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Summary

With the increasing availability of large prospective disease registries, scientists studying the
course of chronic conditions often have access to multiple data sources, with each source gener-
ated based on its own entry conditions. The different entry conditions of the various registries may
be explicitly based on the response process of interest, in which case the statistical analysis must
recognize the unique truncation schemes. Moreover, intermittent assessment of individuals in the
registries can lead to interval-censored times of interest. We consider the problem of selecting im-
portant prognostic biomarkers from a large set of candidates when the event times of interest are
truncated and right- or interval-censored. Methods for penalized regression are adapted to handle
truncation via a Turnbull-type complete data likelihood. An expectation-maximization algorithm
is described which is empirically shown to perform well. Inverse probability weights are used to
adjust for the selection bias when assessing predictive accuracy based on individuals whose event
status is known at a time of interest. Application to the motivating study of the development of
psoriatic arthritis in patients with psoriasis in both the psoriasis cohort and the psoriatic arthritis
cohort illustrates the procedure.
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1 INTRODUCTION AND MOTIVATING PROBLEM

The availability of large disease registries with longitudinal follow-up has lead to increased interest in
utilizing such data for scientific inquiry about the genetic basis for disease onset, disease progression,
and the development of co-morbidities. In disease processes with multiple stages, some registries
may recruit individuals in an early phase of a disease process, while others may sample individuals
in a more advanced stage. Synthesis of data from registries with stage dependent recruitment criteria
requires suitable handling of the selection mechanisms.

We consider the problem of identifying human leukocyte antigens (HLA) associated with the rapid
onset of psoriatic arthritis (PsA) in psoriasis patients. The motivation of this work is to ensure that
psoriasis patients at high risk for PsA are closely monitored, onset of PsA is detected promptly, and
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to ensure treatments geared toward the prevention of joint damage from arthritis are administered in
a timely fashion. The develeopment of predictive models for PsA can also help guide the selection
of high risk patients for inclusion in clinical trials of experimental prophylactic treatments. Previous
work in this vein was based on a binary classification of the disease status of individuals (psoriatic
arthritis versus psoriasis) with cross-sectional logistic regression analyses carried out to identify fac-
tors associated with PsA versus PsC (Eder et al., 2015); nested-case-control designs (Julian et al.,
2002) have also been employed. A preferred approach, however, is to consider the temporal aspects
of the disease process and to model the time from the development of psoriasis to psoriatic arthritis.
To carry out this analysis, data from a registry of patients with psoriasis and a registry of patients with
psoriatic arthritis are utilized. The registries are described briefly in what follows.

Researchers at the Centre for Prognosis Studies in Rheumatic Diseases at the Toronto Western
Hospital created the University of Toronto Psoriasis Clinic (UTPC) registry in 2008 to study the
course of psoriasis (Ps), a chronic inflammatory skin condition which affects up to 3% of the popu-
lation (Schafer, 2006). Screened patients identified as having psoriasis are recruited to this clinical
registry and upon entry they undergo a detailed clinical examination, provide samples for genetic
testing, are then followed prospectively according to a standardized protocol; clinical assessments are
planed every 6 months; the actual timing of the assessments is quite variable however. Approximately
30% of psoriasis patients develop psoriatic arthritis (PsA), a rheumatological disorder featuring in-
flammatory psoriatic disease as well as inflammation and damage in and around the joints of several
areas including the wrists, hands, knees, ankles, lower back, and neck (Chandran et al., 2010).

The University of Toronto Psoriatic Arthritis Clinic (UTPAC) registry was launched much earlier
in 1977 to study this complex disease (Gladman et al., 2008). A primary method of recruitment of
patients is through the use of a population-based screening tool in the form of a 10 item questionnaire
(Tom et al., 2015). Individuals suspected of having psoriatic arthritis based on this tool are invited to
attend the clinic for a more definitive diagnosis, and those found to have the disease are invited to join
the UTPAC. Upon entry to the UTPAC, as in the UTPC, a detailed history is taken, patients undergo
a thorough clinical and radiological examination, and samples are collected for genetic testing. Pa-
tients are then scheduled to undergo detailed annual clinical examinations and biannual radiological
examinations.

The genotypes of HLA-A, HLA-B, HLA-C, HLA-DR and HLA-DQ alleles were collected in
both clinic registries, and a total of 96 HLA markers were identified as of interest a prior; 20 of these
markers had a frequency in the sample of less than 1% and so were excluded from further consider-
ation. This problem of finding key HLA variables in this setting can then be characterized as one of
variable selection in the context of a two-stage disease process, while utilizing data from registries
formed based on different disease-related truncation schemes. To address this challenge we pro-
pose an expectation-maximization algorithm to deal with truncated event times through specification
of a Turnbull-type (Turnbull, 1976) complete data likelihood which involves an augmentation term
corresponding to pseudo-individuals in the population who did not satisfy the respective truncation
conditions. We then penalize the complete data likelihood by the introduction of the LASSO (Tib-
shirani, 1996), adaptive LASSO (Zou, 2006) or SCAD (Fan and Li, 2001, Zou and Li, 2008) penalty
functions.

The remainder of the article is organized as follows. In Section 2.1 we define the notation, for-
mulate the model for the waiting time with a piecewise-constant baseline hazard, give the form of
the augmented and penalized complete data likelihood and discuss the variable selection algorithm.
Details on the design and results of simulation studies are also provided in Section 2.2. In Section
2.3 we apply the proposed algorithm to a dataset which involves left and right truncated samples with
right-censored responses. Section 3 discusses the challenges associated with assessing predictive ac-
curacy of models with interval-censored responses, where inverse weighting method is adopted to
address the need to restrict attention to individuals whose status is known. Another example involv-
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ing left-truncated and interval-censored outcomes is discussed here. Concluding remarks and topics
for future research are given in Section 4.

2 PENALIZED REGRESSION FOR TRUNCATED AND CENSORED DATA

2.1 NOTATION AND THE PENALIZED OBSERVED DATA LIKELIHOOD

Figure 1 contains two Lexis diagrams characterizing the selection criteria for patients into the UTPC
and UTPAC cohorts for a hypothetical individual; the horizontal axis represents the timing of events
in calendar time while the vertical axis conveys the times since the development of psoriasis. We
let Ei0 denote the calendar time of the onset of psoriasis and Ei1 denote the calendar time psoriatic
arthritis developed for individual i . The time from the onset of Ps to the onset of PsA is denoted
Ti = Ei1 − Ei0.

The calendar time at which individuals are screened is denoted by A0. For the UTPC cohort,
individuals are required to have psoriasis at the time of screening but cannot have developed PsA, so
patients are recruited to this registry subject to the constraint Ei0 < A0 < Ei1 (left panel Figure 1).
Given Ei0, this can be equivalently expressed as the constraint Ti ≥ Li where Li = A0 − Ei0 is
the left-truncation time for Ti. For the PsA cohort, only screened subjects who are determined to
have PsA are included in the registry, so in this cohort, subjects are sampled subject to the constraint
Ei1 < A0, or equivalently given Ei0 subject to Ti ≤ Ri where Ri = A0 − Ei0 is the right-truncation
time for Ti (right panel Figure 1). To unify the notation for the two cohorts we let Ai = [Li,Ri)
denote the truncation interval for individual i, such that 0 < Li < Ri = ∞ for individuals in the
UTPC, and 0 = Li < Ti < Ri for individuals in the UTPAC.

Upon recruitment to each cohort patients are examined intermittently and we let Ai1 < Ai2 <
· · · < Aini

denote the calendar times of ni follow-up assessments for individual i realized over [A0, A]
whereA is the date the databases are locked for analysis. IfEi1 ∈ [Ai,j−1, Aij] for some j = 1, . . . , ni,
then PsA is known to have developed, but it is subject to interval-censoring. We let Ci = [Li, Ri)
denote the interval containing Ti where Li = Ai,j−1 − Ei0 and Ri = Aij − Ei0. When Ti is interval-
censored 0 < Li < Ri <∞, if it is right-censored Ri =∞, and if Ti is observed then Li = Ri = Ti.
We take the dates of diagnosis of psoriatic arthritis in medical records as known; with respect to
the onset time of PsA only the retrospective data are used from the UTPAC. If Zi = (Zi1, . . . , Zip)

′

denotes a p × 1 covariate vector associated with individual i, the observed data from individual i
are denoted by Di = (Ai, Ci, Zi) and the observed data for a pooled sample of size m is D =
{Di, i = 1, . . . ,m}. Interest lies in the relation between the covariates and the time of interest and
we assess this by means of a proportional hazards model with h(t|Zi; θ) = h0(t;α) exp(Z ′iβ) where
α parameterizes the baseline hazard, β = (β1, . . . , βp)

′, and θ = (α′, β′)′. The survivor function is
then F(t|Zi; θ) = exp{−H(t|Zi; θ)} where H(t|Zi; θ) =

∫ t
0
h(s|Zi; θ)ds.

To discuss conditional independence assumptions regarding truncation we consider the setting of
random left truncation timesLi, i = 1, . . . ,m. Independent left truncation (Keiding and Moeschberger,
1992) implies

lim
∆t↓0

P (t ≤ Ti < t+ ∆t|t ≤ Ti,Li = `i, Zi)

∆t
= h(t|Zi; θ) , `i < t ;

we assume this in what follows and comment briefly on when this might be violated in the Discus-
sion. If g`(`i) is the density of the left truncation time, then Li is non-informative if the parameters
of its density are functionally independent of θ; as a consequence modeling Li would not offer any
parametric information regarding θ and so we may omit likelihood contributions pertaining to the
model for Li, i = 1, . . . ,m. Analogous independence conditions are assumed for the right truncated
setting with these perhaps more naturally expressed in terms of the density function. The indepen-
dence assumptions regarding the observation process that we make are given by Grüger et al. (1991)
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and the further assumption that this inspection process is non-informative justifies use of the observed
(partial) likelihood

L(θ) ∝
m∏
i=1

F(Li|Zi; θ)−F(Ri|Zi; θ)
F(Li|Zi; θ)−F(Ri|Zi; θ)

.

When the dimension p is large it is customary to adopt some form of penalty for model complexity
to help in the selection of important variables for further investigation. Most such penalized log-
likelihoods can be written in the form

`PEN(θ) =
1

m
logL(θ)− pγ,λ(β) , (1)

where γ and λ are tuning parameters that determine the nature and extent of the penalty for com-
plexity. Ridge regression (Hoerl and Kennard, 1970) is implemented with the L2 penalty pγ,λ(β) =
λ
∑p

j=1 β
2
j and the LASSO (Tibshirani, 1996) uses the L1 penalty pγ,λ(β) = λ

∑p
j=1 |βj|; there is no

tuning parameter γ in these penalty functions. The value of the scalar λ is typically found by cross-
validation (Shao, 1993) or generalized cross-validation (Golub et al., 1979). The adaptive LASSO
uses adaptively weighted L1 penalties of the form

pγ,λ(β) =

p∑
j=1

λj|βj| , (2)

with small penalties λj chosen for large coefficients to reduce their shrinkage, and large penalties for
small coefficients to address the selection objective (Zou, 2006). One option is to set λj = λ/|β̃j|,
where β̃ = (β̃1, β̃2, . . . , β̃p)

′ is the maximum likelihood estimate (Zou, 2006, Zhang and Lu, 2007).
Alternatively, the penalties can be updated iteratively. In this case, at the (`+ 1)st implementation, λj
is set to λ(`)

j = λ/|β̃(`)
j | where β̃(`) is obtained on the `th iteration; when ` = 0, we set λ(0)

j = λ/|β̃j|
as in the first implementation (Fan and Lv, 2010). We investigate the iterative implementation of the
adaptive LASSO in the next section.

The smoothly clipped absolute deviation (SCAD) penalty proposed by Fan and Li (2001) is de-
fined by

p′γ,λ(β) = λ

p∑
j=1

{
I(|βj| ≤ λ) +

(γλ− |βj|)+

(γ − 1)λ
I(|βj| > λ)

}
,

where γ > 2 and y+ = I(y ≥ 0) × y. This penalty function is continuously differentiable on
(−∞, 0) ∪ (0,∞), but singular at 0 with its derivatives zero outside the range [−γλ, γλ]. Therefore,
the SCAD penalty results in “small” coefficients being set to zero, “moderate” coefficients being
shrunk towards zero, and “large” coefficients retained as they are. In principle, the optimal pair
(γ, λ) could be obtained using a two dimensional grid search by cross validation or generalized cross
validation. From empirical work, Fan and Li (2001) suggest γ = 3.7 is a reasonable choice for a
variety of problems and we use this in what follows and select λ by (generalized) cross validation.

2.2 A COMPLETE DATA LIKELIHOOD FOR TRUNCATED AND CENSORED DATA

We let Ji denote the number of “missing” individuals who have the same characteristics as the ith
sampled individual except they did not satisfy the selection criteria (i.e. their event times fall in Aci ).
We further let Tij ∈ Aci be the event time of the jth unselected individual corresponding to individual
i, so a Turnbull-type (Turnbull, 1976) complete data likelihood is

LC(θ) ∝
m∏
i=1

{
h(Ti|Zi; θ) exp(−H(Ti|Zi; θ))

Ji∏
j=1

h(Tij|Zi; θ) exp(−H(Tij|Zi; θ))
}
.
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The reason for considering this form is that by introducing the unobserved failure times and adopt-
ing a weakly parametric piecewise constant baseline hazard model via an EM algorithm (Dempster
et al., 1977), the maximization step of the complete data likelihood will be simplified.

Under a weakly parametric piecewise constant baseline hazard function, the number and location
of break-points at which the baseline hazard changes value must be specified. If 0 = b0 < b1 <
· · · < bK−1 < bK = ∞ denote K break-points, we let h0(s;α) = exp(αk), for s ∈ Bk = [bk−1, bk),
k = 1, . . . , K. Let Dk(u) = I(u ∈ Bk) denote whether or not the time u is in the interval Bk and
Wk(u) =

∫ u
0
Dk(s)ds denote the duration of [0, u) over interval k, k = 1, . . . , K. Then under the

piecewise constant model and given a covariate vector Zi, the complete data log-likelihood would be

logLC(θ) ∝
m∑
i=1

K∑
k=1

{
Dk(Ti) (αk + Z ′iβ)−Wk(Ti) exp(αk + Z ′iβ)

+

Ji∑
j=1

[Dk(Tij) (αk + Z ′iβ)−Wk(Tij) exp(αk + Z ′iβ)]

}
.

(3)

If Xik` = I(k = `) and Xik = (Xik1, . . . , XikK)′ denotes the corresponding vector of indicator
functions, k = 1, . . . , K; thus Xi1 = (1, 0, . . . , 0)′, Xi2 = (0, 1, . . . , 0)′, . . ., Xik = (0, 0, . . . , 1)′.
Then if α = (α1, . . . , αK)′ and θ = (α′, β′)′, we can write

logLC(θ) =
m∑
i=1

logLCi(θ) ,

where upon letting Z̄ik = (X ′ik, Z
′
i)
′ we can write logLCi(θ) as

K∑
k=1

Dk(Ti)Z̄
′
ikθ −Wk(Ti) exp(Z̄ ′ikθ) +

Ji∑
j=1

[
Dk(Tij)Z̄

′
ikθ −Wk(Tij) exp(Z̄ ′ikθ)

] .

At the E-step of the EM algorithm, the conditional expectation of the penalized complete data
log-likelihood function at the (r + 1)st iteration is evaluated as

QPEN(θ; θ(r)) =
m∑
i=1

Qi(θ; θ
(r))− pγ,λ(β) , (4)

where Qi(θ; θ
(r)) = E

{
logLCi(θ)|D; θ(r)

}
and θ(r) is estimated by maximizing QPEN(θ; θ(r−1)). The

required conditional expectations are therefore ∆̂
(r)
ik = E[Dk(Ti)|Di; θ

(r)], Ŝ(r)
ik = E[Wk(Ti)|Di; θ

(r)],
ι̂
(r)
ik = E[Dk(Tij)|Di; θ

(r)], ω̂(r)
ik = E[Wk(Tij)|Di; θ

(r)] and J (r)
i = E[Ji|Di; θ

(r)].
Let Cik = Ci∩Bk = [Lik, Rik) denote the sub-interval of the censoring interval Ci contained within

Bk. When Cik = ∅, the required expectations are relatively easy to compute since, for instance, it is
clear that Dk(ti) = 0 and ∆̂

(r)
ik = 0. Moreover, if bk < Li, then it is known that individual i was at

risk for the entire interval Bk so Wk(ti) = Ŝ(r)
ik = bk−bk−1, and if Ri < bk−1, thenWk(ti) = Ŝ(r)

ik = 0
since they are known to have failed prior to the start of interval Bk. If Cik 6= ∅,

∆̂
(r)
ik =

F(Lik|Zi; θ(r))−F(Rik|Zi; θ(r))

F(Li|Zi; θ(r))−F(Ri|Zi; θ(r))
, (5)

Ŝ(r)
ik = max(Li − bk−1, 0) +

∫ Rik

Lik

F(s|Zi; θ(r))

F(Li|Zi; θ(r))−F(Ri|Zi; θ(r))
ds , (6)

where F(t|Zi; θ) = exp
{
−
(∑K

k=1 exp(αk)Wk(t)
)

exp(Z ′iβ)
}

.
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Let Aik = Aci ∩ Bk = [Lik,Rik) be the sub-interval of the complement of the truncation interval
Aci contained within Bk, ifAik = ∅, then ι̂(r)ik = 0. Moreover, ifAci = [0,Li), then ω̂(r)

ik = 0 since they
are known to have failed prior to the start of interval, and if Aci = (Ri,∞), then the individual i was
at risk for the entire interval Bk so ω̂(r)

ik = bk − bk−1. If Aik 6= ∅,

ι̂
(r)
ik =

F(Lik|Zi; θ(r))−F(Rik|Zi; θ(r))

1−F(Li|Zi; θ(r)) + F(Ri|Zi; θ(r))
, (7)

ω̂
(r)
ik = Lik − bk−1 +

∫ Rik

Lik

F(s|Zi; θ(r))

1−F(Li|Zi; θ(r)) + F(Ri|Zi; θ(r))
ds . (8)

Also

Ĵ (r)
i = E[Ji|Di; θ

(r)] =
1−F(Li|Zi; θ(r)) + F(Ri|Zi; θ(r))

F(Li|Zi; θ(r))−F(Ri|Zi; θ(r))
. (9)

Given these results, (4) can be written more explicitly as

m∑
i=1

K∑
k=1

{ [
∆̂

(r)
ik Z̄

′
ikθ − Ŝ

(r)
ik exp(Z̄ ′ikθ)

]
+ Ĵ (r)

i

[
ι̂
(r)
ik Z̄

′
ikθ − ω̂

(r)
ik exp(Z̄ ′ikθ)

]}
− pγ,λ(β) . (10)

Since (10) has the form of a penalized Poisson likelihood, the M-step can be carried out using soft-
ware for penalized Poisson regression. This can be implemented by creating an augmented pseudo-
dataset with individual i contributing up to K lines with weight 1 and K lines (for the corresponding
unselected individuals) with weight Ĵ (r)

i , i = 1, . . . ,m.
Classical variable selection methods are often based on the Akaike information criterion (AIC) or

the Bayesian information criterion (BIC), while more recently cross-validation (CV) and generalized
cross-validation (GCV) techniques have been advocated. The traditionalG-fold CV statistic is defined
as ĈV (λ) =

∑G
g=1[logL(θ̂−g(λ)) − logL−g(θ̂−g(λ))] where L−g is the observed data likelihood for

the gth training dataset and θ̂−g(λ) is the estimate for the gth training data, obtained through the EM
algorithm; the optimal λ maximizes ĈV (λ).

2.3 DESIGN AND INTERPRETATION OF SIMULATION STUDIES

We consider a sample size of m = 1200 with m1 = 400 of the subjects left-truncated and m2 = 800
right-truncated with the number of covariates is set to p = 100. We consider binary covariates
with P (Zij = 1) = 0.5, i = 1, . . . ,m, j = 1, . . . , p. There are eight covariates specified to have
coefficients not equal to zero and all other covariate effects were set to zero, that is βj = log(2) =
0.6931, j = 1, 2, 9, 10 and βj = log(0.5) = −0.6931, j = 17, 18, 19, 20 and βj = 0, otherwise. The
conditional hazard for Ti is based on a Weibull regression model where

h(t|Zi; θ) = κη(ηt)κ−1 exp(Z ′iβ) ,

where κ = 1.25. We consider a study with median event time equal to 1, thus for each of κ = 1 and
1.25, we solve for η so that

P (Ti < 1; θ) = EZ [P (Ti < 1|Z; θ)] = 0.5 .

Let tQ25, tQ50 and tQ75 be the quartiles of the marginal distribution of Ti and the truncation times are
drawn from these quartiles with equal probabilities. For each subject i, it has either a left-truncated
right-censored event time (Ps cohort) or a right-truncated event time (PsA cohort).

For the ith subject, i = 1, . . . ,m1, which are subject to left truncation, we generate the left
truncation time Li which is randomly drawn from the quartiles with equal probabilities. To ensure
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the sample covariate distribution is compatible with the truncation scheme, we generate Zi using the
conditional distribution P (Zi|Ti > Li). We then generate Ui ∼ Uniform(0, 1) and solve for the event
time Ti that satisfies P (T ≥ Ti|T ≥ Li,Li = li, Zi; θ) = Ui. For the ith subject, i = m1 + 1, . . . ,m,
whose times are subject to right truncation, we generate the right truncation time Ri uniformly from
the quartiles, Zi is generated from P (Zi|Ti < Ri), solve for Ti in the constraint P (T < Ti|T <
Ri,Ri = ri, Zi; θ) = Ui where Ui ∼ Uniform(0, 1). We consider this study with duration of follow-
up planned to be τ = A − A0, where τ is obtained from P (T ≥ Li + τ |T ≥ Li; θ) = 0.5. For
simplicity, we consider a fixed number of inspections ni = 5, i = 1, . . . ,m, and the follow-up
inspection times are generated uniformly from [Li,Li + τ ], j = 1, . . . , 5, i = 1, . . . ,m.

For each dataset, variable selection was carried out based on the penalized EM (P-EM) algorithm
of Section 2.2 with the LASSO, adaptive LASSO (ALASSO) and SCAD (γ = 3.7) penalty functions.
The tuning parameter was selected in each case using the AIC, the BIC or using a 5-fold cross-
validation statistic. Analyses were conducted based on proportional hazards models with a piecewise
constant baseline hazards; hazard functions with four pieces (PWC-4) where the break-points were
based on the quantiles of the baseline survival function.

Table 1 displays the performance of LASSO, ALASSO and SCAD for each method of selecting
the tuning parameter in the setting with some trend in the baseline hazard and for a time homogeneous
model. The probability that an important variable is appropriately selected is generally very high for
all methods, but false positive rates are quite high under the LASSO penalty regardless of how the
tuning parameter is selected; all methods have high false positive rates when AIC is used for the
selection of the tuning parameter. The ALASSO and SCAD penalty functions perform very well
when the tuning parameter is selected by BIC or 5-fold cross-validation; the performance is slightly
better for the CV than with the BIC criterion.

2.4 HLA MARKERS FOR THE DEVELOPMENT OF PSA IN INDIVIDUALS WITH PS

The data from the UTPC and UTPAC are comprised of 338 and 603 individuals with left- and right-
truncated PsA onset times respectively along with data on 76 human leukocyte antigen (HLA) mark-
ers. Among the 338 individuals in the UTPC cohort 38 yielded onset dates for psoriatic arthritis.
Given the high false positive selection rate of the LASSO and of all methods when the tuning param-
eter is selected based on the AIC criterion, in this application we use the ALASSO and SCAD penalty
functions and select the tuning parameter based on the BIC and 5-fold CV statistic. The basic model
involves a piecewise (4-piece) constant baseline hazard and all models control for age and gender.

The findings based on the BIC suggest HLA-DRB-16 is protective for the development of PsA
with coefficients estimated as -0.9284 for the ALASSO and -0.9317 for the SCAD penalty func-
tions. When the 5-fold CV statistic is used to select the tuning parameter, we find HLA-DRB1-10
and HLA-DRB-16 are both identified using ALASSO (coefficient estimates of -0.7144 and -0.9749
respectively) and SCAD (-0.7160 and -0.9771 respectively).

3 ESTIMATING PREDICTIVE ACCURACY FOR INTERVAL-CENSORED DATA

3.1 ESTIMATING PREDICTIVE ACCURACY

Here we consider the problem of estimating the predictive error with interval-censored untruncated
data, wherein Li = 0 and Ri = ∞, i = 1, . . . ,m; we omit the subscript i in the discussion that
follows. The scientific goal is to identify which, among the 76 human leukocyte antigen markers,
are associated with the development of arthritis mutilans. While there is no clinical agreement on
how to precisely define arthritis mutilans, it represents a state of significant joint damage arising
from an extreme form of the disease; here we define it as present if an individual has 4 or more
joints with the advanced stage of damage according to the modified Steinbrocker score. Data from
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604 members of the UTPAC are used here; the median time from the diagnosis of PsA to the last
assessment is 12.48 years (lower quartile = 5.06, upper quartile = 21.49). A total of 109 are known
to have developed arthritis mutilans between two follow-up assessments. The quartiles of the length
of the closed censoring intervals are 2.48, 8.06 and 14.34 years respectively, which are wider than one
might expect from a protocol in which radiological assessments are to be scheduled every two years,
but this is due to the variation between individuals in their tendency to attend the clinic. We begin
with a development of the methods for assessing prediction accuracy.

In the context of time to event data, we obtain flexible prediction models and often evaluate their
predictive values on the same set of data, or a validation data. The purpose of assessing the predictive
accuracy of a regression model is often to establish whether a prognostic model can be used to reliably
predict patients survival status and provide a basis for clinical decision making. Predictive accuracy
can also be used as a strategy for model selection. The prediction of event times and survival status
at a particular time has been considered by many authors, and we focus on the latter. Loss functions
measure the distance between predicted and true values such that predictive values with small loss are
good. The absolute error loss function is L(Y, Ŷ ) = |Y − Ŷ | and the squared error loss function is
L(Y, Ŷ ) = (Y − Ŷ )2 assigns different losses to particular errors. An overall measure of prediction
error is obtained by averaging the loss function over all possible values of the data. An optimal
predictor is defined to be the predictor that minimizes the predictor error.

The difficulty in assessing predictive accuracy due to censoring has been studied by several au-
thors. Korn and Simon (1990) proposed a bounded loss function to be used for predicting survival
time, whereas Graf et al. (1999), Hothorn et al. (2006), Gerds and Schumacher (2006), Lawless and
Yuan (2010) model the censoring distribution and use inverse probability weighting (IPW) to deal
with censored outcomes. If we focus on the binary indicator of the event status at a particular time t0,
then we can consider predictors in the following class

Ŷ (X; θ) = I(P (T > t0|Z) > c; θ) ,

where optimal binary predictor uses c = 0.5; again the inverse probability weights can be used based
on models for the censoring distribution.

When individuals are only assessed intermittently it is also necessary to model the visit process.
We consider a single individual and let 0 = V0 < V1 < · · · < Vn denote the time of assessments since
the onset of PsA, and let N(u) =

∑∞
r=1 I(Vr ≤ u) count the number of assessments at time u. Let

C be a random drop-out time and C(u) = I(u ≤ C) indicate whether this individual is in cohort or
not at time u. We also let T be the event time, Z be a p× 1 fixed covariate vector, {X(s), 0 < s} be
a time-dependent covariate process, X̄(u) =

{
X(a1), . . . , X(aN(u−))

}
be the history of the observed

value at time u > 0, and W̄ (u) =
{
W (a1), . . . ,W (aN(u−))

}
denote the recorded event status at the

process assessment here where W (u) = I(T < u). The complete history observed at time s is then
H(s) =

{
(dN(u), C(u)), 0 < u < s, Z, X̄(s), W̄ (s)

}
. Since the goal is to use genetic data to predict

the development of PsA, it is inappropriate to control for time-varying markers in the casual pathway
in the model for the response process. Here we adopt a simple hazard function of the form

lim
∆t↓0

P (T < t+ ∆t|T ≥ t, Z)

∆t
= I(t ≤ T )h(t|Z) .

The intensities for the inspection and censoring processes are meant to provide good representations
of the data and so conditioning on all available data is appropriate; we let

lim
∆t↓0

P (∆N(t) = 1|H(t))

∆t
= C(t)λ(t|H(t)) ,

lim
∆t↓0

P (C < t+ ∆t|H(t))

∆t
= C(t)λc(t|H(t))
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represent the inspection and censoring intensities.
We define a multistate process {Z(s), 0 < s} with a state space S = {V0,V1, . . . ,VE

1 ,VE
2 , . . . ,

C1,C2, . . . ,CE
1 ,CE

2 , . . . ,E} for joint consideration of event, inspection and censoring processes,
shown as Figure 2. Here E denotes the event, Vr denotes the rth assessment without having disease,
VE
r denotes the rth assessment after having disease, Cr denotes the random dropout after (r−1)th as-

sessments and without having disease, and CE
r denotes the random dropout after (r−1)th assessments

and after having disease, note here we use a superscript E to denote the states after E.
Following the occurrence of any event in S, the next event to occur is governed by a competing

risk process. The cause-specific intensities are shown in the figure. We give a subscript E for the
intensity post-disease, that is, the intensity for inspection post-disease is λE(t) and the intensity for
random dropout post-disease is λcE(t). If the event process is independent of the inspection process,
then λE(t) = λ(t), otherwise, we may assign a different intensity, such as λE(t) = λ(t) exp(αs).
Similarly, the event process is independent of the censoring process, then λcE(t) = λc(t), otherwise,
we may assign a different intensity, such as λcE(t) = λc(t) exp(αc).

C1 C2 Cr

V0 V1 V2 Vr−1 Vr VR

E CE
1 E CE

2 E CE
r

VE
1 VE

2 VE
r VE

R

λc(t)

λ(t)
h(t)

λc
E(t)

λE(t)

λE(t)

λc
E(t)

Figure 2: A multistate diagram for joint consideration of event, random drop-out and assessment
times.

Figure 3 shows all the possible combinations of (Y,Ψ). The IPW estimator of the prediction error
is

P̂E(t0) =
1

m

m∑
i=1

Ψi

E(Ψi|Yi, Zi, D)

{
Yi − Ŷi(Zi; θ̂)

}2

,

where Ψi = I(Yi is known) = I(t0 6∈ [Li, Ri]) and the weight is E(Ψi|Yi, Zi, D) which is the
conditional expectation of Ψi given (Yi, Zi, D). Here Ψi depends on the inspection process, the
censoring process and the event process. The weight can then be written as

E(Ψi|Yi, Zi, D) = EdN,C,T |Y,X,D [Ψi] = P (Ψi = 1|Yi, Zi, D) (11)

Expectations Under the Condition T ≤ t0
After the occurrence of disease E (i.e. entry to an E state), the next event to occur can be a visit
(i.e. entry to a VE

r state) or censoring (i.e. entry to a CE
r state). If Y is known, then a post-disease

assessment must be observed before t0, so P (Ψi = 1|Yi = 0, Zi, D) = P (Ψi = 1|Ti ≤ t0, Zi, D) can
be written as ∫ t0

0

[∫ t0

t

λE(u|H(u)) exp

{
−
∫ u

t

λE(v|H(v)) + λcE(v|H(v))dv

}
du

]
×f(t|Ti ≤ t0, Zi) exp

{
−
∫ t

0

λc(s|H(s))ds

}
dt .

(12)
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Timet0

•
•

•

•
•

•
•

•
•

•

Y = 0, Ψ = 1

Y = 0, Ψ = 0

Y = 1, Ψ = 0

Y = 0, Ψ = 1

Y = 0, Ψ = 0

Y = 1, Ψ = 0

Y = 1, Ψ = 1

Y = 0, Ψ = 0

Y = 1, Ψ = 0

Y = 1, Ψ = 1

Figure 3: All Possible Combinations of (Y,Ψ), the solid lines denote observing the event, that is,
either left-censored or interval-censored, the dashed lines denote right-censoring without observing
the occurrence of event. The solid dots denote the (unobserved) exact event times.

If we assume λE(t) = λ(t) and λcE(t) = λc(t), then (12) becomes∫ t0

0

[∫ t0

t

λ(u|H(u)) exp

{
−
∫ u

t

λ(v|H(v)) dv −
∫ u

0

λc(v|H(v))dv

}
du

]
×f(t|Ti ≤ t0, Zi) dt .

Expectations Under the Condition T > t0
If Y is known to be one, then there must be an assessment without disease after t0, which can be
represented by an entry to a Vr state, r = 1, 2, . . .. Therefore Z(t−0 ) = Vr−1 and the next event to
occur can be Vr, Cr or E. In this case, P (Ψi = 1|Yi = 1, Zi, D) = P (Ψi = 1|Ti > t0, Zi, D) is∫ ∞

t0

λ(u|H(u)) exp

[
−
∫ u

t0

{λ(v|H(v)) + h(v|Z)} dv −
∫ u

0

λc(v|H(v)) dv

]
du (13)

Another approach to examining the performance of a classification scheme is to use a receiver
operating characteristic (ROC) curve. When the response is a binary indicator of the survival status
at a specific time t0, a key component of assessing the predictive performance is the ability to cor-
rectly classify individuals with respect to their status at time t0, which can then be quantified through
construction of a receiver operating characteristic (ROC) curve, which plots the true positive rate (sen-
sitivity) against the false positive rate (1 - specificity). Akritas (1994) proposed an estimator based
on a nearest neighbor estimator for the bivariate distribution function P (Ŷ , Y ), which can guarantee
the monotonicity of sensitivity and specificity; an alternative simple estimator based on the sensi-
tivity and specificity using the Kaplan-Meier estimate do not satisfy the necessary condition of the
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monotonicity (Heagerty et al., 2000). Lawless and Yuan (2010) discussed an estimator based on the
inverse probability weighting approach when the event time is right-censored and this IPW approach
guarantees monotonicity.

The true positive rate (TPR) and false positive rate (FPR) are defined as

TPR(c) = P (Ŷ = 1|Y = 1) =
P (F(t0|Z; θ) > c, T > t0)

P (T > t0)
,

FPR(c) = P (Ŷ = 1|Y = 0) =
P (F(t0|Z; θ) > c, T ≤ t0)

P (T ≤ t0)
.

(14)

Similarly, we can estimate those probabilities using inverse weighting, as for example

P̂ (F(t0|Z; θ) > c, T > t0) =
1

m

m∑
j=1

Ψj

E(Ψj|Yj, Zj, D)
I(F(t0|Zj; θ̂) > c, Tj > t0) .

The ROC curve is obtained by plotting TPR(c) against FPR(c) for values of c increasing from 0 to
1. The best possible prediction method would yield a point in the upper left corner at coordinate
(0,1) of the ROC space (representing 100% sensitivity and 100% specificity). While a point along a
diagonal line (the so-called line of no-discrimination) corresponds to a prediction scheme no better
than a random guess. The area under curve (AUC) is a summary measure of ROC curve, which is
equal to the probability that a predictor will rank a randomly chosen positive instance higher than a
randomly chosen negative one (assuming ‘positive’ ranks higher than ‘negative’).

3.2 SIMULATION STUDIES

We consider the setting with three covariates denoted Zi1, Zi2 and Zi3. In one scenario they have
marginal standard normal distributions with Zi1 ⊥ Zi2, Zi1 ⊥ Zi3, and corr(Zi2, Zi3) = 0 or 0.5. In
a second scenario the covariates are binary with P (Zij = 1) = 0.5, j = 1, 2, 3. The event time Ti
follows a Weibull distribution given (Zi1, Zi2) with β1 = log(2), β2 = log(1.5) and shape κ = 1.25;
that is,

F(t|Zi1, Zi2; θ) = exp {−(λt)κ exp (Zi1β1 + Zi2β2)} ,
where θ = (λ, κ, β1, β2)′; the value of λ is determined so that P (T > 1) = 0.5, where P (T > 1) =
E{F(t|Zi1, Zi2; θ)}. We consider an administrative censoring time τ such that F(τ) = 0.9. A time
homogeneous Poisson process is used for the inspection process with rate

λ(s|Zi1, Zi3; γ) = exp(γ0 + Zi1γ1 + Zi3γ2) ,

where γ1 = log(1.1) and γ2 = log(1.5) for the normal covariates and γ1 = log(2) and γ2 = log(2.5)
for the binary covariates; γ0 is determined to ensure that the average number of assessments by τ is
controlled at µ = 10 where µ = E{

∫ τ
0
λ(s|Zi1, Zi3; γ)ds}.

Let 0 = v0 < v1 < . . . < vn ≤ τ denote the inspection times, then the left and right endpoints of
the censoring interval are then L = max(vr · I(vr < t)) and R = min(vr · I(vr > t)) respectively.
In the application there is no recorded right censoring time and so the expressions of (12) and (13)
simplify to the following expressions (15) and (16)

∫ t0

0

[∫ t0

t

λ(u|H(u)) exp

{
−
∫ u

t

λ(v|H(v)) dv

}
du

]
× f(t|Ti ≤ t0, Zi) dt , (15)∫ τ

t0

λ(u|H(u)) exp

[
−
∫ u

t0

{λ(v|H(v)) + h(v|X)} dv

]
du . (16)
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Thus the weights are estimated by modeling the event and inspection processes as described in the
discussion of the simulation study. Datasets with sample sizes of m = 500 are simulated 100 times
(nsim = 100) for each scenario. For each simulated dataset, parametric analyses were carried out to
model the event time by using a Weibull distribution and to model the gap times between two consec-
utive inspection times by an exponential distribution. The empirical bias (EBIAS) and the empirical
standard error (ESE) of the unweighted and weighted (IPW) estimators of the prediction error at time
t0 are summarized in Table 2, where t0 values are taken to be the quartiles of the marginal distribution
of T . The proposed IPW estimators have relatively small biases compared to the unweighted estima-
tors, while the variability (in terms of ESE) is greater. The misspecification of inspection model was
next investigated by omitting one important covariate. In broad terms we found, as one would expect,
that there was a consequent increase in the empirical bias, but that this remains smaller than that of
the unweighted estimators for the misspecifications considered here.

3.3 APPLICATION TO THE PSORIATIC ARTHRITIS COHORT

Our interest lies in identifying which among the 76 HLA markers are associated with increased risk
of developing arthritis mutilans from the time of diagnosis with psoriatic arthritis; we are also inter-
ested in assessing the predictive performance of the models obtained by penalized regression through
application of the methods in Section 3.1. We adopt a proportional hazards model with a piecewise
constant (5-piece) baseline hazard with cut points at years 6.5, 10.5, 18 and 22. All models controlled
for age and sex. Given the superior performance of the penalized methods based on the ALASSO
and SCAD penalty functions, we focus on these with the tuning parameter selected based on the BIC
and 5-fold cross-validation statistic. The findings in Table 3 are slightly more variable than in the
previous application; with the ALASSO we find no markers when the BIC is used, but seven are
selected when the 5-fold cross-validation statistic is used. For the SCAD penalty function, three HLA
markers (HLA-A29, HLA-B27 and HLA-DQB1-02) are selected when the BIC is used. With the
tuning parameter selected by 5-fold cross-validation, an additional marker HLA-A11 is selected. The
sign of the coefficients are consistent in the various final models.

We next apply the inverse weighting approach to estimate the prediction errors and the discrimina-
tive abilities for all the models reported in Table 3. Figure 4 shows both the unweighted and weighted
(IPW) estimates of the prediction error against time t0, ranging from 0 to 40 years after the diagnosis
of psoriatic arthritis. It is obvious that the unweighted estimates are greater than the weighted esti-
mates since the unweighted estimators do not account for the unclassified portion in the sample. The
ROC curves at time t0 = 10 and 20 years after diagnosis of psoriatic arthritis for all the models with
inverse weighting methods are shown in Figure 5; the summary statistic AUC is also given in the
legend. From the upper two panels, we can conclude that when using BIC as the method of select-
ing tuning parameter, the predictive performance of the SCAD penalty is better than the ALASSO,
which makes sense because the method of using ALASSO penalty with BIC does not select any HLA
markers. The bottom two panels show that when using 5-fold CV to select the tuning parameter, the
predictive performance of the ALASSO and SCAD penalties are quite close.

4 DISCUSSION

This article has focussed on methods for synthesizing data from different disease registries with a
view to fitting penalized regression models for the selection of important genetic predictors of psori-
atic arthritis among patients with psoriasis. A key contribution is the formulation of an expectation-
maximization algorithm which enables use of existing optimization software for penalized regression
with truncated and interval-censored data; this extends the work of Wu and Cook (2015) to deal with
truncation. It is important to quantify the accuracy of any predictive model and this is challenging
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Table 2: Empirical performance of PE; sample size m = 500, number of simulations nsim = 100.
The predictor is Ŷ (X; θ̂) = I(P (T > t0|X; θ̂) > 0.5).

Zi2 ⊥ Zi3 Zi2 6⊥ Zi3
UNWEIGHTED WEIGHTED UNWEIGHTED WEIGHTED

t0 TRUE EBIAS ESE EBIAS ESE EBIAS ESE EBIAS ESE

NORMAL

CORRECT∗ MODEL SPECIFICATION

Q25 0.2269 -0.0973 0.0176 -0.0043 0.0311 -0.0940 0.0193 -0.0023 0.0310
Q50 0.3063 -0.0458 0.0280 -0.0022 0.0317 -0.0464 0.0222 0.0014 0.0273
Q75 0.2129 -0.0223 0.0182 0.0042 0.0203 -0.0282 0.0178 0.0008 0.0209

MISSPECIFIED† INSPECTION MODEL

Q25 0.2269 -0.0973 0.0176 -0.0122 0.0282 -0.0940 0.0193 -0.0046 0.0297
Q50 0.3063 -0.0458 0.0280 -0.0145 0.0306 -0.0464 0.0222 -0.0116 0.0254
Q75 0.2129 -0.0223 0.0182 -0.0035 0.0195 -0.0282 0.0178 -0.0095 0.0192

BINARY

CORRECT∗ MODEL SPECIFICATION

Q25 0.2500 -0.0820 0.0176 -0.0026 0.0285 -0.0777 0.0189 0.0009 0.0279
Q50 0.3836 -0.0327 0.0241 0.0015 0.0293 -0.0342 0.0249 -0.0026 0.0296
Q75 0.2500 -0.0309 0.0206 0.0021 0.0220 -0.0338 0.0215 0.0018 0.0236

MISSPECIFIED† INSPECTION MODEL

Q25 0.2500 -0.0820 0.0176 -0.0140 0.0237 -0.0777 0.0189 -0.0060 0.0253
Q50 0.3836 -0.0327 0.0241 -0.0156 0.0271 -0.0342 0.0249 -0.0176 0.0273
Q75 0.2500 -0.0309 0.0206 -0.0110 0.0204 -0.0338 0.0215 -0.0141 0.0218

∗ correct inspection model involves fitting λ(s|Zi1, Zi3; γ) = exp(γ0 + Zi1γ1 + Zi3γ2) ,
† misspecified inspection model involves fitting λ(s|Zi1; γ) = exp(γ0 + Zi1γ1) .

Table 3: HLA markers selected following variable selection with LASSO, ALASSO or SCAD penalty
and AIC, BIC or cross-validation in analysis of interval-censored data in psoriatic arthritis cohort.

ALASSO SCAD
HLA Marker BIC CV BIC CV
HLA-A11 -0.8095
HLA-A25 -3.2399
HLA-A29 -1.3471 -1.6215 -1.7063
HLA-A30 0.5912
HLA-B27 0.4536 0.6578 0.6624
HLA-C04 -0.3492
HLA-DQB1-02 0.3467 0.5270 0.4928
HLA-DRB1-10 -2.5831
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when data are interval-censored. We extend the methods of inverse probability weighting used for
right-censored data to deal with interval-censored data arising from intermittent inspection of indi-
viduals; these methods require all assessment times be available so that the observation process can
be modeled.

Throughout this manuscript the assumption of conditionally independent truncation has been
made. As an illustration of a setting with dependent left truncation, Chaieb et al. (2006) discuss esti-
mation of the survival time distribution based on a sample of individuals from homes for the elderly
which offer on-site health care. They point out that individuals admitted earlier to such an institution
may benefit from enhanced quality of care, and so live longer that they might otherwise, resulting in
a negative association between the left-truncation time and the survival time. The analogous situation
in the psoriasis clinic would be if treatment for psoriasis in a tertiary care setting reduced the rate of
progression to psoriatic arthritis given covariates; there is no scientific evidence that this is the case,
but exploration of the impact of dependent truncation along with methods for correcting for its effect
is an area worthy of development in the context of variable selection. Tests of the null hypothesis of
independent truncation are available (Tsai, 1990, Martin and Betensky, 2005) and may be possible
to adapt, as are methods for dealing with dependent left truncation using copula models linking the
failure and truncation times (Chaieb et al., 2006).

It is well-known that truncation schemes greatly reduce parametric information and can introduce
identifiability concerns. Samples which feature right truncation seem to be particularly problematic
(Kalbfleisch and Lawless, 1991) and it is somewhat unclear what the effective sample size is in some
settings; this is more challenging with inspection processes leading to highly variable censoring in-
tervals in the left-truncation setting. Extensive simulation studies (not reported here) suggest that
the algorithms described here do not perform well when all observations are subject to right trunca-
tion; here the combination of the psoriasis cohort with prospective observation yielding data on the
incidence of psoriatic arthritis plays a crucial role in making these analyses possible. As the frac-
tion of right-truncated times increases in the sample, the more frequent the occurence of convergence
problems.

A quite different framework for identifying genetic risk factors involves carrying out repeated
univariate tests of the association between each genetic marker and the outcome of interest. The
goal of this approach is to screen a number of potential markers for ones with an association with
the outcome, and selected markers are identified as requiring further study and validation. When
data from different cohorts are to be synthesized, or data are available according to another response-
dependent observation scheme (Derkach et al., 2015), the selection effects and censoring must again
be accounted for and this can be achieved through specification of similar complete data likelihoods
and a corresponding self-consistency algorithm. However, score tests have great appeal in this setting
as the model need only be fitted under the null hypothesis and so considerable simplifications may be
realized.
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