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Abstract: We consider the variable selection problem for a class of statistical models

with missing data, including missing covariate and/or response data. We investigate

the smoothly clipped absolute deviation penalty (SCAD) and adaptive LASSO and

propose a unified model selection and estimation procedure for use in the presence

of missing data. We develop a computationally attractive algorithm for simulta-

neously optimizing the penalized likelihood function and estimating the penalty

parameters. Particularly, we propose to use a model selection criterion, called the

ICQ statistic, for selecting the penalty parameters. We show that the variable selec-

tion procedure based on ICQ automatically and consistently selects the important

covariates and leads to efficient estimates with oracle properties. The methodology

is very general and can be applied to numerous situations involving missing data,

from covariates missing at random in arbitrary regression models to nonignorably

missing longitudinal responses and/or covariates. Simulations are given to demon-

strate the methodology and examine the finite sample performance of the variable

selection procedures. Melanoma data from a cancer clinical trial is presented to

illustrate the proposed methodology.
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variable selection.

1. Introduction

Variable selection procedures based on penalized likelihood methods have
received much attention in the recent literature (Bickel and Li (2006)). Some no-
table methods include the Lasso, Smoothly Clipped Absolute Deviation penalty
(SCAD) (Fan and Li (2001)), and Adaptive Lasso (ALASSO) (Zou (2006)),
among many others. These methods have been successfully applied to gener-
alized linear models and robust linear regression (Fan and Li (2001)), and to
semiparametric models including Cox’s proportional hazards model (Fan and
Li (2002, 2004)). Moreover, under an appropriate choice of the penalty pa-
rameter, these variable selection procedures can produce efficient estimates with
oracle properties (Fan and Li (2001)). The methods for selecting the penalty
parameters consist of minimizing the penalty parameter with respect to some
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criterion. Commonly used criteria include generalized cross-validation (GCV)
and the Bayesian Information Criterion (BIC). It has been shown that BIC can
identify the true model consistently, whereas GCV cannot (Wang, Li and Tsai
(2007)). Ideally, one would like to use a criterion that results in appropriate
choices of the penalty parameter so that the penalized likelihood estimates can
possess oracle properties. However, to the best of our knowledge, a general and
easy-to-compute penalty and variable selection procedure is not currently avail-
able for missing data problems.

Missing data are a common problem in various settings, including surveys,
clinical trials, and longitudinal studies. Responses and/or covariates may be
missing, and statistical models for handling the missing data often depend on
the missing data mechanism, such as data not missing at random (NMAR), also
referred to as nonignorable missingness. For example, when there are NMAR
covariates, one must specify both the covariate distribution and the missing data
mechanism in the likelihood function. These additional distributions bring ad-
ditional parameters into the model, that need to be taken into consideration in
model selection. It is common to use some model selection criterion, such as
AIC and BIC, based on the observed data log-likelihood to select a small set of
variables. For instance, one might use AIC (or BIC) to select a small subset
of ‘covariates’ that best predicts the outcome of interest. However, even in the
absence of missing data, model selection criteria, such as AIC, can become in-
feasible for variable selection in linear regression models with a large number of
covariates (Fan and Li (2001, 2002)). More discussion on the drawbacks of best
subset selection can be found in Fan and Li (2001).

Performing variable selection in statistical models for missing data problems
raises several new statistical challenges, underscoring the need for methodological
development. In many missing data problems, the observed data log-likelihood
does not have a closed form and is often computationally intractable because
it requires evaluation of high dimensional integrals which do not have a closed
form. These integrals can be approximated but the accuracy of the approxima-
tion is essentially impossible to assess in many cases. Thus, it can be infeasible
to directly maximize the observed data log-likelihood function, along with the
SCAD or ALASSO penalties, to select important variables and calculate their
estimates. Furthermore, computing the GCV and BIC to select the penalty pa-
rameter also requires computing the intractable likelihood function and running
an optimization algorithm for each penalty parameter, which can be computa-
tionally intensive for missing data problems. Thus, it is also critical to develop
a new penalty selection criterion, that is easy-to-compute, in missing data prob-
lems.
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The aim of this paper is to develop variable selection and penalty selection
procedures, along with the SCAD and ALASSO penalties, for a class of statis-
tical models in missing data problems, including generalized linear models with
missing covariates and/or responses, random effects models, and latent variable
models. We reformulate the penalty parameters in the SCAD and ALASSO as
a hyperparameter in the model, and then we use the EM algorithm to simul-
taneously optimize the penalized likelihood function and estimate the penalty
parameters. In addition, we also develop an alternative method based on opti-
mizing a new criterion, which we call the ICQ criterion, to select penalty param-
eters. The variable selection and penalty selection procedures developed here are
very general and can be applied to numerous situations involving missing data
and/or random effects and latent variables. Under some regularity conditions,
we establish the asymptotic properties (e.g., oracle properties) of the penalized
maximum likelihood estimator and the consistency of the ICQ-based penalty se-
lection procedure.

The rest of the paper is organized as follows. Section 2 gives the general de-
velopment of algorithms for maximizing the penalized likelihood function and se-
lecting penalty parameters in missing data problems; we characterize the asymp-
totic properties of the penalized maximum likelihood (ML) estimator and the ICQ

penalty selection procedure. Section 4 first presents a simulation study involving
missing at random (MAR) covariates in linear models in order to examine the
finite sample performance of the penalized ML estimates using various penalty
parameter selection procedures. In Section 4, a Melanoma dataset is analyzed
with the proposed methodology. We conclude the paper with some discussion in
Section 5.

2. Variable Selection for Regression Models with Missing Data

2.1. Model formulation

For notational simplicity, we focus on data with MAR or NMAR covariates;
however, the methods developed below can be adapted to data with both miss-
ing responses and covariates (see Ibrahim, Lipsitz and Chen (2001)). Suppose
there are n independent observations (x1, z1, y1), . . . , (xn, zn, yn), where yi is the
response variable, zi is a q× 1 vector of partially observed covariates, and xi is a
(p−q)×1 vector of completely observed covariates. Let zm,i and zo,i, respectively,
denote the missing and observed components of zi. We use the q × 1 random
vector ri to indicate the missingness of zi, where the kth component rik = 1 when
zik is observed and rik = 0 when zik is missing. We denote the complete and
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observed data of subject i by Dc,i and Do,i, respectively, and the entire complete
and observed data by Dc and Do, respectively.

When the covariates are NMAR, the complete data likelihood is the product
of the joint distribution of (yi, zi, ri) given xi, denoted by f(yi, zi, ri|xi), which
is typically specified as a product of three conditional distributions as

f(Dc) =
n∏

i=1

f(yi, zi, ri|xi,η) =
n∏

i=1

f(yi|xi, zi, β, τ )f(zi|xi, α)f(ri|yi,xi, zi, ξ),

(2.1)
where η = (β, τ , α, ξ) are the parameters corresponding to response model,
covariate distribution, and missing data mechanism. We use the generic label
f(u1|u2) throughout to denote the conditional distribution of u1 given u2. If the
covariates are MAR, then the missing data mechanism, f(ri|yi,xi, zi, ξ), can be
ignored from (2.1).

As in generalized linear models (see McCullagh and Nelder (1989, Chap.2)),
we assume that the conditional distribution of yi given (xi, zi), denoted by
f(yi|xi, zi, β, τ ), satisfies

E[yi|xi, zi; β, τ ] = µi = g
(
(xT

i , zT
i )β

)
, (2.2)

where τ denotes the additional parameters in f(yi|xi, zi, β, τ ), g(·) is a known
link function, and β = (β1, . . . , βp)T is a p×1 vector of regression coefficients. In
practice, it is common to assume that yi given (xi, zi) belongs to the exponential
family, such as the binomial, normal, Poisson, etc.. (Little and Schluchter (1985),
and Ibrahim and Lipsitz (1996)).

We model the missing-data mechanism for NMAR covariates according to
either a joint log-linear model for f(ri|yi,xi, zi, ξ) or a product of a sequence of
one dimensional conditionals as in Ibrahim, Chen and Lipsitz (1999). Finally, we
assume that the covariate distribution f(zi|xi, α) is also modeled via a sequence
of one-dimensional conditional distributions as in and Ibrahim, Chen and Lipsitz
(1999), and is given by

f(zi|xi, α) = f(ziq|zi(q−1), . . . , zi1,xi, α) × · · · f(zi1|xi, α),

where we assume a specific order of conditioning.

2.2. Penalized likelihood for variable selection

In the variable selection problem, our objective is to identify nonzero com-
ponents of β in (2.2) and simultaneously estimate parameters, while accounting
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for the missing covariate data. We propose to maximize the penalized likelihood
function given by

P (η|λ) =
n∑

i=1

log f(Do,i|η) − n

p∑
j=1

pλj
(|βj |), (2.3)

where λ = (λ1, . . . , λp)T , λj is the penalty parameter corresponding to the j-th
regression coefficient βj , and f(Do,i|η) =

∫
f(yi, zi, ri|xi, η)dzm,i is the observed-

data log-likelihood function of the i-th observation. The penalty function, pλj
(·),

is a nonnegative, nondecreasing, and differentiable function on (0,∞) (Fan and Li
(2001) and Zou (2006)). These properties ensure that the maximization of (2.3)
results in estimates of β which are shrunk to zero if they are small. The corre-
sponding covariates of the estimates that are zero are the insignificant predictors
of the response variable, whereas the estimates that are not zero correspond to
those covariates which are statistically significant predictors. By maximizing
(2.3), one can select significant predictors and estimate parameters simultane-
ously while accounting for the missing data. This approach is in sharp contrast
to stepwise selection procedures and Bayesian procedures (George and McCul-
loch (1993), and Yang, Belin and Boscardin (2005)), that ignore stochastic errors
inherited in the selection phase during estimation of the ‘best’ model (Fan and
Li (2002)).

In (2.3), the parameters τ , α, and ξ are not penalized, so they are not
shrunk to zero even though their actual values may be small. In this sense, vari-
able selection does not occur in the covariate distribution and the missing data
mechanism. However, care must be taken in the specification of these distribu-
tions since certain specifications can lead to identifiability issues for estimating
α, ξ, and thus β.

Because the observed-data log-likelihood function usually involves in-
tractable integration, we use the EM algorithm to compute the penalized maxi-
mum likelihood estimate of η, denoted by η̂λ, for each λ (Dempster, Laird and
Rubin (1977)). At the s-th iteration, given η(s), the E step is to evaluate the
Q−function given by

Qλ(η|η(s)) = E
[
log f(Dc|η)|Do, η

(s)
]
− n

p∑
j=1

pλj
(|βj |)

= Q(η|η(s)) − n

p∑
j=1

pλj
(|βj |)

= Q1(β, τ |η(s)) − n

p∑
j=1

pλj
(|βj |) + Q2(α|η(s)) + Q3(ξ|η(s))

= Q1,λ(β, τ |η(s)) + Q2(α|η(s)) + Q3(ξ|η(s)),
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where

Q3(ξ|η(s)) =
∫ n∑

i=1

log
[
f(ri|yi,xi, zi, ξ)

]
f(zm,i|xi, zo,i, yi, ri, η

(s))dzm,i,

Q2(α|η(s)) =
∫ n∑

i=1

log
[
f(zi|xi, α)

]
f(zm,i|xi, zo,i, yi, ri, η

(s))dzm,i,

Q1,λ(β, τ |η(s)) =
∫ n∑

i=1

log
[
f(yi|xi, zi, β, τ )

]
f(zm,i|xi, zo,i, yi, ri,η

(s))dzm,i

−n

p∑
j=1

pλj
(|βj |).

The M step of the algorithm involves maximizing Q1,λ(β, τ |η(s)), Q2(α|η(s)),
and Q3(ξ|η(s)), independently. Maximizing Qλ(η|η(s)) with respect to (α, τ , ξ)
can be done using standard maximization algorithms, such as Newton-Raphson
(Little and Schluchter (1985), and Ibrahim and Lipsitz (1996)). However, it is
difficult to maximize Q1,λ(β, τ (s)|η(s)) with respect to β, because it is nondiffer-
entiable and nonconcave (Zou and Li (2008)).

To maximize Q1,λ(β, τ (s)|η(s)) with respect to β, we approximate Q1(β, τ (s)|
η(s)) using a second order Taylor’s series expansion centered at β(s). Using this
approximation, Q1,λ(β, τ (s)|η(s)) resembles a penalized weighted least squares
regression, so algorithms used for maximizing penalized least squares can be
applied. Such algorithms include the local quadratic approximation algorithm
(LQA) (Fan and Li (2001)), the best convex minorization-maximization algo-
rithm (MM) (Hunter and Li (2005)), and the local linear approximation algo-
rithm (LLA) (Zou and Li (2008)). We use the local linear approximation method
to maximize Q1,λ(β, τ (s)|η(s)), because it has been shown to reduce the computa-
tional cost of maximizing penalized likelihoods (Zou and Li (2008)). Even though
an approximation is used for Q1,λ(β, τ (s)|η(s)), the maximizer of this function, de-
noted β(s+1), will behave such that Q1,λ(β(s+1), τ (s)|η(s)) ≥ Q1,λ(β(s), τ (s)|η(s)).
Therefore, using the ECM algorithm (Meng and Rubin (1993)), we can obtain a
η(s+1) such that Qλ(η(s+1)|η(s)) ≥ Qλ(η(s)|η(s)), rather than directly maximiz-
ing Qλ(η|η(s)). We iterate this process until it converges to a value and denote
the value at convergence by η̂λ. Thus, η̂λ maximizes the penalized observed data
log-likelihood.

2.3. Penalty selection procedure

To ensure that η̂λ has oracle properties, the penalty parameter λ has to be
appropriately selected. Two commonly used criteria for selecting the penalty
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parameter include the GCV and BIC criteria. These criteria cannot be easily
computed in the presence of missing data because they are often functions of
the missing data, and thus involve intractable integrals. Moreover, it has been
shown that even for the linear model, the GCV can lead to significant overfitting
(Wang, Li and Tsai (2007)).

We propose two methods to select the penalty parameter: an ICQ criterion
and a random effects penalty estimation method. The ICQ criterion selects the
optimal λ by minimizing

ICQ(λ) = −2Q(η̂λ|η̂0) + ĉn(η̂λ),

where η̂0 = argmax
η

∑n
i=1 log f(Do,i|η) is the unpenalized maximum likelihood

estimate under the full model, and ĉn(η) is a function of the data and the fitted
model. For instance, if ĉn equals twice the total number of parameters, then
we obtain an AIC-type criterion; alternatively, we obtain a BIC-type criterion
when ĉn(η) = dim(η) × log n. Moreover, in the absence of missing data, we
just obtain the usual AIC or BIC criteria. In practice, it is easy to compute
ICQ for different λ because we only need samples from f(zm,i|yi,xi, zo,i, η̂0) to
approximate Q(η̂λ|η̂0) at each λ.

The random effects penalty estimator is calculated under the assumption that
the regression coefficients β are distributed as random effects in a hierarchical
model. The parameter λ can be regarded as a parameter in the distribution of
β, denoted by f(β|λ, n). Then, λ can be estimated by maximizing the marginal
likelihood given by∫ n∏

i=1

∫
f(yi, zi, ri|xi, η)f(β|λ, n)dzm,idβ =

n∏
i=1

∫
f(Do,i|η)f(β|λ, n)dβ, (2.4)

where

f(β|λ, n) =
p∏

j=1

exp
−npλj

(|βj |)
[C(λj , n)]p

, (2.5)

in which C(λj , n) is the normalizing constant of exp(−npλj
(|βj |)). The resulting

estimate of λ, denoted by λ̂RE , from the maximization of (2.4) is the random
effects penalty estimator. The EM algorithm can be used to calculate λ̂RE by
treating the regression coefficients as missing data in the marginal likelihood.

We consider the SCAD and ALASSO penalties as follows. For ALASSO,

pλj
(|βj |) = λj |βj |

for j = 1, . . . , p. Typical values chosen are λj = λ0|β̂j |−γ , where β̂j is the
unpenalized ML estimate and γ > 0 is a pre-specified positive scalar. In contrast,
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the SCAD penalty (Fan and Li (2001)) is a nonconcave function defined by
pλ(0) = 0 and for |β| > 0,

p′λ(|β|) = λ1(|β| ≤ λ) +
(aλ − |β|)+

a − 1
1(|β| > λ),

where 1(·) denotes the indicator function, t+ denotes the positive part of t, and
a = 3.7. Because the function exp(−npλ(|β|)) for the SCAD penalty is not
proper, we use a truncated version of pλ(|β|) to define the density f(β|λ, n). For
SCAD, we have

f(β|λ, n)C(λ, n) =



exp(−nλ|β|), |β| < λ,

exp
(

n[|β|2 − 2aλ|β| + λ2]
[2(a − 1)]

)
, λ ≤ |β| ≤ aλ,

exp
(
−n(a + 1)λ2

2

)
, aλ ≤ |β| ≤ |β̄|,

0, |β| > |β̄|,

where β̄ is arbitrarily large. For the ALASSO penalty, this truncation is not
necessary because exp(−npλ(|β|)) is proper.

A closed form expression of λ̂RE is unavailable for both the ALASSO and
SCAD penalties. But for the ALASSO penalty, a closed form expression of the
conditional maximizer of the log-likelihood function with respect to λ is available.
This allows a straightforward implementation of the ECM algorithm to estimate
λ. For the SCAD penalty, we use the Newton Raphson algorithm along with the
ECM algorithm to estimate λ̂RE .

3. Theoretical Results

In this section, we establish the asymptotic theory of penalized likelihood
estimators and the consistency of the penalty selection procedure based on ICQ.
Suppose that β = (βT

(1), β
T
(2))

T , where β(1) and β(2) are, respectively, p1 × 1 and
p2 × 1 subvectors. Let β∗ = (β∗T

(1), β
∗T
(2))

T denote the true value of β. Without
loss of generality, we assume that β∗

(2) = 0 and each of the components of β(1) is
not zero.

Let S = {j1, . . . , jd} be a candidate model containing the j1th, . . ., jdth
covariates. Thus, SF = {1, . . . , p} and ST = {1, . . . , p1} denote the full and
true covariate models, respectively. If S misses at least one important covariate,
S 6⊃ ST , then S is referred to as an underfitted model; however, if S 6⊃ ST , then
S is an overfitted model. Assume that we only consider the selected covariates
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in S. The unpenalized and penalized ML estimates of η, denoted by η̂S and η̂λ,
respectively, are

η̂S = argmax
η:βj 6=0, ∀j∈S

n∑
i=1

log f(D0,i|η) and η̂λ = argmax
η

P (η|λ),

where η̂SF
= η̂0.

Theorem 1. Under assumptions (C1)−(C7) stated in the online supplement, we
have

(i) η̂λ−η∗ = Op(n−1/2) as n → ∞, where η̂λ =
(
β̂

T

(1)λ, β̂
T

(2)λ, τ̂T
λ , α̂T

λ , ξ̂
T

λ

)T
and

η∗ is the true value of η.

(ii) Sparsity: P (β̂(2)λ = 0) → 1.

(iii)Asymptotic normality: (β̂
T

(1)λ, τ̂T
λ , α̂T

λ , ξ̂
T

λ )T is asymptotically normal with
mean and covariance defined in the online supplement.

The proof of Theorem 1 is given in the online supplement at http://www.
stat.sinica.edu.tw/statistica. It states that, by choosing the penalty λ,
there exists a root-n estimator of η, η̂λ, and that this estimator must posses
the sparsity property, i.e., β̂(2)λ = 0. Theorem 1(iii) has η̂λ asymptotically nor-
mal. An expression for the asymptotic covariance matrix of η̂λ can be obtained
using Louis’s method (Louis (1983)). These estimates are given in the online
supplement.

We investigate whether the ICQ(λ) criterion can consistently select the cor-
rect model. For each λ ∈ Rp+, β̂λ naturally defines a candidate model Sλ = {j :
β̂λ,j 6= 0}. Generally, Sλ can be either underfitted, overfitted, or true. Therefore,
Rp+ can be partitioned into three mutually exclusive regions Rp+

u = {λ ∈ Rp+ :
Sλ 6⊃ ST }, Rp+

t = {λ ∈ Rp+ : Sλ = ST }, and Rp+
o = {λ ∈ Rp+ : Sλ ⊃ ST ,Sλ 6=

ST }. Furthermore, we can always choose a reference penalty parameter sequence
{λn ∈ Rp+}∞n=1, that satisfies the conditions necessary for Theorem 1 to hold.
Thus, Sλn = ST with probability converging to one. To select a better model,
we first calculate

dICQ(λ2,λ1)=ICQ(λ2)−ICQ(λ1)=2Q(η̂λ1
|η̂0)−ĉn(η̂λ1

)−2Q(η̂λ2
|η̂0)+ĉn(η̂λ2

).

We assume Sλ2 ⊃ Sλ1 and choose the model resulting from using the penalty
value λ1 (i.e., Sλ1), if dICQ(λ2, λ1) ≥ 0, otherwise we choose model Sλ2 .

Define δQ(λ1, λ2) = E[Q(η∗
Sλ1

|η∗)] − E[Q(η∗
Sλ2

|η∗)], and δc(λ2, λ1) =
ĉn(η̂λ2

) − ĉn(η̂λ1
), in which η∗

S is defined in the online supplement.

Theorem 2. Under assumptions (C1)−(C7) in the Appendix of the online sup-
plement, we have following results.

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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(a) If for all Sλ 6⊃ ST , lim inf
n

δQ(λ, 0)/n > 0 and δc(λ, 0) = op(n), then dICQ(λ,

0) > 0 in probability for all Sλ 6⊃ ST .

(b) If E[Q(η∗
Sλ1

|η̂0)]−E[Q(η∗
Sλ2

|η̂0)] = Op(n1/2) and Q(η̂λt
|η̂0)−E[Q(η∗

Sλt
|η̂0)]

= Op(n1/2) for t = 1, 2, then dICQ(λ2, λ1) > 0 in probability as n−1/2δc(λ2,
λ1)

p→ ∞.

(c) If Q(η̂λ1
|η̂0) − Q(η̂λ2

|η̂0) = Op(1), then dICQ(λ2, λ1) > 0 in probability as
δc(λ2,λ1)

p→ ∞.

The proof of Theorem 2 is given in the online supplement. Theorem 2
has some important implications. Theorem 2a shows that ICQ(λ) chooses all
significant covariates with probability 1. Because S0 ⊂ Rp

t ∪ Rp
o, the optimal

model selected when minimizing ICQ(λ) will not select a λ with Sλ 6⊃ ST be-
cause dICQ(λ, 0) > 0 in probability. Therefore, ICQ selects all significant covari-
ates with probability tending to 1. Generally, the most commonly used ĉn(η),
such as 2dim(η), dim(η) log(n), and K log log(n) (K > 0), satisfy the condition
δc(λ, 0) = op(n). The condition lim inf

n
n−1δQ(λ, 0) > 0 ensures that ICQ(λ)

chooses a model with large E[Q(η∗
S |η∗)]. This condition is analogous to Condi-

tion 2 in Wang, Li and Tsai (2007), which elucidates the effect of models that
underfit. Because n−1E[Q(η∗|η∗)] − n−1E[Q(η∗

S |η∗)] can be written as

n−1
n∑

i=1

log f(Do,i|η∗) − n−1
n∑

i=1

log f(Do,i|η∗
S)

+n−1E
[
H(η∗|η∗)

]
− n−1E

[
H(η∗

S |η∗)
]
,

where

H(η|η1) =
∫ n∑

i=1

log
[
f(zm,i|xi, zo,i, yi, ri, η)

]
f(zm,i|xi, zo,i, yi, ri,η1)dzm,i,

it then follows from Jensen’s inequality that n−1δQ(λ, 0) ≥ 0. Thus, if a model
S misses a significant covariate, it is reasonable to assume lim infn n−1δQ(λ, 0) is
greater than zero.

If λ1 and λ2 have the same average n−1E[Q(η∗
Sλ
|η∗)], that is, lim infn n−1

δQ(λ2,λ1) = 0, then Theorem 2 (b) and (c) indicate that ICQ(λ) picks out
the smaller model Sλ1 when δc(λ2, λ1) increases to ∞ at a certain rate (e.g.,
log(n)). For example, for the BIC-type criterion, δc(λ2, λ1) = [dim(η̂Sλ2

) −
dim(η̂Sλ1

)] log(n) ≥ log(n), since we assume Sλ2 ⊃ Sλ1 . However, the AIC-type
criterion ĉn(η) = 2×dim(η) does not satisfy this condition. Thus, similar to the
standard AIC, ICQ with ĉn(η) = 2 × dim(η) tends to overfit.
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4. Numerical Studies

4.1. Example 1: simulation study

We demonstrate the performance of the penalized ML estimates using our
proposed penalty estimators via simulations and compare them to the unpenal-
ized ML estimate. Our objective for these simulations was to (1) compare the
performance of the random effects and the ICQ penalty estimators, (2) compare
the performance of the SCAD and ALASSO penalty functions, and (3) deter-
mine how the comparisons in (1) and (2) differ in the complete data and missing
covariate settings.

To do this, we simulated datasets consisting of n observations from the
model y = uT β∗ + σε where β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)T and the components
of u = (u1, . . . , u8), and ε are standard normal. The correlation between ui and
uj is ρ|i−j| with ρ = 0.5. This model was used in Fan and Li (2001). We consid-
ered three settings, (n = 40, σ = 3), (n = 40, σ = 1), and (n = 60, σ = 1). For
each of them, two sets of 100 datasets were simulated, one with complete data and
another with missing covariate data. For the datasets with missing data, the miss-
ing covariates zi = (u1i, u2i) were taken to be MAR and xi = (u3i, . . . , u8i) were
completely observed. The covariate distribution is given by, [zi|xi] ∼ N2(µi,Σ)
for i = 1, . . . , n where µi = (µ1i, µ2i), µsi = αs0 +

∑5
j=1 αsjxis for s = 1, 2

and Σ is an unstructured 2 × 2 covariance matrix. The missing data mech-
anism used was f(ri1, ri2|yi,xi,φ) = f(ri1|ri2, yi,xi, φ1)f(ri2|yi,xi, φ2), where
f(ri1|yi, xi, φ1) and f(ri2|ri1, yi, xi, φ2) are logistic regressions where the logistic
regression parameters φ1 and φ2 were selected such that 65% of the observations
had complete data.

For each simulated dataset, the penalized ML estimate using the SCAD
and ALASSO penalties was computed using the random effects and ICQ penalty
estimates. These estimates are denoted as SCAD-RE, SCAD-ICQ, ALASSO-RE,
and ALASSO-ICQ, respectively. For the ICQ estimate, the BIC-type criterion,
cn(η) = dim(η) log n, was used. In the analysis of the datasets with no missing
covariates, the ICQ criterion is equivalent to BIC. For the random effects penalty
estimator, 2,000 Monte Carlo iterations were used within each iteration of EM.
Since the EM algorithm can be sensitive to starting values, the algorithm was
initiated from multiple starting values to ensure the overall global maximum was
achieved by the algorithm. For the ALASSO penalty, we set λj = λ0|β̂j0|−1,
where β̂j0 is the unpenalized ML estimate and for the SCAD penalty we let
λj = λ0, for all j, where in both cases λ0 was estimated using the penalty
estimation methods.
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In addition to the penalized estimates, the unpenalized ML estimate of the
model selected by the simultaneously impute and select (SIAS) method of Yang,
Belin and Boscardin (2005) was computed. SIAS implements the stochastic
search variable selection (SSVS) method of George and McCulloch (1993) in the
presence of missing covariates. SIAS is a fully Bayesian method which does not
require model enumeration or computation of marginal likelihoods, so it maybe
easier to implement than other fully Bayesian methods. In the analysis of the
datasets with no missing covariates, SIAS is equivalent to SSVS. Details of the
implementation of SIAS are given in the online supplement.

For each estimate β̂λ, the model error, ME(β̂λ) = (β̂λ−β∗)E(uuT )(β̂λ−β∗),
was computed and the ratio of the model error of the penalized ML estimate to
that of the unpenalized ML estimate, ME(β̂λ)/ME(β̂0), was computed. The
median of these ratios over the 100 simulated datasets, denoted as MRME, is
reported. The MRME of the true model, denoted as ‘oracle’, is also reported. In
addition, the average number of zero coefficients correctly estimated to be zero
and the average number of zero coefficients incorrectly estimated to be zero are
reported. These are reported in the columns ‘Correct’ and ‘Incorrect’ respec-
tively.

The results indicate that when the noise level is high (σ = 3), the ALASSO-
RE and SCAD-ICQ estimates have smallest model error while the SCAD-RE has
the highest. When the noise level is reduced (σ = 1), or the sample size is large
(n = 60), the SCAD-RE estimate has the smallest model error. For the estimates,
MRME values greater than one indicate that the estimate performs worse than
the unpenalized ML estimate, values near one indicate it performs as good as the
unpenalized ML estimate, while values near the ‘oracle’ MRME value indicate
optimal performance. The SCAD-RE performed poorly when the noise level was
high, however, it is optimal when either the noise level is small or the sample
size is large. The ALASSO-RE estimate had substantial overfit since ‘Correct’
averaged significantly less than 5 indicating a tendency to not set insignificant
coefficients to zero. The SIAS estimate performed as well as the unpenalized ML
estimate when the noise level was large and covariates were missing, however it
outperformed the ML estimate when either the noise level was high, the sample
size was large, or all the covariates were fully observed. ‘Correct’ averages and
‘Incorrect’ averages that are both high indicate that the estimate is more likely
to set coefficients to zero rather than not. This was the case with the SIAS and
SCAD-RE estimates when the noise level was large. Comparing the analysis of
no missing covariate data to the analysis with missing covariate data shows that
for all the estimates, the estimation error increased, overfitting increased, and
underfitting increased.
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Table 4.1. Simulation results of linear regression model with no missing data
and covariates missing at random comparing SCAD and ALASSO penalty
functions with random effects and ICQ penalty estimates.

No missing (MAR)

# of 0 coefficients

Model Method MRME Correct Incorrect

n = 40, σ = 3 SCAD-RE 1.111 (1.203) 4.91 (4.90) 0.97 (0.98)

SCAD-ICQ 0.625 (0.745) 4.53 (4.48) 0.33 (0.45)

ALASSO-RE 0.632 (0.690) 3.23 (3.42) 0.09 (0.13)

ALASSO-ICQ 0.681 (0.771) 4.31 (4.23) 0.28 (0.35)

SIAS 0.765 (1.004) 4.81 (4.87) 0.55 (0.77)

Oracle 0.256 (0.305) 5.00 (5.00) 0.00 (0.00)

n = 40, σ = 1 SCAD-RE 0.285 (0.316) 4.34 (4.49) 0.01 (0.01)

SCAD-ICQ 0.333 (0.549) 4.64 (4.15) 0.00 (0.00)

ALASSO-RE 0.472 (0.543) 3.45 (3.23) 0.00 (0.00)

ALASSO-ICQ 0.404 (0.572) 4.58 (4.10) 0.00 (0.00)

SIAS 0.321 (0.360) 4.82 (4.79) 0.00 (0.00)

Oracle 0.273 (0.258) 5.00 (5.00) 0.00 (0.00)

n = 60, σ = 1 SCAD-RE 0.322 (0.351) 4.54 (4.62) 0.00 (0.00)

SCAD-ICQ 0.375 (0.386) 4.86 (4.73) 0.00 (0.00)

ALASSO-RE 0.517 (0.495) 3.47 (3.53) 0.00 (0.00)

ALASSO-ICQ 0.425 (0.447) 4.83 (4.70) 0.00 (0.00)

SIAS 0.461 (0.387) 4.70 (4.82) 0.00 (0.00)

Oracle 0.310 (0.356) 5.00 (5.00) 0.00 (0.00)

4.3. Example 2: melanoma data

To further illustrate our proposed methods, we consider data on n = 286
patients from a phase III two arm clinical trial conducted by the Eastern Co-
operative Oncology Group. The results from this study have been reported in
Kirkwood, Strawderman, Ernstoff, Smith, Borden and Blum (1996). Patients in
this trial were randomized to one of two treatment arms: high dose interferon
or observation. Interferon is suggested to have a significant effect on disease-free
survival. Here, disease free survival is defined as the time from randomization
until progression of tumor or death, whichever comes first. In this analysis, sev-
eral prognostic factors were identified as important predictors of survival. Among
these factors are, z1 = Breslow thickness (in mm), z2 = size of primary (in cm2),
z3 = type of primary tumor (two levels: superficial spreading, other), x1 = age
(in years), x2 = pathological group (two levels: previous recurrence and other)
and x3 = treatment (two levels: high dose interferon and observation). From
these six covariates, three had missing data while the rest of the covariates and
the response variable were completely observed. The three covariates with miss-
ing data were Breslow thickness, size, and type. Logarithms of Breslow thickness
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and size were used in this analysis to achieve approximate normality of these
covariates in the covariate distribution. The dataset had a total missing data
fraction of 28.7%. The outcome variable, yi, was taken here to be binary, and
was assigned a 1 if the patient had an overall survival greater than or equal to
0.55 years, and 0 otherwise. There were no censored cases that had an overall
survival below 0.55 years.

To analyze these data, a logistic regression model was used for yi|xi, β with
E(yi|xi, β) = exp(γi)/(1 + exp(γi)), where γi = (1, zi,xi)T β, zi = (zi1, zi2, zi3)T ,
xi = (xi1, xi2, xi3)T , and β = (β0, β1, . . . , β6). For the missing covariates, we
assume they are MAR and have the covariate distribution

f(zi|xi; α) = f(zi3|zi1, zi2,xi; α3)f(zi1, zi2|xi;α1,α2)

for i = 1, . . . , n. Since xi is completely observed, it is conditioned on through-
out. We take (zi1, zi2|xi) ∼ N2(µi,Σ), where µi = (µi1, µi2) and µis = αs0 +∑3

j=1 αsjxij for s = 1, 2, i = 1, . . . , n, and Σ is an unstructured 2× 2 covariance
matrix. A logistic regression model was used for xi3 conditional on (zi1, zi2,xi).
The same estimates as those computed in the simulations were computed. The
statistical model used for the SIAS method is given in the online supplement.

The results are presented in Table 4.2. The predictors identified as signifi-
cant were different for the each of the estimation methods. In the missing data
analysis, the ALASSO and SIAS estimates identified treatment as a significant
predictor while the SCAD estimates did not. The ALASSO-ICQ estimate also
identified treatment and pathology as significant while the ALASSO-RE esti-
mate identified treatment, pathology and age as significant. According to the
unpenalized ML analysis, treatment and pathology are the only predictors which
are possibly significant since their p-values are near or below the cutoff value of
0.05 for significance. However, neither of these predictors was strongly signifi-
cant. Therefore, a possible explanation for the differences in the results of the
various estimation methods is that these methods may not be able to discrimi-
nate between models that include or exclude treatment and pathology very well.
The results of the unpenalized maximum likelihood analysis coincided with the
results of the ALASSO-ICQ and SIAS estimates. As with the simulations, the
ALASSO-RE estimate tended to overfit since it identified age as significant even
though its p-value was greater than 0.05, and the SCAD-RE estimate tended to
set coefficients to 0 since it did not identify any predictors as significant. The
estimate of the regression coefficient for treatment decreased from 1.117 in the
complete case analysis to 0.839 in the missing data analysis. This change caused
the SCAD-ICQ estimate to identify treatment as significant in the complete case
analysis but not significant for the missing data analysis.
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Table 4.2. Estimates of Melanoma Data

Missing Data Estimate

SCAD ALASSO SIAS MLE (p value)

Variable RE ICQ RE ICQ

Intercept 2.132 2.132 2.421 2.280 1.774 2.638 (<0.001)

Breslow 0.000 0.000 0.000 0.000 0.000 -0.217 (0.332)

Size 0.000 0.000 0.000 0.000 0.000 -0.052 (0.798)

Type 0.000 0.000 0.000 0.000 0.000 -0.161 (0.730)

Age 0.000 0.000 -0.267 0.000 0.000 -0.325 (0.146)

Pathology 0.000 0.000 -0.845 -0.454 0.000 -1.061 (0.039)

Treatment 0.000 0.000 0.737 0.322 0.827 0.839 (0.043)

Complete Case Estimate

SCAD ALASSO SIAS MLE (p value)

Variable RE ICQ RE ICQ

Intercept 2.085 1.609 2.043 1.820 1.609 2.210 (<0.001)

Breslow 0.000 0.000 -0.081 0.000 0.000 -0.222 (0.400)

Size 0.000 0.000 0.000 0.000 0.000 -0.089 (0.650)

Type 0.000 0.000 0.000 0.000 0.000 0.235 (0.650)

Age 0.000 0.000 -0.113 0.000 0.000 -0.232 (0.356)

Pathology 0.000 0.000 -0.578 0.000 0.000 -0.945 (0.086)

Treatment 0.000 1.173 1.003 0.572 1.173 1.117 (0.028)

5. Discussion

We have proposed a general method to simultaneously perform model se-
lection and estimation in the presence of missing data. We have showed that
under regularity conditions and appropriate rates of the penalty parameter, the
penalized estimate possesses oracle properties. We have introduced two compu-
tationally attractive methods for estimating the penalty parameters. We have
showed that under an appropriate choice of ĉn(η), the ICQ penalty estimate
chooses all the significant predictors in probability. Simulation results show that
the SCAD penalty function with the random effects penalty estimate performs
well when the noise level is small, whereas it performs poorly when the noise level
is large. Overall, the SCAD performed better when it was used with the random
effects penalty estimator whereas the ALASSO performed better when it was
used with the ICQ criterion. The ALASSO penalty function with the random
effects penalty estimate showed significant overfit in the finite sample simulations
and this overfit was also present in the Melanoma data analyses. The results of
the Melanoma data analysis indicate that when predictors are not strongly sig-
nificant, the results from penalized likelihood maximization may differ depending
on the penalty functions and penalty selection methods which are used.

One of the disadvantages of penalized likelihood methods is that they do
not provide a measure of model uncertainty, i.e., the probability of selecting each
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model in the model space. Other methods, such as Bayesian model averaging
(Hoeting, Madigan, Raftery and Volinsky (1999)), SIAS, or Bayesian methods in
general provide estimates of posterior model probabilities. However, implemen-
tation of fully Bayesian methods can be difficult in many cases, since it requires
specifying priors for all of the parameters in the response model, covariate dis-
tribution (and missing data mechanism under NMAR) which encompass all the
models in the model space, as well as calculating marginal likelihoods and enu-
merating all the models in the model space. Alternatively, the SIAS method is
easier to implement but, unlike penalized ML maximization, it does not give an
estimate of the parameters of the ‘best’ model. Moreover, the results of the linear
regression simulations indicated that the SCAD-RE estimate outperforms SIAS
when either the noise level is small or the sample size is large.

Many aspects of this work warrant further research and investigation. One
major issue is to carry out variable selection using ICQ under different modeling
situations such as generalized linear mixed models with nonignorable missing
response and/or covariate data, semiparametric survival models with missing
covariate data, such as the Cox model as well as frailty models, measurement error
models, and partially linear models with missing covariates and/or responses.
Throughout this paper, we made an implicit assumption that the response model
does not depend on whether a covariate is observed or missing. That is, we
have assumed a single response model for the covariate where it is missing or
not. If we have a different response model for the observed and missing parts
of the covariate, then the methods developed in this paper would not be able
detect whether the missing part of a covariate is significant. In this scenario
other statistical methods, such as propensity score methods, may be useful for
handling this case (Kang and Schafer (2007)), but applying these methods to
variable selection problems requires further developments both computationally
and theoretically. We will formally investigate these issues in our future work.
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