriptive settings of discriminant analysis
are closely related; the two ways of analysis supplement and enrich each other when used in combination.

While the basic principles of statistical classification or pattern recognition are clear, the daunting ques-
tion still remains: how to overcome the “curse of dimensionality” in the analysis of microarray data generated
by a wide scan of the genome. The central problem is to find a feature vector, say Y = Y1, . . . , Yd, d � p,
that could be efficiently used in the construction of a classification (discriminant) rule from available training-
sample data. This problem is of a fundamental rather than a technical nature. It is a well known fact that
the performance of a given decision rule does not keep improving as the dimension, d, of the feature vector Y
is increased. Rather, a sort of peaking phenomenon is typically present, i.e. the overall unconditional error
rate of a discriminant rule stops decreasing and starts to increase as d exceeds some threshold, depending on
the specific data set under study [1]. Good use may be made of discriminant analysis once a feature vector
of substantially lower dimension than that of the full vector X has resulted from exploratory data analyses.

The problem of initial selection of feature variables Y for use in recognition of cell types (tissues) is the
main subject matter of this paper. Many methodological trends in microarray data analysis, briefly reviewed
in the next section, have a direct bearing on the problem under discussion.

The outline of the paper is as follows: Section 2 contains a brief and necessarily incomplete review of
current methods used in microarray analysis. Sections 3 and 4 describe initial adjustment procedures for
raw and ranked microarray data respectively. Section 5 is the heart of the paper, in which we describe the
construction a new class of metrics, and the use of metrics of this class for multivariate variable selection.
Section 6 is the most theoretical part of the paper, and describes a multidimensional two-sample test for the
hypothesis. Simulation results comparing the new methodology with some marginal selection procedures are
presented in Section 8. Finally, in Section 9 we use the new methodology to classify two leukemia data sets.

2 Modern Trends in Methodology of Microarray Data Analysis

2.1 Finding co-regulated genes

One commonly accepted methodology uses clustering techniques to study time-dependent changes in gene
expression initiated by biological stimuli or developmental processes. Carr et al. [2] studied the activity of
genes involved in the formation of the rat spinal cord during gestation and postnatal development. The
authors have shown that genes with similar known functions tend to cluster together. Eisen et al. [3]
obtained similar results from experimental studies of growth responses of yeast (S. cerevisiae) and human
cells. Cho et al. [4] studied variations of gene expression during the cell cycle in S. cerevisiae and identified
the well known regulators as well as groups of genes that had not been noted by then for their association with
the cell cycle. The authors used biological approaches to show that the newly detected genes are required for
successful completion of cell division. Hughes et al. [5] developed a database containing expression profiles
of 300 diverse mutations and treatments in S. cerevisiae. Using clustering the authors determined groups of
genes that react similarly to different interventions and thus, presumably, are involved in a common function.
The functions of several uncharacterized open reading frames in these groups were confirmed by additional
experiments. These results convincingly demonstrate that gene expression profiles are a powerful tool for
classifying genes. Most papers on gene clustering use hierarchical clustering methods such as the FITCH
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method designed to construct phylogenic trees [2, 6], the average [3] or single [7] linkage clustering and the
two-way clustering [8]. Although the hierarchical trees produced by these methods provide an appealing
visual display [3], there are several problems with their ability to adequately describe the data. The decision
to include a pair of genes in the same cluster is based only on a specific distance between them (introduced
to quantitatively characterize the degree of co-regulation) and any such decision is final. The local nature of
this decision rule often inhibits the algorithm’s ability to find a global structure. Also, the hierarchical trees
are more suited for the description of real hierarchical relationships (e.g. evolutionary processes), while there
is no evidence for the existence of such relationships in biological functions of different genes. In addition,
the resulting structure is very complex and there is no general agreement on how to choose the location for
cutting the tree.

There are methods that construct a direct partitioning of genes into clusters, thus circumventing some of
the problems inherent in hierarchical algorithms, but they rely heavily on prespecified values of many relevant
parameters that may influence the net results of clustering. The k-means algorithm [9, 10] iteratively finds
the partition of the data into k clusters that minimize the sum of squared distances between each observation
and the centroid of the cluster it belongs to. The method of self-organizing maps (SOM), that was applied
to expression data by Tamayo et al. [11], assigns each gene to a vertex of a prespecified lattice. Clusters
that are close to each other in the geometry of the lattice are more similar to each other than the far-away
clusters. No rigorous statistical results are available to provide a theoretical underpinning for these methods.
It should be noted that the above mentioned clustering methods provide only an exploratory tool, they do
not have a statistical model in the background, thereby providing no measures of confidence or assurance of
the correctness of findings.

More recently several researchers have attempted to develop clustering techniques specifically for genetic
data that can also provide measures of quality and/or correctness. Under certain parametric assumptions
it is possible to provide probability guarantees for reconstructing the correct clusters [12, 13]. Heyer et al.
[14] proposed a method for constructing clusters of prespecified diameters that are large (relative to those
produced by other methods) in size but still quite compact. The CLICK algorithm [15] finds small tight
kernels that are subsequently expanded into larger clusters. This graph-based algorithm appears to perform
better than the self-organizing maps and k-means clustering in terms of cluster homogeneity and separation
efficiency. Hastie et al. [16,17] proposed the so-called ‘gene-shaving’ method to organize a multi-step search
for clusters of genes that satisfy certain criteria, including their significance as predictors in post-treatment
cancer survival. The ‘gap statistic’ introduced by these authors for the purpose of choosing the ‘most
significant’ cluster deserves further exploration in the context of other methodological approaches.

The choice of an appropriate quantitative characteristic of co-regulation or co-expression of genes is of
crucial importance for the analysis of microarray data. Use of similarity measures or probability distances is
a standard practice in the field. However, it should be kept in mind that the choice of a similarity measure
may have a strong effect on the outcome of a given clustering algorithm. Unfortunately, this issue has
received little attention in the literature. In the literature on gene expression, the most commonly used
measure of similarity (or rather co-monotonicity) of time-dependent variations in expression of two different
genes is Pearson’s correlation coefficient [3]. As a surrogate for time some authors suggest appending the
differences between consecutive observations to the response vector [2,6]. The Pearson correlation coefficient
is known to be sensitive to outliers. As a remedy for this problem Heyer et al. [14] proposed using a jackknife
estimated correlation coefficient defined as the smallest (in absolute value) sample correlation obtainable
with any single observation deleted from the sample.

Another similarity measure, the so-called mutual information distance, was introduced in the analysis of
gene expression data by Michaels et al. [6] and also used by Butte et al. [7]. Computing the mutual infor-
mation distance requires binning of the observed expression levels, resulting in certain losses of information.
However, it holds much promise for developing robust similarity measures.

2.2 Differential Expression of Genes

While clustering techniques are useful in providing insights into interactions between different genes or finding
genetically similar samples, these techniques do not answer the question many researchers are interested in:
which genes are expressed differently in the tissues under comparison? Surprisingly little research has been
done to find statistically sound methods for identifying differentially expressed genes. Most authors use the
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logarithm of the ratio of the observed fluorescence signals from the two channels and then consider any
gene with the ratio above a fixed value (usually 2 or 3) to be differentially expressed [18–20]. Often some
kind of adjustment or normalization is carried out before and/or after computing the ratio, but there is no
sufficiently general and well defined procedure. It is common practice to subtract the background intensity
and normalize the expression level of each gene so that the average (over genes) ratio becomes equal to unity.
Sometimes, the data are normalized to a fixed level of a housekeeping gene.

When selecting the initial feature vector for pattern recognition one can interpret it as a target subset
of genes that merit special attention. There are simple selection rules that have received certain attention
in the literature. For example, van der Laan and Bryan [13] suggest the following relatively simple rule:
(1) select those genes which are at least m-fold differentially expressed (m being input by the user) with
respect to the marginal mean level of expression in the two states (tissues) under comparison; (2) estimate
a correlation-distance matrix for these differentially expressed genes; (3) apply a clustering algorithm to
(some function of) this distance-matrix; and possibly (4) only include those genes in the target subset that
are closest to the cluster centers. Newton et al. [21] obtained an empirical Bayes estimator of the fold
change in gene expression that turned out to be different from the simple ratio. Kerr et al. [22] proposed
to use ANOVA for the log-intensities (not ratios) to combine the adjustment step with the identification
of differential expression. The authors also raise the issue of experimental design [22, 23] for microarray
studies and point out confounding effects in common experimental setups. The authors state that a search
for better ways of measuring differences in the expression of a given gene in two tissues is far from complete
exploration.

Another important issue regarding differential expression of genes has to do with the sample size. From
the statistical point of view, the popular practice of drawing important biological conclusions from just one
replicate (slide) should be discouraged. Several papers [24, 25] have demonstrated a very high variability
of microarray slides and a tangible improvement achieved through increasing the number of replications.
However, efficient ways of combining information from several replicates have yet to be developed. General
guidelines for sample size determination in microarray experiments still remain unclear, although a very
interesting theoretical treatment of the problem is presented in [13].

The large variability in the gene expression measurements, as well as the common occurrence of obser-
vations that are completely corrupted by impurity of some spots on the slide, motivate the development of
robust methods for data analysis. Tsodikov et al. [26,27] proposed methods for testing differential expression
of individual genes based on ranks and data categorization. These methods appear to be quite robust to
the experimental noise present in microarray data; the corresponding procedures are discussed at length in
Section 3.

2.3 Statistical pattern recognition

Golub et al. [28] proposed selecting genes that are individually highly correlated with the known classification
and then using a voting procedure for classification of new samples. The authors successfully applied their
technique for distinguishing acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) sam-
ples. Hastie et al. [16] extended this approach to find genes that are predictive of an endpoint (e.g. survival
time) with gene expression treated as a covariate. The authors proceed from a selection criterion which,
in some sense, is opposite to that by Golub et al. [28]: they find a linear combination of gene expression
signals that explains the most of the variance of the covariate and then eliminate those genes that are least
correlated with the combination (instead of choosing the ones that are most correlated).

Dudoit et al. [29] performed a preliminary selection of genes on the basis of the ratio of their between-
group and within-group sum of squares and then compare predictors based on the d genes with the largest
ratios. In particular, they preset d at values ranging from 30 to 50 most differentially expressed genes for
different data sets. Ben-Dor et al. [30,31] propose two non-parametric scores, termed the threshold number of
misclassification and InfoScore, for marginally evaluating the “relevance” of a gene to the classification task.
Dudoit et al. [29] compared various discrimination methods for the classification of tumors based on gene
expression data including nearest neighbor classifiers, linear discriminant analysis, classification trees, and
some more recent machine learning approaches such as bagging and boosting. They found the traditional
linear classifiers and nearest neighbors perform remarkably well compared to more sophisticated methods
such as aggregated classification trees. The authors note, however, that more advanced methods might work
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better if a larger number of samples were available for training.
A common feature of the classification methods mentioned above is the univariate nature of the decision

to include a particular gene in the initial feature set. The complex interaction pattern of gene functions makes
it unlikely that the contribution of a gene to the between-tissue difference can be evaluated marginally. Even
with just two correlated variables it can happen that the knowledge of their marginal distributions is not
enough to predict class membership while jointly they may make the prediction very good. Methods that use
multivariate information at every step are needed to utilize the information hidden in gene interactions and
hence to increase the power of classification rules. Because of a strong “method by data type” interaction
(particular methods will be best for particular types of data), no universal solution is available.

One of the most exciting uses of statistical classification as applied to gene expression data is the iden-
tification of subtypes of well known diseases. This includes both improving the existing classification into
known classes and the discovery of new/unknown subgroups that are clinically significant. The genetic
profile of a tissue determines its properties, which is why different tissues are expected to have different
gene expression patterns. As demonstrated by various clustering methods of gene expression vectors with a
measure of similarity formally coinciding with the Pearson correlation [32], tissues of the same histological
origin tend to cluster together. Ross et al. [33] came to a similar conclusion when clustering 60 NCI cell
lines. Alizadeh et al. [34] used hierarchical clustering to demonstrate the existence of two previously un-
known genetically different subtypes of B-cell lymphoma that carry significantly different prognosis in terms
of patients’ survival.

The above review shows that at least some practically important issues of microarray data analysis
progressively become approachable. On the other hand, the search for better methods remains to be empirical
in nature, and we probably are still a long way from a satisfactory solution to the problem. With its potential
to quantitatively determine expression levels of a large number of genes in parallel, microarray technology
holds the promise of becoming an extremely valuable tool in basic biological sciences and clinical diagnostics,
but its ultimate usefulness will depend critically on whether or not the search for efficient statistical methods
meets with success.

3 Differential Expression of Individual Genes and Data Adjust-
ment

Currently there are (at least) two competing technologies for gene expression analysis. The spotted cDNA
microarray technology developed at Stanford University [19] is geared toward a comparative measurement
of gene expression, while high density oligonucleotide chips developed by Affymetrix aim at measuring the
absolute gene expression levels. While the second approach is probably more appropriate for classification
purposes, two-color spotted cDNA microarrays can be adapted as well either by using a reference tissue
design or through adjustment procedures.

First we introduce some notation to describe experimental data generated in the form of two-color cDNA
microarrays. Let n denote the number of slides, and p be the total number of genes. Let Ai, Bi, i = 1, . . . , p
be a pair of random variables representing gene expression measurements for the two tissues in an ideal
reproducible experiment.

Remark 1. In a reference tissue design we assume that the red channel corresponding to Ai contains the
tissue of interest. Associated with each slide, indexed by j = 1, . . . , n, is a pair of dependent random variables
Xij , Yij representing paired (two channel) measurements of fluorescent intensity for gene i = 1, . . . , p, where
X refers to the red channel, and Y to the green channel.

The notation is simpler for one-channel technologies (oligonucleotide chips, radio-labeled arrays) where
Ai denotes the random variable for the ‘ideal’ measurement and Xij the variable for the actual observation.
While Xij and Yij are random variables, in many experimental settings genes appear on a given slide only
once, so for these variables only one observation, denoted by xij and yij respectively, is available for each
slide.

Due to the errors in the measurement process, the distribution of the observed intensities Xij , Yij is
different from the distribution of the ‘ideal’ measurements Ai, Bi. Hence in order to make inference about
Ai, Bi, the relationship between the two sets of random variables needs to be explored. Informally, the model
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behind a microarray experiment can be written as

ϕ1(Aij , εij) = Xij ϕ2(Bij , δij , ) = Yij , (1)

where ε, δ are measurement errors, and ϕ1, ϕ2 are some non-random functions. The observed gene expression
levels need to be adjusted with the aim to restore the ideal sample aij , bij (drawn from Ai, Bi) or its surrogate
by transforming the observed sample xij , yij .

It is difficult to specify the form of ϕk, k = 1, 2 on mechanistic grounds. There are many sources of
the observed experimental noise so that some of the errors are likely to be additive (background), some
others are multiplicative (dye incorporation, fluorescence efficiency, spot size), while saturation effects have
a non-linear form, and many of them may vary within one slide as well. By far the most frequently used
assumption is that the measurement error has a simple multiplicative structure. More specifically,

Xi = αAi Yi = βBi, (2)

where α and β are scalar random variables taking on positive values. Suppose two random samples from
X = X1, ..., Xp and Y = Y1, ..., Yp are available, i.e.,

Xij = αjAij , Yij = βjBij ,

i = 1, ..., p, j = 1, ..., n. Under this model, it is assumed that the multiplicative measurement error is slide-
specific and is shared by genes on the same slide. The systematic part of α and β accounts for the difference
in intensity associated with the type of fluorescent dye used with a specific channel.

Generally, Aij , Bij are not recoverable from Xij , Yij without additional assumptions. In what follows,

we will be interested in testing the hypothesis: H0 : Ai
d= Bi (Ai and Bi are identically distributed) for the

ith gene rather than restoring exact sample values of these two random variables. As the first step, it makes
sense to find an adjustment that would reduce the problem to testing the hypothesis: Ai

d= σBi, where σ is
some nonrandom constant. One commonly used adjustment procedure is to divide each expression signal,
say xij (j is fixed), by the arithmetic mean taken over all the expression signals recorded on the same slide.
The rationale for such a procedure is as follows. If the measurement error does not depend on i, all genes
on the same slide (or half-slide) share the same slide-specific random effect. Introduce the notation

A·j =
1
p

p∑
i=1

Aij , X·j =
1
p

p∑
i=1

Xij .

Then one can eliminate the noise by generating the following adjusted observations

Ãij =
Xij

X·j
=
Aij
A·j

, B̃ij =
Yij
Y·j

=
Bij
B·j

. (3)

In like manner, this adjustment can be applied to the log-transformed multiplicative model resulting in

A∗ij =
Xij

p
√∏p

i=1Xij

=
Aij

p
√∏p

i=1Aij
,

B∗ij =
Yij

p
√∏p

i=1 Yij
=

Bij
p
√∏p

i=1Bij
.

It is clear that the equality Ai
d= Bi does not follow from Ãi

d= B̃i (or A∗i
d= B∗i ), and additional

assumptions are in order here. Suppose that the law of large numbers (for dependent random variables) is
valid for the sequences of Ai and Bi, i = 1, ..., or their logarithms. For this condition to be met it is sufficient
to require that the variance, given it exists, of the arithmetic mean 1

p

∑p
i=1Ai tends to zero as p→∞, the

same being valid for the sequence Bi. Then for sufficiently large finite p we can contend that the equality
Ãi

d= B̃i implies Ai
d= σBi, σ > 0.

Remark 2. Another assumption leading to the same result is that the expression levels of at least three out
of p genes are independent random variables and all marginal distributions of gene expression levels have
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Figure 1: Distributions over genes of the test statistics and p-values for t-test and the Kolmogorov-Smirnov
(KS) test when applied to test for differential expression in the two subsets of ALL data, presumably under
the null hypothesis.

finite first moment. The assertion can be proven using a method similar to that for the Prokhorov theorem
on the maximal invariant [35], but it does not by itself (without invoking the law of large numbers) suggest
a constructive way of data adjustment.

It is clear that even if sufficient conditions for the law of large numbers are satisfied, we still are unable
to test the hypothesis: Ai

d= Bi. However, if we assume in addition that

1
p

p∑
i=1

EAi =
1
p

p∑
i=1

EBi,

where E is the symbol of expectation, then from Ai
d= σBi it follows that σ = 1 and Ai

d= Bi. The rationale for
the latter assumption is that the majority of genes are believed to perform housekeeping functions so that only
a small proportion of genes is expected to change their expression when comparing two different tissues with
the average over all genes remaining unaltered. In a similar manner, more complex multiplicative-additive
slide-specific error effects can be considered, but substantiating the corresponding adjustment procedure
would require even stronger assumptions.

Both assumptions formulated above are untestable with experimental data on gene expression. The
best we can do is to check whether or not they are consistent with real data. To this end we applied the
multiplicative adjustment procedure (3) to the data on acute lymphoblastic leukemia (ALL data, Data Set
2, see Section 9). The data set was split randomly into two different subsets of equal size. By the design
of experiment, no difference is expected in gene expressions between the two subsets. The t-test and the
Kolmogorov-Smirnov (KS) test were used to test the hypothesis: Ãi

d= B̃i for each i = 1, . . . , p, both at
the significance level of 0.05. Histograms of the test statistics and the corresponding p-values are shown in
Figure 1. The t-test classified 1.09% genes as significantly differentially expressed, while with the KS test
this number was as low as 0.6%. It is worth noting that the distribution of p-values for the t-test appears
to be quite uniform while this apparently is not the case for the KS test. It is possible to test the equality
of the distributions of the slide-specific effects α and β in the two tissues by applying a two-sample test to
compare X·j and Y·j . We used the t-test to compare these distributions for the ALL versus AML data (Data
Set 2). No difference was found (p=0.49).

This analysis does not reject the multiplicative error model but the evidence in favor of the model is
rather weak. More analyses of various data sets are necessary before the model can be adopted as a common
tool for testing differential expression of genes.
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4 Categorical Adjustments of Microarray Data

However appealing properties of the proposed adjustment procedures based on specific models of gene ex-
pression signals may be, the most fundamental question still remains: what is a sufficiently realistic model
for the functions (transformations) ϕk in Eq. (1). A reasonably general model follows from the assumption
that ϕk are monotone transformations that preserve the ordering of an entire set of gene expression levels
arranged in order of magnitude. The idea motivated Tsodikov et al. [26] to suggest replacing the actual
observations with their fractional rank (that is the rank divided by the total number of genes) within the
slide:

X
(r)
ij = (rankjXij)/p, Y

(r)
ij = (rankj Yij)/p,

where rankj uij is the place (counted from the left) of ukj in the sequence uij , i = 1, . . . , p arranged in
decreasing order for each j.

In many practical situations, this adjustment restores the correct ordering of observations in the presence
of experimental noise of a fairly general structure. Another obvious advantage of this adjustment is its
stability to outliers. However, the price to be paid for these advantages is a substantial loss of information
which may be especially tangible when the sample size is small. In particular, the expression of a given
gene may change significantly with its rank remaining unchanged. Conversely, the rank of a given gene
may change (because of changes in expression of other genes) while there is no change in its own expression
level. More generally, identical distribution of ranks in two tissues does not imply identical distribution of
the corresponding vectors of expression signals. Furthermore, if the components of some subvector of gene
expression signals behave like independent and identically distributed random variables, then the ranks of
all the genes included in this subvector are equally likely. Therefore, it would require very large sample sizes
to make statistical inference from ranked observations on such a subvector. However, we believe that the
situations described above are rather the exception than the rule for microarray data analysis, and all the
caveats do not overweigh the usefulness of the robust inference based on ranks.

Tsodikov et al. [27] conducted computer simulations assuming independent and log-normally distributed
expression of individual genes with the error structure specified by a model that includes both the slide-
specific multiplicative and the slide-specific additive noise components. The authors used the Kolmogorov-
Smirnov statistic (not the test!) and the t-statistic to produce a list of top differentially expressed genes.
These statistics were employed just to order genes, but no conclusions in terms of statistical hypotheses
testing were made. Then this list was compared with a list of those genes whose mean expression levels had
been changed in computer experiments. Using simulated data, the ordering of differentially expressed genes
suggested by the method under evaluation can be verified against the “true” ordering. Newton et al. [21]
proposed a simple plot to compare the performance of different methods in restoring the “true” orderings.
Consider the N “truly” most differentially expressed genes that are preset in a simulation study. Let
M(N) be the number of these genes ranked in the top N by a particular method. Ideally, if the method
restores the true (error free) order, one will have M(N) = N for any N . If errors are present one should
expect M(N) ≤ N . Obviously, M(N) is an increasing function such that M(0) = 0 and M(p) = p. The
more the curve M(N) arches towards the lower right corner (0, p) on the plane {M} × {N}, the worse the
method’s performance. The rank-based adjustment was shown to perform well (in terms of correct selection
of differentially expressed genes) under the simplistic model used in the simulation study by Tsodikov et al.

When comparing expression levels of a given gene in two different states of a tissue or two different tissues,
use is frequently made of the so-called reference design that places one sample from the tissue of interest
and, whenever another channel is available, a reference tissue (one of no interest, usually a related cell line)
on each slide. The study by Tsodikov et al. [26] suggests that even when readings from both channels are
available, simply ignoring the observations of the reference tissue and using the robust adjustment based on
ranks for the tissue of interest leads to reliable results.

Another idea is to use a scatter plot of expression measurements from a particular slide for data catego-
rization. Measurements of fluorescent intensity in two channels (x=Green and y=Red) gives a point (x, y)
on the plane. A set of all such points for the genes associated with a given slide forms a scatter plot. Ideally,
non-differentially expressed genes would preserve a constant Green/Red ratio of 1, the corresponding (x, y)
points building a line on the plane. A differentially expressed gene would ideally show a different ratio, the
corresponding points being away from the line.
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However, for a number of reasons the picture is more complex:

• Additive background effect provides for a non-zero intercept of the line;

• Due to measurement errors and random nature of gene expression, the points corresponding to non-
differentially expressed genes are scattered considerably around the line;

• A strong slide-specific effect makes the scale and the scatter plot pattern variable from slide to slide.

The purpose of data adjustment is to transform the measurements of gene expression so that they
be on the same scale. Statistical tests can then be applied to the transformed sample, a surrogate of
ideal measurements. Generally speaking, the sample of x and y values is drawn from a system (vector) of
dependent random variables with an unknown dependency structure. The set of values {(xi, yi)}pi=1 contains
an unknown fraction of “outliers” that are not expected to follow the line. Also, both x and y are subject to
measurement error. In a situation where both x and y are measured with error, a linear structural relationship
is nonidentifiable without additional constraints. Even in the simplest case of independent measurements, a
least squares line for the model

Xi = Ui + δi Yi = Vi + εi, (4)

where δ and ε are measurement errors, and V = a+ bU , underestimates the slope b of the latent structural
relationship [36].

For the reason explained above, we resort to an ad hoc method to define a reference line for the scatter
plot. Having explored a number of robust procedures for linear regression using real and simulated expression
data we came up with a simple and computationally fast method based on the one developed by Bartlett [37].
Once the reference line is determined, it is rotated rigidly to coincide with the x-axis and all p points of
the scatter plot are projected on the line by the closest point projection. The coordinate system is changed
from (x, y) to (t, d), where d is a signed (directed) distance from the point (x, y) to its projection, and t is a
similar distance from the projection to the minimal projection on the reference line. The signed distance d
quantifies an instance of differential expression for a particular gene on the slide. Points above the line bear
a positive d indicating potential overexpression, while negative d is a sign of potential underexpression.

The distribution of d for genes in some small interval [t−∆, t+∆] appears to be a function of t, indicating
that genes with different order of absolute expression cannot be measured on the same d-scale. The above
observation prevents us from directly using d as a surrogate of differential expression. A summary measure
of differential expression can be constructed by ranking genes with respect to the directional distance d
adjusted for the surrogate of absolute expression signal t. To categorize differential expression, define a
cross section layer W+

t = {0 < d < ∞, t − ∆(t) < t < t + ∆(t)}, where ∆(t) is a bandwidth. Similarly,
W−t = {−∞ < d < 0, t−∆(t) < t < t+ ∆(t)}. Define a set of cutpoints αj , j = 0, . . . , k + 1 that break the
interval of total probability [0, 1] down into k + 1 subintervals. By definition α0 = 0, αk+1 = 1, αj−1 < αj .
A gene with coordinates (ti, di) above the reference line is assigned a category of differential expression C+

j

if C+
αj < di ≤ C+

αj+1
, where C+

α is the empirical α-percentile of the distribution of d for genes in the layer
W+
ti . All genes in W−t under the line are categorized in a similar manner. In fact, as Wt depends on t, Cαj

is a function of t representing a moving-average estimator of the αj-percentile of the distribution of d given
t. The step-functions Cαj (t) cut the plane into 2k+ 1 percentile bands B+

j = {0 ≤ t <∞, C+
αj < d ≤ C+

αj+1
}

and B−j = {0 ≤ t <∞, C−αj+1
< d ≤ C−αj} (the bands B+

0 and B−0 are combined into a single one).
To keep the estimation accuracy to a constant, ∆ is treated as data-adaptive and such that for any t

the layer Wt contains approximately the same number of points. A constraint can be also imposed on the
maximal bandwidth.

With k = 1, the observed gene expression falls into one of the following three categories: “Overexpressed”
(the point is in the upper band B+

1 ), “Not differentially expressed” (the point is in the middle band B0) and
“Underexpressed” (the point is in the lower band B−1 ). With k > 1 overexpression and underexpression are
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represented as a multiple of categories

(Xij , Yij)→



Overexpressed k if (tij , dij) ∈ B+
kj

... ... ...
Overexpressed 1 if (tij , dij) ∈ B+

1j

Not diff. expressed if (tij , dij) ∈ B0j

Underexpressed 1 if (tij , dij) ∈ B−1j
... ... ...

Underexpressed k if (tij , dij) ∈ B−kj .

(5)

An important feature of the proposed categorical summary measure of differential expression is that any
rank preserving transformation (possibly dependent on the absolute expression level t) of ideal expression
data will be adequately adjusted for.

Under the null hypothesis of no differential expression, genes are expected to show overexpression ap-
proximately as often as they show underexpression. In other words, the distribution of a categorical measure
of differential expression over a set of slides is symmetric under the null hypothesis.

For a given gene i, introduce the notation: n+
i = the number of slides where the gene happened to be in

category C+
i ; n−i = the number of slides where the gene happened to be in category C−i ; n0 = the number of

slides where the gene happened to be in category C0; p+
i = the probability for the gene of being in category

C+
i ; p−i = the probability for the gene of being in category C−i ; p0

i = the probability for the gene of being in
category C0

i . The total number of slides n =
∑k
i=1(n+

i + n−i ) + n0.
The null hypothesis that the gene is not differentially expressed can be formulated as p+

i = p−i =
pi, i = 1, . . . , k. Under the null hypothesis p̂i = (n+

i + n−i )/(2n), p̂0 = n0/n. Under a saturated model,
p̂+
i = n+

i /m, p̂
−
i = n−i /n, p̂0 = n0/n.

The likelihood ratio statistics can be used to summarize and quantify differential expression over a series of
experiments: LR = 2

∑k
i=1(n−i log(n−i )+n+

i log(n+
i )−(n−i +n+

i ) log(n−i +n+
i )). Under the null hypothesis LR

is asymptotically χ2-distributed with k degrees of freedom. The power of the symmetry-test for differential
expression with categorical data can be increased by noting that under the null hypothesis of no difference
large over/underexpression should occur less often than a less pronounced deviation. That is the distribution
of the categorical measure of differential expression is not only symmetric and unimodal but it also has
monotonically decreasing tails. This suggests an isotonic version of the test for symmetry in order to account
for the above mentioned constraint on the corresponding test statistic: p+

1 = p−1 ≥ p
+
2 = p−2 ≥ · · · ≥ p

+
k = p−k .

The maximum likelihood estimates under the ordering restriction can be found using the method of isotonic
estimation [38]. The asymptotic distribution of the likelihood ratio test statistic is no longer expected to
be χ2

k, but rather a mixture of χ2 variables with different degrees of freedom. The likelihood ratio statistic
computed for each gene can be used to order genes according to their differential expression. Computer
simulations conducted by Tsodikov et al. [26] show that at least under some models of microarray data this
method may out-perform the one based on ranks.

5 Searching for the Initial Feature Vector

For n independent observations of gene expression in a given state of the biological system under study, we
expect the same genes to be expressed at certain levels subject to random variation in expression. This set
of observations forms an observation matrix of dimension n× p, where p is the total number of genes. The
first step on the road to multidimensional classification is to reduce the full feature vector represented by
the data on expression of all genes. Most of the cDNA’s spotted on the array represent genes that are not
involved in the processes that distinguish the two samples under comparison. As described in Section 2,
current methods for determining differentially expressed genes are based on univariate choices like those
mentioned in Section 2.2. This approach ignores the correlation information contained in the data and thus
may limit the power of classification rules. Another concern is that the selection of the feature set is not
closely related to the classification of unknown entities. Thus while the gene selection process might select
‘significant’ genes in the sense of marginal differential expression, they might not be the best choice as a
feature set for the classification method.
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It looks like a good idea to search for a subset of genes that in some sense differs the ‘most’ between
two tissues and then develop a classification rule based on the same notion of difference. To attain this
goal we need a pertinent probability distance between two subsets (clusters) of genes. This distance must
satisfy the following requirements: (1) it has to be a probability distance (metric) [39] so that its empirical
counterpart can combine information from different slides; (2) it should accommodate ranks and categorical
data (thus should not necessarily assume normality); (3) the computation of the distance should not be too
time consuming. One such distance is proposed below and will be discussed at length in this paper. By
calculating the distance based on an entire cluster instead of separately for each gene, one more fully utilizes
the multidimensional information on gene expression. Since clusters of size one are also considered, this
generalization can only improve the univariate procedure of variable selection.

5.1 Differential expression of subsets of genes

Hastie et al. [16,17] have attempted to use clusters in prediction, but their method of averaging the readings
over the genes included in a given cluster seems to disregard a substantial part of the multidimensional
information contained in sample observations. A high correlation between expression levels for individual
genes and large cluster sizes compared to the number of independent replicates hampers the use of two-
sample statistical tests. In discriminant analysis settings, the Mahalanobis distance has become the standard
measure of distance between two groups when the feature variables are continuous. The distance is defined
as follows: if the feature vector Y is drawn from a two-variate distribution with means m1 and m2, and
common covariance matrix S, then R2

Mah = (m1 −m2)′ S−1 (m1 −m2).
To ensure the nonsingularity of the matrix S estimated from sample observations one should impose the

constraint: n > d, where n is the sample size, d ≤ p is the number of genes in the target subset. This
important practical constraint should be kept in mind when working with microarray data, especially at
the stage of the initial selection of feature variables. The same can be said about the Chernoff distance in
the multivariate normal case. In addition, empirical counterparts of these distances, as well as those based
on kernel estimates of multivariate distributions, are not robust enough to the experimental noise which
is inherent in the microarray technological process and is difficult to eliminate completely by adjustment
procedures. Although robustified versions of the Mahalanobis distance are available (they can be obtained
from some functions of trimmed or Winsorized variances, see e.g. [40]), their practical use can become
prohibitively expensive even with high-speed computers.

We propose a new distance and its nonparametric estimate to measure differential expression between
subsets of genes. Let µ and ν be two probability measures defined on the Euclidean space Rd. Let L(x,y)
be a strictly negative definite kernel, that is

∑s
i,j=1 L(xi,xj)hihj ≤ 0 for any x1, . . . ,xs and h1, . . . , hs,∑s

i=1 hi = 0 with equality if and only if all hi = 0. Introduce the following expression

N(µ, ν) = 2
∫
R
d

∫
R
d

L(x,y)dµ(x)dν(y)−
∫
R
d

∫
R
d

L(x,y)dµ(x)dµ(y)−
∫
R
d

∫
R
d

L(x,y)dν(x)dν(y).

It can be shown [41] that
√
N(µ, ν) is a metric in the space of all probability measures on Rd.

Consider two independent samples, consisting of n1 and n2 observations respectively, represented by the
d-dimensional vectors x1, . . . ,xn1 and y1, . . . ,yn2 , and introduce an empirical counterpart of N(µ, ν) as
follows

N̂ = N(µ̂n1 , ν̂n2) =
1

n1n2

n1∑
i=1

n2∑
j=1

2L(xi, yj)−
1
n2

1

n1∑
i=1

n1∑
j=1

L(xi, xj)−
1
n2

2

n2∑
i=1

n2∑
j=1

L(yi, yj).

5.2 Constructing Negative Definite Kernels for Gene Selection

When using the distance
√
N(µ, ν) one needs to choose a pertinent function L. A natural choice is a monotone

function of the Euclidean distance between ranks. We describe a simple alternative class of functions which
can be used to measure pairwise gene interaction.

Let x and y denote observations in two samples on a gene set S and xr and yr denote the corresponding
rank-adjusted observations. We consider either of these observations to be points in Euclidean space Rd.
Let S be a measurable subset of Rd. Define LS by the rule LS(x,y) = 0 if both x ∈ S and y ∈ S and
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LS(x,y) = 1 otherwise. It is easy to see that LS is a negative definite kernel. In fact, suppose, for simplicity,
that xi ∈ S, 1 ≤ i ≤ r, and xi 6∈ S, r + 1 ≤ i ≤ s. Then

∑s
i,j=1(1 − LS(xi,xj))hihj =

∑r
i,j=1 hihj =

(
∑r
i=1 hi)

2 ≥ 0. Thus (1− LS) is a positive definite kernel, and LS is negative definite.
More generally, let f(x) be a function from a space Rd to the interval [0, 1], and define Lf (x,y) =

max(f(x), f(y)). Then Lf is a negative definite kernel. In fact, if we define ga(x,y) = 0 provided both
f(x) > a and f(y) > a and ga(x,y) = 1 otherwise, then, from the previous paragraph, ga is a negative
definite kernel. It follows from the equality Lf (x,y) =

∫ 1

0
ga(x,y)da that Lf is negative definite. Since a

negative definite kernel is unaffected by an arbitrary additive shift, it is clear that Lf (x,y) = max(f(x), f(y))
will be a negative definite kernel for any bounded function f .

If wi are positive weights and fi, 1 ≤ i ≤ d, are functions from R
d to [0, 1], then L =

∑d
i=1 wiLfi is also

a negative definite kernel. It is clear from the above argument that if {fi} separates points, in the sense that
fi(x) = fi(y) for all i implies x = y, then L is strictly negative definite.

Negative definite kernels of the type described above may be combined with the usual Euclidean distance
to form composite kernel functions. For example, define a region function Rq(u, v) = qbquc+ bqvc (here b·c
denotes the floor function, its value is the largest integer not exceeding the argument and q ≥ 2 is an integer
parameter). This function is constant on each of the q2 ‘little squares’ obtained by dividing the sides of the
(0, 1)2 square into q equal segments. Then we may define the following kernels on the ranked data:

L1(xr,yr) =
√∑
g∈S

(xrg − yrg)2,

L2(xr,yr) = w1L1(xr,yr) + w2

∑
(g1,g2)∈S2

(
1− I{Rq(xrg1

, xrg2
) = Rq(yrg1

, yrg2
)}
)
,

where I is the indicator function. Then L1 is the standard Euclidean distance and L2 falls into the class
described above. We choose the weights w1 and w2 to balance the two components of L2 with respect to
their maximum values: w1 = 1/dmax and w2 = 1/

(
dmax

2

)
, where dmax is the maximum subset dimension

under consideration. The second component of the kernel will be insensitive to perturbation, yet pick up sets
of genes which have similar expression levels across samples in one tissue and different expression patterns
in the two tissues.

Another choice for a function Lf is based on the correlation coefficient. Let xn and yn denote data has
been normalized so that the tissue-specific sample mean and variance are zero and one respectively. For
each pair of genes g1 and g2 it makes sense to consider the function fg1,g2(xn) = xng1

xng2
. The corresponding

negative definite kernel Lg1,g2 will detect differences in correlation between the two tissues. For example, if
the expressions of g1 and g2 have correlation coefficient ρ in one tissue and are uncorrelated in the the other,
it follows from 2 max(ρ, 0)−max(ρ, ρ)−max(0, 0) = |ρ| that the corresponding distance between the tissues
will be approximately equal to |ρ|.

We may form the negative definite kernel

L3(x,y) = w1L1(x,y) + w2

∑
(g1,g2)∈S2

Lg1,g2(x,y).

The weights w1 and w2 should be chosen to balance the contribution of the two components. A distance
based on L3 will tend to pick up sets of genes with separated means and differences in correlation in the two
samples.

5.3 Random search for differentially expressed subsets of genes

As we mentioned in Section 1, selecting too many feature variables can deteriorate the performance of a
discriminant rule. It is therefore natural to attempt at finding the “best subset” in accordance with some
selection criterion. In discriminant analysis, the rate of misallocation of unclassified entities is the most
widely used criterion for the choice of feature variables. Several useful error-based procedures have been
proposed under the assumption of the homoscedastic normal model [1]. These procedures are formulated in
the form of a statistical test with an adjustment for multiple testing. With stepwise selection procedures,
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as noted by McKay and Campbell [42, 43], the tests are not independent and it is difficult to design a
theoretically sound adjustment to control the simultaneous significance level for the sequence of tests.

The class of distances introduced in Section 5.2 is worth considering for its usefulness in selecting a reduced
feature vector and testing for differentially expressed subsets of genes. The intention to examine all possible
subsets in order to find the one for which the distance between two groups of entities is maximal meets with
serious difficulties in practical settings. Whenever the size of a target subset is small, the feasibility of the
branch-and-bound algorithm [44] merits evaluation. The algorithm guarantees finding a maximum and yet
it is generally more efficient then the straightforward checking of all possibilities. The branch-and-bound
method works best when the initial vector is close to the optimal, and when the intrinsic dimension of
the feature space is small [44]. Fukunaga [44] provides empirical evidence that the method works well on
uniformly distributed data when the intrinsic dimension is two and poorly when the intrinsic dimension is
eight. The intrinsic dimension dim can be estimated based on the following relationship for the average
distance to the `th nearest neighbor denoted by E(d`): E(d`)/E(d`+1) = 1 + 1/(` · dim). We have used
Euclidean distance for several sets of rank-adjusted biological data and surprisingly, given the high external
dimension, our initial estimates place the intrinsic dimension for the feature space at between four and six.

Since the number of possible subsets exponentially increases with the total number of genes, stepwise
procedures seem to be an indispensable aid to variable selection. For relatively large subsets of genes, the
issue of computational complexity can be resolved by applying random search methodology [45]. Random
search methods can be easily implemented and they are rather insensitive to irregularities of the underlying
optimization problem and to the presence of noise in the objective function; these properties make random
search approach especially attractive for our purposes. Random search can be designed in a number of
various ways. For example, simulated annealing [46] can be used for this purpose. Below we describe the
basic structure of a simple random search algorithm for finding a subset (cluster) of size k with the largest
distance between two classes (tissues):

1. Randomly select k genes to form the initial approximation; calculate the distance between the two
classes for this cluster.

2. Replace at random one gene from the current cluster by a gene from outside the cluster; calculate the
distance for this new cluster.

3. If the distance for the new cluster is larger than for the original cluster (improvement), keep the change,
otherwise revert to the previous cluster.

4. Repeat steps 2 and 3 until convergence.

A modification of this algorithm with the aim of reducing selection bias is described in the next section.

5.4 Reduction of selection bias

An ever-present problem of variable selection is the danger of overfitting, that is finding overly specific
patterns that do not extend to new samples. Cross-validation techniques provide a powerful tool to eliminate
or at least largely reduce the effect of overfitting. Whenever a small number of variables is selected from a
large set, one should expect a selection bias associated with choosing the optimal of a large number of subsets,
regardless of the criterion used. To reduce this selection bias, Ganeshanandam and Krzanowski [47] suggested
that cross-validation should precede the variable selection itself. Resorting to this idea and the well-known
principles of the v-fold cross-validation (see, for example [48]), we have developed a ‘cross-validated search’
procedure that checks for reproducibility of its results. The basic structure of the algorithm is as follows:

1. Randomly divide the data into v groups of nearly equal size.

2. Drop one of the parts and find the optimal (in accordance with the chosen criterion) subset of genes
using only the data from v − 1 groups.

3. Repeat step 2 in succession for each of the groups, obtaining ‘v-optimal’ sets.

4. Combine these sets by selecting the genes with the highest frequencies of occurrence.

An alternative method for reducing the effect of overfitting is discussed in the paper by A.Chilingaryan et al.
[49] published in this issue.
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6 Multidimensional Two-sample Tests

The distance
√
N(µ, ν) can be used to derive an asymptotic two-sample statistical test for the hypothesis

µ = ν (or N(µ, ν) = 0). Consider the case: n1 = n2 = 2n and introduce the statistic

Nn =
1
n2

n∑
i=1

n∑
j=1

[2L(xi,yj)− L(xi,xj+n)− L(yi,yj+n)] , (6)

which need not be a metric. Suppose the kernel L is chosen so that 0 ≤ L ≤ 1 for all (x,y). A relevant
example is given by L(x,y) = 1 − exp (−||x− y||2), where ||.|| is the Euclidean norm. Under the null
hypothesis: µ = ν, the statistic Nn converges to 0 with probability 1 as n → ∞. Using the central limit
theorem it is easy to show that nNn is asymptotically normal with a zero mean and variance σ2 ≤ 8. The
latter inequality suggests a conservative asymptotic test for the hypothesis: µ = ν. While this reasoning is
theoretically flawless the snag is that the particular half-sample chosen may be found to affect the results of
practical application of the test to a substantial extent [50].

The alternative is to develop the corresponding statistical test using resampling techniques. The following
line of reasoning leads to a statistic that seems to be suitable for parametric bootstrap. Let X1, . . . , Xn, . . .
be a sequence of independent and identically distributed (i.i.d.) d-dimensional random vectors with common
distribution function F (x) and characteristic function (ch.f.) f(t) =

∫
Rd

exp{i〈t, x〉}dF (x) = Ref(t) +
i Imf(t). Let Fn(x) be the empirical distribution function of X1, . . . , Xn. Denote by fn(t) the corresponding
d-dimensional empirical ch.f.:

fn(t) =
1
n

n∑
j=1

exp{i〈t, x〉} =
∫
Rd

exp{i〈t, x〉}dFn(x), t ∈ Rd,

and define a d-variate empirical process

Tn(t) =
√
n (fn(t)− f(t)) =

∫
Rd

exp{i〈t, x〉}dβn(x), (7)

where

βn(x) =
√
n (Fn(x)− F (x)) .

Consider a complex valued d-variate Gaussian random field TF (t) = U(t) + iV (t) with ETF (t) = 0 and
having the same cross-covariance matrix as Tn (for each n), i.e.,

E

(
U(t)U(s) U(t)V (s)
V (t)U(s) V (t)V (s)

)
=

(
Ref(t−s)+Ref(t+s)

2 − Ref(t)Ref(s) −Imf(t−s)+Imf(t+s)
2 − Ref(t)Imf(s)

Imf(t−s)+Imf(t+s)
2 − Ref(s)Imf(t) Ref(t−s)−Ref(t+s)

2 − Imf(t)Imf(s)

)
,

and specifically ETF (t)TF (s) = f(t− s)−f(t)f(−s). The process TF (t) has the following stochastic integral
representation (see, e.g. [51])

TF (t) =
∫
Rd

exp{i〈t, x〉}dBF (x),

where BF (x) is a d-variate Brownian bridge process associated with the distribution function F , i.e., BF is
a d-variate Gaussian process with the following properties:

EBF (x) = 0, EBF (x)BF (y) = F (x ∧ y)− F (x)F (y),

lim
xj→−∞

BF (x1, . . . , xd) = 0, j = 1, . . . , d,
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lim
(x1,... ,xd)→(∞,... ,∞)

BF (x1, . . . , xd) = 0,

where x ∧ y = (min(x1, y1), . . . ,min(xd, yd)).
Denote

φ(t) =
(
1− Ref(t)

)1/2
and let λ be d-dimensional Lebesgue measure. Define

m(y) = λ{t : ‖t‖ ≤ 1
2
, φ(t) < y}, 0 ≤ y ≤ 1.

Denote the inverse of m(y) by

φ̃(h) = sup{y : m(y) < h},

and let K be a compact subset of Rd. Denote by C(K) the Banach space of all continuous complex valued
functions on K with the usual sup-norm. Csörgő [51] showed that

Tn converges weakly to TF in C(K) if and only if∫
0

φ̃(h)
h(log 1

h )1/2
dh <∞. (8)

Now, we can consider the corresponding statistical problem. Let X,X1, . . . , Xn be i.i.d. d-dimensional
random vectors with common distribution function F (x) and ch.f. f(t). Suppose that Y, Y1, . . . , Yn are i.i.d.
d-dimensional random vectors with common distribution function G(x) and ch.f. g(t). Denote by

√
M(X,Y )

the following special case of the metric
√
N :

M(X,Y ) = 2E||X − Y ||r − E||X −X ′||r − E||Y − Y ′||r

=
1
2
cd,r

∫
Rd
|f(t)− g(t)|2 dt

||t||r+d
,

where cd,r is some (known) constant. We wish to test the hypothesis H0 that the distribution of the vector
X is identical to the distribution of Y . In terms of the distance

√
M the hypothesis assumes the form

2E‖X − Y ‖r − E‖X −X ′‖r − E‖Y − Y ′‖r = 0, (9)

where X ′ is an i.i.d. copy of X, and Y ′ is an i.i.d. copy of Y .
The choice of r is driven by a particular application. For example, a reasonable choice would be r = 1,

since it is usually believed that the first moment of the underlying probability distribution is finite.
An empirical analog of the left hand side of (9) has the form

Sn =
1
n2

n∑
j=1

n∑
k=1

(2‖Xj − Yk‖r − ‖Xj −Xk‖r − ‖Yj − Yk‖r) . (10)

It follows now that

Sn =
1
2
cd,r

∫
Rd
|fn(t)− gn(t)|2 dt

‖t‖r+d
≥ 0.

Clearly, Sn → 2E‖X − Y ‖r − E‖X −X ′‖r − E‖Y − Y ′‖r as n → ∞. Under H0 we have N(X,Y ) = 0, so
that Sn − (E‖X − Y ‖r − E‖X −X ′‖r − E‖Y − Y ′‖r) = Sn. The distribution of nSn is identical with

1
2
cd,r

∫
Rd
|
√
n(fn(t)− f(t))−

√
n(gn(t)− g(t))|2 dt

‖t‖r+d
.

Suppose the condition (8) holds true. Then, from the result mentioned above (see, e.g. [51]), it follows that
the limiting distribution of nSn coincides with the distribution of the following functional,

SF =
1
2
cd,r

∫
Rd
|TF (t)− TG(t)|2 dt

‖t‖r+d
, (11)

and percentiles of the corresponding sample distribution can be obtained by an appropriate computer-
intensive method.
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7 Classification Using a Reduced Feature Vector

Once a sufficiently low dimension (compared to the number of samples) feature vector is chosen, a classifi-
cation rule can be developed using one of many discriminant analysis approaches. However it makes sense
to take advantage of the optimal character of the reduced feature vector: the multivariate distance between
two tissues calculated for this subset of genes is maximal. For this we need to define a probability distance
between a single point in d-space and a set of points in the same space. Such a distance, say N̂(x, ν),
derives from the metric

√
N(µ, ν), defined by formula (5.1), if either µ or ν is a delta-measure. Then the

classification rule will assign an ‘unknown’ vector to the group to which it is closest in terms of the metric.

8 Simulation Studies

Our model for microarray data simulates the underlying stochastic mechanism by superimposing biological
sample-to-sample variability and technology-related errors on the ‘true’ gene expression levels. The goal
is to generate samples from “normal” and “pathological” tissues where a known number of genes shows
differential expression with respect to both the marginal means and the correlation structure.

8.1 Ideal gene expression

A set of 100 genes was divided into groups of size 10; within each group the gene expressions are dependent
(see below for details), however genes included in different groups are independent. To describe the gene-to-
gene variability of expression levels, for each gene a “normal” mean expression level ai was generated from
a mixture of log-normal distribution with mean µ = 2.5 and standard deviation (STD) σ = 3, and uniform
distribution on [0, 10]. The proportion of the uniform distribution in the mixture was taken to be π = 0.15.
One of the gene clusters was selected to be differentially expressed. Within this cluster we modified the mean
values bi for the “pathological” tissue by multiplying each of them by a gene-specific ratio di generated from
a log-normal distribution. The mean and variability of this ratio was changed according to the requirements
of the simulation, mean 1 and variance 0 implying no marginal difference.

8.2 Biological variability

Within-cluster correlation and sample-to-sample variability were introduced as described below. Gene ex-
pression levels Aij and Bij for each sample were generated from a log-normal distribution with the ideal
mean ai, bi determined at the previous step and coefficient of variation v = 0.4. Dependence between ran-
dom variables was introduced by generating for each cluster a set of exchangeable standard normal variables
with correlation coefficient ρ = 0.9 for each sample. The required marginal distributions were obtained by
a suitable linear transformation followed by exponentiation. The log-normal distribution with a constant
coefficient of variation is consistent with our and other researchers’ experience with microarray data. The
chosen value of v = 0.4 mimics the high variability inherent in biological samples.

To introduce changes in correlation structure between the two tissues, the expression levels in the dif-
ferentially expressed clusters of the “pathological” tissue were generated as independent random variables.
This setup simulates loss of regulation of a pathway.

8.3 Simulation results

To evaluate the performance of multidimensional variable selection and the role of correlation structure
of gene expression data, we set up a simulation study using the model described in the previous section.
Technology related experimental errors were not introduced as we did not want the choice of adjustment to
confound the results.

First we designed a scenario where marginal methods could not possibly work: out of 100 simulated genes
one cluster of size 10 was chosen to be “differentially expressed” and these genes were set to have no marginal
difference (that is di ≡ 1 was chosen), but their joint distribution was changed from highly correlated to
uncorrelated. The rest of the genes had the same joint distributions in both tissues. In each of the 50
simulation runs we generated 24 samples for both tissues and selected k, k = 1, . . . , 10 most differentially
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Figure 2: Comparison of two kernels for the search procedure when there is only correlation structure
difference. The search used cluster size 10. The x-axis shows the number of genes chosen for inclusion in the
final list. Left panel: the number of genes from the differentially expressed cluster that were included in the
final list adjusted for chance. Right panel: test set classification rates.
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Figure 3: Comparison of two kernels for the search procedure and a marginal t-statistic when there is both
marginal mean and correlation structure difference. The search used cluster size 10. The x-axis shows the
number of genes chosen for inclusion in the final list. Left panel: the number of genes from the differentially
expressed cluster that were included in the final list adjusted for chance. Right panel: test set classification
rates.

expressed genes by a marginal t-statistic and by cross-validated random search using the estimated distance√
N(µ, ν) with the kernel L3 sensitive to correlation changes (with L1 being the Euclidean distance). For

each selection we estimated the correct classification rate on a test set of size 100 (50 samples of each tissue)
and calculated the proportion pobs of the genes from the differentially expressed cluster in the finally selected
set. Because there is no marginal difference in gene expression one might expect that the average proportion
of “differentially expressed” genes from marginal selection would be around 10% and the test set classification
rate would be equivalent to a random choice, that is around 50%. In our simulation experiments, however,
the marginal selection picked up the differential cluster quite well: in more than 25% of our simulations the
highest t-statistic was associated with a gene from that cluster! The reason has to do with the fact that the
t-statistics generated in this setting are not independent. In other words, while the marginal distributions
of the t-statistics are identical, the simulated gene expressions are correlated and so are the test statistics.
More importantly, this correlation is different in the cluster where only one of the tissues has correlated
genes. Since variability was the highest in the “differentially expressed” cluster a maximum is more likely to
occur in this rather than in another cluster. To account for this effect the results of the multivariate search
were rescaled using a transformation analogous to the Kappa statistic:

nadj = k
pobs − pbaseline

1− pbaseline
. (12)

where k is the cluster size and pbaseline is the proportion of differentially expressed genes among the genes
with the top k (absolute) values of the t-statistic. The results are presented in Figure 2. The straight
diagonal line represents the ideal case of selecting only genes from the differentially expressed cluster; the
value of 0 corresponds to random chance. The multivariate method shows a remarkable success in finding
the changed cluster and even provides some improvements in classification. Classification is clearly difficult
under this setup, as correlation structure cannot be estimated based on one classifiable observation.

Next we were interested in determining whether the multivariate approach would continue providing
advantage over the marginal selection when marginal differences were introduced. In these simulations
the ratio, di, controlling differential expression in the preselected cluster was generated from a log-normal
distribution with mean 1 and STD 0.3. Figure 3 compares the results of selection by the marginal t-statistic
and using the multidimensional selection with Euclidean distance kernel and kernel L3. The values have been
adjusted according to Eq. (12) using the baseline estimated in the previous simulations. The marginal method
finds the genes that happen to have a large value of di, while the joint selection is capable of picking up
genes that have less pronounced differential expression but belong to the cluster whose correlation structure
has been changed.

9 AML versus ALL classification

We have applied our methodology to two leukemia datasets. The first set of data (Data Set 1) was the same
as that analyzed by Golub et al. [28]. It includes 27 ALL (acute lymphoblastic leukemia) and 11 AML (acute
myeloid leukemia) samples processed using Affymetrix oligonucleotide microarrays. A test set of 34 samples
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2288* D component of complement (adipsin)
2335 Immunoglobulin-associated beta (B29)
6378 NF-IL6-beta protein mRNA

1882* Cystatin C
6200* Interleukin 8 (IL8) gene
6218 Elastase 2, neutrophil
4680 TCL1 gene (T cell leukemia)
3252 Glutathione S-transferase
6219 Neutrophil elastase gene, exon 5
6308 GRO2 oncogene

Figure 4: Rank adjusted expression of genes in Data Set 1. The left panel shows the ALL samples, the right
panel the AML samples. The genes are listed in order of decreasing frequency of occurrence in the selected
subset.

is also available. Golub et al. have shown that these two classes could be separated quite well using 10 or more
genes as predictors. We employed a 10-fold cross-validated search for the best subset of genes maximizing
the estimated distance D =

√
N(µ, ν) with the Euclidean distance kernel; the search was repeated 50 times

with 10,000 iterations each to find the most differentially expressed cluster of size 10. The procedure was
applied to rank-adjusted data. The list of the selected genes together with a line plot of the corresponding
expression levels is given in Figure 4. Three of these genes (marked with a star) were also included in the
group of 50 predictors by Golub et al. This set of genes provides a 95% cross-validated correct classification
rate and the prediction on the test set is perfect with the exception of two samples where a decision is not
made due to an extremely low prediction strength (the same is true for genes selected by Golub et al.).
The prediction strength was calculated as PS = |D1 −D2|/max(D1, D2), where D1 and D2 are distances
between the sample to be classified and each of the two classes. It measures how confident one can be when
classifying the sample into one of the groups. The same classification performance was achieved using only
two top genes. In this case, inclusion of additional genes led to a decrease in the prediction strength for
the difficult to classify samples. A striking feature of the plot in Figure 4 is that the ALL samples appear
to be divided into two groups. A closer look led us to the conclusion that these groups correspond to the
T-cell/B-cell division of the ALL samples. Our analysis suggests two genes (# 2335, 4680) for discrimination
between the groups; these genes are well known as markers for T-cell leukemia. Note that a marginal search
would never turn up these genes, since taken individually they misclassify B-cell ALL samples, however their
sensitivity to T-cell leukemia samples makes them valuable predictors in multivariate classification.

The second set of data (Data Set 2) that we analyze has been collected at the Primary Children’s
Medical Center in Utah from children newly diagnosed with leukemia. A detailed description of the data
and microarray procedures can be found in [52]. Probes of mRNA extracted from bone marrow samples were
hybridized to a microarray spotted with a minimally redundant set of 4608 cDNA clones. Only a fraction
of the clones have been sequence verified, so the identification of the genes is not completely reliable. The
patient samples were all hybridized on the red channel, the green channel contained samples from the HL-60
cell line. Since the data contained only a few T-cell ALL samples, our focus was on B-cell ALL. As we only
had 10 AML, but 25 B-cell ALL samples, the training set was formed to contain 10 samples of each kind,
and the test set was represented by the remaining 15 B-cell ALL samples.

We used two adjustments for this dataset, namely the adjustment for a multiplicative random effect and
the rank-based adjustment. Since we found considerable fluctuations among the pins used to deposit the
mRNA, both adjustments were performed separately for each of the 12 pins (384 spots each). Figure 5 shows
the results based on the random effect adjustment and Figure 6 the results based on ranks. As previously,
we use stars to mark the genes that are present in the list by Golub et al. As this is an independent data set
obtained from a significantly smaller clone set, we did not expect to find many of the same genes. In addition
to the previously found common genes one more gene (Glutathione S-transferase) appeared on the list of
top 10 genes for both data sets. We found two genes (marked with +) selected from Data Set 2 with both
adjustments. This overlap tends to increase with increasing the length of the lists. Another encouraging
feature of the lists is the inclusion of two different copies of the same gene in one of them and of two strongly
related genes in the other one.

As the plots in Figures 5 and 6 show, with Data Set 2 the two types of leukemia are not separated as well
as with Data Set 1. This is reflected in the classification performance as well. With the multiplicative effect
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4536* Hematopoetic proteoglycan core prot.
2369 ESTs

3389+ Mad homolog Smad1
44 ESTs

1042+ Homo Sapiens P5-1
1694* Hematopoetic proteoglycan core prot.

812 Homo sapiens CASK
3954* Topoisomerase (DNA) II beta
1202 ESTs
2213 CD53 antigen

Figure 5: Expression levels of genes in Data Set 2 adjusted for multiplicative random effect.The left panel
shows the (B-cell) ALL samples, the right panel the AML samples.. The genes are listed in order of decreasing
frequency of occurrence in the selected subset.
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1042+ Homo Sapiens P5-1
4178 Membrane metallo-endopeptidase
2745 H.sapiens p63

3389+ Mad homolog Smad1
2115 ESTs
4069 Myocyte specific enhancer factor 2
3320 Glutathione S-transferase
3155 ESTs
2483 ESTs
1768 ESTs

Figure 6: Rank adjusted expression levels of genes in Data Set 2. The left panel shows the (B-cell) ALL
samples, the right panel the AML samples. The genes are listed in order of decreasing frequency of occurrence
in the selected subset.

adjustment the prediction levels out after the first four genes at 85% cross-validation and 66.7% test set
classification rate. The rank adjustment performs better: based on the first eight genes the cross-validated
estimate of the error rate is 100% with 73.3% of the test set samples being correctly classified as B-cell ALL.
Setting the sought-for subset size at either 5 or 15 genes did not change significantly our findings resulted
from the search for the best subset of 10 genes.

The computations were performed on a IBM-compatible computer with two 1000 MHz Pentium III
processors. A typical search (50× 10,000 iterations with cluster size 10) was carried out in 20 minutes.
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