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Abstract In this paper, we introduce a two-step procedure, in the context of ultrahigh-dimensional additive models, to
identify nonzero and linear components. We first develop a sure independence screening procedure based on the distance
correlation between predictors and marginal distribution function of the response variable to reduce the dimensionality of
the feature space to a moderate scale. Then a double penalization based procedure is applied to identify nonzero and linear
components, simultaneously. We conduct extensive simulation experiments to evaluate the numerical performance of the
proposed method and analyze a cardiomyopathy microarray data for an illustration. Numerical studies confirm the fine
performance of the proposed method for various semiparametric models.
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1. Introduction

Suppose we have a random sample (yi, xi1, . . . , xip), 1 ≤ i ≤ n, where yi is the response variable and (xi1, . . . , xip)
is a p-dimensional covariate vector. Consider the partially linear additive model (PLAM)

yi =
∑
jϵS1

βjxij +
∑
jϵS2

fj(xij) + εi, 1 ≤ i ≤ n, (1)

where S1 and S2 are mutually exclusive and complementary subsets of {1, ..., p}, {βj : jϵS1} are the regression
coefficients of covariates, {fj : jϵS2} are unknown smooth functions and the model error ε has conditional
mean zero and finite variance σ2. To ensure identifiability of the nonparametric functions, we assume that
E[fj(Xj)] = 0 for jϵS2. Estimation and variable selection for PLAM have been well studied in literature, for
example, [16, 12, 7, 1, 17].

The use of model (1) is based on the assumption that the linear and nonlinear parts are known in advance.
However, such prior information is usually unavailable, especially when the number of covariates is large. Thus,
in addition to distinguish nonzero components, it is of great interest to develop some efficient methods to identify
linear components from nonlinear ones.

Zhang et al. [21] studied the model selection using two penalties, simultaneously, to identify the zero and linear
components in PLAM. They did not prove any selection consistency results for general partially linear models.
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Motivated by this, Huang et al. [9] proposed a semiparametric regression pursuit method for distinguishing linear
from nonlinear components using a group MCP penalty. Lian [13] provided a way to determine linear components
by using SCAD penalty. This was a new usage of SCAD in which no variable selection is performed. Lian
[14] successfully identified nonzero and linear components of model (1) by applying a two-fold SCAD penalty
in the additive regression. Lian et al. [15] proposed another two penalty procedure in high dimensional setting
using adaptive group LASSO in which insignificant predictors and parametric components were simultaneously
identified.

However, with the rapid development of data collecting technologies, the PLAM often face the challenge
of ultrahigh-dimensionality. The aforementioned regularization methods may not perform well for ultrahigh-
dimensional data due to the simultaneous challenges of computational expediency, statistical accuracy, and
algorithmic stability ([4]). Thus a natural question is how to identify the truly relevant predictors and parametric
components in such ultrahigh-dimensional PLAM.

In this paper, this question is addressed on the basis of a two-stage procedure: (1) reducing the dimension from
ultrahigh to moderate using a fast and efficient independence screening procedure; (2) identify nonzero and linear
components from the screened submodel by a double penalization based procedure. Regrading the first stage, Fan
and LV [3] first advocated the sure independence screening (SIS) method for the ultrahigh-dimensional linear
models based on the Pearson correlation learning. Many authors further developed the SIS method and applied
it to various statistical models, such as generalized linear models ([4, 6]), nonparametric additive models (NIS,
[5]). Furthermore, in order to avoid the specification of a particular model structure, Zhu et al. [23] proposed a
sure independent ranking and screening (SIRS) procedure for ultrahigh-dimensional data in the framework of the
general multi-index models. Thereafter, a model-free SIS based on the distance correlation (DC-SIS) was developed
by Li et al. [10]. Li et al.[11] proposed a robust rank correlation screening (RRCS) method based on the Kendall-
correlation coefficient between response and predictors.

We propose a more robust approach, called robust distance correlation sure independence screening (RDC-SIS),
to reduce dimensionality which ranks each covariate through its distance correlation with the marginal distribution
function of the response variable. This method is model-free and we can expect that the procedure works well for
skew or heavy tailed response variable. This procedure is a modification of DC-SIS proposed by Li et al. [10] in
which Y is replaced by F (Y ). In the second stage, a double penalization based method is applied to refine the
screened submodel and identify nonzero and linear components, simultaneously.

The rest of this paper is organized as follows. In Section 2, a modification of DC-SIS procedure is introduced for
dimension reduction. Afterwards, a doubly penalized estimation method is explained in details in Section 3. We
just focus on the SCAD penalty ([2]) but other penalties such as the LASSO ([19]) and MCP ([20]) could also be
applied. In section 4, simulation studies are carried out to assess the performance of the proposed method and to
compare it with some existing methods. A real data example is used for illustration in Section 5.

2. Screening Procedure (RDC-SIS)

At the start of the analysis, we do not know which component functions are linear or actually zero and thus the
following general additive model is used initially:

Y =

p∑
j=1

fj(Xj) + ϵ. (2)

We consider the problem of nonlinear variable screening in ultrahigh-dimensional feature space. The goal is to
rapidly reduce the dimension of the covariate space p to a moderate scale via a computationally convenient
procedure. We propose a robust feature screening procedure for model (2) using distance correlation between
predictors and marginal distribution function of response variable. A review of distance correlation is as follows.

Sz’ekely, Rizzo, and Bakirov [18] introduced distance correlation as a measurement of dependence between
two random vectors. The distance correlation between random vectors U and V with finite first moments is a
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nonnegative value which is defined by

dcorr(U, V ) =
dcov(U, V )√

dcov(U,U)dcov(V, V )
, (3)

if dcov(U,U)dcov(V, V ) > 0, and equals 0 otherwise. They stated that dcov2(U, V ) = S1 + S2 − 2S3, where
Sj , j = 1, 2, and 3, are defined as: S1 = E{|U − Ũ ||V − Ṽ |}, S2 = E{|U − Ũ |}E{|V − Ṽ |}, S3 = E{E(|U −
Ũ ||U)E(|V − Ṽ ||V )}, and (Ũ , Ṽ ) is an independent copy of (U, V ). In the category of model-free feature screening
procedures for ultrahigh-dimensional setting, Li et.al [10] developed a sure independence screening method (DC-
SIS) based on the distance correlation (DC-SIS) and showed that the DC-SIS has the sure screening property. Two
remarkable properties of the distance correlation motivate them to use it in a feature screening procedure. The first
one is the relationship between the distance correlation and the Pearson correlation coefficient. For two univariate
normal random variables U and V , with the Pearson correlation coefficient ρ, Szekely, Rizzo, and Bakirov [18]
showed that dcorr(U, V ) is strictly increasing in |ρ|. This property implies that the distance correlation based
feature screening procedure is equivalent to the marginal Pearson correlation learning for linear regression with
normally distributed predictors and random error. The second remarkable property of the distance correlation is that
dcorr(U, V ) = 0 if and only if U and V are independent. Distance correlation has properties of a true dependence
measure, analogous to Pearson correlation ρ. It has the advantage that it can detect nonlinear relationships which
are ignored by marginal correlation. For more details about distance correlation, see Szekely, Rizzo, and Bakirov
[18].

Our new measure of correlation between Y and Xk is proposed by substituting F (Y ) instead of Y , i.e., marginal
utility measure for predictor ranking is as:

ωk = dcorr(Xk, F (Y )), k = 1, . . . , p, (4)

where F (Y ) is the marginal distribution function of Y . We note that two univariate random variables U and V are
independent if and only if U and h(V ), a strictly monotone transformation of V , are independent. This implies that
dcorr(X,F (Y )) = 0 if and only if X and Y are independent. Furthermore, when the response is the skew or heavy-
tailed, it can be expected that this procedure has a good performance. This screening procedure is a model-free in
which one does not need to specify a model structure between the predictors and the response.

It is desirable to derive an estimator of ωk based on the n independent and identical observations. Suppose that
we have a random sample, (Xi, Yi)

n
i=1, from the nonparametric additive model (2). We estimate S1, S2, and S3

through the usual moment estimation as follows:

Ŝk,1 = 1
n2

∑n
i=1

∑n
j=1 |Xik −Xjk| |Fn(Yi)− Fn(Yj)|,

Ŝk,2 = 1
n2

∑n
i=1

∑n
j=1 |Xik −Xjk| 1

n2

∑n
i=1

∑n
j=1 |Fn(Yi)− Fn(Yj)|,

Ŝk,3 = 1
n3

∑n
i=1

∑n
j=1

∑n
l=1 |Xik −Xlk| |Fn(Yj)− Fn(Yl)|,

where Fn(y) =
1
n

∑n
i=1 I(Yi ≤ y) is the empirical distribution function of Y . Thus, a natural estimator of

dcov2(Xk, F (Y )) is given by
d̂cov2(Xk, F (Y )) = Ŝk,1 + Ŝk,2 − 2Ŝk,3.

Similarly, we can define the sample distance covariances dcov(Xk, Xk) and dcov(F (Y ), F (Y )). Accordingly, the
sample distance correlation between Xk and F (Y ) can be defined by

d̂corr(Xk, F (Y )) =
d̂cov(Xk, F (Y ))√

d̂cov(Xk, Xk)

√
d̂cov(F (Y ), F (Y ))

.

Thus we estimate ωk with ω̂k = d̂corr(Xk, F (Y )). We select a set of important predictors with large ω̂k. That is,
the screened sub-model be determined by,

M̂νn = {1 ≤ k ≤ p : ω̂k ≥ νn} , (5)

where νn is a pre-determined positive number. This procedure reduces the dimensionality from p to a possibly
much smaller space with model size d = |M̂νn |.
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3. Variable Selection and Structure Identification

In section 2, a screening procedure is proposed to reduce the model size from a very large value p to a moderate
scale d by specifying sensible threshold parameters νn, although it is difficult to choose in practice. A practical
way is to select the top d variables by ranking marginal utilities. The choice of d plays a very important role
in the screening stage. Fan and Lv [3] recommended d = [?n/log(n)] as a sensible choice. Zhao and Li (2012)
proposed an approach to select d for Cox models by controlling false positive rate. A larger value of the specified d
would give a greater chance to include inactive variables. This can be solved by a penalty-based variable selection
procedure given below.

Now, suppose that d variables are selected in the screening stage. Consider a joint nonparametric additive model
Y =

∑d
j=1 fj(Xj) + ϵ. B-spline basis is used to approximate each of unknown smooth functions, i.e., fj(x) ≈∑K

k=1 bjkBjk(x) for j = 1, ..., d. We use the two-fold penalization procedure to automatically identify different
types of components, i.e., the coefficient b = (bT1 , . . . b

T
d )

T , bj = (bj1, . . . bjK)T , j = 1, . . . , d, are estimated in the
following optimization problem

b̂ = argmin
b

1

2

n∑
i=1

(
Yi − µ−

d∑
j=1

K∑
k=1

bjkBjk(Xij)

)2

+n

d∑
j=1

pλ1(∥bj∥Aj ) + n

d∑
j=1

pλ2(∥bj∥Dj ), (6)

where two penalties pλ1(.) and pλ2(.) are used to identify the zero and the linear coefficients, respectively, with two

regularization parameters λ1 and λ2, and Aj and Dj are two K ×K matrices, ∥bj∥Aj =
(
bTj Ajbj

) 1
2 , ∥bj∥Dj =(

bTj Djbj
) 1

2 . There is some flexibility in choosing Aj and Dj but one requirement is that ∥bj∥Aj = 0 if only if∑
k bjkBjk(x) ≡ 0 and ∥bj∥Dj = 0 if only if

∑
k bjkBjk(x) is a linear function, so that the two penalties can be

used to identify zero and linear components, respectively. One natural choice is Aj = {
∫ 1

0
Bjk(x)Bjk′(x)dx}Kk,k′=1

and Dj = {
∫ 1

0
B′′

jk(x)B
′′
jk′(x)dx}Kk,k′=1 so that ∥bj∥Aj =∥

∑
k bjkBjk(x)∥ and ∥bj∥Dj =∥

∑
k bjkB

′′
jk(x)∥. Let

Zj =

 Bj1(X1j) Bj2(X1j) · · · BjK(X1j)
...

...
...

Bj1(Xnj) Bj2(Xnj) · · · BjK(Xnj)


n×K

,

Z = (Z1, ..., Zd) and Y = (Y1, ..., Yn). Then (6) can be written in matrix form as

b̂ = argmin
b

1

2
∥Y − Zb∥2 + n

d∑
j=1

pλ1∥bj∥Aj ) + n

d∑
j=1

pλ2(∥bj∥Dj ). (7)

For later use we denote the objective function on the right hand side (7) as Q(b). There are different way to specify
the penalty functions, but here we only focus on the SCAD penalty function, defined by its first derivative

P ′
a,λ(x) = λ

{
I(|x| ≤ λ) +

(aλ− |x|)+
(a− 1)λ

I(|x| > λ)

}
, x ≥ 0, (8)

with a > 2 and P ′
a,λ(0) = 0. We use a = 3.7 as suggested in [2].

To find the minimum of (7) for fixed tuning parameters, we use the iterative local quadratic approximation (LQA)
proposed in [2]. Using a simple Taylor expansion, given an initial estimate b0j , if ∥bj∥Aj > 0 and ∥bj∥Dj > 0, we
approximate the penalty terms by

pλ1(∥bj∥Aj ) ≈ pλ1

(
∥b(0)j ∥Aj

)
+

1

2

p′λ1

(
∥b(0)j ∥Aj

)
∥b(0)j ∥Aj

{
∥bj∥2Aj

−∥b(0)j ∥2Aj

}
,
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and

pλ2

(
∥bj∥Dj

)
≈ pλ2

(
∥b(0)j ∥Dj

)
+

1

2

p′λ2

(
∥b(0)j ∥Dj

)
∥b(0)j ∥Dj

{
∥bj∥2Dj

−∥b(0)j ∥2Dj

}
.

After removing some irrelevant terms, the criterion becomes

Q(b) =
1

n
∥Y − Zb∥2 + 1

2
bT (Ω1 +Ω2)b (9)

for two dK × dK matrices Ω1 and Ω2 which are defined by

Ω1 = diag

p′λ1

(
∥b(0)1 ∥A1

)
∥b(0)1 ∥A1

A1, . . . ,
p′λ1

(
∥b(0)d ∥Ad

)
∥b(0)d ∥Ad

Ad


and

Ω2 = diag

p′λ2

(
∥b(0)1 ∥A1

)
∥b(0)1 ∥D1

D1, . . . ,
p′λ2

(
∥b(0)d ∥Ad

)
∥b(0)d ∥Dd

Dd


Note that (9) is a quadratic function and thus there exists a closed-form solution. Then the updating equation

given the current estimate b(0) is
b =

(
ZTZ + n(Ω1 +Ω2)

)−1
ZTY. (10)

The algorithm repeatedly solves the minimization criterion (9) and updates b(m) to b(m+1), m = 0, 1, ... until
the convergence is satisfied. That is, in the m-th iteration, we solve (9), where Ω1 and Ω2 are as defined above
but with b0j replaced by the current estimate b

(m)
j . The solution obtained from (9) is the new estimate b(m+1).

During the iterations, as soon as some ∥bj∥Aj (respectively, ∥bj∥Dj ) drops below a certain threshold (10−6 in our
implementation), the component is identified as a zero function (respectively, linear function).

4. Simulation Studies

In this section, some simulation studies have been conducted to asses the finite sample performance of our methods.
We first consider three models to illustrate our proposed screening procedure (RDC-SIS). The performance of the
RDC-SIS is then compared with the existing competitors, such as DC-SIS ([10]), SIRS ([23]), SIS ([3]) and NIS
([5]).

To evaluate the performance of proposed mehod, three criteria are considered. The first criterion is the minimum
model size (denoted by M), that is the smallest number of covariates needed to ensure that all the active variables
are selected. To get better inference, the 5%, 25%, 50%, 75% and 95% quantiles of M out of 200 replications were
also presented. The second criterion (denoted by Pj) is the empirical probability that the active covariate Xj is
selected, when the threshold d = 2

[
n/log(n)

]
is adopted. The last criterion is the proportion (denoted by S) of

truly active predictors that are identified by the screening procedure. Note that the first criterion does not need to
specify a threshold. The more reliable screening procedure, the closer M value to the number of active predictor
and also the closer S and Pj value to 1.

We also carry out some Monte Carlo studies to assess the effectiveness of our two stage proposed method to
separation of the linear and nonlinear components and to identify insignificant covariates simultaneously in partial
linear additive models of non-polynomial (NP) dimensionality based on double penalization.

It is also needed to find a data-driven procedure to choose the regularization parameters λ1 and λ2. We use the
BIC-type criterion which is defined as

log(
1

n
∥Y − Zb̂λ∥2) + d1

log(n/K)

n/K
+ d2

logn
n

, (11)
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Table 1. Five quantiles of minimum model size M , the empirical probability Pj and the proportion of S in Model 1.

ε c method M P S
5% 25% 50% 75% 95% 1 2 3 4 5

N(0, 1) 1 RDC-SIS 5 5 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00
DC-SIS 5 5 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00
SIS 5 5 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00
SIRS 5 5 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00

2 RDC-SIS 5 5 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00
DC-SIS 5 5 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00
SIS 5 5 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00
SIRS 5 5 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00

t(1) 1 RDC-SIS 5 5 5 5 19 1.00 1.00 1.00 1.00 0.99 0.99
DC-SIS 5 7 19 109 584 0.82 0.84 0.86 0.77 0.71 0.67
SIS 35 467 806 916 966 0.20 0.21 0.21 0.20 0.16 0.10
SIRS 5 5 5 6 25 1.00 1.00 0.99 0.99 0.98 0.98

2 RDC-SIS 5 5 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00
DC-SIS 5 5 5 6 156 0.95 0.94 0.94 0.94 0.90 0.87
SIS 5 90 494 865 981 0.44 0.43 0.44 0.42 0.30 0.23
SIRS 5 5 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00

where b̂λ is the minimizer of (7) for given λ = (λ1, λ2), d1 is the number of nonparametric components and d2 is
the number of parametric components, both for the given λ.

Example 1. Consider three models:

Model 1: Y = cβTX + σε,
Model 2: Y = X1 + 2X2

2 + 3X3
3 + 4X4

4 + ε,
Model 3: Y = X2

1 + (2 + sin(X2))
2 + (1 +X3)

−3 + (X2
4 +X4 − 1)−1 +X5 + ε,

where β = (1, 0.8, 0.6, 0.4, 0.2, 0, . . . , 0)T takes grid values and σ2 = 6.83. Model 1 is adapted from [23]. We
varied the constant c to control the signal-to-noise ratio. We choose c = 1 and 2, with the corresponding R2 =
50% and 80%. The vector of covariates X = (X1, . . . , Xp) was generated from the multivariate normal distribution
with mean 0 and the covariance matrix Σ = (σij)p×p with σii = 1 and σij = 0.8|i−j| for i ̸= j. We considered three
error ε distributions, N(0, 1), a t-student ( t(1) ) and a skew normal distribution (SN(0,1,2)). In this example, we
set the sample size n = 200 and the total number of predictors p = 1000. We repeat each scenario 200 times and
the results are given in Tables 1-3.

From Table 1, when the random error has a normal distribution, for both cases c = 1, and c = 2, all four
screening methods perform quit well. However, it is consistently superior for the heavy-tailed error distribution.
When the error has a t-distribution with one degree of freedom, however, the performance of DC-SIS nad SIS
quickly deteriorates, while our method continues to perform well. DC-SIS do not work well in identifying active
covariates. Compared with the SIRS method, the performances of the RDC-SIS and SIRS are equally good in all
the considered scenarios; both of them deliver more satisfactory results than the DC-SIS and SIS procedures. The
SIS has little chance to identify the important predictors.

Table 2 indicates that, for all types of distribution error, the performance of the proposed RDC-SIS is very well
and outperform other methods. All Pj and S of the RDC-SIS is equal 1. Thus, all active predictors can perfectly be
selected into the resulting model across all three different error distributions. We can see that the DC-SIS procedure
is comparable to the RDC-SIS method for all types of distribution error.

In model 3, where the model has a more complex structure, RDC-SIS is effective in identifying the number of
active variables for all types of errors; while DC-SIS and NIS fail to identify some important predictors. The NIS
has no chance for to identify X3 and little chance to identify other active covariates. RDC-SIS and SIRS have
similar performances and are equally well. Both of them outperform the NIS and DC-SIS procedures.
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Table 2. Five quantiles of minimum model size M , the empirical probability Pj and the proportion of S in Model 2.

ε method M P S
5% 25% 50% 75% 95% 1 2 3 4

N(0, 1) RDC-SIS 4 4 4 4 4 1.00 1.00 1.00 1.00 1.00
DC-SIS 4 5 5 6 9 0.99 1.00 1.00 1.00 0.99
NIS 5 5 6 11 102 0.93 1.00 1.00 1.00 0.93
SIRS 4 4 5 19 299 1.00 1.00 1.00 0.85 0.85

t(1) RDC-SIS 4 4 4 4 5 1.00 1.00 1.00 1.00 1.00
DC-SIS 4 5 5 7 64 0.94 0.96 0.98 0.98 0.94
NIS 5 6 11 82 864 0.65 0.81 0.85 0.89 0.55
SIRS 4 4 7 34 468 0.99 1.00 1.00 0.78 0.69

SN RDC-SIS 4 4 4 4 4 1.00 1.00 1.00 1.00 1.00
DC-SIS 4 5 5 6 8 0.99 1.00 1.00 1.00 0.99
NIS 5 5 6 11 104 0.92 1.00 1.00 1.00 0.92
SIRS 4 4 5 23 345 1.00 1.00 1.00 0.87 0.87

Table 3. Five quantiles of minimum model size M , the empirical probability Pj and the proportion of S in Model 3.

ε method M P S
5% 25% 50% 75% 95% 1 2 3 4 5

N(0, 1) RDC-SIS 5 5 5 5 7 1.00 1.00 1.00 1.00 1.00 1.00
DC-SIS 221 499 680 821 994 0.13 0.16 0.33 0.14 0.15 0.02
NIS 576 776 877 954 994 0.07 0.09 0.00 0.06 0.09 0.00
SIRS 5 5 5 5 9 1.00 1.00 1.00 1.00 1.00 1.00

t(1) RDC-SIS 5 5 5 6 11 1.00 1.00 1.00 1.00 1.00 1.00
DC-SIS 225 500 679 821 961 0.14 0.15 0.33 0.14 0.15 0.01
NIS 576 776 877 950 994 0.07 0.09 0.00 0.06 0.09 0.00
SIRS 5 5 5 6 15 1.00 1.00 1.00 1.00 1.00 1.00

SN RDC-SIS 5 5 5 5 6 1.00 1.00 1.00 1.00 1.00 1.00
DC-SIS 214 500 679 821 961 0.13 0.16 0.33 0.14 0.15 0.02
NIS 576 776 877 954 994 0.07 0.09 0.00 0.06 0.09 0.00
SIRS 5 5 5 5 8 1.00 1.00 1.00 1.00 1.00 1.00

Example 2. In this example, we first apply the RDC-SIS method to reduce dimensionality, and then fit a partial
linear model (PLAM) where two penalty is used to simultaneously identify nonzero and linear components. We
generated data from the model

Y =

p∑
j=1

fj(Xj) + ε, (12)

where f1(x) = 3sin(2πx)/(2− sin(2πx)), f2(x) = 6x(1− x), f3(x) = 2x, f4(x) = x, f5(x) = −x, fj(x) =
0 for j > 5. Thus the true number of nonparametric components is 2 and the true number of linear components is 3.
To generate covariates, we let Xj be marginally standard normal with correlations given by cov(Xi, Xj) = 0.5|i−j|.
To illustrate the efficiency of our proposed method, the following two different error distributions are considered:
standard normal distribution N(0, 1) and t-distribution with three degree of freedom, t3, which is used to
produce heavy-tailed distribution. We performed simulations with n = 200, 400, p = 1000, 2000 and the results
are summarized in Table 4.

We used several criterion to measure the model identification performance: “NN”: average number of nonlinear
components selected; “NNT”:average number of nonlinear components selected that are truly nonlinear; NL:
average number of linear components selected; “NLT”:average number of linear components selected that are
truly linear. The numbers in parenthesis are the corresponding standard errors. The simulation results indicate that
the proposed two-stage method is effective in estimating and identifying nonzero components as well as linear
components from nonlinear ones simultaneously.
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Table 4. Model identification results for Example 2.

p n Error NN NNT NL NLT
1000 200 N(0,1) 2.31(0.96) 2(0) 2.93(0.88) 2.74(0.32)

t(3) 2.52(0.88) 1.97(0.12) 3.37(1.03) 2.71(0.71)
400 N(0,1) 2.20(0.64) 2(0) 3.12(0.59) 2.96(0.26)

t(3) 2.49(0.54) 1.99(0.08) 3.28(0.66) 2.74(0.75)
2000 200 N(0,1) 2.46(0.84) 2(0) 3.12(0.94) 2.84(0.64)

t(3) 2.77(0.79) 1.98(0.17) 3.24(1.01) 2.76(0.83)
400 N(0,1) 2.33(0.81) 2(0) 3.04(0.94) 2.92(0.64)

t(3) 2.54(0.74) 1.99(0.06) 2.97(0.85) 2.81(0.63)

5. Data Analysis

To illustrate the usefulness of the suggested strategies for ultrahigh-dimensional data in the semiparametric
regression model, we consider cardiomyopathy microarray data. This data set has attracted considerable attention
and been systematically investigated by many researchers. They aim to identify the influential genes that affect the
overexpression of a G protein-coupled receptor, called Ro1, in mice. The Ro1 expression level was measured for
30 specimens, and the predictors, the genetic expression levels, were obtained for p = 6319 genes.

This data set has been studied by many researchers. Hall and Miller [8] showed that both genes Msa.2877.0 and
Msa.1166.0 are particularly important using the generalized correlation. Li et al. [10] used the DC-SIS procedure
that ranks two genes, Msa.2134.0 and Msa.2877.0, at the top. Li et al. [11] showed that Msa.1166.0 and Msa.7019.0
are particularly important using the RRCS procedure. The NIS procedure in [5] ranks two genes, labeled as
Msa.2877.0 and Msa.1166.0, at the top. The RDC-SIS procedure ranks two genes, Msa.2134.0 and Msa.2877.0,
in the top, which is similar to DC-SIS and SIRS of Zhu et al. [23]. The scatter plots of Y versus these two gene
expression levels with cubic spline fit curves in Figure 1 indicate clearly the existence of nonlinear patterns. It can
be noted that the distance correlation has the advantage that it can detect nonlinear relationships which are ignored
by marginal correlation. Our proposed RDC-SIS procedure shows the advantage that it detected two important
genes having nonlinear relationships with Ro1, which might be ignored by some other methods.

A natural question arises: which screening procedure does perform better in terms of ranking? Following Li et
al.[11], to compare the performance of these procedures, we fit three different additive models as follows:

Y = gk1(Xk1) + gk2(Xk2) + εk, k = 1, 2, 3,

where Xk1 and Xk2 are the top two genes, gk1 and gk2 are two unknown link functions, ε is an error term. We fit
gk1 and gk2 by using the “gam” function in the R “mgcv” package, where “gam” can be used to fit a generalized
additive model to data. We also measure the performance of goodness of fit by the adjusted R2 values and the
explained deviance, where deviance implies the proportion of the null deviance explained by the proposed model,
with a larger value indicating better performance.

The RDC-SIS, corresponding to k = 1, regards Msa.2134.0 and Msa.2877.0 as the two predictors, while the
generalized correlation ranking proposed by Hall and Miller [8], corresponding to k = 2, regards Msa.2877.0
and Msa.1166.0 as predictors in the above model. Also the RRCS proposed by Li et al.[11], corresponding to
k = 3, regards Msa.1166.0 and Msa.5758.0 as the two predictors. The RDC-SIS method clearly achieves better
performance with the adjusted R2 of 96.8% and the deviance explained of 98.3%, in contrast to the adjusted R2 of
84.5% and the deviance explained of 86.6% for the generalized correlation ranking method, and the adjusted R2 of
77.9% and the deviance explained of 81.5% for the RRCS method.

From the above, we can conclude that the RDC-SIS is an efficient method for dimension reduction in ultrahigh
dimensional data. For variable selection and structure identification in cardiomyopathy dataset, we first applied
RDC-SIS to reduce the covariate dimension to the size of 3[n/ log(n)] = 24. After cleaning, two-fold SCAD
penalty was used to identify parametric and non parametric parts. We have identified 4 genes of linear effects and
13 genes of nonlinear effects. The genes of linear effects are Msa.1920.0, Msa.2877.0, Msa.5595.0 and Msa.741.0.
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Figure 1. The scatter plots and corresponding cubic-spline fit curves of the relationship between the important genes (Msa.2877.0,
Msa.1166.0, Msa.2134.0, Msa.7019.0) and the outcome (Ro1) based on n = 30 specimens.

The genes of nonlinear effects are Msa.10180.0, Msa.963.0, Msa.5727.0, Msa.1166.0, Msa.15442.0, Msa.1590.0,
Msa.2134.0, Msa.2400.0, Msa.7019.0, Msa.28021.0, Msa.5583.0, Msa.26025.0 and Msa.15405.0.

6. Conclusion

In this paper, we developed a two stage procedure for variable selection and structure identification in ultrahigh-
dimensional partially linear additive models. In the first stage, a sure independence procedure was used to
dimension reduction from ultrahigh to moderate scale. This procedure ranks covariates trough their distance
correlation with marginal distribution function of response variable. The proposed methodology has been supported
by numeric examples and a real data analysis. This method is model-free and is robust for skew or heavy tailed
response variable. In second stage, in order to distinguish linear and nonlinear parts and to identify insignificant
covariates simultaneously, we used a double penalization based procedure.
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