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VARIABLE SELECTION FOR SPARSE DIRICHLET-MULTINOMIAL
REGRESSION WITH AN APPLICATION TO MICROBIOME

DATA ANALYSIS1

BY JUN CHEN AND HONGZHE LI

University of Pennsylvania

With the development of next generation sequencing technology, re-
searchers have now been able to study the microbiome composition using di-
rect sequencing, whose output are bacterial taxa counts for each microbiome
sample. One goal of microbiome study is to associate the microbiome com-
position with environmental covariates. We propose to model the taxa counts
using a Dirichlet-multinomial (DM) regression model in order to account for
overdispersion of observed counts. The DM regression model can be used
for testing the association between taxa composition and covariates using the
likelihood ratio test. However, when the number of covariates is large, mul-
tiple testing can lead to loss of power. To address the high dimensionality
of the problem, we develop a penalized likelihood approach to estimate the
regression parameters and to select the variables by imposing a sparse group
�1 penalty to encourage both group-level and within-group sparsity. Such a
variable selection procedure can lead to selection of the relevant covariates
and their associated bacterial taxa. An efficient block-coordinate descent al-
gorithm is developed to solve the optimization problem. We present extensive
simulations to demonstrate that the sparse DM regression can result in bet-
ter identification of the microbiome-associated covariates than models that
ignore overdispersion or only consider the proportions. We demonstrate the
power of our method in an analysis of a data set evaluating the effects of nu-
trient intake on human gut microbiome composition. Our results have clearly
shown that the nutrient intake is strongly associated with the human gut mi-
crobiome.

1. Introduction. The human body is inhabited by complex microbial com-
munities, called microbiomes. It is estimated that the number of microbial cells
associated with the human body is 10 times the total number of human cells. The
collective genomes of these microbes constitute an extended human genome that
provides us with genetic and metabolic capabilities that we do not inherently pos-
sess [Bäckhed et al. (2005)]. With the development of next generation sequencing
technology such as the 454 pyrosequencing and Illumina Solexa sequencing, mi-
crobiome composition can now be determined by direct DNA sequencing without
laborious cultivation. Typically, instead of sequencing all bacterial genomic DNA
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as in a shotgun metagenomic approach, only the 16S rRNA gene, which is ubiq-
uitous in the bacteria kingdom and has variable regions, is sequenced. Since each
bacterial cell is assumed to have the same number of copies of this gene, the ba-
sic idea is to isolate from all the bacteria the DNA strands corresponding to some
variable region of the gene, to count different versions of the sequences, and then
to identify to which bacteria the versions correspond. The types and abundances
of different bacteria in a sample can therefore be determined. After preprocessing
of the raw sequences, the 16S sequences are either mapped to an existing phylo-
genetic tree in a taxonomic dependent way [e.g., Matsen, Kodner and Armbrust
(2010)] or clustered into operational taxonomic units (OTUs) at a certain similar-
ity level in a taxonomic independent way [e.g., Caporaso et al. (2010), Schloss
et al. (2009)]. At 97% similarity level, these OTUs are used to approximate the
taxonomic rank species. The OTU based approach is most commonly used in 16S
based microbiome studies. Each OTU is characterized by a representative DNA
sequence and can be assigned a taxonomic lineage by comparing to a known bac-
terial 16S rRNA database. Most OTUs are in extremely low abundances, with a
large proportion being simply singletons (possibly due to sequencing error). We
can further aggregate OTUs from the same genus and perform analysis on the
abundances at the genus level, which is more robust to sequencing error and can
reduce the number of variables significantly. Either way we finally obtain the taxa
counts for each sample.

Recent studies have linked the microbiome with human diseases including
obesity and inflammatory bowel disease [Virgin and Todd (2011)]. It is therefore
important to understand how genetic or environmental factors shape the human
microbiome in order to gain insight into etiology of many microbiome-related dis-
eases and to develop therapeutic measures to modulate the microbiome composi-
tion. Benson et al. (2010) demonstrated that genetic variants are associated with the
mouse gut microbiome. Wu et al. (2011) showed that dietary nutrients are associ-
ated with the human gut microbiome. Both studies have considered a large number
of genetic loci or nutrients and aimed to identify the genetic variants or nutrients
that are associated with the gut microbiome. When there are numerous possible
covariates affecting the microbiome composition, variable selection becomes nec-
essary. Variable selection cannot only increase biological interpretability but also
provide researchers with a short list of top candidates for biological validation.
The methods we develop in this paper are particularly motivated by an ongoing
study at the University of Pennsylvania to link the nutrient intake to the human gut
microbiome. In this study, gut microbiome data were collected on 98 normal vol-
unteers. In addition, food frequency questionnaire (FFQ) were filled out by these
individuals. The questionnaires were scored and the quantitative measurements of
214 micronutrients were obtained. Details of the study and the data set can be
found in Section 6 and in Wu et al. (2011). Our goal is to identify the nutrients that
are associated with the gut microbiome and also their associated bacterial taxa.
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Most of the microbiome studies used distance-based methods to link the micro-
biome and environmental covariates, where a distance metric was defined between
two microbiome samples and statistical analysis was then performed using the
distances. However, the choice of distance metric is sometimes subjective and dif-
ferent distances vary in their power of identifying relevant environmental factors.
Another limitation of distance-based methods is its inefficiency for detecting sub-
tle changes since distances summarize the overall relationship. In addition, such
distance-based approaches do not provide information on how covariates affect
the microbiome compositions and which taxa are affected. Therefore, it is desir-
able to model the counts directly instead of summarizing the data as distances.
One way of testing for covariate effects is by performing a multivariate multiple
regression (called redundancy analysis in ecology) after appropriate transforma-
tion of the count data such as converting into proportions [Legendre and Legen-
dre (2002)]. A pseudo-F statistic is then calculated and the significance is then
evaluated by permutation test. Alternatively, one can define a distance between
the samples and then use a PERMANOVA procedure to test for covariate effects
[McArdle (2001)]. It is easy to show that when the distance is Euclidean, these two
procedures are equivalent.

In this paper, we consider the sparse Dirichlet-multinomial (DM) regression
[Mosimann (1962)] to link high-dimensional covariates to bacterial taxa counts
from microbiome data. The DM regression model is chosen to model the overdis-
persed taxa counts. The observed taxa count variance is much larger than that pre-
dicted by a multinomial model that assumes fixed underlying taxa proportions, an
assumption that is hardly met for real microbiome data. Uncontrollable sources of
variation such as individual-to-individual variability, day-to-day variability, sam-
pling location variability or even technical variability such as sample preparation
lead to enormous variability in the underlying proportions. In contrast, the DM
model assumes that the underlying taxa proportions come from a Dirichlet distri-
bution. We use a log-linear link function to associate the mean taxa proportions
with covariates. In this DM modeling framework, the effects of the covariates on
taxa proportions can be tested using the likelihood ratio test.

When the number of the covariates is large, we propose a sparse group �1 pe-
nalized likelihood approach for variable selection and parameter estimation. The
sparse group �1 penalty function [Friedman, Hastie and Tibshirani (2010)] con-
sists of a group �1 penalty and an overall �1 penalty, which induce both group-
level sparsity and within-group sparsity. This is particularly relevant in our setting.
For the nutrient-microbiome association example, we have p nutrients and q taxa,
so the fully parameterized model has (p + 1) × q coefficients including the in-
tercepts, since each nutrient-taxon association is characterized by one coefficient.
The q coefficients for each nutrient constitute a group. If we assume many nu-
trients have no or ignorable effects on the microbiome composition, the groups
of coefficients associated with these irrelevant nutrients should be zero altogether,
which is a group-level sparsity that is achieved by imposing a group �1 penalty.
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However, the group �1 penalty does not perform within-group selection, wherein
if one group is selected, all the coefficients in that group are nonzeros. In the case
of nutrient-microbiome association, we are also interested in knowing which taxa
are associated with a selected nutrient. By imposing an overall �1 penalty, within-
group selection becomes possible. Therefore, we impose a sparse group �1 penalty
not only to select these important nutrients but also to recover relevant nutrient-
taxon associations.

Section 2 reviews the Dirichlet-multinomial model for count data. Section 3
introduces the Dirichlet-multinomial regression framework for incorporating co-
variate effects and proposes a likelihood ratio statistic for testing the covariate
effect. Section 4 proposes a sparse group �1 penalized likelihood procedure for
variable selection for the DM models followed by a detailed description of a block-
coordinate descent algorithm in Section 4.1. Section 5 shows simulation results
and Section 6 demonstrates the proposed method on a real human gut microbiome
data set to associate the nutrient intake with the human gut microbiome composi-
tion.

2. Dirichlet-multinomial model for microbiome composition data. Sup-
pose we have q bacterial taxa and their counts Y = (Y1, Y2, . . . , Yq) are random
variables. Denote y = (y1, y2, . . . , yq) as the observed counts. The simplest model
for count data is the multinomial model and its probability function is given as

fM(y1, y2, . . . , yq;φ) =
(

y+
y

) q∏
j=1

φ
yj

j ,

where y+ = ∑q
j=1 yj and φ = (φ1, φ2, . . . , φq) are underlying species proportions

with
∑q

j=1 φj = 1. Here the total taxa count y+ is determined by the sequencing
depth and is treated as an ancillary statistic since its distribution does not depend
on the parameters in the model. The mean and variance of the multinomial com-
ponent Yj (j = 1, . . . , q) are

E(Yj ) = y+φj , Var(Yj ) = y+φj (1 − φj ).(1)

For microbiome composition data, the actual variation is usually larger than
what would be predicted by the multinomial model, which assumes fixed underly-
ing proportions. This increased variation is due to the heterogeneity of the micro-
biome samples and the underlying proportions vary among samples. To account
for the extra variation or overdispersion, we assume the underlying proportions
(φ1, φ2, . . . , φq) are themselves positive random variables (�1,�2, . . . ,�q) sub-
ject to the constraint

∑q
j=1 �j = 1. One commonly used distribution is the Dirich-

let distribution [Mosimann (1962)] with the probability function given by

fD(φ1, φ2, . . . , φq;γ ) = �(γ+)∏q
j=1 �(γj )

q∏
j=1

φ
γj−1
j ,
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where γ = (γ1, γ2, . . . , γq) are positive parameters, γ+ = ∑q
j=1 γj and �(·) is the

Gamma function. The mean and variance of the Dirichlet component �j (j =
1, . . . , q) are

E(�j ) = γj

γ+
, Var(�j ) = γj (γ+ − γj )

(1 + γ+)γ 2+
.

The mean is proportional to γj and the variance is controlled by γ+, which can
be regarded as a “precision parameter.” As γ+ becomes larger, the proportions are
more concentrated around the means.

The Dirichlet-multinomial (DM) distribution [Mosimann (1962)] results from
a compound multinomial distribution with weights from the Dirichlet distribution
(parametrization I):

fDM(y1, y2, . . . , yq;γ ) =
∫

fM(y1, y2, . . . , yq;φ)fD(φ;γ ) dφ

(2)

=
(

y+
y

)
�(y+ + 1)�(γ+)

�(y+ + γ+)

q∏
j=1

�(yj + γj )

�(γj )�(yj + 1)
.

The mean and variance of the DM distribution for each component Yj (j =
1, . . . , q) is given by

E(Yj ) = y+E(�j ), Var(Yj ) = y+E(�j )
{
1 − E(�j )

}(y+ + γ+
1 + γ+

)
.(3)

Comparing (3) with (1), we see that the variation of the DM component is in-
creased by a factor of (y++γ+)/(1+γ+), where γ+ controls the degree of overdis-
persion with a larger value indicating less overdispersion. Using an alternative pa-
rameterization, the probability function can be written as (parameterization II)

f ∗
DM(y1, y2, . . . , yq;φ, θ) =

(
y+
y

) ∏q
j=1

∏yj

k=1{φj (1 − θ) + (k − 1)θ}∏y+
k=1{1 − θ + (k − 1)θ} ,(4)

where φj = γj/γ+ is the mean and θ = 1/(1 + γ+) is the dispersion parameter.
When θ = 0, it is easy to verify (4) is reduced to the multinomial distribution.

3. Dirichlet-multinomial regression for incorporating the covariate effects.
When there is no covariate effect, the DM model can be used to produce more ac-
curate estimates of taxa proportions of a given microbiome sample than the simple
multinomial model, due to its ability to model the overdispersion. Beyond pro-
portion estimation, microbial ecologists are more interested in associating the mi-
crobiome composition with some environmental covariates. Suppose we have n

microbiome samples and q species. Let Y = (yij )n×q be the observed count ma-
trix for the n samples. Let X = (xij )n×p be the design matrix of p covariates



SPARSE DIRICHLET-MULTINOMIAL REGRESSION 423

for n samples. We assume the parameters γj (j = 1, . . . , q) in the DM model
(parametrization I) depend on the covariate via the following log-linear model,

γj

(
xi) = exp

(
αj +

p∑
k=1

βjkxik

)
,(5)

where xi is the ith row vector of X and βjk is the coefficient for the j th
taxon with respect to kth covariate, whose sign and magnitude measure the ef-
fect of the kth covariate on the j th taxon. From (3), we see that E(Yij ) ∝
exp(αj )

∏p
k=1 exp(βjkxik), where exp(αj ) can be interpreted as the baseline abun-

dance level for species j and the coefficient βjk indicates the magnitude of the
kth covariate effect on species j . Though the log-linear link is assumed mainly for
ease of computation, it is biologically consistent, in that microorganisms usually
exhibit exponential growth in a favorable environment.

For notational simplicity, we denote βj0 as αj and augment X with an n-vector
of 1’s as its first column. We number the columns from 0 to p. The link function
becomes

γj

(
xi) = exp

( p∑
k=0

βjkxik

)
.(6)

Let β be the q ×(p+1) regression coefficient matrix, βj = (βj0, . . . , βjp)T be the
vector of coefficients for the j th taxon (j = 1, . . . , q) and βk = (β1k, . . . , βqk)

T

be the vector of coefficients for the kth covariate (k = 0, . . . , p). We also use β
to denote the q(p + 1) vector that contains all the coefficients. Substituting (5)
into DM probability function (2) and ignoring the part that does not involve the
parameters, the log-likelihood function given the covariates is given by

l(β;Y,X) =
n∑

i=1

[
�̃

( q∑
j=1

γj

(
xi;βj )) − �̃

( q∑
j=1

yij +
q∑

j=1

γj

(
xi;βj ))

(7)

+
q∑

j=1

{
�̃

(
yij + γj

(
xi;βj )) − �̃

(
γj

(
xi;βj ))}]

,

where �̃(·) is the log-gamma function.
Based on the likelihood function (7), one can test the effect of a given covari-

ate or the joint effects of all covariates on the microbiome composition using the
standard likelihood ratio test (LRT). To solve the maximization problem, we im-
plemented the Newton–Raphson algorithm, since the gradient and Hessian matrix
of the log-likelihood can be calculated analytically. Alternatively, we can use the
general-purpose optimization algorithm such as nlm in R, which computes the
gradient and Hessian numerically. By selecting an appropriate starting point (e.g.,
α = β = 0), for moderate-size problems in the dimensions p and q , the algorithm
converges to a stationary point sufficiently fast.
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With a large number of covariates in the DM regression model, direct maxi-
mization of the likelihood function becomes infeasible or unstable. When each
covariate is tested separately using the LRT, adjustment for multiple testing is re-
quired. In addition, when the number of taxa q is large, the null distribution of the
LRT has large degrees of freedom and therefore reduced power. It is also desirable
to select the relevant covariates that are associated with the microbiome compo-
sition. Although one can test the null hypothesis H0 :βjk = 0 for each (j, k) pair
by the LRT, adjustment of multiple comparisons can lead to a loss of power. In
the next section we present a sparse group �1 penalized estimation for variable
selection and parameter estimation for sparse DM regression models.

4. Variable selection for sparse Dirichlet-multinomial regression. To per-
form variable selection, we estimate the regression coefficient vector β in model
(6) by minimizing the following sparse group �1 penalized negative log-likelihood
function,

pl(β;Y,X, λ1, λ2) = −l(β;Y,X) + λ1

p∑
k=1

‖βk‖2 + λ2

p∑
k=1

‖βk‖1,(8)

where l(β;Y,X) is the log-likelihood function defined as in (7), λ1 and λ2 are
the tuning parameters and ‖βk‖1 = ∑q

j=1 |βik| is the �1 norm and ‖βk‖2 =√∑q
j=1 β2

ik is the group �1 norm of the coefficient vector βk , respectively. We do
not penalize the intercept vector β0. The first part of the sparse group �1 penalty is
the group �1 penalty that induces group-level sparsity, which facilitates selection
of the covariates that are associated with taxa proportions. The second �1 penalty
on all the coefficients facilitates the within-group selection, which is important for
interpretability of the resulting model. A similar penalty involving both group �1
and �1 terms is discussed in Peng et al. (2010) and Friedman, Hastie and Tibshi-
rani (2010) for regularized multivariate linear regression. When λ2 = 0, criterion
(8) reduces to the group lasso.

4.1. A block-coordinate gradient descent algorithm for sparse group �1 penal-
ized DM regression. The sparse group �1 estimates of β can be obtained by min-
imizing the penalized negative log-likelihood function (8):

β̂λ1,λ2
= arg min

β

{
−l(β;Y,X) + λ1

p∑
k=1

‖βk‖2 + λ2

p∑
k=1

‖βk‖1

}
.

Using the general block coordinate gradient descent algorithm of Tseng and Yun
(2008), we develop in the following an efficient algorithm to solve this optimiza-
tion problem. Meier, van de Geer and Bühlmann (2008) present a block coordinate
gradient descent algorithm for group lasso for logistic regression that includes only
the group �1 penalty (i.e., λ2 = 0). In contrast, our optimization problem (8) has
two nondifferentiable parts, both at the individual βjk and at the group βk levels.
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The key idea of the algorithm is to combine a quadratic approximation of the
log-likelihood function with an additional line search. First we expand (7) at cur-

rent estimate β̂
(t)

to a second-order Taylor series. The Hessian matrix is then re-
placed by a suitable matrix H(t). We define

l
(t)
Q (d) = l

(
β̂(t)) + dT ∇l

(
β̂(t)) + 1

2dT H(t)d,(9)

where d ∈ R
q(p+1). Also denote ∇l(β̂(t))k and dk the gradient and increment with

respect to β̂
(t)
k for the kth group, and ∇l(β̂(t))sk and dsk with respect to β̂

(t)
sk . We

then minimize the following function pl(t)Q (d) with respect to the kth penalized
parameter group:

pl(t)Q (d) = −l
(t)
Q (d) + λ1

p∑
k=1

∥∥β̂(t)
k + dk

∥∥
2 + λ2

p∑
k=1

∥∥β̂(t)
k + dk

∥∥
1

(10)
≈ pl

(
β̂(t) + d;Y,X, λ1, λ2

)
.

We restrict ourselves to vectors d with dj = 0 for j �= k and the corresponding

q × q submatrix H(t)
kk for the kth group is a diagonal matrix of the form H(t)

kk =
h

(t)
k Iq for some scalar h

(t)
k ∈ R.

The solution to the general optimization problem of the form (10) is given by

Theorem 1 and its corollary in the Appendix. Let S = {s||∇l(β̂(t))sk − h
(t)
k β̂

(t)
sk | <

λ2} and S̄ be the set {1, . . . , q} \ S. Denote dSk the subvector of dk with indices in
S and dS̄k in S̄. The minimizer of (10) can be decomposed into two parts: The first

part d(t)
Sk can be obtained by

d(t)
Sk = −β̂

(t)
Sk.

The second part d(t)

S̄k
can be computed by minimizing

f (t)(dk) = −{
dT

k u(t)
k + 1

2dT
k H(t)

kk dk

} + λ1
∥∥β̂(t)

k + dk

∥∥
2(11)

with respect to dS̄k (set components other than dS̄k to be 0), where

u(t)
k = [∇l

(
β̂(t))

k − λ2 sgn
{∇l

(
β̂(t))

k − h
(t)
k β̂

(t)
k

}]
and sgn(·) is the sign function.

Minimization of (11) with respective to dS̄k can be performed in a similar fash-
ion as in Meier, van de Geer and Bühlmann (2008) for the group �1 penalty. Specif-
ically, if ‖u(t)

S̄k
− h

(t)
k β

(t)

S̄k
‖2 < λ1, the minimizer of equation (11) for dS̄k is

d(t)

S̄k
= −β̂

(t)

S̄k
.

Otherwise

d(t)

S̄k
= − 1

h
(t)
k

{
u(t)

S̄k
− λ1

u(t)

S̄k
− h

(t)
k β̂

(t)

S̄k

‖u(t)

S̄k
− h

(t)
k β̂

(t)

S̄k
‖2

}
.
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For the unpenalized intercept, the solution can be directly computed:

d(t)
0 = − 1

h
(t)
0

∇l
(
β̂(t))

0.

If d(t) �= 0, an inexact line search using the Armijo rule will be performed. Let
α(t) be the largest value in {α0δ

l}l≥0 such that

pl
(
β̂(t) + α(t)d(t)) − pl

(
β̂(t)) ≤ α(t)σ(t),

where 0 < δ < 1,0 < σ < 1, α0 > 0, and (t) is the improvement in the objective
function pl(β) using a linear approximation, that is,

(t) = −d(t)T ∇l
(
β̂(t)) + λ1

{ p∑
k=1

∥∥β̂(t)
k + d(t)

k

∥∥
2 −

p∑
k=1

∥∥β̂(t)
k

∥∥
2

}

+ λ2

{ p∑
k=1

∥∥β̂(t)
k + d(t)

k

∥∥
1 −

p∑
k=1

∥∥β̂(t)
k

∥∥
1

}
.

Finally, we update the current estimate by

β̂(t+1) = β̂(t) + α(t)d(t).

For H(t)
kk , we use the same choice as in Meier, van de Geer and Bühlmann (2008),

that is,

h
(t)
k = −max

[
diag

{−∇2l
(
β̂(t))

kk

}
, c∗]

,

where c∗ > 0 is a lower bound to ensure convergence. In this paper, we use the
standard choices for the parameters, α0 = 1, δ = 0.5, σ = 0.1 and c∗ = 0.001
[Tseng and Yun (2008)], in the block coordinate descent algorithm to ensure the
convergence of the algorithm.

REMARK. In each iteration of the algorithm detailed above, when estimating
the kth column of the q × p coefficient matrix β with all other columns fixed,
the algorithm first identifies the coefficients with zero estimates, denoted by set S

in the algorithm. For the coefficients in set S, d
(t)
Sk = −β̂

(t)
Sk and, therefore, when

αt = 1, β̂
(t+1)
Sk = β̂

(t)
Sk + αtd

(t)
Sk = 0 and the coefficients in S are shrunk to zero.

Based on its definition, the set S depends on the turning parameter λ2 and a larger
value of λ2 leads to fewer nonzero coefficients. The algorithm then performs a
group shrinkage of the nonzero estimates of the coefficients in the complementary
set S̄. These nonzero coefficients can further be shrunk to zero as a group if the

condition ‖u(t)

S̄k
− h

(t)
k β(t)‖2 < λ1 is met, in which case d

(t)

S̄k
= −β̂

(t)

S̄k and, there-

fore, β̂
(t+1)

S̄k = β̂
(t)

S̄k + d
(t)

S̄k
= 0. Clearly, this group shrinkage depends on the tuning

parameter λ1. Thus, with careful choice of the tuning parameters λ1 and λ2, some
column group coefficients are set to zero and the within-group sparsity is achieved
by the plain �1 penalty.
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4.2. Tuning parameter selection. Two tuning parameters λ1 and λ2 in the pe-
nalized likelihood estimation need to be tuned with data by v-fold cross-validation
or a BIC criterion. To facilitate computation, we reparameterize λ1 and λ2 as
λ1 = cλ

√
q and λ2 = (1 − c)λ. The multiplier

√
q in the group penalty is used

so that the group �1 penalty and overall �1 penalty are on a similar scale. Here we
use λ to control the overall sparsity level and use c ∈ [0,1] to control the propor-
tion of group �1 in the composite sparse group penalty. When c = 0, the penalty is
reduced to the lasso; when c = 1, it is reduced to a group lasso. We consider the
tuning parameter c from the set {0,0.05,0.1,0.2,0.4}. For each c, to search for the
best tuning parameter value, we run the algorithm from λmax so that it produces
the sparsest model with the intercepts β0 only. The value λmax can be roughly de-
termined by using the starting value β(0) with components β

(0)
j = 0 (j �= 0) and

β
(0)
0 the MLE of (7) without covariates, and choosing the smallest value of λ so

that the iteration converges in the first iteration, that is, β(0) is a stationary point.
We then decrease the λ value and use the estimate of β from the last λ as a warm
start. The grid of λ can be chosen to be equally spaced on a log-scale, for exam-
ple, λj = 0.96j λmax (j = 1, . . . ,m), where m is set so that λmin = 0.2λmax or,
alternatively, we could terminate the loop until the model receives more than the
maximum number of nonzero coefficients allowed.

5. Simulation studies.

5.1. Simulation strategies. We simulate n microbiome samples, p nutrients
and q bacterial taxa to mimic the real data set that we analyze in Section 6. The
nutrient intake vector is simulated using a multivariate normal distribution with
mean 0 and a covariance matrix �i,j = ρ|i−j |. We simulate pr relevant nutrients
with each nutrient being associated with qr taxa. For each nutrient, the association
coefficients βij for the qr taxa are equally spaced over the interval [0.6f,0.9f ]
with alternative signs, where f controls the association strength. We consider two
growth models to relate the taxa abundances to the covariates. In the exponential
growth model, the proportion of the j th taxon of the ith sample is determined as

φij = exp(βj0 + ∑p
k=1 βjkxik)∑q

j=1 exp(βj0 + ∑p
k=1 βjkxik)

.(12)

The intercepts β0, which determine the base abundances of the taxa, are taken from
a uniform distribution over (−2.3,2.3) so that the base taxa abundances can differ
up to 100 folds. The exponential growth model is a common model for bacteria
growth in response to environmental stimuli. We also consider a linear growth
model, in which the proportion of the j th taxon of the ith sample is determined as

φij = βj0 + ∑p
k=1 βjkxik∑q

j=1(βj0 + ∑p
k=1 βjkxik)

.
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The intercepts β0 are now drawn from a uniform distribution over (0.02,2) so that
the base taxa abundances can also differ up to 100 folds. To deal with possible
negative

∑p
k=0 βjkxik , we add a small constant to make it positive.

We then generate the count data using the DM model of parametrization II (4)
with a common dispersion θ . The number of individuals (sequence reads) for the
ith sample mi is generated from a uniform distribution over (m,2m). Note that
the data are not generated exactly according to our model assumptions, which
are based on parametrization I (2) and link (6). This can further demonstrate the
robustness of our proposed model.

5.2. Evaluation of the penalized likelihood approach for selecting covariates
affecting the microbiome composition. To evaluate the variable selection perfor-
mance of the proposed sparse penalized likelihood approach with group �1 penalty,
we first simulate the count data using the exponential growth model with n = 100,
p = 100, pr = 4, q = 40, qr = 4, m = 1000, θ = 0.025, and ρ = 0.4, totaling
4000 variables. We compare the results to the corresponding penalized estimation
of the DM model using only the �1 penalty function and two other sparse group
�1 estimations based on multinomial or Dirichlet regression. In sparse multino-
mial regression, we use the multinomial model for count data and the link function
is given by (12). We set β10 = 0 to make the coefficients identifiable. In sparse
Dirichlet regression, instead of modeling the counts directly, we model the propor-
tions using the Dirichlet distribution and the link function is the same as that of
the DM regression. Since the count data contain zeros, we add 0.5 to the cells with
0 counts. We also include results from the LRT based univariate testing procedure
for group selection controlling the false discovery rate (FDR) at 0.05.

We measure the selection performance using

recall = TP

TP + FN
, precision = TP

TP + FP
, F1 = 2 · precision · recall

precision + recall
,

where TP, FN and FP are true positives, false negatives and false positives, re-
spectively, and F1 is an overall measure, which weights the precision and recall
equally. The averages of these measures are reported based on 100 replications.

To select the best tuning parameter values, we simulate an independent test data
set of n/2 samples. We then run the penalized procedure over the training data set
and re-estimate the selected coefficients using an unpenalized procedure (“nlm”
function in R). The log-likelihood of the test data set is calculated based on the
re-estimated coefficients and the tuning parameter is selected to maximize the log-
likelihood over the test data set. We choose the tuning parameter c from the set
{0,0.05,0.1,0.2,0.4}. Figure 1 shows that a small c is sufficient to identify the
groups efficiently, while further increase of c only improves the group selection
marginally. On the other hand, within-group selection exhibits a unimode pattern
indicating slight grouping could lead to better identification of within-group ele-
ments. In the following simulations, we tune both c and λ to achieve the maximum
likelihood values in the test data sets.



SPARSE DIRICHLET-MULTINOMIAL REGRESSION 429

FIG. 1. Effect of the tuning parameter c on variable selection. The tuning parameter c is varied
from 0 to 0.4. Under each value of c, the best λ value, which maximizes the likelihood of the test data
set, is selected to generate the sparse model. Group (left) and within-group (right) selection perfor-
mances are then evaluated using measures of recall, precision and F1 based on 100 replications.
Simulation setting: n = 100, p = 100, pr = 4, q = 40, qr = 4, m = 500, θ = 0.025, ρ = 0.4.

Table 1 shows the simulation results. The sparse group �1 penalized DM regres-
sion has a much higher precision rate in group selection than the corresponding
�1 penalized procedure, while both achieve similar recall rates, demonstrating the
gain from including the group �1 penalty in the regularization. Interestingly, the
sparse group penalized DM regression also performs better in within-group se-
lection, as shown by a higher recall rate and F1, indicating better group selection
could also facilitate better overall variable selection. Compared to models based
on the sparse Dirichlet regression and multinomial regression, the DM model per-
forms better in variable selection, especially for within-group selection, suggesting
the DM model is more appropriate than multinomial or Dirichlet models when the
counts exhibit overdispersion. The Dirichlet model performs slightly better than
the multinomial model. At 5% FDR, the LRT based univariate testing procedure
selects far more variables than these penalized procedures, yielding a higher recall
rate but a much worse precision rate.

5.3. Effects of overdispersion and model misspecification. We further inves-
tigate the effect of overdispersion and simulate the count data with different de-
grees of overdispersion and present the results in Figure 2. We observe that larger
overdispersion makes the selection more difficult for all three models, as shown by
smaller F1 values. When the data have slight overdispersion (θ = 0.005), the se-
lection performances of the three models are similar. On the other hand, when the
data have much overdispersion (θ = 0.1), DM performs much better than the other
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TABLE 1
Comparison of sparse group �1 and �1 penalized procedures for variable selection under Dirichlet-multinomial (DM), Dirichlet (D) and multinomial

(M) regression models. The selection performance, both group selection and within-group selection, is evaluated using recall rate (R), precision rate (P)
and F1 (F), all averaged over 100 runs (standard deviation in parenthesis). The selection based on a univariate likelihood ratio test (LRT) at

FDR = 0.05 is also indicated

Sparse group �1 penalization �1 penalization

Within-group Group Within-group Group

Model R P F R P F R P F R P F

Exponential growth, p = 100, qr = 4, θ = 0.025

DM 0.59 0.70 0.59 0.86 0.92 0.87 0.42 0.76 0.48 0.88 0.68 0.70
(0.23) (0.23) (0.18) (0.23) (0.16) (0.18) (0.21) (0.23) (0.18) (0.22) (0.29) (0.22)

D 0.48 0.73 0.52 0.83 0.89 0.82 0.36 0.82 0.45 0.82 0.77 0.72
(0.23) (0.23) (0.20) (0.26) (0.18) (0.21) (0.20) (0.21) (0.19) (0.26) (0.27) (0.23)

M 0.46 0.72 0.50 0.82 0.85 0.79 0.36 0.76 0.44 0.84 0.70 0.69
(0.23) (0.26) (0.21) (0.27) (0.24) (0.25) (0.19) (0.24) (0.18) (0.26) (0.28) (0.24)

LRT – – – 0.96 0.54 0.66 – – – 0.96 0.54 0.66
– – – (0.11) (0.21) (0.16) – – – (0.11) (0.21) (0.16)
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FIG. 2. Effects of overdispersion (top panel) and model-misspecification (bottom panel) on the
performance of three different models and methods. DM-SGL: sparse group �1 penalized Dirich-
let-multinomial model; DM-L: �1 penalized Dirichlet-multinomial model; M-SGL: sparse group �1
penalized multinomial model; M-L: �1 penalized multinomial model; D-SGL: sparse group �1 pe-
nalized Dirichlet model; D-L: �1 penalized Dirichlet model. For each bar, mean ± standard error is
presented based on 100 replications.

two models in terms of both group selection and within-group selection. Therefore,
modeling overdispersion can lead to power gains in identifying relevant variables
if the data are overdispersed.
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To assess the sensitivity to model misspecification, we simulate the counts us-
ing the linear growth model instead and compare the results with the exponential
growth model (see Figure 2). Interestingly, both the Dirichlet and DM model are
very robust to model misspecification and their selection performances do not de-
crease significantly. On the other hand, the multinomial model suffers a large per-
formance loss with the F1 measure for group selection decreasing from 0.79 to
0.56. We also study the effect of the total counts for each sample (data not shown).
Even increasing the total count by 10 folds, the DM model is still better than the
proportion based Dirichlet model. Therefore, even though we have much deeper
sequencing of the microbiome that results in larger counts for each sample, using
the DM model can still lead to improved performance over the model that consid-
ers only the proportions.

5.4. Effects of the number of the covariates and the relevant taxa. We next
study the effect of the number of relevant taxa in each group on the performance
of different models and present the results in Figure 3. When each relevant group
contains only one relevant taxon, the grouping is not very helpful, so the sparse
group regularized DM model and �1 regularized DM model do not differ much in
selecting the relevant groups. When the relevant group contains 8 relevant taxa,
variable grouping becomes much more important and the sparse group regularized
DM model performs much better than the �1 penalized DM. The group penalized
multinomial and Dirichlet regression models, on the other hand, select groups as
well as the DM regression model, since the grouping effect is much stronger.

Figure 3 also shows the results when we increase the dimension of covariates
to 400 (16,000 variables in total). Increase of the dimension does not deteriorate
the variable selection performance, demonstrating the efficiency of our method in
handling high-dimensional data.

6. Associating nutrient intake with the human gut microbiome composi-
tion. Diet strongly affects the human health, partly by modulating gut microbial
community composition. Wu et al. (2011) studied the habitual diet effect on the hu-
man gut microbiome, where a cross-section of 98 healthy volunteers were enrolled
in the study. Diet information was collected using a food frequency questionnaire
(FFQ) and was then converted to nutrient intake values of 214 micronutrients. Nu-
trient intake was further normalized using the residual method to adjust for caloric
intake and was standardized to have mean 0 and standard deviation 1. Since some
nutrient measurements were almost identical, we used only one representative for
these highly correlated nutrients (correlation ρ > 0.9), resulting in 118 represen-
tative nutrients. Stool samples were collected and DNA samples were analyzed
by the 454/Roche pyrosequencing of 16S rDNA gene segments of the V1–V2 re-
gion. The pyrosequences were denoised prior to taxonomic assignment, yielding
an average of 9265 ± 3864 (SD) reads per sample. The denoised sequences were
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FIG. 3. Effects of the number of relevant taxa (top panel) and the number of the covariates (bot-
tom panel) on the performances of several models and methods. DM-SGL: sparse group �1 penal-
ized Dirichlet-multinomial model; DM-L: �1 penalized Dirichlet-multinomial model; M-SGL: sparse
group �1 penalized multinomial model; M-L: �1 penalized multinomial model; D-SGL: sparse group
�1 penalized Dirichlet model; D-L: �1 penalized Dirichlet model. For each bar, mean ± standard
error is presented based on 100 replications.

then analyzed by the QIIME pipeline [Caporaso et al. (2010)] with the default pa-
rameter settings. The OTU table contained 3068 OTUs (excluding the singletons)
and these OTUs can be further combined into 127 genera. We studied 30 relatively
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common genera that appeared in at least 25 subjects. Finally, we had the count
matrix Y98×30 and covariate matrix X98×118. Our goal is to identify the micronu-
trients that are associated with the gut microbiomes and the specific genera that
the selected nutrients affect.

We applied the sparse group �1 penalized DM regression to this data set. We
used the BIC to select the tuning parameters. The final DM model selected 11 nu-
trients and 13 associated genera. We refit the DM regression model using the se-
lected variables and obtained the maximum likelihood estimates of the coefficients.
We compared the fitted counts (total count×fitted proportion) against the observed
counts in Figure 4 (top panel). The model fits the data quite well with r2 = 0.79.
Table 2 shows the MLEs of the regression coefficients for the selected nutrients
and genera. Except for Methionine (second column), the coefficients are not too
small. Since the nutrient measurements are standardized, the exponentiation of a
given coefficient can be interpreted as the factor of change in proportion of a taxon
when a given nutrient changes by one unit while other nutrients remain constant.
The marginal p-value based on the LRT for each of the selected nutrients is also
shown in this table. Except for Vitamin E and Eriodictyol, these selected nutrients
all showed a significant marginal association with the gut microbiome.

To further assess the relevance of the nutrients selected, we used the bootstrap
to analyze the stability of the selected nutrients [Bach (2008)]. Specifically, we
took 100 bootstrap samples and for each sample we ran our algorithm to select the
nutrients. Since some nutrients are highly correlated, we expect that highly corre-
lated nutrients (if the correlation is greater than 0.75) can be selected in different
bootstrap samples; we define the bootstrap selection probability of a given nutrient
as the number of times that this nutrient or its correlated nutrients were selected.
Table 2 shows the bootstrap probabilities of the nutrients that were selected by
the sparse DM regression, indicating quite stable selection of most of the selected
microbiome-associated nutrients. Vitamin E had the least stable selection over the
100 bootstrap samples.

The identified nutrient-taxon associations are visualized in a bipartite graph
shown in Figure 5, where the genera and nutrients are depicted with circles and
hexagons, respectively. These results further confirmed the findings of Wu et al.
(2011), where they found the human gut microbiome can be clustered into two
enterotypes characterized by Prevotella and Bacteroides, respectively, and the Pre-
votella enterotype is associated with a high carbohydrate diet while the Bac-
teroides enterotype is associated with a high protein/fat/choline diet. Figure 5
shows that two carbohydrates, Maltose and Sucrose, are positively associated with
Prevotella and negatively associated with Bacteroides, while animal proteins are
positively associated with Bacteroides, Parabacteroides and Alistipes, the three
genera mostly enriched in the Bacteroides enterotype. Choline is positively as-
sociated with Bacteroides and negatively associated with Prevotella. Polyunsatu-
rated fat is strongly associated with Alistipes, Odoribacter, Barnesiella and Para-
sutterella, indicating the large effect of fat on the human microbiome.
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FIG. 4. Model fit using the variables selected by the sparse group l1 penalized DM model. Top
plot: square root of the fitted counts versus square root of the observed counts based on the DM
model with the selected nutrients; bottom plots: observed counts and simulated counts produced by
the fitted sparse DM model and multinomial model.
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TABLE 2
Estimated regression coefficients from the sparse group �1 penalized DM regression for the diet-gut microbiome data. The exponentiation of a given
coefficient can be interpreted as the factor of change in proportion of a taxon when a given nutrient changes by one unit while other nutrients remain

constant. Columns 1–11 represent the selected nutrients: Polyunsaturated fat, Methionine, Sucrose, Animal Protein, Vitamin E-Food Fortification,
Maltose, Added Germ from wheats, Choline-Phosphatidylcholine, Taurine, Naringenin-flavanone and Eriodictyol-flavonone. Rows 1–13 represent the
selected bacteria taxa: Bacteroides, Barnesiella, Odoribacter, Parabacteroides, Prevotella, Alistipes, Coprococcus, Faecalibacterium, Oscillibacter,
Ruminococcus, Subdoligranulum, Phascolarctobacterium and Parasutterella. The marginal p-value based on the LRT and the bootstrap selection

probability of each of the selected nutrients are also shown

Row: taxon; column: nutrient

– −0.03 −0.08 0.09 −0.08 −0.10 −0.02 0.02 0.10 – −0.03
−0.32 – −0.33 – – – 0.22 – – – –
−0.38 – – – – – – – – −0.29 –
– −0.01 −0.08 0.13 −0.07 – – – 0.02 −0.23 –
– – 0.23 – – 0.36 0.63 −0.72 – – –
−0.19 −0.04 – 0.16 – – – – – – 0.05
– – – – – – – – – – 0.16
– – – – – −0.08 – – – 0.07 –
– −0.02 – – – – – – −0.10 – –
– – 0.19 – – – – – – – –
– 0.02 – – – – – – −0.12 −0.12 0.14
– – – – −0.35 – – – – – –
−0.26 – −0.29 – – – – – – – –

Marginal p-value

4.5 × 10−3 2.2 × 10−4 8.4 × 10−4 3.6 × 10−4 1.1 × 10−1 6.0 × 10−3 9.5 × 10−6 2.7 × 10−3 5.9 × 10−3 5.8 × 10−2 5.2 × 10−3

Bootstrap selection probability

0.50 0.93 0.72 0.94 0.35 0.67 0.43 0.58 0.92 0.61 0.60
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FIG. 5. Association of nutrients with human gut microbial taxa identified by the sparse group �1
regularized DM model. We use a bipartite graph to visualize the selected nutrients and their asso-
ciated genera based on sparse group �1 penalized DM regression. Circle: genus; hexagon: nutrient;
solid line: positive correlation; dashed line: negative correlation. The thickness of the line represents
the association strength.

The DM model also identified several other associations that are worth fur-
ther investigation. For example, we found that Naringenin (flavanone) was pos-
itively associated with Faecalibacterium, an anti-inflammatory commensal bac-
terium identified by gut microbiota analysis of Crohn’s disease patients [Sokol
et al. (2008)]. If the association is validated, diet with high Naringenin (e.g., Or-
ange, Grapefruit) can be beneficial for patients with Crohn’s disease.

As a comparison, we also ran the sparse group �1 penalized multinomial or
Dirichlet regression models and the identified nutrient-genus associations showed
significant overlap with those from the DM regression model. However, the inter-
pretability of the DM regression model was the best. To further demonstrate the
advantage of the DM model, we simulated taxa counts for each individual based
on the fitted models and the observed total taxa counts. The bottom plot of Figure 4
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shows that the simulated counts produced by the fitted sparse DM model resemble
the observed counts better than those from the sparse multinomial model, where
the simulated counts are apparently over-smoothed. This indicates the importance
of considering the overdispersion in modeling the gut microbiome data. We also
performed the LRT based univariate testing procedure. At FDR = 0.05, the LRT
identified 13 nutrients, 8 of which are also identified or highly correlated with the
nutrients identified by the sparse group �1 penalized DM model.

7. Discussion. We have proposed a sparse group �1 penalized estimation for
the DM regression in order to select covariates associated with the microbiome
composition. The sparse group �1 penalty encourages both group-level and within-
group sparsity, with which we can select the relevant taxa associated with the se-
lected covariates. We have performed extensive simulations to evaluate our pro-
posed penalized estimation procedure for both group and within-group selections.
We demonstrated the procedure with a real data set on associating nutrient intakes
with gut microbiome composition and confirmed the major findings in Wu et al.
(2011).

In our penalized likelihood estimation of the DM model, we use a combination
of group �1 and individual �1 penalties, which result in a convex and separable
(in groups of parameters) penalty function. This property facilitates the applica-
tion of the general coordinate gradient descent method of Tseng and Yun (2008)
to implement an efficient optimization algorithm. In each iteration, we have a
closed form solution for a block update. For a given set of the sparsity tuning
parameters, our algorithm is fully automatic and does not require the specification
of an algorithmic tuning parameter to ensure convergence. For example, it took
about 3 minutes on a standard laptop (Core i5, 2G memory) to finish the analy-
sis of the real data set using an R implementation of the algorithm (available at
http://statgene.med.upenn.edu/). Besides the sparse l1 group penalty, other group
penalty functions such as the sup-norm penalty in Zhang et al. (2008) and the
composite absolute penalties in Zhao, Rocha and Yu (2009) can also be used in the
setup of the Dirichlet multinomial regression. However, efficient implementation
of the optimization problems with these penalty functions is challenging.

In microbiome data analysis literature, one commonly used approach is to nor-
malize the counts into proportions and perform statistical analysis using the pro-
portions. However, by converting into the proportions, the variation associated
with the multinomial sampling process is lost. In 16S rRNA sequencing, the se-
quencing depths (total counts) for samples can vary up to 10-fold. Obviously, the
accuracy of the proportion estimates under sequencing depth of 500 reads is very
different from that of 10,000 reads. As shown in our simulations, modeling counts
directly can result in gain of power in selecting relevant variables even when the
number of sequence reads is very large. Another problem associated with propor-
tions is the existence of numerous zeros in the taxa count data. Many proportion

http://statgene.med.upenn.edu/
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based approaches require taking logarithms of the proportions, which is problem-
atic for the zero proportions. To circumvent this problem, either a pseudo count
(e.g., 0.5) is added to these zero counts before converting into proportions or an
arbitrary small proportion is substituted for these zero proportions. The effects of
creating pseudo counts have not been evaluated thoroughly when the data contain
excessive zeros.

Besides overdispersion, the taxa count data can also exhibit zero-inflation
[Barry and Welsh (2002)], where the count data contain more zeros than ex-
pected from the DM model. How to model the microbiome count data that allows
overdispersion, zero-inflation and possibly the phylogenetic correlations among
the taxa is an important future research topic. The multilevel zero-inflated DM re-
gression model for overdispersed count data with extra zeros [Lee et al. (2006),
Moghimbeigi et al. (2008)] can potentially provide a solution to this problem. An-
other problem associated with the DM model is its inflexibility in modeling the
covariance structure among the taxa counts. The multinomial model for counts
compounded by a logistic normal model [Aitchison (1982)] for proportions pro-
vides a possible solution. This needs to be investigated further.

APPENDIX

THEOREM 1. Letting b,x ∈ R
n, λ1, λ2, c are nonnegative constants and x0 is

the minimizer of the following function:

f (x) = 1
2xT x + bT x + c + λ1‖x‖2 + λ2‖x‖1,(13)

then x0
S = 0 and

x0
S̄

= arg min
xS̄

{1
2xT

S̄
xS̄ + (

bS̄ − λ2 sgn(bS̄ )
)T xS̄ + c + λ1‖xS̄‖2

}
,

where S = {i ∈ {1, . . . , n}||bi | < λ2} and S̄ = {1, . . . , n} \ S and sgn(·) is the sign
function.

PROOF. We prove x0
S = 0 by contradiction. If x0

i �= 0 (i ∈ S), then we can
construct a new x1 with x1

i = 0 and other components being the same as x0.

Clearly, 1
2x1T

x1 + bT x1 + c + λ2‖x1‖1 < 1
2x0T

x0 + bT x0 + c + λ2‖x0‖1 and
λ1‖x1‖2 < λ1‖x0‖2. The former is due to the fact that 1

2(x0
i )2 + bix

0
i + λ2|x0

i | > 0
for |bi | < λ2. Hence, x0 is not the minimizer of f (x), which is contradictory.
Therefore, x0

S = 0.
To prove the second part, we note that x0

i must be either 0 or have an opposite
sign of bi for i ∈ {1, . . . , n}. So the minimization of f(x) is equivalent to minimiz-
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ing

f ∗(x) = 1
2xT x + (

b − λ2 sgn(b)
)T x + c + λ1‖x‖2,

subject to

sgn(xi) = − sgn(bi) or xi = 0.

Since x0
S = 0, we can restrict the minimization over only xS̄ ,

f ∗(xS̄ ) = 1
2xT

S̄
xS̄ + (

bS̄ − λ2 sgn(bS̄ )
)T xS̄ + c + λ1‖xS̄‖2,(14)

subject to

sgn(xi) = − sgn(bi) or xi = 0 (i ∈ S̄).

Since x0
S̄

is the minimizer of f ∗(xS̄ ) without the constraint, the sign of x0
S̄

should

be the opposite of the sign of (bS̄ − λ2 sgn(bS̄ )). Because |bi | ≥ λ2 for i ∈ S̄, the
sign of (bS̄ − λ2 sgn(bS̄ )) is the same as bS̄ . So the sign of x0

S̄
is the opposite of

that of bS̄ . Therefore, x0
S̄

satisfies the constraint. �

Using simple variable substitution, we have the following corollary.

COROLLARY 1. Letting b,β,d ∈ R
n, λ1, λ2, c are nonnegative constants and

d0 is the minimizer of the following function,

f (d) = 1
2dT d + bT d + c + λ1‖β + d‖2 + λ2‖β + d‖1,(15)

then d0
S = −βS and

d0
S̄

= arg min
dS̄

{
1

2
dT

S̄
dS̄ + (

bS̄ − λ2 sgn(bS̄ − β S̄ )
)T dS̄ + c + λ1‖dS̄ + β S̄‖2

}
,

where S = {i ∈ {1, . . . , n}||bi −βi | < λ2}, S̄ = {1, . . . , n} \S and sgn(·) is the sign
function.
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