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Summary

We propose a double-penalized likelihood approach for simultaneous model selection and estimation
in semiparametric mixed models for longitudinal data. Two types of penalties are jointly imposed
on the ordinary log-likelihood: the roughness penalty on the nonparametric baseline function and a
nonconcave shrinkage penalty on linear coefficients to achieve model sparsity. Compared to existing
estimation equation based approaches, our procedure provides valid inference for data with missing
at random, and will be more efficient if the specified model is correct. Another advantage of the new
procedure is its easy computation for both regression components and variance parameters. We show
that the double penalized problem can be conveniently reformulated into a linear mixed model
framework, so that existing software can be directly used to implement our method. For the purpose
of model inference, we derive both frequentist and Bayesian variance estimation for estimated
parametric and nonparametric components. Simulation is used to evaluate and compare the
performance of our method to the existing ones. We then apply the new method to a real data set
from a lactation study.
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1. Introduction

Semiparametric mixed models (SPMMs; Diggle et al., 2002; Zhang et al., 1998) are useful
extension to linear mixed models (Lard and Ware, 1982; Verbeke and Molenberghs, 2000;
Diggle et al., 2002) and provide a flexible framework for analysis of longitudinal data. Many
authors have studied semiparametric models for longitudinal data in various setup (e.g., Wang,
1998; He et al., 2002; Diggle et al., 2002; Ruppert et al., 2003; Fan and Li, 2004; Chen and
Jin, 2006). An SPMM uses parametric fixed effects to represent covariate effects and a smooth
function to model the time effect, modeling the within-subject correlation using random effects
and stochastic processes. Zhang et al. (1998) adopted a penalized likelihood approach based
on smoothing splines, which is computationally efficient and can be conveniently implemented
in standard software.
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In longitudinal studies, often times there are a large number of covariates, but usually not all
of them are predictive to the response. For example, in a longitudinal lactation study (Sowers
et al., 1993), one hundred fifteen pregnant women were initially enrolled to the study and were
scheduled to measure the bone mineral density (BMD) at lumbar spine at four postpartum time
points within 18 months. Meanwhile, measurements of many covariates describing
participants’ physical characteristics, lactation practice and hormonal environment were also
taken. One of the objectives of the study is to investigate the pattern of BMD at lumbar spine
for postpartum women and to identify from those potential variables the covariates that are
associated with the BMD at lumbar spine. Preliminary analysis indicated that on average the
BMD at lumbar spine initially declined and then gradually rebounded, and a parametric
function may not be adequate to describe this pattern. This motivates the use of an SPMM to
model the association of the postpartum BMD at lumbar spine and other covariates and the
research to conduct variable selection in SPMMs.

Many variable selection methods have been developed for linear regression models for
independent data, such as best subset selection, stepwise selection and shrinkage methods, etc.
However, little work had been done for semiparametric models in the longitudinal data settings
until the appearance of a recent work of Fan and Li (2004). In the pioneering paper of Fan and
Li (2004), they first proposed two estimation procedures to initially estimate regression
coefficients: different-based estimator (DBE) and profile least squares. Then they used the
local polynomial regression technique to estimate the nonparametric component, and variable
selection was achieved by imposing the SCAD (Fan and Li, 2001) penalty on parametric linear
covariate effects. As shown in Fan and Li (2004), their methods ignore the correlation in
longitudinal data and are therefore very effective in the class of working independent
estimators. It is well-known that the estimating equation approach is robust to the mis-
specification of the correlation structure in the data when there is no missing data or the missing
data mechanism is missing completely at random (MCAR). However, there are some missing
data from the motivating lactation study (see Section 6 for more details). To guard against the
possible problem associated with missing data, we propose in this paper a double penalized
likelihood approach by explicitly taking into account data correlation while conducting model
selection and estimation. In particular, our procedure uses random effects to describe the
subject-specific effects and uses Gaussian stochastic processes to model the extra temporal
correlation among observations within subjects. Since our approach is likelihood based, it will
be robust to missing at random (MAR) mechanism and the resulting estimators will be more
efficient when the models on the mean and variance structures are correctly specified.
Moreover, our method is based on the smoothing spline framework for nonparametric
component estimation, which allows us to reformulate the entire problem as a linear mixed
effects model (LMM) and hence greatly facilitate the computation. We also show that the
variance parameters can be jointly estimated with the smoothing parameters in a unified
fashion.

To avoid terminology confusion, we would like to point out that the notion of “double penalty”
has been used by various researchers under different contexts. For example, Lin and Zhang
(1999) used double penalized quasi-likelihood approach to make inference for generalized
additive mixed models, where roughness penalties were imposed on additive nonparametric
functions and a quadratic penalty was applied to the random effects. Zou and Hastie (2005)
proposed the elastic net for linear model estimation by using a combined penalty of the form

, where βj are regression coefficients. Lu and Zhang (2006) and Lu
(2006) proposed the functional smooth lasso for functional linear model yi = ∫ xi(t)f(t)dt + εi
with i.i.d. εi’s, and their procedure has a double penalty on the nonparametric component f as
λ1 ∫ |f(t)|dt+λ2 ∫{f″(t)}2dt. Different from all the methods above, our procedure involves a
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roughness penalty for the nonparametric component and a shrinkage SCAD penalty for variable
selection of parametric components.

The rest of the article is organized as follows. Section 2 first describes the SPMM framework
and useful notations. We then introduce the main method, the double-penalized likelihood
method for SPMMs. Section 3 describes the computational algorithm for finding the double
penalized likelihood estimators. Section 4 derives the variance estimates for parametric and
nonparametric components, from both frequentist and Bayesian perspectives. In Section 5 we
demonstrate the effectiveness of our method through simulation studies. We illustrate our
method through the application to the data from the lactation study in Section 6. We conclude
the article with a discussion in Section 7.

2. Double Penalized Likelihood

2.1 Framework and Notation

Suppose that in a longitudinal study there are m subjects, with the ith subject having ni

observations over time. Denote by yij (i = 1,…, m, j = 1,…, ni) the response at time point tij.
Consider the following semiparametric mixed model

(1)

where f(t) is an arbitrary twice-differentiable smooth function, β is the d × 1 fixed effects vector
of potentially a large number of covariates xij from which important covariates are to be
selected, bi is an c × 1 vector of subject-specific random effects of the corresponding covariates
zij, Ui(t) is an independent mean zero Gaussian process modeling extra underlying serial
correlation, and εij ~ N (0, σ2) are independent measurement errors. Further assume bi ~ N
{0, G(φ)}, where G(φ) is a positive definite matrix parametrized by vector φ. The Gaussian
process Ui(t) has zero mean and variance-covariance function cov{Ui(t), Ui(s)} = γ (ξ, α; t, s)
for a specific parametric function γ(·) that depends on a parameter vector ξ and α used to
characterize the variance and correlation of the process Ui(t). Zhang et al. (1998) considered
several forms of Gaussian processes for modeling various within-subject serial correlation. For
example, a stationary Ornsterin-Uhlenbeck (OU) process can be used to model homogeneous
within-subject covariance structure with constant variance and exponentially decaying
correlation: corr{Ui(t), Ui(s)} = exp(−α|t − s|) (Diggle et al., 2002). If we assume that the
variance function changes over time, for instance, in the form of exp(ξ0 + ξ1t), then the OU
process generalizes to a non-homogeneous Ornsterin-Uhlenbeck (NOU) process. We further
assume that bi, Ui(t) and εij are mutually independent. Note that an SPMM does not have to
contain every single term as given in (1), and it can be easily extended to a more complicated
model such as the one where εij’s are correlated with a parametric variance-covariance matrix.

We define some matrix notations for convenience. Define Yi = (yi1,…, yini
)T, and Xi, Zi, Ui,

εi similarly (i = 1,…, m). The total number of observations is . Let 
be an r × 1 vector of ordered distinct values of {tij}’s, and N be the incidence matrix mapping

t0 to {tij}. Further denote  and X, N, ε similarly, and Z = diag{Z1,…, Zm}.
Then model (1) can be written in matrix format as Y = Xβ + Nf + Zb + U + ε, where

 with variance-covariance matrix  (φ) =

diag{G,…, G};  with variance-covariance matrix Γ(ξ, α) =
diag{Γ1,…, Γm} and the (j, j′)th element (j, j′= 1,…, ni) of Γi being γ(ξ, α; tij, tij′); and ε ~ N
(0, σ2In).
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2.2 Double Penalized Likelihood

For fixed variance components θ = (φT,ξT, α, σ2)T, the log-likelihood function of (β, f) is (up
to a constant)

(2)

where V = diag{V1,…, Vm} and . To achieve both model selection and
estimation in SPMM (1), we propose to maximize the double penalized (log)likelihood (DPL)
function:

(3)

where λ1 > 0 is a smoothing parameter controlling the balance between the goodness of fit and
the roughness of the estimated f(t), and T1 and T2 specify the range of t; pλ2 (·) is a shrinkage
penalty function with λ2 > 0 controlling the amount of shrinkage. In order for the use of same
λ2 for all β’s to be reasonable, all covariates x are assumed to be standardized. We call the DPL
maximizers (β ̂, f̂) maximum double-penalized likelihood estimators (MDPLEs). It is easy to
show that f̂ is a natural cubic spline estimate for f(t). There are many choices for the shrinkage
penalty pλ2 (·) in (3), and we adopt the smoothly clipped absolute deviation penalty (SCAD)
due to its desirable theoretical properties (Fan and Li, 2001,2004). The SCAD satisfies

, where ω > 0 and a > 1 is another tuning
parameter, usually taken a priori (Fan and Li, 2001). Selection of two tuning parameters λ1 and
λ2 usually needs a two-dimensional grid search, which can be time consuming in practice. In
order to reduce the computational cost on parameter tuning, we reformulate the problem using
a linear mixed model (LMM) representation; in the new representation, λ1 is treated as the
inverse of a variance component and estimated jointly with other variance components using
the REML approach. As shown in Section 3, our procedure only requires one-dimensional
parameter tuning on λ2. We discuss the details in the next section.

3. Computational Algorithm

In this section, we formulate a linear mixed model (LMM) representation for the SPMM, and
describe the computational procedures for obtaining parameter estimates based on this LMM
representation.

3.1 Linear Mixed Model Representation

By the fact that f̂(t) is a cubic smoothing spline and theorem (2.1) of Green and Silverman
(1994), the DPL function (3) can be re-written as

(4)

where K is the non-negative definite smoothing matrix. Following Green (1987), we have f =
Tδ+Ba, where T = [1, t0] and 1 is an r×1 vector of 1’s, δ and a are 2×1 and (r−2)×1 vectors
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respectively, and B = L(LT L)−1 with L being an r×(r−2) full rank matrix satisfying K =
LLT and LT T = 0. Note that fT Kf = aT a and it yields an equivalent double-penalized log-
likelihood

, where X* = [NT, X], B* = NB, β* = (δT, βT)T. For fixed β* and given λ1, λ2 and θ, maximizing

the new DPL with respect to a gives . Substituting â back
to the new DPL, some algebra (Harville, 1977) then leads to an equivalent objective function
(up to a constant)

(5)

where . The objective function (5) can be regarded as the penalized log-
likelihood function of β* from the following linear mixed model with the same SCAD penalty
for β:

(6)

where β* = (δT, βT)T are new fixed effects, a is treated as random effects distributed as a ~ N
(0, τI) with τ = 1/λ1, ε* = Zb + U + ε distributed as N(0, V), and θ* = (τ, θT)T are the variance
components. It is then equivalent to conducting variable selection for x in the modified LMM
(6). Based on the selected variables and estimated β ̂*, we can use δ ̂ and â to construct the
smoothing spline fit f̂(t). The LMM representation suggests that the inverse of the smoothing
parameter τ can be treated as a variance component and jointly estimated with θ using the
maximum likelihood or restricted maximum likelihood (REML) approach, which has been
discussed by many authors (e.g. Wahba, 1985;Kohn et al., 1991;Speed, 1991;Zhang et al.,
1998;Lin and Zhang, 1999).

3.2 Iterative Ridge Regression

For fixed parameters λ1, λ2 and θ, direct maximization of (5) is still difficult due to the
singularity of the SCAD function. Following Fan and Li (2001,2004), we adopt the iterative
ridge regression approach via the local quadratic approximation (LQA). For a small constant

ξ and an initial value , we have .
Taylor expansion leads to the following optimization problem

where . For fixed θ* = (τ, θT)T apply the

Newton-Raphson method to maximize  and get the updating formula
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(7)

where , which is computationally more efficient
when r (number of distinct ti’s) is much smaller than n (total sample size). Following each
updating step, we set β ̂j = 0 for |β̂j| < η, where η is a small threshold, say η = 10−5. The non-
zero coefficients correspond to important covariates. The iterative ridge regression converges

when , where tol is a small tolerance.

Remark 1—Very recently, (Zou and Li, 2008) proposed the local linear approximation (LLA)
algorithm to solve a SCAD problem. Applying the LLA algorithm to (5) leads to the following
optimization problem

which provides an alternative way to solve the problem.

3.3 Iterative Variable Selection Algorithm

We now outline an iterative algorithm that alternatively eliminates unimportant variables and
updates parameter estimates. First we fit the full linear mixed model (6) in SAS by including
all covariates in the model, and compute the initial values (β ̂*[1], â[1]) and (τ̂[1], θ̂ [1]). For a
given λ2, we propose the following iterative variable selection algorithm:

Step 1—Initialize with s = 1 and (β ̂*[1], â[1], τ̂[1], θ ̂[1]).

Step 2—Compute β ̂*[s+1] using the iterative ridge regression (7) based on current values of
β ̂*[s] and (τ̂[s], θ ̂[s]).

Step 3—Obtain τ̂[s+1] and θ ̂ [s+1] using REML based on important variables.

Step 4—Let s = s + 1. Go to Step 2 until the selected covariates converge to a stable set.

Now we describe the REML estimation procedure in Step 3. Denote by X[s] the subset of
important variables selected from X at the sth iteration. The REML log-likelihood of (τ, θ) at
this iteration is

where X*[s] = [NT, X[s]], and  is the MLE of β* based on

the selected important variables X[s]. Differentiating  with respect to τ and θk (the

kth element of θ) and using the identity , we obtain
the REML estimating equations for τ and θ (Harville, 1977):
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(8)

(9)

where . Since V* is no longer block-diagonal, direct
inverse of V* may be intractable. We can tackle this problem by using the identity: P = V−1 −
V−1ℋD−1ℋT V−1, where ℋ is the coefficient matrix of the following system of equations

The Fisher scoring algorithm can then be used to solve (8) and (9) for τ and θ.

The aforementioned algorithm is based on fixed SCAD tuning parameters. Fan and Li
(2001) recommended to use a = 3.7 as it minimizes the Bayesian risk, and thus we set a = 3.7
in our implementation. We propose to tune λ2 using the Bayesian Information Criterion (BIC)
(Schwarz, 1978). For a fixed λ2, let X1 and β1 be the covariate matrix and coefficients
respectively corresponding to the q variables selected by the iterative variable selection
algorithm. Fit LMM (6) using the important variables to get Ŷ= SY, where S is a smoother
matrix with q1 = trace(S). Then BIC(λ2) = −2ℓ1 + q1 log n, where ℓ1 = −(n/2) log(2π) − 1/2
log |V| − (1/2)(Y − X1β ̂1 − Nf ̂)TV−1(Y − X1β ̂1 − Nf ̂). The generalized cross validation (GCV;
Craven and Wahba, 1979) can also be used for tuning λ2. Wang et al. (2007) compared BIC
and GCV for selecting the SCAD tuning parameter and suggested that BIC leads to consistent
model selection, whereas GCV tends to have an overfitting effect. Model selection results in
our simulation studies also favor BIC, and therefore we chose BIC for tuning λ2.

4. Frequentist and Bayesian Standard Errors

We derive the frequentist and Bayesian variance formulas for β ̂ and f̂. The proposed variance
estimates are evaluated via simulations. From frequentists’ point of view, var(Y|t, x) = V. At
convergence, we can write β ̂* = (δ ̂T, β ̂T)T as an approximately linear function of

. Let , where Q1 and Q2 are
partitions of Q with dimensions corresponding to (δT, βT)T, so that δ ̂ = Q1Y, and β ̂ = Q2Y. The
estimated variance-covariance matrix for β ̂ is given by

(10)

Denote â (β*) = SaY, where Sa = A˜ (I − X*Q) and . Therefore f̂
= Tδ ̂ + Bâ = (TQ1 + BSa)Y and its variance-covariance matrix estimate is
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(11)

From a Bayesian perspective, the double penalized likelihood structure indicates that f(t) has
a prior in the form of f = Tδ + Ba, with a ~ N(0, τI) and a flat prior for δ. It follows from the
LQA in Section 3.2 that the important coefficients β has a prior with log-density kernel equal
to −βTΣλ2β/2. The definition of the SCAD penalty implies that some diagonal elements of
Σλ2 can be zero, corresponding to those |βj| > aλ2. Assume after reordering, Σλ2 = diag{0,

Σ22}, where Σ22 has positive diagonal elements. Then β can be partitioned into , where

 can be regarded as “fixed” effects and  as “random” effects with .
The matrix X is partitioned into [X1, X2] accordingly. Now we reformulate the mixed model
(6) as: Y = NTδ + X1β1 + X2β2 + B*a + ε*, or Y =  *γ + Z*b* + ε*, where  * = [NT, X1],

, Z* = [X2, B*], and  are the new random effects distributed as N(0,

Σb) with , and ε* = Zb + U + ε distributed as N(0, V). Following
Henderson (1975), the variance-covariance matrix of γ̂ and b ̂* under this new mixed model is
estimated by

where C* is the corresponding coefficient matrix of Henderson’s mixed model equations. From
this it is straightforward to construct the Baysian variance-covariance matrices of β ̂ and f̂.

Denote by Aβ1,β2 the matrix formed by the block matrices of  corresponding to β1 and β2.
Similarly denote by Aδ,a the matrix corresponding to δ and a. Then the Bayesian variance-
covariance matrices for β ̂ and f̂ are

(12)

(13)

These Bayesian variance estimates can be viewed to account for the biases in β ̂ and f̂ due to
the imposed penalties (Wahba, 1983). We evaluate and compare the empirical performance of
frequentist and Bayesian variance estimates in the next section.

5. Simulation Studies

We conduct simulation to evaluate the performance of our DPL procedure and compare this
new procedure with the SCAD and LASSO methods in Fan and Li (2004) in both full data and
missing data cases. The SCAD and LASSO estimates are computed as Fan and Li’s (2004)
method implemented in their original Matlab programs. Following Fan and Li (2004), we set
the bandwidth h for local polynomial regression equal to h0× interquartile range of observed
tij’s. We varied the value of h0 and found h0 = 0.1 is a reasonable choice in terms of model
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errors (defined later) in most cases. Therefore we used h0 = 0.1 for SCAD and LASSO
estimates.

We consider three scenarios in the simulation: full data, missing at random (MAR) data and
independent data. For the full data scenario, we simulate longitudinal data from the following
semiparametric mixed model:

(14)

where i = 1,…, m (m = 40 or 60), and j = 1,…, 10. We consider a staggered entry design: the
subjects are equally divided into 5 groups with each group entering at time point 1 through 5;
each subject has 10 equally spaced (5 time points in between) measurements. We choose f(t)
= 4 sin(2πt/4) as the baseline function. By design, there are 50 knots for the smoothing spline
fit, and the time t ranges from 0 to 4. The true regression coefficients are β = (.8, .8, 0, 0, .8,
0, 0, 0)T, with eight mutually independent covariates (x1,…, x8) generated from a standard
normal distribution. The random intercept b0i ~ N(0, v1) represents among-subject variation,
and we set v1 = 0.36. We choose a stationary Ornstein-Uhlenbeck (OU) process U(t) with a

constant variance  and an exponentially decaying serial correlation: corr {Ui(t), Ui(s)} = exp

(−α|t − s|) =ρ|t−s|, where ρ = 0.4 and . We also simulate the measurement error εij from

, with . In order to investigate the impact on the performance of the DPL under
a mis-specified correlation structure, we also apply the proposed DPL approach by assuming
a random slope (of t) instead of the random intercept in model (14). This approach is labeled
as DPL-MIS in Table 1.

For missing data scenario, we maintain m = 40 and simulate MAR data using the main model
(14) and the drop-out model in Section 13.3 of Diggle et al. (2002). The ith (i = 1, 2, ···, 40)
subject has no missing value in the first six observations yi1,…, yi6 and for j = 7,…, 10, the
drop-out probability pij of subject i at the jth time point depends on the last previous observation
through a logit model: logit(pij) = −1 − 2yi,j−1. This yielded approximately 30% missing data
out of the total 400 observations in the full data. For independent data scenario, we remove the
random intercept and the stochastic process in model (14) and simulate independent data for
m = 40, and then apply the DPL approach assuming an over-parametrized SPMM with a random
intercept.

Following Wang et al. (2007), we use the median relative model error (MRME) to evaluate
the overall performance of a procedure for model selection and estimation in Table 1. By the
simulation design described above, we define the overall model error (ME) of a procedure as

where [0, T = 4] specifies the range of the variable t, and the second term is approximated by
averaging {f̂(t)−f(t)}2 over the design knots. The MRME is then the median of ratios of the
ME of a selected model to the commone ME of the estimates from the full model fitted by the
REML approach of Zhang et al. (1998). To present a more comprehensive picture, we also use
other criteria in Table 1 for performance evaluation. The columns labeled by “Corr.” and “Inc.”
denote the average numbers of correct and incorrect zeros in the coefficient estimates over 100
simulation runs. The column labeled by “Under-fit” corresponds to the proportion of excluding
any nonzero coefficients. Similarly, we report the proportion of selecting the exact subset
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model in the column “Correct-fit” and the proportion of including all three important variables
plus some noise variables in the column “Over-fit”.

As can be seen from Table 1, DPL performs very well in terms of all evaluation criteria. The
DPL out-performs SCAD and LASSO in terms the overall MRME criterion, even for the cases
of mis-specified correlation structures. Although DPL occasionally is slightly more likely than
SCAD and LASSO to under-fit the true model by shrinking some important coefficients to
zero, it gives a very competitive performance. In the case of data with missing at random
mechanism, the performance of SCAD and LASSO deteriorates as expected, particularly with
respect to MRME due the poor performance of f̂ (t) (Figure 2), while the performance of DPL
is not affected by the data missing at random. Although the DPL with a mis-specified
correlation structure does not perform as well as the correctly specified DPL, it still gives
satisfactory performance and outperforms SCAD and LASSO for a moderate sample size (m
= 60). In the independent data scenario, although SCAD and LASSO have slightly better
performance (as expected), the over-parameterized DPL still delivers a very competitive
performance in terms of all evaluation criteria. The estimated variance for random intercept
for the over-parameterized DPL is 0.002, indicating that the DPL approach is flexible to
produce rather accurate variance component estimates with an over-parameterized correlation
structure.

Table 2 summaries the estimated (β1,β2,β5), their relative biases, empirical and model-based
standard errors and 95% coverage probabilities. Since SCAD and LASSO give similar
numerical results, we only report DPL and SCAD results here. Compared with SCAD (and
LASSO), our estimated βj’s have smaller biases in all cases except the independent data
scenario. The frequentist and Bayesian standard error formulas derived in Section 4 perform
well in most cases: they are close to the empirical estimates and the 95% coverage probability
rates are around the nominal level. One observation is that the derived model-based standard
errors tend to be under-estimated. We observe that when sample sizes increases (m = 60), the
differences get smaller. This suggests that the derived standard error formulas may work well
when sample size is reasonably large. Although not reported here due to space limit, the
estimates from DPL with mis-specified correlation structures are still very good compared to
those under correct model specification. Table 3 presents the estimated variance components
using REML based on the modified LMM. When the correlation model is correctly specified,
the biases become smaller when sample size increases. The variance component estimates are
biased under mis-specified correlation structures, as we expected.

The estimated baseline function f̂(t) is also evaluated through visualization. We plot and
compare the estimated f(t) and point-wise biases by DPL, LASSO and SCAD, for the full data
(m = 40) and missing at random data scenarios. For our DPL estimate f̂, we also plot the point-
wise empirical and model-based frequentist and Bayesian standard errors, and coverage
probability of 95% confidence intervals. Figure 1(b) shows that in full data (m = 40) case, our
approach yields smaller overall biases than the LASSO and SCAD. It can be seen from Figure
1(c) and Figure 1(d) that our standard error formulas for f̂ work well. The Bayesian standard
errors are always larger in that they account for the biases due to the imposed penalties.

Figure 2 depicts the results for missing at random data. As shown in Figure 2(a) and Figure 2
(b), SCAD and LASSO produced large biases due to dropped out subjects after the sixth time
point. In contrast, our DPL method maintains consistent performance in estimation of f(t)
despite 30% missing data. In Figure 2(c), we notice the disparity between the empirical and
the estimated standard errors after t ≥ 7 where the dropout starts occurring, which is due to the
smaller sample size caused by the missing data.
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6. Application to Longitudinal Lactation Study

In this section, we apply the proposed model selection and estimation procedure for SPMMs
to the longitudinal data from the lactation study introduced in Section 1. The detailed
description of the study can be found in Sowers et al. (1993). Briefly, the study originally
enrolled 115 pregnant women with 0 or 1 parity, who had no intent to breast-feed their incoming
babies or intended to breast-feed for at least 6 months. The study participants were then
scheduled to have BMD at lumbar spine measured at 4 time points after the birth of their babies.
The scheduled time points are 2 weeks, 6 months, 12 months and 18 months postpartum.
However, due to various logistic reasons, the actual observation times deviate somewhat from
the schedule and several participants missed some scheduled visits. For each woman who made
the scheduled visit, the information about her physical activity, dietary calcium intake, lactation
practice was obtained. At the same time, blood sample was drawn and assay was conducted to
measure various serum hormones including prolactin, parathyroid hormone (PTH) and
parathyroid hormone-related peptide (PTHrP), traditionally thought to be related to calcium
mobilization for lactating mothers. Since only about 56% of the PTHrP measurements were
above the detection limit, PTHrP is dichotomized according to whether or not it was above the
limit. One of the study objectives is to identify covariates from this pool of variables that are
associated with the postpartum BMD at lumbar spine.

Preliminary analysis indicates that random intercept is sufficient to account for the correlation
in the postpartum BMD at lumbar spine and that on average it declined in the first 4 months,
then gradually rebounded to a level close to that at week 2 postpartum. In other words, a
parametric function may not be appropriate to describe the pattern of postpartum BMD at
lumbar spine. This motivates us to consider variable selection in the following SPMM

(15)

where yij is the postpartum BMD (g/cm2) at lumbar spine for woman i measured at time tij, f
(t) is a non-parametric function, xij is a 11 × 1 vector of 11 variables measured at tij: lactation
practice (breast-feed or partially breast-feed), physical activity index (mets), body mass index
(weight in kilogram/square of height in meters), dietary calcium intake (mg), menstruation
status, prolactin (ng/ml), PTH (ng/ml), dichotomized PTHrP as well as the baseline age (year)

and infant’s birth weight (pound),  is the woman-specific random effect and

 is the independent residual error. For numerical stability and ease of
interpretation, the continuous covariates are centered by their means. Furthermore, centered
dietary calcium intake was divided by 1000, centered BMI, physical activity index and
prolactin were divided by 100. After excluding missing data, ninety six women remained in
the analysis with 313 total observations. The number of distinct time points is 71.

We apply the DPL procedure to model (15), and the following variables are selected: dietary
calcium intake, menstruation status, prolactin, PTH, baseline age and infant’s birth weight.
This finding is consistent to those in the epidemiology literature. The estimates of the
corresponding regression coefficients as well as their estimated standard errors are presented
in Table 4. It is seen from this table that after adjusting for time effect all selected variables
are positively associated with the postpartum BMD at lumbar spine except the baseline age.
The estimated nonparametric function f(t) and its 95% pointwise confidence bands given by
the frequentist and Bayesian variance estimation are presented in Figure 3. We can see that the
BMD in lumber spline decreases in the first six months, starts increasing from the seventh
month and reaches a level comparable to the baseline at the end of the study. Frequentist and
Bayesian methods give almost identical standard errors, as shown in Figure 3.
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7. Discussion

In this paper we have proposed a new double penalized likelihood (DPL) approach for selecting
important parametric fixed effects in semiparametric mixed models (SPMM) for longitudinal
data. The DPL is equipped with two penalty terms: the roughness penalty for f(t) and a shrinkage
penalty for the fixed covariate effects β. Maximizing the DPL leads to a parsimonious model
and a smoothing spline fit for f(t). We cast the SPMM into a modified linear mixed model
framework and proposed an iterative variable selection algorithm for the computation. Within
the LMM framework, the inverse of the smoothing parameter is treated as an extra variance
component and can be conveniently estimated jointly with other variance components using
REML approach. Simulations demonstrated that our method gives very competitive
performance in terms of variable selection and parameter estimation, compared with the SCAD
and LASSO method in Fan and Li (2004). Under the correct model specification of an SPMM,
including the correct specification on the conditional mean structure of the longitudinal data
given covariates, random effects and stochastic processes, and the variance structures of the
random effects and the stochastic process, our method is more efficient in terms of model
selection and parameter estimation than other existing methods which ignore the correlation
structure of the data and use working independence correlation matrix. Model diagnostics
through exploratory analysis and visualizations are often useful to ensure a properly specified
variance structure for the data. Furthermore, when the data set contains missing data subject
to missing at random, our DPL estimates still perform consistently. The usage of the proposed
method is demonstrated through its application to the data from the longitudinal lactation study.

The proposed method is for selecting important parametric fixed effects in an SPMM. In the
future we hope to conduct variance component selection as well. We also plan to extend our
DPL methodology to generalized semiparametric mixed models to incorporate other types of
endpoints and more likelihood structures. We hope to derive theoretical properties for the
estimators. As pointed out by a referee, Zou and Li (2008) recently proposed the local linear
approximation (LLA) algorithm and a one-step LLA approach for solving penalized log-
likelihood, which potentially can be used in place of LQA to get computationally and
statistically more efficient DPL estimators.
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Figure 1.

Plots for estimated f(t) in the full data (m=40) scenario based on 100 samples. Plots (a) and (b)
show the averaged fit and point-wise bias by the DPL, SCAD and LASSO methods; plot (c)
shows the DPL Bayesian and frequentist standard errors against empirical estimates; and plot
(d) plots the averaged coverage probability rates for 95% confidence intervals.
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Figure 2.

Plots for estimated f(t) in the missing at random data (m=40) scenario based on 100 samples.
Details are as in Figure 1.
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Figure 3.

Plot of estimated baseline functions f(t) in the selected model of (15) and the 95% pointwise
confidence intervals. The dotted lines correspond to the frequentist confidence interval, and
the dashed lines are given by the Bayesian confidence interval.
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Table 3

Estimated variance components in the simulation study. Re. bias denotes relative bias.

Full data (m = 40) Full data (m = 60)

Parameter Estimate (SD) Re. bias Estimate (SD) Re. bias

DPL

v1(intercept) 0.36 (0.22) 0.00 0.33 (0.17) −0.08

  ρ 0.38 (0.23) −0.05 0.40 (0.20) 0.00

  σ
u
2

0.58 (0.19) 0.16 0.56 (0.14) 0.12

  σε
2

0.21 (0.11) −0.16 0.22 (0.09) −0.12

DPL-MIS

 v1(slope) 0.08 (0.18) - 0.06 (0.11) -

  ρ 0.72 (0.09) 0.80 0.72 (0.08) 0.80

  σ
u
2

0.85 (0.17) 0.70 0.84 (0.15) 0.68

  σε
2

0.38 (0.09) 0.52 0.38 (0.08) 0.52
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Table 4

Estimated coefficients and frequentist and Bayesian standard errors under model (15) for data from the
longitudinal lactation study

Variable Full Model β ̂(SEfreq, SEBayes) Selected Model β ̂ (SEfreq, SEBayes)

Breastfeed −0.0203 (0.0091, 0.0092) 0(0, 0)

Partial breastfeed −0.0020 (0.0090, 0.0091) 0(0, 0)

PTHrP above detection 0.0067 (0.0064, 0.0064) 0(0, 0)

Activity index −0.0034 (0.0071, 0.0072) 0(0, 0)

BMI 0.1928 (0.1820, 0.1822) 0(0, 0)

Calcium 0.0261 (0.0059, 0.0059) 0.0050 (0.0021, 0.0057)

Menstruation status 0.0244 (0.0076, 0.0076) 0.0101 (0.0040, 0.0072)

Prolactin 0.0173 (0.0057, 0.0057) 0.0055 (0.0021, 0.0053)

PTH 0.0419 (0.0176, 0.0180) 0.0208 (0.0143, 0.0180)

Age −0.0053 (0.0013, 0.0013) −0.0013 (0.0001, 0.0013)

Birth weight 0.0404 (0.0046, 0.0046) 0.0305 (0.0028, 0.0039)
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