
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Kong, Efang and Xia, Yingcun  (2007) Variable selection for the single index model.   Biometrika,
94  (1).   pp. 217-229.  ISSN 0006-3444.

DOI

https://doi.org/10.1093/biomet/asm008

Link to record in KAR

https://kar.kent.ac.uk/23951/

Document Version

UNSPECIFIED



Biometrika (2007), 94, 1, pp. 217–229 doi:10.1093/biomet/asm008

 2007 Biometrika Trust

Printed in Great Britain

Variable selection for the single-index model

BY EFANG KONG AND YINGCUN XIA

Department of Statistics and Applied Probability, National University of Singapore, 117546,

Singapore

g0201815@nus.edu.sg staxyc@stat.nus.edu.sg

SUMMARY

We consider variable selection in the single-index model. We prove that the popular

leave-m-out crossvalidation method has different behaviour in the single-index model from

that in linear regression models or nonparametric regression models. A new consistent

variable selection method, called separated crossvalidation, is proposed. Further analysis

suggests that the method has better finite-sample performance and is computationally

easier than leave-m-out crossvalidation. Separated crossvalidation, applied to the Swiss

banknotes data and the ozone concentration data, leads to single-index models with selected

variables that have better prediction capability than models based on all the covariates.

Some key words: Consistency; Crossvalidation; Nonparametric smoothing; Semiparametric model; Variable
selection.

1. INTRODUCTION

Suppose Y is a response variable and X = (x1,. . . , xp)⊤ are covariates. The single-index

model is written as

Y = g(X⊤θ0) + ε, (1)

where E(ε|X) = 0 almost surely, g is an unknown link function and θ0 is an unknown

unit vector with first nonzero component positive for identification purposes. Recent

papers (Powell et al., 1989; Härdle & Stoker, 1989; Ichimura, 1993; Klein & Spady, 1993;

Härdle et al., 1993; Horowitz & Härdle, 1996; Hristache et al., 2001; Xia et al., 2002) have

considered the estimation of the index parameter and the nonparametric link function with

focus on the root-n consistency of the former; efficiency issues have also been studied.

Amongst the various methods of estimation, the most popular are the average derivative

estimation method proposed by Härdle & Stoker (1989) and the method of Härdle et al.

(1993).

All the studies mentioned above assume that all regressors X contain useful information

to predict the response variable. If irrelevant regressors are included, which is very likely in

high-dimensional environments (Naik & Tsai, 2000), the precision of parameter estimation

as well as the accuracy of forecasting will suffer (Altham, 1984). Therefore, it makes sense

to exclude irrelevant covariates from single-index models. Naik & Tsai (2001) considered

variable selection using sliced inverse regression in which the predictor X is required to

be continuous and elliptically symmetric. However, in practice some covariates may be

asymmetric or discrete.
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For parametric models, methods based on crossvalidation or on measures such as AIC

(Akaike, 1974) have been the main focus of attention in model identification and variable

selection (Miller, 2002). For linear regression models, the leave-one-out crossvalidation

method (Stone, 1974) is inconsistent and tends to select unnecessarily many variables.

However, Shao (1993) proved that, if m/n → 1 and n − m → ∞, then leave-m-out

crossvalidation is consistent. On the other hand, under nonparametric settings, leave-

one-out crossvalidation is consistent; see for example Tjøstheim & Auestad (1994) and

Cheng & Tong (1992). An interesting discussion about the different performances of

crossvalidation in linear regression models and nonparametric models can also be found in

Gao & Tong (2004).

Semiparametric models are different again. We shall show that leave-one-out

crossvalidation again fails in selecting the variables of a single-index model. However,

leave-m-out crossvalidation is consistent for single-index models provided that m/n →

c ∈ [2/3, 1), different from the requirements on m in linear regression models. Thus, no

more than 1/3 of the samples should be used for model estimation, and this is usually

not enough to estimate the model well, resulting in inferior efficiency in variable selection.

Furthermore, the computation of leave-m-out crossvalidation is very time-consuming. To

overcome these disadvantages, we shall propose the separated crossvalidation method.

2. OPTIMAL MODEL AND PARAMETER ESTIMATION

We use notation similar to that of Shao (1993). Let S denote all nonempty subsets of

{1,. . . , p}. For any α ∈ S, let dα be the cardinality of α, and let θα and Xα be two dα × 1

column vectors containing the components of θ and X respectively indexed by the integers

in α. Let θ denote the vector which minimises E{Y − E(Y |X⊤
α θ)}2. The corresponding

single-index model,

Y = gα(X⊤
α θ) + εα, εα = Y − E(Y |X⊤

α θ) = Y − gα(X⊤
α θ), (2)

is denoted by Mα. If we know whether or not each component of the true θ0 is zero, then

models Mα can be classified into two categories. In one category, at least one covariate

with a nonzero coefficient in (1) is missing in Xα. In the other category, Xα contains all

covariates with nonzero coefficients. The optimal model, denoted by Mα0
, is defined as the

one in the second category with the smallest number d0 of covariates.

Suppose {(Xi, Yi), i = 1,. . . , n} is a random sample from model (1). Consider model

Mα with α ⊃ α0. To guarantee the consistency of estimation, we assume throughout the

paper that X⊤
α θ has a density function for all θ in a small neighbourhood of θ0

α, a column

vector containing the components of θ0 indexed by the integers in α; see Horowitz &

Härdle (1996) for more discussion. The popular method of Härdle et al. (1993) estimates

the model as follows. Suppose A ⊆ Rp is a compact convex set such that the density

function of X⊤θ is uniformly bounded away from zero on {θ⊤x : x ∈ A} for any θ near

θ0. For any given b > 0 and h > 0, let Abh = {x ∈ Rp : ‖x − x0‖ � bh for some x0 ∈ A}.

Introducing A and Abh is for technical purposes; see Härdle et al. (1993) for more details.

Let gα(u|θ) = E(Y |X⊤
α θ = u⊤θ). Its leave-one-out estimator is given by

ĝ\i
α (u|θ) =

∑j =| i Kh(X
⊤
j,αθ − u⊤θ)Yj∑j =| i Kh(X

⊤
j,αθ − u⊤θ)

,
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where h is a bandwidth, K is a univariate kernel function with support [−b, b] and

Kh(.) = h−1K(./h). The index parameter in model Mα is estimated by minimizing

HCVα(θ, h):=∑
i

′
{Yi − ĝ\i

α (Xi,α|θ)}2, (3)

with respect to θ and h > 0 subject to ||θ || = 1, where ∑′
i denotes summation over indices

i such that Xi ∈ A. We assume that all Xi ∈ Abh; otherwise one can always completely

ignore those data outside Abh. For ease of exposition, suppose that Xi ∈ A if 1 � i � n′

and Xi /∈ A if i > n′, which implies that n − n′ = O(nh). This estimator has very good

asymptotic properties. It needs no under-smoothing for the estimator of θ to achieve the

root-n consistency. However, it is not easy to solve the above minimization problem,

especially when dα is large.

Based on local linear approximation (Ruppert & Wand, 1994), Xia et al. (2002) estimated

θ0
α by

θ̂ = arg min
θ :‖θ‖=1

n∑
j=1

n∑
i=1

(Yi − aj − djθ
⊤Xij,α)2wij ,

where Xij,α = Xi,α − Xj,α and wij is a weight depending on the distance between Xi,α

and Xj,α. The corresponding algorithm takes the following form. With an initial value θ ,

calculate

( aθ
j

dθ
j h
) = { n∑

i=1

Kh(X
⊤
ij,αθ)( 1

X⊤
ij,αθ/h

)( 1

X⊤
ij,αθ/h

)⊤}−1
n∑

i=1

Kh(X
⊤
ij,αθ)( 1

X⊤
ij,αθ/h

)Yi, (4)

and then calculate

θ = {∑
i,j

Kh(X
⊤
ij,αθ)(dθ

j )2Xij,αX⊤
ij,α}−1∑

i,j

Kh(X
⊤
ij,αθ)dθ

j Xij,α(yi − aθ
j ), θ =: sign(θ1)

θ

||θ ||
. (5)

Repeat (4) and (5) until the iteration process converges, to what we call the minimum

average variance estimate.

Xia & Tong (2006) proved that the estimator produced by the algorithm can achieve

root-n consistency and has the same asymptotic distribution as the estimator of Härdle

et al. (1993).

3. CROSSVALIDATION VARIABLE SELECTION

In the crossvalidation method, the data are split into two sets: the training set sc and the

test set s. The training set is used to estimate all candidate models, and the model that best

predicts the test set is the preferred model. Note that, in (2), θ = θ0
α for any α ⊃ α0. For

such α and any s ⊂ {1,. . . , n′} with cardinality m, we first estimate θ0
α by θ̂

\s
α , the minimum

average variance estimate of θ in model (2) using {(Xj , Yj ) : 1 � j � n, j /∈ s}. We then

estimate the link function gα(u|θ̂
\s
α ) by the local linear smoother

ĝ\s
α (u|θ̂

\s

α ) = ∑
j /∈s

Mα,h{(Xj,α − u)⊤θ̂
\s

α }Yj/∑
j /∈s

Mα,h{(Xj,α − u)⊤θ̂
\s

α }, (6)

where

Mα,h{(Xj,α − u)⊤θ̂
\s

α } = S
\s
α,2(u|θ̂

\s

α )Kh{(Xj,α − u)⊤θ̂
\s

α }

−S
\s
α,1(u|θ̂

\s

α ){(Xj,α − u)⊤θ̂
\s

α /h}Kh{(Xj,α − u)⊤θ̂
\s

α }
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with S
\s
α,k(u|θ) = ∑j /∈s Kh{(Xj,α − u)⊤θ}[{(Xj,α − u)⊤θ}/h]k, k = 0, 1, 2. We define the

leave-m-out crossvalidation function as

CVα(m)=m−1(n′

m
)−1∑

s

′ ∑
i∈s

{Yi − ĝ\s
α (Xi,α|θ̂

\s

α )}2, (7)

where ∑′
s indicates summation over all possible subsets s ⊂ {1,. . . , n′} with cardinality m.

Later, we will use ∑′
i,s to denote ∑′

s ∑i∈s . The model Mα with the smallest value of CVα(m)

is the selected model.

THEOREM 1. Suppose Assumptions A1–A7 in the Appendix hold. If m → ∞ with

m/n → c ∈ [0, 1) and h ∝ n−1/5, then, for any α ⊃ α0 and δd := dα − d0, we have

lim
n→∞

pr {CVα(m) > CVα0
(m)} = pr{χ2(δd) >

(2 − 3c)δd

1 − c
}.

By Theorem 1, for leave-m-out crossvalidation to be consistent, i.e. limn→∞ pr{CVα(m) >

CVα0
(m)} = 1, it is required that 2 − 3c � 0 and c < 1, or 1 > c � 2/3. Although we have

no conclusion in the case c = 1, our conjecture is that consistency does not hold, since θ̂
\s
α

is no longer root-n consistent as nc := n − m = o(n), i.e. the size of the training set is much

smaller than n.

The way leave-m-out crossvalidation splits the data is acceptable for a linear regression

model since its parameter can be estimated quite well with a small sample. However, the

size of the training set used by leave-m-out crossvalidation is usually too small for the

nonparametric smoothing methods. Another disadvantage of leave-m-out crossvalidation

is its heavy computational burden since there are (n′

m) possible splitting combinations. To

reduce the burden, Monte Carlo leave-m-out crossvalidation randomly draws, with or

without replacement, a collection R of subsets of {1,. . . , n′}, of size m, and selects a model

that minimizes

CV
mc
α (m):= ∑

s∈R
∑
i∈s

{Yi − ĝ\s
α (Xi,α|θ̂

\s

α )}2. (8)

In linear regression models, the performance of this method has been proved to be similar

to that of leave-m-out crossvalidation; see Zhang (1993) and Shao (1993). Monte Carlo

leave-m-out crossvalidation is thus used in our simulation study instead of leave-m-out

crossvalidation.

Although Theorem 1 is proved for the minimum average variance estimator, other model

estimation methods can also be used providing that the estimator has a similar stochastic

expansion to that in (A1). Examples are the estimator by Härdle et al. (1993), albeit

computationally intensive, and the average derivatives estimator investigated by Härdle &

Stoker (1989). The method of Hristache et al. (2001) might also work because Xia & Tong

(2006) proved that an alternative version has a similar expansion.

4. VARIABLE SELECTION BY SEPARATION

Starting with the full covariate set {x1,. . . , xp}, we need to check whether a certain

covariate, xd say, contributes to the response variable Y . For this purpose, we introduce

the model

Y = g(X⊤
α θ, xd) + e, α ∪ {d} = {1,. . . , p}. (9)
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Compared with model (1), in which the contribution of xd is mixed up with that of the

other covariates through a linear combination, the contribution of xd in model (9) is

‘separated ’ and can be assessed more accurately. Another reason for us to introduce model

(9) is the different behaviours of crossvalidation for parametric models and nonparametric

models. Note that the relationship between Y and xd is ‘nonparametric’ in (9). Therefore,

leave-one-out crossvalidation can tell whether or not xd contributes significantly to the

response variable Y as proved in Cheng & Tong (1992) and Yao & Tong (1994).
The parameter θ in model (9) can be estimated by the first dα entries of the

minimum average variance estimate of θ in Y = g(X⊤
α∪dθ) + e. For any fixed θ , define

gα,d(u, v|θ) = E(Y |X⊤
α θ = u⊤θ, xd = v). Its leave-one-out estimator ĝ

\i
α,d(u, v|θ) is the first

entry of∑j =| i

K
α,θ
h1,j (u, v)

 1

θ⊤(Xj,α − u)

Xj,d − v


 1

θ⊤(Xj,α − u)

Xj,d − v


⊤

−1

∑
j =| i

K
α,θ
h1,j (u, v)

 1

θ⊤(Xj,α − u)

Xj,d − v


⊤

Yj , (10)

where K
α,θ
h1,j (u, v) = Kh1

(X⊤
j,αθ − u)Hh1

(xj,d − v) is a two-dimensional product kernel, h1

is a bandwidth, H = K if xd is continuous and Hh(v) = I (v = 0) if xd is discrete.

For ease of exposition, we use ĝ
\i
α1,d(Xi |θ̂

\i
α1

) and ĝ\i
α1

(Xi |θ̂
\i
α1

) to denote ĝ
\i
α1,d(Xi,α1

, xi,d |θ̂
\i
α1

)

and ĝ\i
α1

(Xi,α1
|θ̂

\i
α1

) respectively. We propose the following algorithm for the variable

selection. Start with an initial covariate set α satisfying α0 ⊂ α.

Step 1. Calculate θ̂α, the minimum average variance estimate of θ in model Y = g(X⊤
α θ) + ε

from all data points. Find the entry of θ̂α with the smallest absolute value and its

corresponding index in α, d say. Set α1 = α \ {d}.

Step 2. Denote by θ̂
\i

α the minimum average variance estimate of θ in Y = g(X⊤
α θ) + ε

based on {(Xj , Yj )}j =| i . Eliminate the last entry and denote the rest by θ̂
\i

α1
.

Step 3. Calculate ĝ
\i
α1,d(Xi |θ̂

\i

α1
) as defined in (10) and ĝ\i

α1
(Xi |θ̂

\i

α1
) as defined in (6), with α

and θ replaced by α1 and θ̂
\i

α1
respectively. Let

CVα1,d =
1

n′∑
i

′
{Yi − ĝ

\i
α1,d(Xi|θ̂

\i

α1
)}2, CVα1

=
1

n′∑
i

′
{Yi − ĝ\i

α1
(Xi |θ̂

\i

α1
)}2,

where ∑i
′ is defined in (3). If CVα1,d < CVα1

, stop and select α. Otherwise, go to

Step 1 with α replaced by α1.

Repeat the above procedure until no more variables can be eliminated. We call this

procedure the separated crossvalidation method.

Step 1 is employed to simplify the calculations. As θ0 can be estimated with root-n

consistency in single-index models, if α ⊃ α0, i.e. xd is redundant, then θ̂d = Op(n−1/2). If

xd is necessary, then θ̂d = θ0
d + Op(n−1/2), which is bounded away from zero in probability.

Therefore, if the initial covariate set α contains redundant variables, then with probability

tending to 1 only the redundant variables will be considered for elimination from Step 1.

It can be used further to simplify the calculation in Steps 2 and 3 by replaying θ̂
\i

α and

θ̂
\i

α1
with θ̂α and θ̂α1

respectively. Step 2 is employed to estimate the parameters in model

(9) assuming that xd can be removed. Step 3 calculates and compares the leave-one-out

crossvalidation values for models (2) and (9) in order to check the importance of xd ; see

also Cheng & Tong (1992).

As shown in Härdle et al. (1993) and Xia & Tong (2006), the commonly used bandwidth

selection methods for nonparametric regression can be used to estimate the link function
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as well as the index parameter. As for the calculation of (10), theoretical justification

requires different bandwidths for the estimation of model (9) depending on the type of

xd : h1 ∝ n−1/6 if xd is continuous and h1 = h ∝ n−1/5 if xd is discrete, where h is the

bandwidth used in the calculation of CVα1
. Many available bandwidth selection methods,

such as crossvalidation or generalized crossvalidation bandwidth selection methods and

the rule-of-thumb can be used to choose the bandwidths; see Silverman (1986) and Fan &

Gijbels (1996) for more details. More discussion can be found in §5 below. We have the

following consistency property for the variable selection procedure.

THEOREM 2. Suppose Assumptions A1–A7 in the Appendix hold and that the bandwidth

satisfies the requirements mentioned above.

(i) If α ∪ d = α0, then lim
n→∞

pr(CVα,d > CVα) → 0.

(ii) If α0 ⊆ α and d /∈ α0, then lim
n→∞

pr(CVα,d < CVα) → 0.

5. SIMULATION STUDY

We compare the leave-one-out, leave-m-out and separated crossvalidation by simulations.

Since the asymptotic distribution of θ̂ can be used for variable selection, we also include it

in the comparison study. The distributional result is that

n1/2(θ̂ − θ0)→N(0,W+
0 W1W

+
0 )

in distribution as n → ∞, where W0 = E[{X − E(X|X⊤θ0)}{X − E(X|X⊤θ0)}⊤g′(X⊤θ0)2],

W1 = E[{X − E(X|X⊤θ0)}{X − E(X|X⊤θ0)}⊤g′(X⊤θ0)2ε2] and W+
0 denotes the Moore-

Penrose inverse. The matrices in the asymptotic distribution can be estimated using kernel

smoothing by Ŵ0 = n−1 ∑n
i=1(Xi −µ̂i)(Xi − µ̂i)

⊤d̂2
i and Ŵ1 = n−1 ∑n

i=1(Xi − µ̂i)(Xi −

µ̂i)
⊤d̂2

i (Yi − âi)
2, where µ̂i = ∑n

j=1 Kh(X
⊤
ij θ̂ )Xj/∑n

j=1 Kh(X
⊤
ij θ̂ ) with âi and d̂i given by

( âi

d̂ih
) = { n∑

j=1

Kh(X
⊤
ij θ̂ )( 1

X⊤
ij θ̂/h

)( 1

X⊤
ij θ̂/h

)⊤}−1
n∑

j=1

Kh(X
⊤
ij θ̂ )( 1

X⊤
ij θ̂/h

)Yj .

Based on the asymptotic distribution, a variable xk is selected if |θ̂k| > 1·96(ckk/n)1/2,

where ckk is the (k, k)th entry of Ŵ+
0 Ŵ1Ŵ

+
0 .

In the calculations below, we use a Gaussian kernel, since we find heuristically that it

performs better in estimating the index parameter; see also Seifert & Gasser (1996). After

(Xi, yi) are standardized, the bandwidths are calculated by the rule-of-thumb of Silverman

(1986, pp. 45–7) as follows. In (4), h = 1·06sθ⊤Xα
n−1/5, where sθ⊤Xα

is the sample standard

deviation of θ⊤Xi,α. In (10), h1 = 1·06sθ⊤Xα
n−1/6 if xd is continuous, and h1 = h if xd

is discrete. The computer code in Matlab for separated crossvalidation is available at

http://www.stat.nus.edu.sg/∼staxyc.

Example 1. We draw random samples with size n = 50, 100 and 200 respectively from a

logistic regression model,

Y ∼ Ber{l(X⊤β)}, l(µ) = exp(µ)/{1 + exp(µ)},

where β = (3, 1·5, 0, 0, 2, 0, 0, 0)⊤ . In the model, two designs were used for X =

(x1,. . . , x8)
⊤. In design A, (x1,. . . , x6)

⊤ ∼ N(0,�6), where �p = (0·5|i−j |)1�i�j�p,

and x7, x8, are independently Ber(0·5), independent of (x1,. . . , x6)
⊤. In design B,

x(2k) = 2I (z(2k) > 0) − 1 and x(2k−1) = z(2k−1) for k = 1, 2, 3, 4, where Z = (z1,. . . , z8)
⊤ ∼
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Table 1. Example 1. Relative frequencies of correct selection

Design n CV(1) CV(0·25n) CV(0·5n) CV(0·75n) SCV ASD

50 0·00 0·00 0·18 0·38 0·41 0·27

A 100 0·29 0·46 0·58 0·63 0·66 0·44

200 0·23 0·47 0·85 0·68 0·90 0·72

50 0·30 0·37 0·46 0·46 0·51 0·32

B 100 0·37 0·43 0·69 0·77 0·81 0·65

200 0·67 0·71 0·80 0·87 0·91 0·75

CV(m), leave-m-out crossvalidation; SCV, separated crossvalidation; ASD,

asymptotic distribution method.

N(0,�8). Design A was investigated by Fan & Li (2001). A single-index model was fitted

to the data and the variable selection methods were applied. The relative frequencies of

correct selection of the variables among 100 replications are listed in Table 1.

Table 1 shows that the separated crossvalidation method outperforms all the other

methods. Its efficiency is even comparable with the results of Fan & Li (2001), where

the model is known up to unknown parameters. Also, the table shows that leave-m-out

crossvalidation performs better if the data are split in the way according to Theorem 1.

Example 2. The Tobit model is an econometric model in which the dependent variable is

censored. In the original model of Tobin (1958), for example, the response is expenditures

on consumer durables, and the censoring occurs as negative values are unobservable, i.e.

Y = (β⊤X + 0·5ε)I (β⊤X + 0·5ε > 0),

where I (.) is the indicator function. See also Nishiyama & Robinson (2005). We

consider two designs. In design A, X = (x1,. . . , x20)
⊤ ∼ N(0, I20), and, in design B,

x(2k) = 2I (z(2k) > 0) − 1 and x(2k−1) = z(2k−1), for k = 1,. . . , 10, where Z ∼ N(0,�20).

The error term ε ∼ N(0, 1) is independent of X and β = (1, 1,. . . , 1, 0,. . . , 0)⊤, with its

first l elements 1 and the others 0.

Table 2 shows the relative frequencies of selecting the variables correctly, based on 100

simulations. The number of covariates in this example is larger than in Example 1. As we

mentioned at the beginning of § 4, having a large number of covariates will compromise

the efficiency of leave-m-out crossvalidation, and this is clearly reflected in Table 2. In most

of Table 2, CV(0·5n) outperforms CV(0·75n), suggesting that, for small to medium sample

size, the way of splitting the data suggested by Theorem 1 is not applicable, because of the

nature of nonparametric smoothing. In contrast, the separated crossvalidation is rather

robust and performs better.

We also found from simulations not reported here that the choice of bandwidth is not

so sensitive in variable selection as in nonparametric function estimation. This insensitivity

was also observed in Cheng & Tong (1992). As mentioned in §3 and §4, other ways of

estimating the single-index models can also be used in the procedure of variable selection

and performs similarly, but some can be very time-consuming.
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Table 2. Example 2. Relative frequencies of correct selection

Design l n CV(1) CV(0·5n) CV(0·75n) SCV ASD

5 50 0·08 0·36 0·02 0·84 0·08

10 50 0·17 0·49 0·14 0·60 0·14A
5 100 0·32 0·82 0·78 0·99 0·26

10 100 0·56 0·90 0·93 1·00 0·33

5 50 0·12 0·38 0·00 0·85 0·03

10 50 0·14 0·32 0·00 0·59 0·17B
5 100 0·42 0·92 0·93 0·97 0·10

10 100 0·55 0·92 0·90 0·99 0·37

CV(m), leave-m-out crossvalidation; SCV, separated crossvalidation;

ASD, asymptotic distribution method.

6. APPLICATIONS TO TWO REAL DATASETS

Example 3. The Swiss banknotes data. The data contain 6 explanatory variables which

are certain measurements of Swiss banknotes, called Length, Left, Right, Bottom, Top and

Diagonal, and denoted by x1,. . . , x6 respectively. The response variable Y is coded as 0 or

1, indicating whether a banknote is genuine or not. There are 200 banknotes. The first 100

banknotes are genuine, and the others are counterfeit.

The separated crossvalidation selects x4, x5 and x6 for a single-index model. The

fitted values from single-index models based on all variables and on the selected vari-

ables are plotted in Fig. 1. The single-index parameters are estimated respectively as

θALL = (−0·1597, 0·4638,−0·1549, 0·5699, 0·2922,−0·5703)⊤ when all the variables are

used and θS = (0·8006, 0·3011,−0·5181)⊤ when the selected variables are used. Both mod-

els fit the data very well. To compare their prediction capabilities, we split the data randomly

into a training set comprising 50 counterfeit banknotes and 50 genuine banknotes, and a

test set containing the rest. We estimate the model with the training set, apply the estimated

model to the test set and calculate the number of misspecifications. With different covariate

sets, the average numbers of misspecifications based on 10 000 replications of this random

splitting are given in Table 3. A single-index model with variables selected by the principle

component analysis is also compared; see Härdle & Simar (2003). Apparently, separated

crossvalidation gives the best results.

Example 4. Ozone concentration data. In this example, we study the relationship between

ozone concentration, Y , and radiation level, R, temperature, T , and wind speed, W . From

May to September 1973, 111 observations were taken daily in New York. We include the

direct interaction between any two covariates in the model as covariates. As a consequence,

we have 9 covariates X = (x1,. . . , x9)
⊤ = (R, T ,W,R2, R ∗ T ,R ∗ W,T 2, T ∗ W,W 2)⊤.

After standardising Y and xk, k = 1,. . . , 9, we apply separated crossvalidation to

Table 3. Swiss banknotes data. Average number of misspecifications

Method Selected variables Ave. no. of misspecifications

All variables x1, x2, x3, x4, x5, x6 0·5787

Crossvalidation x1, x4, x5, x6 0·6223

Seperated crossvalidation x4, x5, x6 0·5100

Principle component anal. x5, x6 0·5411
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Fig. 1. Estimation of single-index models for the banknotes data (a) based on all covariates, (b) based
on only the selected variables. In both panels, ‘+’ denotes the observations and ‘.’ the fitted values. For

easy visualization, we re-scaled the values of the observed Y .
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Fig. 2. Estimation of single-index models for the ozone concentration data (a) based on the original
covariates (R, T , W ), (b) based on the extended variables, (c) based on the selected variables. In all panels,

‘.’ denotes the observations and ‘–’ the fitted values.

Table 4. Ozone concentration data. Average prediction errors

Method Selected variables Ave. prediction error

All original variables x1, x2, x3 0·3643

All extended variables x1, x2, x3, x4, x5, x6, x7, x8, x9 0·3621

Separated crossvalidation x3, x6, x8 0·3403

the data, thereby selecting variables x3, x6 and x8 with estimated index parameter

θc = (0·8486,−0·0992,−0·5196)⊤. Single-index models having X and the original

three variables as predictors are also investigated and the estimated parameters

are θb = (0·2147, 0·1544,−0·7541,−0·1245,−0·0029,−0·0607,−0·2292, 0·5183, 0·1448)⊤

and θa = (0·3443, 0·7051,−0·6199)⊤ respectively. The fitted values are plotted in Fig. 2.

To compare the prediction capabilities of single-index models with different covariates,

we again split the data randomly into two sets, this time with the training set comprising

56 observations and the test set containing the remaining 55 observations. The prediction

errors are defined as the mean residual sum of squares. The results in Table 4 are based

on 10 000 replications of this random splitting. Again, Table 4 indicates that separated

crossvalidation does best.
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APPENDIX

Assumptions and Proofs

First we introduce some notation. Let γ α(.|θ) and γ 0(.) be the density functions of

X⊤
α θ and X⊤θ0 respectively. Let U = {X⊤θ0 : X ∈ A}, Uα = {X⊤

α θ0
α : X ∈ A}, Dα = {xα : x ∈ A},

where A is defined in § 2, K1 =
∫
t2K(t)dt, K2 =

∫
K2(t)dt . For any α ⊃ α0, let µα(x|θ) =

E(Xα|X⊤
α θα = x⊤

α θα), vα(x|θ) = µα(x|θ) − xα, Wα =
∫
A

vα(x|θ)vα(x|θ)⊤g′(x⊤θ0)2f (x)dx, and

Uα,j = W
1
2 +

α g′(X⊤
j θ0)vα(Xj |θ

0). Let 	n,α = {θα : ||θ || = 1, ‖θ − θ0‖ � rn−1/2}, Hn = {h : r1n
−1/5 �

h � r2n
−1/5} for some r > 0 and 0 < r1 < r2 < ∞. Denote 	n,{1,. . . ,p} by 	n.

We need the following regularity conditions to prove the theorems.

Assumption A1. X has a compact support inRp, and for any α ⊇ α0, infx∈A,θ∈	n,α γ α(x⊤θ |

θ) > 0.

Assumption A2. Link function g(.) has bounded third-order derivatives on U.

Assumption A3. K is a symmetric density function with a compact support. Without loss

of generality, we assume that K1 = 1 and the Fourier transform of K(t) is absolutely

integrable.

Assumption A4. E(εi |Xi) = 0 and E(ε2
i |Xi) = σ 2.

Assumption A5. For any α, sup
m→∞

sup
s

∥∥∥m−1 ∑j∈s Uα,jU
⊤
α,j − Idα + θ0

αθ0
α

⊤
∥∥∥ = op(1), and

θ̂
\s

α − θ0
α = nc

−1W+
α ∑

j /∈s

g′(X⊤
j,αθ0

α)v⊤
α (Xj |θ

0)εj + δ\s
n , (A1)

where Idα is the identity matrix and δ\s
n = op(n−1/2) uniformly for all s.

Assumption A6. For any α ⊂ α0, gα(v|θ) = E(Y |X⊤
αθ = v⊤θ) has bounded first-order

derivative with respect to θ ∈ 	n,α; σ 2
α(θ) := E {gα(Xα|θ) − Y }2 with inf

θ∈	n,α

σ 2
α(θ) > σ 2.

Assumption A7. For any α ∪ d ⊇ α0, if xd is continuous, the joint density function of

(X⊤
α θ, xd), fX⊤

α θ,xd
(u⊤θ, v), is uniformly bounded away from zero for θ ∈ 	n,α, u ∈ Dα and

v ∈ Ad := {xd : (x1,. . . , xd ,. . . , xp) ∈ A}; if xd is discrete, the conditional density function

of X⊤
α θ given xd = v, fX⊤

αθ |xd=v(.), satisfies inf
u∈Dα,θ∈	n,α

fX⊤
αθ0

α |xd=v(u
⊤θ) > 0.

Assumptions A1–A4 are required for the consistency of estimations; see Härdle et al. (1993)

and Xia & Tong (2006). For Assumption A5, while Xia & Tong (2006) has proved (A1) with

δ\s
n = op(n−1/2) for any given s, the uniform convergence rate here is necessary to guarantee the

validity of leave-m-out crossvalidation and is parallel to the balanced block design assumption

in linear regression; see Zhang (1993). The requirement on the Fourier transform of K(t) in

Assumption A3 is to ensure the difference between the minimum average variance estimate θ̂ and

θ0 admits the form in (A1). Many kernel functions meet this demand, such as the triweight kernel.
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Gaussian kernel is also permissible at the expense of a longer proof. Assumption A6 is a common

assumption if the optimal model exists and is unique; see Yao & Tong (1994). Assumption A7 is

used to ensure the denominators of kernel smoothers is bounded away from zero.

We outline the proofs here. Detailed derivation is available upon request.

Proof of Theorem 1. Write Yi − ĝ\s
α (Xi |θ̂

\s

α ) = Yi − ĝ\s
α (Xi |θ

0
α) + ĝ\s

α (Xi |θ
0
α) − ĝ\s

α (Xi |

θ̂
\s

α ). Then, by (A1), Lemma 7 and Lemma 9 in Xia & Tong (2006), we can prove that

CVα(m) = m−1(n′

m
)−1∑

i,s

′
{Yi − ĝ\s

α0
(Xi |θ

0
α)}2 + m−1(n′

m
)−1 { 2

nc
∑
i,s

′
εiU

⊤
α,i ∑

j /∈s

Uα,jεj

+
1

n2
c
∑
i,s

′
U⊤

α,i (∑
j /∈s

Uα,jεj)(∑
j /∈s

U⊤
α,jεj)Uα,i}+ op ( 1

n
)

:= RSS(m) + m−1(n′

m
)−1

(T1 + T2) + op ( 1

n
) ,

where the term op(n−1) is quantified by computing corresponding second moments using

Assumptions A1–A4 and the facts that {Xi, Yi} are independent observations. Let esc =

(εj )j /∈s and Uα,sc = (Uα,j1
,. . . , Uα,jnc

)⊤, where ji /∈ s. By Assumptions A2 and A5, we have

T2 =
m

n2
c
∑
s

′(e⊤sc Uα,sc) (Idα − θ0
αθ0

α

⊤) (e⊤sc Uα,sc)⊤{1 + op(1)}

=
m

n2
c
∑
s

′(e⊤sc Uα,sc)(e⊤sc Uα,sc)⊤{1 + op(1)}.

The last equality holds since U⊤
α,jθ

0
α = 0 for all j . Combinatoric calculation leads to

T1 + T2 = (n′ − 2

m − 1
) 1

n2
c

{(2n + n′ − 3m − 1)(∑
i

′
Uα,iεi)⊤(∑

i

′
Uα,iεi)

+(3m − 2n)∑
i

′
U⊤

α,iUα,iε
2
i } {1 + op(1)} .

Note that nc = n − m, and both m/n′ and m/n tend to c. By the law of large numbers

and Assumption A5, n
′−1 ∑′

i ε2
i U

⊤
α,iUα,i → σ 2E{tr(Idα − θ0

αθ0
α

⊤
)} = σ 2(dα − 1) in probability and

n
′−1(∑i

′Uα,iεi)
⊤(∑i

′Uα,iεi)→σ 2χ2(dα − 1) in distribution. Therefore,

n{CVα(m) − RSS(m)} → σ 2{3χ2(dα − 1) +
(3c − 2)(dα − 1)

(1 − c)
} (A2)

in distribution. As RSS(m) is independent of α and Uα0,i is a subvector of Uα,i if α ⊃ α0, thus the

proof is completed. �

Proof of Theorem 2. First, we quantify CVα. If α ⊃ α0, let m = 1 in (A2) and we have

CVα = n′−1∑i
′{Yi − ĝ\i

α (Xi |θ
0
α)}2 + Op(n′−1

). Mimicking the steps leading to Lemma 1 in Yao &

Tong (1994), we have

CVα =
1

n′∑
i

′
ε2
i +

c1

n′h
+ c2h

4 + op ( 1

n′h
) , (A3)

where c1 = σ 2K2E{γ −1
0 (X⊤θ0)} = σ 2K2L(U), c2 = Eg

′′2(X⊤θ0)/4 and L(U) is the Lebesgue

measure of U .
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If α ∪ d = α0, Step 2 in § 4 with (A1) indicates that θ̂
\i

α − θ0
α = Op(n−1/2) uniformly in i. Then, by

Theorem 6 in Masry (1996) and similar arguments leading to (A3), we have

CVα = n
′−1∑

i

{Yi − ĝ\i
α (Xi |θ

0
α)}2 + op(1) = σ 2(θ0

α) + op(1). (A4)

Next, we consider CVα,d with α ∪ d ⊇ α0. If xd is continuous, then, similarly to (A3), CVα,d admits

the following expansion

CVα,d =
1

n′∑
i

′
{Yi − ĝ

\i
α,d(Xi |θ

0
α)}2 + op ( 1

n′h2
1

) =
1

n′∑
i

′
ε2
i +

c3

n′h2
1

+ 4c2h
4
1 + op ( 1

n′h2
1

) , (A5)

where c3 = σ 2K2
2 L(Uα)L(Ad) with Ad defined in Assumption A7.

For discrete xd with M values, v1,. . . , vM , we classify {(Xi , Yi)}
n′

i=1 into M groups based

on the value of xd : i ∈ Gk ⇔ xid = vk. Let nk be the number of elements in Gk and

nk = O(n′), k = 1,. . . ,M. If i ∈ Gk, by (10), ĝ
\i
α,d(Xi |θ̂

\i

α ) equals ĝ\i
α (Xi |θ̂

\i

α ), which is defined in (6)

with θ replaced by θ̂
\i

α and subindex {j /∈ s} by {j ∈ Gk, j =| i}. Thus CVα,d = n
′−1 ∑M

k=1 nkCVk
α,

where CVk
α:=nk

−1 ∑i∈Gk
{Yi − ĝ\i

α (Xi |θ̂
\i

α )}2 is the CVα(1) in (7) using data {(Xiα, Yi) : i ∈ Gk}.

Since α ∪ d ⊇ α0, E(Y |X) only depends on Xα within each Gk. Therefore, similarly to (A3),

by Assumption A7 we have

CVk
α =

1

nk
∑

i∈Gk

ε2
i + c4h

4
1 +

σ 2K2

nkh1

L(Uk
α) + op ( 1

nkh1
) , k = 1,. . . ,M,

where c4 = E{g
′′2(X⊤

αθ0
α)|xd = vk}/4, and Uk

α is the support of X⊤
αθ0

α given that xd = vk. Therefore,

CVα,d =
1

n′∑
i

′
ε2
i +

σ 2K2

n′h1

M∑
k=1

L(Uk
α) + c2h

4
1 + op ( 1

n′h1
) . (A6)

Note that if xd is redundant, i.e. β0
d = 0, then Uk

α is also the support of X⊤θ0 given that xd = vk.

By the discussion about the identification of single-index models with discrete covariates (Ichimura,

1993), we have ∑M
k=1 L(Uk

α) > L(U).

By the conditions on h and h1, Theorem 2 follows from (A3), (A4), (A5) and (A6).

�
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