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Summary. Variable selection in high-dimensional clustering analysis is an important yet challenging prob-
lem. In this article, we propose two methods that simultaneously separate data points into similar clusters
and select informative variables that contribute to the clustering. Our methods are in the framework of pe-
nalized model-based clustering. Unlike the classical L1-norm penalization, the penalty terms that we propose
make use of the fact that parameters belonging to one variable should be treated as a natural “group.” Nu-
merical results indicate that the two new methods tend to remove noninformative variables more effectively
and provide better clustering results than the L1-norm approach.
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1. Introduction

Clustering data into similar clusters is an important practi-
cal problem in a wide variety of fields, including statistics,
bioinformatics, artificial intelligence, and data mining. With
the recent advent of technologies, good clustering algorithms
are very much desired for analyzing high-dimensional data
where the number of variables is considerably larger than the
number of observations. DNA microarray analysis is a typi-
cal example that involves such high-dimensional data. A mi-
croarray data set usually has thousands or tens of thousands
of gene expression profiles (variables), but only around tens
or hundreds of samples. Clustering microarray data can be
very helpful for certain types of biology study, such as cancer
research. For example, based on the gene expression profiles,
interesting cluster distinctions can be found among a set of
tissue samples, which may reflect categories of diseases, muta-
tional status, or different responses to a certain drug. Besides
separating samples into distinct clusters, another challenge in
microarray analysis is to identify the informative genes that
contribute most to the clustering. This is a variable selection
problem.

Variable selection has been studied extensively in the lit-
erature for regression and classification problems (Breiman,
1995; Tibshirani, 1996; Fan and Li, 2001; Zhao, Rocha, and
Yu, 2006; Zou and Yuan, 2006), but not so much for clus-
tering. However, selecting informative variables and remov-
ing noninformative variables are also important for clustering.
Figure 1 illustrates the point.

In Figure 1, we can easily separate points into two clus-
ters by visual inspection. We also observe that variable x2
does not contribute to the cluster discrimination. In fact, if
we use x2 alone, there will only be a single cluster, which is

less interesting. This demonstrates that noninformative vari-
ables can mislead clustering results. The problem can be more
severe when the number of noninformative variables is large,
where the noninformative variables can “hide” the true clus-
ter structure.

Pan and Shen (2006) proposed an approach for variable
selection in clustering through penalized model-based clus-
tering. Following Liu, Zhang, and Palumbo (2003) and Hoff
(2006), they parameterized the mean in cluster k for variable
xj as µkj = φj + δkj , where φj is the global mean for vari-
able xj . If for different k, all δkj are 0, then the variable xj is
not informative for clustering, at least in terms of the mean.
Pan and Shen (2006) employed the L1-norm penalty to shrink
the cluster-specific means µkj toward the global mean φj , and
this effectively realizes the variable selection.

In this article, we focus on the clustering for high-
dimensional data characterized by high dimension and low
sample size (Marron and Todd, 2002). Enlightened by the
method in Pan and Shen (2006), we propose two new
approaches that are also in the framework of penalized model-
based clustering. Noting that cluster-specific mean param-
eters associated with the same variable can be naturally
“grouped” together, and intuitively should be treated as a
“group,” we propose two novel penalty functions, different
from the one in Pan and Shen (2006), to make use of such
natural “grouping” information within the data. As we will
see in the numerical study, the two new methods tend to re-
move noninformative variables more effectively and provide
better clustering results.

There are several other methods in the literature that com-
bine clustering and variable selection together. Friedman and
Meulman (2004) proposed a hierarchical clustering procedure
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that uncovers cluster structure on separate subsets of vari-
ables. The algorithm does not explicitly select variables but
rather assigns them different weights, which can be used to
extract informative variables. Analogous to stepwise variable
selection in regression, Raftery and Dean (2006) developed a
method to sequentially compare two nested models to deter-
mine whether a subset of variables should be included in or
excluded from the current model based on a greedy search.
Hoff (2006) proposed a multivariate Dirichlet mixture process
based on a Pólya urn cluster model for multivariate means and
variances. This approach finds clusters that differ from each
other in terms of their means and/or variances on one or more
variables. Tadesse, Sha, and Vannucci (2005) formulated the
clustering problem in terms of a multivariate normal mixture
model with an unknown number of components. They used
the reversible jump Markov chain Monte Carlo technique to
define a sampler that could move between different dimen-
sional spaces, and the variable selection was handled through
the introduction of a binary exclusion/inclusion latent vector.

An alternative strategy for high-dimensional clustering is
to first apply certain dimension reduction methods on the
data, for example, principal component analysis (PCA) or
correspondence analysis (CA), then apply clustering on the
reduced space. However, treating dimension reduction and
clustering as two separate steps may destroy the cluster struc-
ture in the data, as pointed out in Raftery (2003). For exam-
ple, in Figure 1, the first principal component may be x2,
which is noninformative for discovering the cluster structure.
Liu et al. (2003) proposed a Bayesian clustering procedure
after transforming the data via the PCA. The number of
principal components to be included and which principal com-
ponents should be included are automatically selected using
Gibbs sampling. However, the extracted components usually
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Figure 1. An illustration of the noninformative variable in
clustering analysis. In this example, variable x2 does not con-
tribute to the cluster discrimination, and we consider it as
noninformative.

are linear combinations of all the original variables, thus there
is no variable selection.

The rest of the article is organized as follows. In Section 2,
we propose our two new models: the adaptive L∞-norm pe-
nalized Gaussian mixture model (ALP-GMM), and the adap-
tive hierarchically penalized Gaussian mixture model (AHP-
GMM). In Section 3, we derive algorithms to estimate the
parameters in the two models. Numerical results are in Sec-
tions 4 and 5. We conclude the article with Section 6.

2. Models

In this section, we propose two variable selection methods for
clustering high-dimensional data.

We observe n p-dimensional samples xi = (xi1, . . . ,xij ,
. . . ,xip), i = 1, . . . ,n, and without loss of generality, we as-
sume that the data are centered in each dimension (variable),
that is,

∑n

i=1
xij = 0, j = 1, . . . , p. Our aim is to separate the

data into K clusters.
The Gaussian mixture model (GMM) is a standard tool for

this purpose (Fraley and Raftery, 2002; McLachlan and Peel,
2002). We assume that each observation xi is drawn from a
finite Gaussian mixture distribution:

f(xi) =

K
∑

k=1

πkfk(xi;µk,Σk),

where πk’s are the mixing proportions satisfying 0 ≤ πk ≤
1 and

∑K

k=1
πk = 1. µk = (µk1, . . . , µkj , . . . , µkp) is the mean

vector of the Gaussian distribution characterizing the kth
cluster, and Σk is the corresponding covariance matrix. In
this article, we focus on high-dimensional data and assume
Σk = Σ = diag(σ2

1, . . . ,σ
2
j , . . . ,σ

2
p), that is, the covariance

matrices are the same across different clusters and are diago-
nal. This is a common assumption when one works with high
dimension and low sample size data, for example, in the naive
Bayes model. Some theoretical justification for this assump-
tion in the case of discriminant analysis can be found in Bickel
and Levina (2004).

Given an observation x
∗ = (x∗

1, . . . ,x
∗
p), one can compute

the probability that x
∗ is from the kth cluster

pk =
πk√

2π
∏p

j=1
σj

exp

(

−
p

∑

j=1

(

x∗
j − µkj

)2

2σ2
j

)

, k = 1, . . . ,K

(1)

and x
∗ will be assigned to the cluster with the largest pk.

We denote Θ = {σ2
j , πk, µkj , k = 1, . . . ,K; j = 1, . . . , p}

as the set containing all the parameters. Given the data
x1, . . . ,xn, the log-likelihood function is

ℓ0(Θ) =

n
∑

i=1

log

(

K
∑

k=1

πkfk(xi;µk,Σ)

)

. (2)

Maximization of the above objective function with respect to
Θ is often difficult, and it is common to use the expectation
maximization (EM) algorithm (Dempster, Laird, and Rubin,
1977) via the framework of missing data. Let τ ik be the in-
dicator of whether xi is from cluster k, that is, τ ik = 1 if
xi belongs to cluster k, and τ ik = 0 otherwise. If the miss-
ing data τ ik were observed, the log-likelihood function for the
complete data is
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ℓ(Θ) =

n
∑

i=1

K
∑

k=1

τik(log πk + log fk(xi;µk,Σ)). (3)

For the purpose of variable selection, Pan and Shen (2006)
proposed the regularized log-likelihood function

ℓP (Θ) = ℓ(Θ)− λ

K
∑

k=1

p
∑

j=1

|µkj |, (4)

where the penalty function is the L1-norm of the mean vec-
tors, and we refer this model as the L1-norm Gaussian mix-
ture model (L1-GMM). The L1-norm penalty shrinks some of
the fitted means µkj to be exactly zero when making λ suffi-
ciently large. As we can see from (1), if for the jth variable,
all the cluster-specific means µkj , k = 1, . . . ,K, are shrunken
to zero, exp(−(x∗

j − µkj)
2/(2σ2

j)) becomes a common factor
exp(−x∗2

j /(2σ2
j)) that does not depend on k; hence the jth

variable does not contribute to the clustering score (1), and
it can be removed.

In order to remove the jth variable, we need all correspond-
ing µkj , k = 1, . . . ,K, to be zero. However, we can see from
(4) that the L1-norm penalty treats the µkj individually, that
is, it does not use the information that µkj and µk′j are asso-
ciated with the same variable xj , and intuitively, they belong
to one “group” and they should be treated differently from
µkj′ , which is associated with a different variable xj′ . When
the jth variable is noninformative, due to ignoring the “group”
information in the data, the L1-norm penalty tends to shrink
only some of the µkj ’s, but not all of them to be zero, hence
it fails to exclude the jth variable. In the next two subsec-
tions, we propose two different penalty functions, that is, the
L∞-norm penalty and a hierarchical penalty, that incorporate
the “group” information into the modeling procedure. When
the jth variable is noninformative, comparing to the L1-norm
penalty, the two new penalties tend to shrink all µkj ’s to be
zero more effectively, hence they help improve the clustering
performance. Our numerical results in Section 4 provide fur-
ther supportive evidence.

2.1 Model I: The Adaptive L∞-norm Penalized Gaussian
Mixture Model (ALP-GMM)

For the ALP-GMM, we consider the penalized log-likelihood
function:

ℓP (Θ) = ℓ(Θ)− λ

p
∑

j=1

max
k

(|µ1j |, . . . , |µkj |, . . . , |µKj |), (5)

where max(|µ1j |, . . . , |µKj |) = ‖(µ1j , . . . ,µKj )‖∞. Different
from penalizing every µkj individually, the L∞-norm penalizes
the maximum absolute value of µkj , k = 1, . . . ,K, for the jth
variable. If the maximum of |µkj |, k = 1, . . . ,K, is shrunken
to zero, all µkj are automatically shrunken to zero. The L∞-
norm penalty has also been used in Zhang et al. (2006), Zhao
et al. (2006), and Zou and Yuan (2006) for regression and
classification problems.

To further improve the model (5), we apply the adaptive
idea from Breiman (1995), Shen and Ye (2002), Zhang and
Lu (2007), Zhao and Yu (2006), Zou (2006), and Yuan and
Lin (2007), that is, to penalize different variables differently.
We consider

ℓP (Θ) = ℓ(Θ)− λ

p
∑

j=1

wj ·max
k

(|µ1j |, . . . , |µkj |, . . . , |µKj |),

(6)

where wj are prespecified weights. The intuition is that if the
jth variable is informative for clustering, we would like the
corresponding wj to be small, hence the jth variable is lightly
penalized, whereas if the jth variable is noninformative for
clustering, we would like the corresponding wj to be large,
hence the jth variable is heavily penalized. How to prespecify
wj from the data will be discussed in the numerical study
section.

2.2 Model II: The Adaptive Hierarchically Penalized Gaussian
Mixture Model (AHP-GMM)

The L∞-norm penalty makes use of the information that µkj

and µk′j are associated with the same variable by shrinking
the maximum absolute value of µkj within the jth variable. If
we denote M j = max(|µ1j |, . . . , |µKj |), the corresponding L∞-
norm penalty on the jth variable is λM j , and we can write
µkj = M jαkj , where −1 ≤ αkj ≤ 1. However, the L∞-norm
penalty tends to shrink the µkj , k = 1, . . . ,K into the same
magnitude, and the L∞-norm penalty also tends to select µkj ,
k = 1, . . . ,K in an “all-in-all-out” fashion. This motivates us
to reparameterize µkj in a more general way:

µkj = γjθkj , k = 1, . . . ,K; j = 1, . . . , p, (7)

where γj ≥ 0 (for identifiability reasons). Note that here γj

plays a similar role as M j , but it does not have to be the
maximum of |µkj |; similarly θkj does not have to be bounded
between −1 and 1. This decomposition reflects the informa-
tion that µkj , k = 1, . . . ,K, all belong to one variable xj ,
by treating each µkj hierarchically. γj is at the first level of
the hierarchy, controlling µkj , k = 1, . . . ,K, as a group; θkj ’s
are at the second level of the hierarchy, reflecting differences
within the jth variable.

To estimate γj and θkj , we consider

ℓP (Θ) = ℓ(Θ)− λγ

p
∑

j=1

γj − λθ

K
∑

k=1

p
∑

j=1

|θkj |, (8)

subject to γj ≥ 0. Note that there are two tuning parameters,
λγ and λθ. λγ controls the estimates at the variable-specific
level, and it can effectively remove noninformative variables:
if γj is shrunken to zero, all µkj for the jth variable will be
equal to zero. λθ controls the estimates at the cluster-specific
level: if γj is not equal to zero, some of the θkj , hence some of
the µkj , k = 1, . . . ,K, still have the possibility of being zero;
in this sense, the hierarchical penalty keeps the flexibility of
the L1-norm penalty.

The adaptive idea in (6) also applies here. If the jth variable
is informative, we would like to penalize its γj and θkj lightly,
and if the jth variable is noninformative, we would like to
penalize its γj and θkj heavily. Hence we propose the AHP-
GMM:

ℓP (Θ) = ℓ(Θ)− λγ

p
∑

j=1

wγ
j γj − λθ

K
∑

k=1

p
∑

j=1

wθ
kj |θkj |, (9)

where wγ
j and wθ

kj are prespecified weights.
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3. Algorithms

In this section, we describe details of our algorithms for esti-
mating the parameter Θ in ALP-GMM and AHP-GMM.

3.1 The General EM Algorithm for Penalized GMM

We consider

ℓP (Θ) = ℓ(Θ)− J(Ω) (10)

=

n
∑

i=1

K
∑

k=1

τik(log πk + log fk(xi;µk,Σ))− J(Ω), (11)

where Ω= {µkj , k=1, . . . ,K; j=1, . . . , p}, J(Ω)=λ
∑p

j=1
wj ×

max(|µ1j |, . . . , |µKj |) for ALP-GMM, and J(Ω) = λγ ×
∑p

j=1
wγ

j γj + λθ

∑K

k=1

∑p

j=1
wθ

kj |θkj | for AHP-GMM. The
indicators τ ik are not observed, and the EM algorithm can
be used to maximize the above penalized log likelihood with
respect to Θ, and it follows closely to the EM algorithm
for the standard nonpenalized GMM model (McLachlan
and Peel, 2002). As we will see, the only difference exists in
estimating µkj in the M-step.

The EM algorithm iterates between two alternating steps
and produces a sequence of estimates Θ̂(t), t = 0, 1, 2, . . .:

E-step: Impute values for unobserved τ ik by

τ̂
(t)
ik = E

[

τik |xi, Θ̂
(t)

]

= Pr
[

τik = 1 |xi, Θ̂
(t)

]

=
π̂
(t)
k fk

(

xi; µ̂
(t)
k , Σ̂

(t))

K
∑

k=1

π̂
(t)
k fk

(

xi; µ̂
(t)
k , Σ̂

(t))

,

i = 1, . . . , n; k = 1, . . . ,K.

Plug them into ℓP (Θ) (10), yielding the so-called pe-
nalized Q-function:

QP (Θ, Θ̂(t))

=

n
∑

i=1

K
∑

k=1

τ̂ik(log πk + log fk(xi;µk,Σ))− J(Ω).

M-step: Update the parameter estimates

Θ̂(t+1) = argmax
Θ

QP (Θ, Θ̂(t)).

Specifically,

∂QP

∂πk

= 0 ⇒ π̂
(t+1)
k =

n
∑

i=1

τ̂
(t)
ik

/

n, k = 1, . . . ,K, (12)

∂QP

∂σ2
j

= 0 ⇒ σ̂
2,(t+1)
j

=

n
∑

i=1

K
∑

k=1

τ̂
(t)
ik

(

xij − µ̂
(t)
kj

)2/

n, j = 1, . . . , p,

(13)

and

Ω̂(t+1) = argmax
µkj

−1

2

n
∑

i=1

K
∑

k=1

p
∑

j=1

× τ̂
(t)
ik (xij − µkj)

2
/

σ̂
2,(t+1)
j − J(Ω). (14)

Notice that in J(Ω), both the L∞-norm penalty and
the hierarchical penalty have nondifferentiable points,
so they pose optimization challenges, and we will con-
sider (14) separately.

We also note that in the M-step, the penalized Q-function
does not have explicit solutions. Its exact maximizer needs
to be solved iteratively. Therefore, strictly speaking, our al-
gorithm is an expectation-conditional maximization (ECM)
algorithm (Meng and Rubin, 1993), which replaces the M-
step of EM by a sequence of conditional maximization steps,
each of which maximizes the penalized Q-function over Θ but
with some elements of Θ fixed at their previous values. Us-
ing Theorem 3 in Meng and Rubin (1993), our algorithm is
guaranteed to converge to a stationary point.

3.2 Estimating µkj in ALP-GMM

In ALP-GMM, (14) becomes

min
µkj

1

2

n
∑

i=1

K
∑

k=1

p
∑

j=1

τik(xij − µkj)
2
/

σ2
j

+λ

p
∑

j=1

wj ·max
k

(|µ1j |, . . . , |µKj |).

This can be decomposed into p separate minimization
problems

min
µkj

1

2

n
∑

i=1

K
∑

k=1

τik(xij − µkj)
2
/

σ2
j

+λ · wj ·max
k

(|µ1j |, . . . , |µKj |), 1 ≤ j ≤ p. (15)

For each j, (15) can be transformed into a quadratic program-
ming problem:

min
µkj ,Mj

1

2

n
∑

i=1

K
∑

k=1

τik(xij − µkj)
2
/

σ2
j + λ · wj ·Mj , (16)

subject to −Mj ≤ µkj ≤ Mj , k = 1, . . . ,K, (17)

Mj ≥ 0. (18)

Hence most commercially available packages can be used to
solve it.

We have also explored explicit forms for the solutions to
(15), which help us gain more insights into the nature of the
L∞-norm penalty. Let µ0

kj =
∑n

i=1
τikxij/

∑n

i=1
τik, for j =

1, . . . , p and k = 1, . . . ,K, which are the solutions when there
is no penalty (or λ = 0). We can show that µ̂kj , the solution to
the minimization problem (15), can be achieved by shrinking
a weighted average of several µ0

kj .

Theorem 1. For the jth minimization problem (15), if there
exist k1, . . . , kr, such that

|µ̂k1j | = · · · = |µ̂krj | > |µ̂kj |, for k /∈ {k1, . . . , kr}, (19)
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then

µ̂kj

=























µ0
kj

k /∈ {k1, . . . , kr}

sgn
(

µ0
kj

)







r
∑

s=1

τ.ks

r
∑

s=1

τ.ks

∣

∣µ0
ksj

∣

∣−
λwjσ2

j

r
∑

s=1

τ.ks







+

k ∈ {k1, . . . , kr},

(20)

where τ·ks
=

∑n

i=1
τiks

; (·)+ is the positive part of the argument.

Details of the proof are in the Web Appendix 1. From The-
orem 1, we can see when there are r maximums among |µ̂kj |,
only the corresponding µ0

kj will be shrunken by the L∞-norm
penalty, and they are shrunken to the same absolute value.
This value is based on a weighted average of µ0

kj of the corre-
sponding r clusters, and the weights are proportional to τ ·k.
We can also see that if the jth variable is noninformative and
all |µ0

kj | are close to zero, then the L∞-norm penalty tends
to shrink all of them to zero (with an appropriately chosen
λwj).

To implement Theorem 1, we need to decide r, the number
of maximums among µ̂kj , and the set {k1, . . . , kr}, which in-
dicates which r µ0

kj should be shrunken. When K is not very
large, say K ≤ 10, we can use an exhaustive search to find
r and {k1, . . . , kr}, that is, for each 1 ≤ r ≤ K, we search
over all possible sets {k1, . . . , kr}. For each possible set, we
estimate µ̂kj using (20), then check whether the estimate sat-
isfies the assumption (19). If the assumption is satisfied, we
compute the corresponding value for the objective function
(15). Finally, we choose µ̂kj that gives the smallest value for
the objective function. When K is large, we will resort to the
quadratic programming (16)–(18).

3.3 Estimating µkj in AHP-GMM

In AHP-GMM, (14) becomes

min
γj ,θkj

1

2

n
∑

i=1

K
∑

k=1

p
∑

j=1

τik(xij − γjθkj)
2/σ2

j

+λγ

p
∑

j=1

wγ
j γj + λθ

K
∑

k=1

p
∑

j=1

wθ
kj |θkj | (21)

subject to γj ≥ 0, j = 1, . . . , p. (22)

We can use an iterative approach to estimate γj and θkj ,
that is, we first fix θkj and estimate γj , then we fix γj and
estimate θkj , and we iterate between these two steps until
the solution converges. Because at each step, the value of the
objective function (21) decreases, the solution is guaranteed
to converge. We have the following theorem that helps us solve
for γj and θkj at each step.

Theorem 2. Let µ0
kj =

∑n

i=1
τikxij/

∑n

i=1
τik and τ·k =

∑n

i=1
τik.

� When θkj , k = 1, . . . ,K and j = 1, . . . , p, are fixed,

γ̂j = I(∃k,θkj �=0)







K
∑

k=1

ξk

K
∑

k=1

ξk

µ0
kj

θkj

− λγw
γ
j

σ2
j

K
∑

k=1

ξk







+

,

(23)

where ξk = τ ·kθ
2
kj .

� When γj , j = 1, . . . , p, are fixed,

θ̂kj = I(γj>0) · sgn
(

µ0
kj

)

( |µ0
kj |
γj

−
λθw

θ
kj

γ2
j

σ2
j

τ·k

)

+

. (24)

Equations (23) and (24) show that both γ̂j and θ̂kj are
soft-thresholding estimates. Details of the proof are in the
Web Appendix 2. Here we give some intuitive explanation.

We first look at γ̂j (23). If all θkj are zero, it is natural to
estimate γj also to be zero because of the penalty on γj . If
not all θkj are 0, say, θk1j , . . . , θkrj are not zero, then from our
reparameterization, we have γj = µksj/θksj , 1 ≤ s ≤ r. Plug-
ging in µ0

ksj
for µksj

, we obtain r estimates for γj : γ̃j =

µ0
ksj/θksj , 1 ≤ s ≤ r. A natural estimate for γj is then a

weighted average of the γ̃j , and equation (23) provides such
a (shrunken) average, with weights proportional to ξk.

Now consider θ̂kj (24). If γ = 0, it is natural to estimate all
θkj to be also zero because of the penalty on θkj . When γj >
0, we have θkj = µkj/γj . Again, plugging in µ0

kj for µkj , we
obtain γ̃ = µ0

kj/γj . Equation (24) shrinks γ̃ and the amount of
shrinkage is inversely proportional to γ2

j . So when γj is large,
which indicates the jth variable is informative, the amount of
shrinkage is small, whereas when γj is small, which indicates
the jth variable is less informative, the amount of shrinkage
is large.

4. Simulation Study

In this section, we use simulation data to demonstrate our
methods ALP-GMM and AHP-GMM, and compare the re-
sults with those of the L1-GMM (Pan and Shen, 2006), COSA
(Friedman and Meulman, 2004), and MBSC (Hoff, 2006).

We first mimicked the simulation in Pan and Shen (2006).
There were a total of p = 1000 variables with the first 150 in-
formative, whereas the other 850 noninformative in forming
two clusters. Specifically, the first 150 variables were indepen-
dent and identically distributed (i.i.d.). N(0, 1) for the first
cluster and i.i.d. N(1.5, 1) for the second cluster, whereas the
remaining 850 variables were all i.i.d. N(0, 1) for both clusters.

We generated n= 100 observations, with 85 in the first clus-
ter and 15 in the second one. We denote this setting as “85-
15.” We computed the weights wj in (6), wγ

j and wθ
kj in (9)

using the unpenalized estimates µ0
kj =

∑n

i=1
τikxij/

∑n

i=1
τik.

Specifically

M 0
j = max

k

(∣

∣µ0
1j

∣

∣, . . . ,
∣

∣µ0
Kj

∣

∣

)

,

wj = 1/M 0
j ,

wγ
j = 1/M 0

j ,

wθ
kj = 1/

∣

∣µ0
kj

∣

∣.
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Table 1

Simulation results for the “85-15” example. “K = 2” is the
number of times (out of 50) that 2 was identified as the

number of clusters. “Error rate” is the average proportion of
wrongly clustered data points. “Info” is the average number of
selected informative variables (out of 150). “Noninfo” is the
average number of noninformative variables (out of 850) that

were kept. The numbers in the parentheses are the
corresponding standard deviations. “GMM without noise” is to
apply the standard GMM method on the data set with only the
first 150 informative variables, and its “Error rate” can be
considered as a benchmark. “GMM” is the standard GMM

method using all 1000 variables.

Error
Method K = 2 rate Info Noninfo

GMM without 50 0 (0) — —
noise

GMM 0 — — —
L1-GMM 50 0 (0) 149.2 (1.2) 17.9 (6.0)
ALP-GMM 50 0 (0) 148.0 (1.9) 2.1 (1.8)
AHP-GMM 50 0 (0) 148.5 (1.5) 5.7 (2.5)
MBSC 50 0 (0) 148.7 (1.3) 96.2 (16.3)
COSA — 0.02 (0.01) — —

We chose the tuning parameters and the number of clus-
ters using the Bayesian Information Criterion (BIC; Schwarz,
1978):

BIC = −2

n
∑

i=1

log

(

K
∑

k=1

π̂kfk(xi; µ̂k, Σ̂)

)

+ P logn, (25)

where P is the total number of nonzero estimates in µ̂kj , σ̂
2
j ,

and π̂k.
We repeated this 50 times, recorded the number of times

that the true number of clusters was detected, and computed
the average misclustering error rates, and their corresponding
standard deviations. For ALP-GMM, AHP-GMM, L1-GMM,
and MBSC, we also recorded the number of selected informa-
tive variables and the number of noninformative variables that
were kept. The results are summarized in Table 1. Note that
COSA does not explicitly select variables but rather assigns
variables with different importance scores. Figure 2 shows one
typical plot of these importance scores.

As we can see, the three penalized GMM methods always
selected K = 2 as the number of clusters for the 50 repe-
titions. In contrast, the GMM method without any penalty
always selected K = 1, and was not able to discover the “true”
two-cluster data structure. This result is not surprising: Based
on the first 150 variables, there were two clusters, but if based
on the other 850 variables, there was indeed only one cluster;
the first 150 variables were overwhelmed by the other 850 vari-
ables when using all 1,000 variables. We can also see that our
ALP-GMM and AHP-GMM methods performed similarly to
the L1-GMM method in terms of selecting informative vari-
ables, but tended to keep fewer noninformative variables. The
MBSC method also detected the true two-cluster data struc-
ture and had zero misclustering error, but it selected more

0 200 400 600 800 1000

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

Variable index (First 150 are informative)

Im
p

o
rt

a
n

c
e

 s
c
o

re
 f
ro

m
 C

O
S

A

Figure 2. Importance scores from COSA for the “85-15”
example.

noninformative variables than ALP-GMM and AHP-GMM.
For COSA, we forced the number of clusters to be equal to
the truth, that is, two. The misclustering error for COSA was
small; however, the importance scores from COSA (Figure 2)
did not seem to set a clear distinction between the informative
variables and the noninformative variables.

We then considered two three-cluster scenarios. In both sce-
narios, there were a total of p = 402 variables with the first 2
informative and the other 400 noninformative in forming three
clusters. The first 2 variables were i.i.d. N(0, 1) for the first
cluster, i.i.d. N(2.5, 1) for the second cluster, and i.i.d. N(5, 1)
for the third cluster, whereas the remaining 400 variables were
all i.i.d. N(0, 1) for all three clusters. In the first scenario, we
generated 20 observations for each of the first cluster and the
third cluster, and 100 for the second cluster. We denote it
as “20-100-20.” In the second scenario, we generated 50 ob-
servations for each of the first cluster and the third cluster,
and 20 for the second cluster. We denote it as “50-20-50.”
Similar to the previous simulation, we repeated this 50 times,
recorded the number of times that the true number of clus-
ters was detected, and computed the average misclustering
error rates, the average number of selected informative vari-
ables, the average number of noninformative variables that
were kept, and their corresponding standard deviations. The
results are summarized in Table 2. We note that the num-
bers in the table are based on the repetitions where the true
number of clusters was detected. For COSA, we enforced the
number of clusters to be equal to the truth, that is, three.

As we can see, our ALP-GMM and AHP-GMM methods
discovered the three-cluster data structure for almost every
repetition (out of 50), and the clustering error rates were just
slightly higher than that of the GMM method without using
any of the noninformative variables, that is, the “oracle.” The
ALP-GMM method removed all 400 noninformative variables
for every repetition, and the AHP-GMM method removed
all 400 noninformative variables for almost every repetition.
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Table 2

Simulation results for the “20-100-20” example and the “50-20-50” example: the upper part
is for the “20-100-20” example, and the lower part is for the “50-20-50” example.
Descriptions for the columns are the same as those in the caption of Table 1.

Method K = 3 Error rate Info Noninfo

The “20-100-20” example
GMM without noise 49 0.049 (0.020) — —
GMM 0 — — —
L1-GMM 0 — — —
ALP-GMM 48 0.051 (0.021) 2 (0) 0 (0)
AHP-GMM 48 0.051 (0.022) 2 (0) 0.13 (0.44)
MBSC 7 0.35 (0.08) 0.82 (0.85) 34.28 (39.01)
COSA — 0.44 (0.10) — —

The “50-20-50” example
GMM without noise 48 0.045 (0.020) — —
GMM 0 — — —
L1-GMM 6 0.050 (0.021) 2 (0) 2.5 (1.52)
ALP-GMM 48 0.050 (0.021) 2 (0) 0.02 (0.14)
AHP-GMM 48 0.048 (0.020) 2 (0) 0.21 (0.58)
MBSC 6 0.48 (0.21) 0.26 (0.53) 35.60 (46.45)
COSA — 0.54 (0.04) — —

The L1-GMM method failed to detect the true three-cluster
structure in all 50 repetitions for the “20-100-20” example,
and in most of the repetitions for the “50-20-50” example. The
MBSC method failed to detect the true three-cluster structure
in most of the repetitions for both the “20-100-20” example
and the “50-20-50” example.

5. Real Data Analysis

In this section, we apply the ALP-GMM and the AHP-GMM
methods to two gene microarray data sets.

The first data set we considered is the Leukemia Dataset
in Golub et al. (1999). This data set consists of 38 training
data and 34 test data for two types of acute leukemia—acute
myeloid leukemia (AML) and acute lymphoblastic leukemia
(ALL). Each sample is a vector of p = 7129 genes. We ap-
plied the ALP-GMM and the AHP-GMM methods to the
training data, ignoring the class labels. The tuning parame-
ters and the number of clusters were chosen using BIC, and
the chosen model was evaluated on the test data. The results
are summarized in Table 3. As we can see, both the ALP-
GMM and the AHP-GMM selected K = 2 as the number of

Table 3

Results on the real data sets: the upper part is for the
Leukemia Dataset, and the lower part is for the SRBCT

Dataset

Training Testing
Method K Genes error error

The Leukemia Dataset
Golub et al. (1999) — 50 3/38 4/34
ALP-GMM 2 20 2/38 3/34
AHP-GMM 2 25 1/38 2/34

The SRBCT Dataset
Kahn et al. (2001) — 96 0/63 0/20
ALP-GMM 4 44 0/63 0/20
AHP-GMM 4 49 0/63 0/20

clusters, which agrees with the true number of classes. The
ALP-GMM selected 20 genes and had 2 misclustering errors
on the training data; the AHP-GMM selected 25 genes and
had 1 “misclustering error” on the training data. Based on the
genes selected from the training data, the ALP-GMM had 3
misclustering errors on the test data, and the AHP-GMM had
two. The 20 genes selected by ALP-GMM is a subset of the
25 genes selected by AHP-GMM.

The second data set we considered consists of microar-
ray experiments of small round blue cell tumors (SRBCT) of
childhood cancer (Khan et al., 2001). The tumors are clas-
sified as Burkitt lymphoma (BL), Ewing sarcoma (EWS),
neuroblastoma (NB), or rhabdomyosarcoma (RMS). A total
of 63 training samples and 20 test samples were provided.
Each sample consists of expression measurements on p = 2308
genes. We analyzed this data set in the similar way as with
the Leukemia Dataset. The results are summarized in Table 3.
Both the ALP-GMM and the AHP-GMM selected K = 4 as
the number of clusters. The training errors and the test errors
are all zero. The ALP-GMM selected 44 genes, and the AHP-
GMM selected 49 genes. The 44 genes selected by ALP-GMM
and the 49 genes selected by AHP-GMM have 28 overlapping
genes. Due to lack of space, only the heatmap for the 49 genes
selected by AHP-GMM is shown (Figure 3). Clear separation
of the four clusters is evident.

6. Conclusion

In this article, we have proposed two methods, ALP-
GMM and AHP-GMM, for simultaneously clustering high-
dimensional data and selecting informative variables. Our
methods are in the framework of penalized model-based clus-
tering. In particular, we penalize µ̂kj ’s, the differences be-
tween the cluster means and the overall mean for variable
xj . If all µ̂kj ’s, k = 1, . . . ,K, are shrunken to zero, we con-
sider xj as noninformative. Unlike the L1-norm penalization,
the penalty terms that we consider make use of the fact that



Variable Selection for Model-Based High-Dimensional Clustering 447

Figure 3. Heatmap of the 49 genes selected by AHP-GMM from the SRBCT Dataset.

parameters belonging to one variable can be treated as a nat-
ural “group.” We have presented some evidence that the two
new methods tend to remove noninformative variables more
effectively and provide better clustering results than the L1-
norm approach.

In terms of the clustering error rate and variable selection,
the two new methods performed similarly in our simulations.
However, in terms of the computational cost, because ALP-
GMM relies on either a quadratic programming or on an ex-

haustive search, whereas AHP-GMM has closed-form solu-
tions at each step, we have found that AHP-GMM tends to
run faster than ALP-GMM.

7. Supplementary Materials

Web Appendix 1 in Section 3.2 and Web Appendix 2 in Sec-
tion 3.3 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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