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ABSTRACT

Though variable selection is one of the most rele-
vant tasks in microbiome analysis, e.g. for the iden-
tification of microbial signatures, many studies still
rely on methods that ignore the compositional na-
ture of microbiome data. The applicability of compo-
sitional data analysis methods has been hampered
by the availability of software and the difficulty in in-
terpreting their results. This work is focused on three
methods for variable selection that acknowledge the
compositional structure of microbiome data: selbal,
a forward selection approach for the identification
of compositional balances, and clr-lasso and coda-
lasso, two penalized regression models for compo-
sitional data analysis. This study highlights the link
between these methods and brings out some limi-
tations of the centered log-ratio transformation for
variable selection. In particular, the fact that it is not
subcompositionally consistent makes the microbial
signatures obtained from clr-lasso not readily trans-
ferable. Coda-lasso is computationally efficient and
suitable when the focus is the identification of the
most associated microbial taxa. Selbal stands out
when the goal is to obtain a parsimonious model
with optimal prediction performance, but it is compu-
tationally greedy. We provide a reproducible vignette
for the application of these methods that will enable
researchers to fully leverage their potential in micro-
biome studies.

INTRODUCTION

High-throughput DNA sequencing has tremendously en-
hanced microbiome research by allowing a more precise
quanti�cation of microbiome composition in a given envi-
ronment. However, microbiome data analysis is challeng-
ing as it involves high-dimensional structured multivariate

and sparse data that are compositional (1–3). The compo-
sitional structure of microbiome data is mainly due to (i)
biological reasons, like microbial competition, interactions
or nutrient availability, (ii) technical artifacts, such as DNA
sequencing, and (iii) data transformations, such as rarefac-
tion or proportions.
Microbial ecosystems are extremely complex and interac-

tions within and between bacterial species can profoundly
impact microbiome composition in natural environments
(4).Microorganisms compete with their neighbors for space
and resources.While somemicrobial populations can thrive
under favorable conditions and resources, this may induce
a decline of other competing species. Microbiome analysis
should try to capture these interrelated changes ofmicrobial
compositions.
After bioinformatic processing and quality control, mi-

crobiome abundance is quanti�ed as the number of reads
for each microbial species or taxa per sample. Since the to-
tal counts per sample are highly variable, data are often nor-
malized, for example, by transforming read counts to pro-
portions. Normalization enables meaningful comparisons
between samples with different library sizes, but it does not
prevent from the ‘compositional effect’, i.e. the fact that
changes in the abundance of one taxon induce changes in
the observed abundances of the other taxa. The composi-
tional nature of proportions is evident since they are con-
strained by a constant sum equal to 1. However, it is impor-
tant to emphasize that read counts, sometimes (inappropri-
ately) called absolute abundances, are also compositional.
Even though they are not explicitly restricted to a constant
sum, they are constrained by sequencing depth that induces
strong dependencies and thus spurious correlations among
the number of reads for the different taxa (2). Indeed, read
counts are not informative of the absolute abundance of the
taxa in the environment and only provide a relative measure
of abundance when compared to the abundance of other
taxa.
The need for analytical methods able to handle the com-

positional nature of microbiome data has been increasingly
recognized (1,2,5–7), but the use of compositional data
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analysis (CoDA) methods is still far from being a common
practice. This is particularly critical in the context of mi-
crobiome variable selection, a task that can be seriously af-
fected by the compositional effect (8).

Commonly used methods for variable selection, such as
LEfSe (9) and metagenomeSeq (10), as well as methods
originally proposed for transcriptomics analysis, edgeR (11)
and DESeq2 (12), perform univariate hypothesis testing
that ignores the multivariate nature of the microbiome by
testing each variable independently. In addition to library
size normalization, edgeR and DeSeq2 algorithms include
heuristics, such as trimming (13), to mitigate the composi-
tional effect.
Popularmultivariate approaches formicrobiome analysis

include PERMANOVA (14), analysis of similarities (15) or
tests based on the Dirichlet–multinomial distribution (16)
to detect association between microbiome composition and
the outcome of interest. However, these methods are lim-
ited as they do not propose variable selection and thus do
not give any insight into which speci�c microbial species
are driving the association. Sparse partial least-squares dis-
criminant analysis (17) was also proposed for multivariate
variable selection, but with a focus on prediction rather than
statistical inference.
In the CoDA framework, the methodsANCOM (18) and

ALDEx2 (19) explicitly account for the compositional na-
ture of microbiome data, but they rely on univariate tests.
Other CoDA approaches for microbiome variable selec-
tion combine principal balances (20) with phylogenetic in-
formation to infer clades that explain variation in micro-
biome abundance (21–23). Recently, Morton et al. (24) in-
troduced a multinomial regression model for differential
ranking analysis to identify candidate taxa for log-ratio
analysis. Quinn andErb (25) proposed a discriminatory bal-
ance analysis for the identi�cation of two- and three-part
balances.
In this paper, we focus on three CoDA methods for vari-

able selection that share similar formulation as generalized
linear models with speci�c constraints: (i) selection of mi-
crobial balances with selbal (26); (ii) penalized regression
(27–29) on centered log-ratio (clr)-transformed data; and
(iii) penalized regression with constraints (30,31).
Selbalwas proposed by Rivera-Pinto et al. (26) and relies

on the concept of compositional balance, a measure that
compares the average abundances of two groups of micro-
bial species. The second method, referred to as clr-lasso, is
the most straightforward way of adapting penalized regres-
sion to compositional data by transforming the covariates
with the clr transformation (32) and applying penalized re-
gression. The third method, coda-lasso, performs penalized
regression on a log-contrast regression model, as we fur-
ther describe in the ‘Materials and Methods’ section. For
the sake of simplicity, we describe both penalized regression
methods with an L1 norm penalty term.
The applicability of these methods in microbiome stud-

ies has been limited by the availability of software as well as
the dif�culty in interpreting their results. Thus, the aim of
this paper is to apply and assess these methods, discuss their
advantages and drawbacks and provide some hints for the
interpretation of their results. We provide a new R imple-
mentation of coda-lasso, new graphical representations of

microbial balances and a reproducible bookdown vignette
for all methods. In the following, we introduce the concept
of compositional balance and describe the three methods
selbal, clr-lasso and coda-lasso. We apply and interpret the
results obtained in two case studies and compare the perfor-
mance of the three methods on some simulated scenarios.

MATERIALS AND METHODS

Log-contrast functions and compositional balances

A composition is de�ned as a vector of positive real num-
bers, x = (x1, . . . , xk), xi > 0, that contains relative infor-
mation. This includes the case of a constant total sum
(known as closed composition), e.g. when x is a vector
of proportions with

∑

xi = 1, but also the case of a non-
constant total sum constraint (non-closed composition),
when the number of reads is constrained by the DNA se-
quencer capacity. In a composition, the value of each com-
ponent is not informative by itself and the relevant infor-
mation is contained in the ratios between the components,
or parts (33). In this context, two compositions that are
proportional are compositionally equivalent. The scale in-
variance principle (32) states that any function used for the
analysis of compositional data must be invariant for any el-
ement from the same compositionally equivalent class and
thus must provide the same result when applied to two pro-
portional compositions.
The simplest invariant function is given by the log ratio

between two components, i.e.

f (x) = log

(

xi

xj

)

, i, j ∈ {1, . . . , k} . (1)

A more general form of an invariant function suitable for
CoDA is a log-contrast function de�ned as a linear combi-
nation of logarithms of the components, with the constraint
that the sum of the coef�cients is equal to zero:

f (x) =

k
∑

i =1

ai log (xi ) , with

k
∑

i =1

ai = 0. (2)

A compositional balance is a special kind of log-contrast
function that extends the log ratio between two compo-
nents to the log ratio between the mean abundances of
two groups of components. Formally, a balance in the con-
text of microbiome compositions is de�ned as follows. Let
X = (X1, X2, . . . , Xk) be the microbial composition of k
taxa. Among these, we consider two disjoint subgroups of
taxa, groups A and B, with kA and kB taxa indexed by
IA ⊂ {1, . . . , k} and IB ⊂ {1, . . . , k}, respectively, that do
not share taxa (IA ∩ IB = ∅). The abundance balance be-
tween A and B, denoted by B(A, B), is de�ned as the log
ratio between the geometric mean abundances of the two
groups of taxa:

B (A, B) = C · log

(
∏

i∈IA
Xi

)1/kA

(

∏

j∈IB
X j

)1/kB
, (3)

where C is a normalization constant equal to
√

(kA · kB)/(kA + kB).
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Equivalently, a balance can be rewritten as the difference
between the arithmetic means of the log-transformed vari-
ables of the two groups of variables:

B (A, B) ∝
1

kA

∑

i∈IA

log Xi −
1

kB

∑

j∈IB

log X j , (4)

where the sign ∝ means proportional. A balance is a one-
dimensional measure, or score, that summarizes the aver-
age log-transformed abundances of two groups of taxa.
The larger the value of B(A, B), the larger the average log
abundance of taxa in group A compared to the average
log abundance of taxa in group B. A value of B(A, B) = 0
corresponds to the same average log abundance of taxa in
groups A and B.
Note that balances de�ned in Equation (3) are referred

as isometric log ratios (34) and should not be interpreted
as summated log ratios or amalgamation balances that are
de�ned as the log ratio of the total abundance in each group
[see (35) for a comparison of these measures].

Selbal

Rivera-Pinto et al. (26) proposed a method for the identi�-
cation of microbial signatures that are predictive of a phe-
notype of interest. Unlike approaches that de�ne biomarker
signatures as a linear combination of individual markers,
themicrobial signature from selbal has the formof a balance
between two groups of microbial taxa. Selbal seeks for the
two groups of taxa A and B whose relative abundances or
balance B(A, B) is most associated with the outcome of in-
terestYaccording to the following generalized linearmodel:

g (E (Y)) = β0 + β1B (A, B) + γ ′Z, (5)

where β0 is the intercept, β1 is the regression coef�cient for
the balance score, Z= (Z1, Z2, . . . , Zr ) are additional non-
compositional covariates and γ is the vector of regression
coef�cients for Z. The algorithm is implemented for linear
and logistic regression.
The optimal balance B(A, B) relies on the identi�cation

of taxa that belong to either group A or group B. The �rst
step of selbal algorithm evaluates all possible pairs of taxa
to select the pair whose balance is most associated with the
response. Then, a forward selection process is performed
where, at each step, a new taxon is added to the current bal-
ance, either in group A or in group B of the balance to im-
prove the optimization criterion. The objective criterion is
de�ned as the area under the receiver operating character-
istic (ROC) curve (AUC) or the proportion of explained de-
viance for a binary response, and themean squared error for
a linear response. The algorithm stops when there is no re-
maining variable that improves the optimization criterion or
when the maximum number of components in the balance,
established with a cross-validation procedure, is reached.
Selbal results can be interpreted in terms of microbial bal-
ances, an important concept in microbiome studies to de-
scribe dysbiosis––a microbial disturbance or imbalance be-
tween bene�cial and pathogenic microbes, associated with
most human disease processes (36,37).

Clr-lasso

Penalized regression is a powerful approach for variable se-
lection in a high-dimensional setting. The estimates of re-
gression parameters are shrunk toward zero by adding a pe-
nalized term in the loss function. Variables with a nonzero
coef�cient are selected as informative variables associated
with the outcome variable. Different penalized regression
methods exist: the lasso (L1 norm) puts a constraint on the
sum of the absolute values of the regression coef�cients,
ridge uses the L2 norm and elastic net uses a linear combi-
nation of L1 and L2 norms for the penalty term (27,29). A
straightforward way of adapting penalized regressionmeth-
ods for CoDA is to �rst project the compositional data to a
Euclidean space, e.g. using the clr transformation:

clr(x) = clr(x1, . . . , xk)

=

(

log

(

x1

g(x)

)

, . . . , log

(

xk

g(x)

))

, (6)

where g(x) =
(
∏

xj
)1/k

is the geometric mean of the com-
position.
Interestingly, the clr transformation can be formulated as

clr(x) = clr(x1, . . . , xk)

= (log(x1) − M, . . . , log(xk) − M), (7)

where M is the arithmetic mean of the log-transformed val-
ues: M= (1/k)

∑

j

log(xj ). Thus, the transformed compo-

nents are restricted to have a sum equal to zero.
After clr transformation, penalized regression, whether

lasso, ridge or elastic net, can be applied. Here, we consider
a linear regression model with L1 penalty, referred as clr-
lasso.
For (yi , x1i , . . . , xki ), i = 1, . . . , n, where yi is the re-

sponse and xi = (x1i , . . . , xki ) is the composition of k taxa
for sample i, clr-lasso is de�ned as

yi = β0 + β1 clr (x1i ) + · · · + βk clr (xki ) + εi . (8)

The regression coef�cients β = (β0, . . . , βk) are estimated
to minimize

n
∑

i=1

(yi − β0 − β1 clr (x1i ) − · · · − βk clr (xki ))
2

subject to
∑

j≥ 1

∣

∣β j

∣

∣ < t (9)

for a given constant t. This is equivalent to minimizing

n
∑

i=1

(yi − β0 − β1 clr (x1i ) − · · · − βk clr (xki ))
2 + λ

∑

j≥ 1

|β j |,

(10)

where λ is the penalization parameter. Lasso shrinks some
of the regression coef�cients to zero, resulting in variable
selection of the components with non-null coef�cients.
A drawback of this method is that the selection is applied

on the clr-transformed variables, which makes interpreta-
tion challenging. Equation (8) can be equivalently written
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as

yi = β0 + β1 (log (x1i ) − Mi ) + · · · + βk(log (xki ) − Mi ) + εi , (11)

yi = β0 + β1 log (x1i ) + · · · + βk log (xki ) − Mi (β1 + · · · + βk) + εi ,(12)

where Mi = (1/k)
∑

j

log(xj i ). Both Equations (11) and (12)

show that the term M is still present, even after lasso pe-
nalization. In other words, although lasso penalization re-
moves irrelevant variables from the regression model, all
variables remain in the model through the geometric mean
of the clr transformation, M. When M has a high variance,
the power to detect real associations can be reduced and the
false discovery rate may increase, as we will explore in our
simulation study.

Coda-lasso

An alternative regression approach for CoDA is to con-
sider a log-contrast model (38). This consists in a linear re-
gression model that relates log-transformed covariates with
the outcome in the form of a log-contrast function; i.e. the
regression coef�cients (except the intercept) have a zero-
sum constraint, which ensures the scale invariance prin-
ciple. Such model can be adapted to penalized regression
for CoDA variable selection. In the context of microbiome
studies, Lin et al. (30) proposed an optimization procedure
for penalized linear log-contrast regression models and Lu
et al. (31) extended the approach to generalized linear re-
gression models.
Coda linear regression with lasso penalization is formu-

lated as

yi = β0 + β1 log (x1i ) + · · · + βk log (xki ) + εi , (13)

with constraint
∑

j≥ 1

β j = 0, where the regression coef�-

cients β = (β0, . . . , βk) are estimated to minimize

n
∑

i=1

(yi − β0 − β1 log (x1i ) − · · · − βk log (xki ))
2

+λ
∑

j≥1

|β j | subject to
∑

j≥1

β j = 0.
(14)

The minimization process is performed in two iterative
steps based on soft thresholding and projection [see (31) for
a detailed description].
Because of the zero-sum constraint, the �tted regression

model can be interpreted as aweighted balance between two
groups of components, those with a positive coef�cient and
those with a negative coef�cient, i.e. a log ratio between two
weighted geometric means:

β0 +
∑

i∈I+

βi log Xi −
∑

i∈I−

αi log Xi = β0 + sβ log

(

g+ (X)

g (X)

)

,

(15)

where I+ ⊂ {1, . . . , k} and I− ⊂ {1, . . . , k} are the indices
of the positive and negative coef�cients, respectively. The
parameters are de�ned as αi = −βi for βi < 0 and sβ =
∑

i∈I+

βi =
∑

i∈I−

αi . The weighted geometric means are de�ned

as

g+ (X) = exp

(

1
sβ

∑

i∈I+

βi log Xi

)

,

g− (X) = exp

(

1
sβ

∑

i∈I−

αi log Xi

)

.

(16)

Method commonalities

Relationship between clr-lasso and coda-lasso. If we add
the constraint

∑

j≥ 1

β j = 0 to the clr-linear model, the clr

transformation cancels out, and clr-lasso is equivalent to
coda-lasso:

E(yi ) = β0 + β1 clr(x1i ) + · · · + βk clr(xki )

= β0 + β1(log(x1i ) − Mi ) + · · · + βk(log(xki ) − Mi )

= β0 + β1 log(x1i ) + · · · + βk log(xki ) − Mi (β1 + · · · + βk)

= β0 + β1 log(x1i ) + · · · + βk log(xki ), (17)

since β1 + · · · + βk = 0.
Thus, when the regression coef�cients are constrained to

∑

j≥1

β j = 0, the clr transformation is not required and only

a log transformation is needed. The regression coef�cients
inform of the weight of the log-transformed components.

Relationship between selbal and coda-lasso. Similar to
coda-lasso, selbal can be expressed as a log-contrast linear
model since the sum of the regression coef�cients is equal
to zero:

E(Y) = β0 + β1B(A, B)

= β0 + β1

(

1

kA

∑

i∈IA
log Xi −

1

kB

∑

j∈IB
log X j

)

.

(18)

The difference is that the coef�cients in selbal for the taxa
in each group are all equal to β1/kA for taxa in group A and
β1/kB for taxa in group B, where kA and kB are the number
of taxa in groups A and B, respectively.

Toy example. The similarities and differences between the
three methods can be illustrated with a toy example. Let
us consider an example where two groups of taxa A and
B have been selected for prediction of disease status (cases
and controls). Group A is composed of OTU1 and OTU2

and group B of OTU3, OTU4 and OTU5. The difference
between selbal balance score and coda-lasso balance score is
that selbal assigns the same weight to the variables that be-
long to each group (proportional to the number of variables
in each group), while coda-lasso assigns different weights to
the taxa. In this example, selbal balance score is given by

1

2
log (OTU1) +

1

2
log (OTU2) −

1

3
log (OTU3)

−
1

3
log (OTU4) −

1

3
log (OTU5)
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and coda-lasso balance score is

β1 log (OTU1) + β2 log (OTU2) + β3 log (OTU3)

+ β4 log (OTU4) + β5 log (OTU5) ,

where β1 and β2 are positive coef�cients and β3, β4

and β5 are negative coef�cients, and β1 + β2 =
−(β3 + β4 + β5). For clr-lasso, the linear regression
score is of the form

β1clr (OTU1) + β2clr (OTU2) + β3clr (OTU3)

+ β4clr (OTU4) + β5clr (OTU5) ,

with no restriction on the regression coef�cients. This is
why, the solution of clr-lasso cannot be considered as a bal-
ance as the sum of the regression coef�cients is not equal to
zero.

Graphical representation

The graphical representation provided by selbal helps inter-
preting the results, as shown in Figure 1 for the above toy
example. The balance score distribution for the controls (in
blue) is centered around zero, which means that the aver-
age log abundance of group A and group B is similar. On
the contrary, the balance score distribution for the cases (in
red) is shifted toward positive values; i.e. cases are charac-
terized by a balance with a larger average log abundance in
group A than in group B.
Similar representation can be extended for coda-lasso,

with taxa with a positive regression coef�cient assigned to
group A and those with a negative regression coef�cient as-
signed to group B.

Implementation

Selbal algorithm is implemented as an R package avail-
able on GitHub (https://github.com/UVic-omics/selbal).
Clr-lasso �rst requires a clr transformation [e.g. clr() func-
tion in the R package compositions (39)]. Next, penal-
ized regression can be implemented with the R pack-
age glmnet (40). An implementation in Matlab of coda-
lasso is available in (31). We have developed a new im-
plementation of coda-lasso in R where, similarly to glm-
net, the parameter α speci�es the ratio between L1 and
L2 penalization in the elastic net regularization. It is avail-
able at https://github.com/UVic-omics/CoDA-Penalized-
Regression. A seamless application of all methods on the
case studies is available as a reproducible R bookdown
vignette on our GitHub page: https://github.com/UVic-
omics/Microbiome-Variable-Selection/.

Datasets

High-fat high-sugar diet in mice. The study was conducted
by Dr Lê Cao at the University of Queensland Diamantina
Institute to investigate the effect of diet in mice. C57/B6 fe-
male black mice were housed in cages (three animals per
cage) and fed with a high-fat high-sugar diet (HFHS) or a
normal diet. Stool sampling was performed at Days 0, 1, 4
and 7. Illumina MiSeq sequencing was used to obtain the
16S rRNA sequencing data. The sequencing data were then

processed with QIIME 1.9.0. For our analysis, we consid-
ered Day 1 only (HFHS-day1). The OTU (operational tax-
onomy unit) table after OTU�ltering included 558 taxa and
47 samples (24 HFHS diet and 23 normal diet). Both OTU
and the taxonomy tables are available on our GitHub page.

Crohn’s disease. The pediatric Crohn’s disease (CD) study
(41) includes 975 individuals from 662 patients with CD
and 313 without any symptoms. The processed data, from
16S rRNA gene sequencing after QIIME 1.7.0, were down-
loaded from Qiita (42) study ID 1939. The abundance table
was agglomerated to the genus level, resulting in a matrix
with 48 genera and 975 samples, which is accessible at our
GitHub page.

Simulation study

We evaluated the performance of the three microbiome se-
lection methods according to different scenarios. To mimic
as realistically as possible real microbiome data structures,
the simulationswere based on the two case studies described
earlier. TheHFHS-day1 dataset exempli�es a scenario, with
a large number of taxa (558) and a small number of samples
(47), while the CD dataset represents the opposite scenario,
with a large number of samples (975) and a moderate num-
ber of taxa (48 genera). The simulation process, described
in Figures 2 and 3, starts from the original microbiome ta-
ble, D, a matrix of counts or proportions with n rows (sam-
ples) and C columns (taxa).
For each simulation scenario, the abundance table X was

obtained by randomly selecting k columns (taxa) from the
original dataset D. The �rst k1 columns of X were used
to generate the binary response Y (as described later) and
are thus associated with the outcome, while the remain-
der k2 = k− k1 taxa are not associated with the outcome
(since they are not used to simulate Y). The number of
taxa associated with the outcome was k1 ∈ {3, 5, 10}. This
subset of variables is denoted by K1. The number of taxa
non-associated with the outcome, denoted by K2, was k2 ∈
{10, 20, 30, 40} for the simulations based on the CD dataset
and k2 ∈ {100, 200, 300, 400} for the simulations based on
the HFHS-day1 dataset.
We considered two different schemes for generating the

dependent variable Y: a parametric approach based on a
log-contrast model and a non-parametric approach based
onK-meansmethod (Figure 3). In the parametric approach,
we considered a logistic model with a log-contrast linear re-
gression term by taking the log-transformed K1 variables
as covariates and regression coef�cients restricted to have
a sum equal to zero. This constraint accommodates for the
compositional structure of the simulated data. This simula-
tion scheme may favor methods with a similar log-contrast
structure such as coda-lasso or selbal. Therefore, we con-
sidered a non-parametric simulation scheme based on K-
means that consists in calculating the Aitchison distance
of the samples using only the K1 variables, and perform-
ing a K-means clustering method with two clusters. This
process identi�es two groups of samples according to the
K1 taxa abundance pro�le, where samples within the same
group have similar pro�les while samples in distinct groups
are more different. Samples belonging to cluster 1 were as-

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
rg

a
b
/a

rtic
le

/2
/2

/lq
a
a
0
2
9
/5

8
3
6
6
9
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://github.com/UVic-omics/selbal
https://github.com/UVic-omics/CoDA-Penalized-Regression
https://github.com/UVic-omics/Microbiome-Variable-Selection/


6 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2

OTU2

OTU1

A

OTU5

OTU4

OTU3

B

Figure 1. The taxa in group A and group B that constitute the balance. Box plots represent the distribution of balance scores for cases (red) and controls
(blue). The density plot of balance scores for cases and controls is shown below.

signedY = 0 and those belonging to cluster 2 were assigned
Y = 1. Thus, this process constructs a dependent variableY
that is associated with the K1 taxa without using a speci�c
parametric model. A detailed description of the simulation
scheme is provided in the Supplementary Data. In total, we
generated 48 simulated scenarios (2 datasets × 2 methods
for generating Y× 3 K1 subsets of taxa associated with the
outcomes × 4 K2 subsets of non-relevant taxa) that were
repeated a hundred times each.
For the three methods, the number of selected variables

was determined according to the maximization of the pro-
portion of explained deviance. Methods were then assessed
based on the true positive rate (TPR = proportion of as-
sociated taxa among the selected variables) and the false
positive rate (FPR = proportion of non-associated taxa
among the selected variables). These proportions depend
on the total number of variables selected by each method,
i.e. the penalization parameter λ for clr-lasso and coda-
lasso. When λ = 0, no penalization is applied and all vari-
ables are selected; thus, TPR = FPR = 1. When λ is large,
no variables are selected and TPR = FPR = 0. We as-
sessed clr-lasso and coda-lasso for a sequence of values
of λ ∈ {0, 0.1, 0.2, . . . , 1} and then obtained TPR(λ) and
FPR(λ). The points (1 − FPR(λ),TPR(λ)) represent the
ROC curve and the AUC provides a summary measure of
the accuracy of each method. For selbal, we measured the
proportion of true positives and true negatives as a func-
tion of the number of selected variables at every step of the
forward selection process, and then calculated the AUC of
the ROC curve de�ned by (1 − FPR(nvar),TPR(nvar)) for
nvar ∈ {2, 3, 4, 5, . . . ,maxV}.

RESULTS

High-fat high-sugar diet in mice

As already described in other studies, e.g. (43), a change
from normal to HFHS diet in mice causes rapid alterations
in microbiome composition. This was also the case in the
HFHS-day1 study, where we observed a strong association
between microbiome composition and diet. Selbal identi-
�ed two taxa whose log ratio perfectly discriminated the
two groups of mice (AUC = 1, Figure 4). While selbal was
able to achieve maximum discrimination with only 2 taxa,
coda-lasso required at least 7 taxa and clr-lasso at least 17
to obtain 100% of explained deviance. For comparison pur-
poses, we set the penalty term for clr-lasso to select 10 taxa
(corresponding to 95% of explained deviance). Four vari-
ables were selected by both coda-lasso and clr-lasso, while
the two variables selected by selbal were in common either
with clr-lasso or with coda-lasso (Figure 5).

Most of the bacteria selected by clr-lasso were within
the order Clostridiales (7 out of 10) from the families
Lachnospiraceae, Mogibacteriaceae and Ruminococcaceae.
These families have been found to be associated with high-
fat and/or high-sugar diet in mice (44–47). Corroborat-
ing these studies, we also found that the relative abun-
dance ofLachnospiraceaewas increased in themice fed with
HFHS diet compared to normal diet. Lachnospiraceae con-
sists of pro-in�ammatory bacteria (47), which are also re-
ported to be associated with chronic in�ammation of the
gut (48,49).

The taxa selected by coda-lasso belonged to the order
Bacteroidales (6 out of 7) including the family S24-7 (5
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Figure 2. Simulation scheme: the simulated abundance table X is obtained by randomly selecting k columns from the original dataset D. The �rst k1
columns of X are used to generate the binary response Y, while the remainder k2 taxa are deemed irrelevant to explain the outcome. The sizes of K1 and
K2 vary depending on D.

Figure 3. Two schemes were used to generate Y given the K1 taxa, using a parametric method based on log contrasts, or a non-parametric approach based
on K-means.
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Figure 4. Representation of the distribution of balance values (log ratio) between the two taxa selected by selbal (OTUs 290253 g Oscillospira and 263479
o Bacteroidales; f s24–7) for the mice on an HFHS diet (blue) or normal diet (red) in the HFHS-day1 whole dataset.

Figure 5. Concordance of the taxa selected by the three methods selbal (blue), clr-lasso (orange) and coda-lasso (pink) for the HFHS-day1 dataset (o =

order, f = family and g = genera are indicated depending on available taxonomy).

out of 6) and Prevotellaceae. The abundance of S24-7 was
found to be increased in the diabetes-sensitive mice fed with
a high-fat diet, especially after the treatment of remitting
colitis in mice (50), while in normal mice, a high-fat diet
reduced the abundance of S24-7, which was negatively as-
sociated with the in�ammatory mediator IL-6 (51). Family
Prevotellaceae is able to ferment carbohydrate and protein
and was found abundant in obese human individuals (52).
In our analysis, the relative abundance of these two fami-

lies was found to be increased in HFHS diet compared to
normal diet.
Selbal selected the genus Oscillospira from order

Clostridiales overlapping with clr-lasso, and an unclas-
si�ed genus from order Bacteroidales overlapping with
coda-lasso.

Though selbal selects only two taxa, we emphasize that
other taxa are also highly associated with diet in this study.
Indeed, in an n ≪ k setting, it is highly probable that a given
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balance is not unique and alternative microbial signatures
may provide similar results. We investigated other balances
by removing the two selected taxa from the dataset and per-
forming selbal again. Themethod identi�ed a second pair of
taxa also with maximum accuracy (AUC = 1 and 100% of
explained deviance). The two new selected taxa were both
among the variables selected by clr-lasso and one of them
among the selected variables by coda-lasso. This case study
illustrates the main difference between the methods: selbal
seeks for the most parsimonious model with maximum pre-
diction or classi�cation accuracy, while the complexity (i.e.
number of variables selected) of clr-lasso and coda-lasso is
determined by the penalization parameter. Though penal-
ized regressionmodels are useful for the identi�cation of the
variables that aremost associated with the outcome, they do
not guarantee the best classi�cation performance.

Crohn’s disease

In previous analysis of this dataset with selbal, a balance
with 12 variables was determined optimal to discriminate
the CD status (26). For ease of comparison, we speci�ed pe-
nalized parameters that resulted in the selection of 12 vari-
ables for both coda-lasso and clr-lasso. The optimization cri-
terion for �tting the models was the maximization of the
proportion of deviance explained.
The microbial signature that best discriminates between

CD and controls according to selbal is given by the
balance between taxa in group A = {o Clostridiales g ,
g Bacteroides, f Peptostreptococcaceae g , g Roseburia}
and taxa in group B = {g Blautia, g Oscillospira,
g Dorea, g Adlercreutzia, g Streptococcus, g Dialister,
g Eggerthella, g Aggregatibacter, g Adlercreutzia}. The
average abundance (geometric mean) of taxa in group A
relative to group B is larger in controls than in CD patients
(Figure 6).
Figure 7 describes the taxa that were selected by the three

methods: six taxa in common, seven taxa identi�ed by two
methods, two taxa selected solely by selbal and two taxa
only by coda-lasso. All the taxa selected by any of the meth-
ods have been previously described as markers of in�amma-
tion and dysbiosis in CD (41,53–55).
Although the number of variables selected by the three

methods was the same, the proportion of explained de-
viance was considerably larger for selbal (27%) than for clr-
lasso (18%) and coda-lasso (21%).
To further assess the classi�cation performance of each

method and which taxa signature might be best, we imple-
mented 5-fold cross-validation repeated 20 times, where the
signature identi�ed in each training fold was then tested to
predict disease status on the test dataset. For each model,
or microbial signature, we calculated the ROC curve and
the AUC to measure its classi�cation or discrimination ac-
curacy (Figure 8). Selbalmicrobial signatures led to slightly
better classi�cation accuracy than clr-lasso and coda-lasso,
which resulted in similar performance.

SIMULATION STUDY

The results of all simulation scenarios are summarized in
terms of mean AUC in Figure 9 (simulations based on

the CD dataset) and Figure 10 (simulations based on the
HFHS-day1 dataset). As expected, we observed a better
performance of all methods for the n ≫ k case (CD dataset)
than for the n ≪ k case (HFHS-day1). In particular, we ob-
served a decrease in performance accuracy when the num-
ber of taxa associated with the outcome increased. This can
be explained as for a �xed joint effect, the larger the number
of discriminant taxa, the smaller their individual contribu-
tion.
The performance of the methods is highly dependent on

the total number of variables in the dataset. In the n ≪
k scenario (Figure 10), we observed a small decrease in per-
formance of all methods as the total number of variables
increases from k1 + 100 to k1 + 400, with k1 ∈ {3, 5, 10}. In
the n ≫ k scenario (Figure 9), both selbal and coda-lasso
had a stable performance as the number of variables in-
creased from k1 + 10 to k1 + 40. However, we observed a
distinct behavior of clr-lasso: its performance was poor for
a small number of variables (k1 + 10 and k1 + 20) but im-
provedwhen k increased. This can be explained by the insta-
bility introduced by the clr transformation. Since, clr(xj i ) =
log(xj i ) − Mi , for taxa j and sample i, the variability of M
reduces the power to detect a possible association between
the response Y and taxa j. However, as the total number of
taxa k increases, the variability of M, given by

var(M) = 1
k2

(

k
∑

j=1

var(log(xj ))

+2
k

∑

l, j=1;l �= j

covar(log(xl ), log(xj ))

)

,

(19)

is likely to decrease for large values of k because the term
k2 in the denominator dominates the numerator in var(M).
This is the case, for instance, in the n ≪ k scenario where
the variability of M tends to zero when the total number
of variables increases (Figure 11). We also observed similar
behavior for the HFHS dataset (data not shown).

DISCUSSION

Variable selection is one of the key procedures in micro-
biome data analysis. It is relevant for the identi�cation of
microbial species that are involved in biological processes
or when the interest is the detection of microbial signatures
that can serve as biomarkers of disease risk and prognos-
tic (56). The �rst goal improves biological knowledge and
requires precise estimations and control of TPR and FPR.
The second goal focuses on classi�cation and prediction:
different models can lead to similar prediction accuracy,
but parsimonious models can be preferred for their trans-
lational use as microbial signatures. It is worth noting that
no method can be optimal for both aims.
In this work, we compared three approaches for variable

selection in microbiome studies that follow the principles
of CoDA, either by considering balances of groups of taxa
associated with the outcome (selbal) or with penalized re-
gression after clr transformation (clr-lasso) or constraints
on the regression coef�cients (coda-lasso). The interpreta-
tion of the results is not straightforward in a compositional
framework, and we provided practical advice to apply and
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Figure 6. Representation of the distribution of balance values (log ratio) between the geometric means of the two taxa groups selected by selbal for CD
(blue) and controls (red) in the CD whole dataset.

Figure 7. Concordance of the selected taxa for the CD dataset by the three methods considered: selbal (blue), clr-lasso (orange) and coda-lasso (pink) (f =

family; g = genera).
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Figure 8. Box plot of the mean AUC of the cross-validation process to
evaluate the classi�cation accuracy of clr-lasso, coda-lasso and selbal on
the CD dataset.

make sense of the results obtained. In addition, we dis-
cussed the different objectives of the approaches we con-
sidered. Selbal’s main goal is the establishment of microbial
signatures with predictive ability to be used as diagnostic or
prognostic markers and thus prioritizes parsimonious mod-
els. Penalized regression models seek for the identi�cation
of microbial species that in combination relate to the phe-
notype of interest to increase biological knowledge of the
link between disease and microbiome.

Selbal identi�es two groups of bacteria whose relative
average abundance is associated with the outcome. Such
approach is well suited to how we describe microbiome–
disease associations in terms of dysbiosis or imbalance be-

tween bene�cial and pathogenic microbes. In our case stud-
ies, Selbal led to better performance than the penalized ap-
proaches. In the HFHS dataset, selbal only needed 2 vari-
ables to achieve maximum discrimination, while coda-lasso
and clr-lasso required 7 and 17, respectively. In the CD
dataset, selbal model explained a larger proportion of ex-
plained variance and led to slightly higher classi�cation ac-
curacy compared to the other approaches, based on the
same selection size. These results can be explained by either
a better selection of the features that constitute the signa-
ture or the way the microbial signatures are calculated after
variable selection. While clr-lasso and coda-lasso regression
coef�cients are estimated from the training dataset, selbal
only retains the set of selected variables and the sign of the
coef�cients, and each regression coef�cient is given by the
inverse of the number of variables with either positive or
negative sign. Our simulated results suggest that the esti-
mation of coef�cients with penalized regression may lead
to some over�tting and thus a worse performance than sel-
bal. While this approach is suited for the identi�cation of a
predictive microbial signature, it comes with computational
cost because of the forward selection process. We propose
to apply a combination of selbal with one of the two pe-
nalized regression methods to �lter the number of variables
and lessen the computational burden. This, however, should
be done carefully using cross-validation to avoid variable se-
lection bias.
Penalized regression after clr transformation is a valid

CoDA approach, but we have identi�ed important draw-
backs. Clr penalized regression is not subcompositionally
consistent, meaning that different subcompositions will rise

Figure 9. Mean AUC for variable selection in the simulations based on the CD dataset for selbal (blue), clr-lasso (red) and coda-lasso (green). The �rst row
corresponds to the log-contrast method to generate Y and the second row to the K-means method. The three columns correspond to the number of taxa
associated with Y, k1 ∈ {3, 5, 10}, and the x-axis speci�es the number of non-associated taxa, k2 ∈ {10, 20, 30, 40}.
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Figure 10. Mean AUC for variable selection in the simulations based on the HFHS dataset for selbal (blue), clr-lasso (red) and coda-lasso (green). The �rst
row corresponds to the log-contrast method to generate Y and the second row to the K-means method. The three columns correspond to the number of
taxa associated with Y, k1 ∈ {3, 5, 10}, and the x-axis speci�es the number of non-associated taxa, k2 ∈ {100, 200, 300, 400}.

Figure 11. Variability ofM after clr transformation [see Equation (19)] for the n ≫ k scenario, based on the CD dataset. The total number of variables for
each simulation scheme is indicated in the x-axis.

to different transformations of the data. Therefore, results
are not readily transferable fromone study to another where
different �ltering processes were performed. In addition,
microbial signatures obtained from this approach can be
dif�cult to implement on an independent dataset as it raises
the question of how the variable from the new dataset
should be clr-transformed, and based on which compo-
nents. The new dataset may include different components,
e.g. new taxa not detected in the previous dataset. Most
importantly, irrelevant variables are not entirely removed
from the analysis: we have shown that all variables remain
in the clr transformation term (the geometric mean of all
clr-transformed variables).

Clr transformation is algebraically very similar to edgeR
and DeSeq2 normalization techniques (57), which suggests
that it can be used as library size normalization. However,
normalization alone does not solve the compositional issue;
thus, univariate testing of clr-transformed variables may re-
sult in high FPR when the composition abundances be-
tween samples are markedly different.
Using the terminology byMorton et al. (24), the clr trans-

formation uses all taxa as the ‘reference frame’. Such ref-
erence may not be suitable in our context as it combines
both taxa that are rather stable and taxa that might be quite
variable across experimental conditions. The adverse im-
pact of using all taxa as a reference is more evident when
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the number of taxa is small, as we showed in our simulation
study. When n ≫ k, the clr transformation introduces noise
and reduces power to detect real associations. When n ≪ k,
the clr transformation reduces to an almost constant shift
and the analysis is very similar to an analysis of the log-
transformed data without any CoDA consideration.
Penalized regression with coef�cients restricted to a sum

equal to zero, coda-lasso, is an elegant and appropriate
CoDA approach. Computation time is ef�cient and the re-
sults can be interpreted as balances between two groups
of taxa with weights. However, the determination of the
penalty parameter (i.e. the number of variables to retain in
the model) is a limitation in this approach. Coda-lasso is
suitable to identify variables that are most associated with
the outcome though it does not necessary lead to the best
accuracy nor the most parsimonious model.
Though not addressed in this work, it is worth noting

that, as any CoDA approach, the methods we have assessed
rely on logarithms and require handling of zeros. The pro-
portion and nature of the zeros in the dataset will determine
the treatment of zeros and also the performance of variable
selection methods.
To conclude, users should choose the method that best

�ts their needs and analysis objectives. Regardless of the ap-
proach chosen, we emphasize that variable selection in mi-
crobiome studies should be conducted with a multivariate
approach that accounts for compositional characteristics,
and that the interpretation of the associations of the micro-
biome with the response variable should be done in terms
of balances between groups of bacteria.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

Catalan Government [2016-DI-013 to M.L.C.]; Spanish
Ministry of Economy and Competitiveness [MTM2015-
64465-C2-1-R toM.L.C., TIN2017-88515-C2-1-R to A.S.];
Spanish Ministry of Science, Innovation and Universities
[BCAM SEV-2017-0718 to M.L.C. and A.S.]; Basque Gov-
ernment [BERC 2018-2021 to M.L.C. and A.S.]; Chinese
Scholarship Council (CSC) [to Y.W.]; National Health and
Medical Research Council (NHMRC) [GNT1159458 to
K.A.L.C.].
Con�ict of interest statement.None declared.

REFERENCES

1. Calle,M.L. (2019) Statistical analysis of metagenomics data.
Genomics Inform. 17, e6.

2. Gloor,G.B., Macklaim,J.M., Pawlowsky-Glahn,V. and Egozcue,J.J.
(2017) Microbiome datasets are compositional: and this is not
optional. Front. Microbiol., 8, 2224.

3. Thorsen,J., Brejnrod,A., Mortensen,M., Rasmussen,M.A.,
Stokholm,J., Al-Soud,W.A., Sørensen,S., Bisgaard,H. and Waage,J.
(2016) Large-scale benchmarking reveals false discoveries and count
transformation sensitivity in 16S rRNA gene amplicon data analysis
methods used in microbiome studies.Microbiome, 4, 62.

4. Hibbing,M.E., Fuqua,C., Parsek,M.R. and Peterson,S.B. (2010)
Bacterial competition: surviving and thriving in the microbial jungle.
Nat. Rev. Microbiol., 8, 15–25.

5. Gloor,G.B., Wu,J.R., Pawlowsky-Glahn,V. and Egozcue,J.J. (2016)
It’s all relative: analyzing microbiome data as compositions. Ann.
Epidemiol., 26, 322–329.

6. Gloor,G.B. and Reid,G. (2016) Compositional analysis: a valid
approach to analyze microbiome high-throughput sequencing data.
Can. J. Microbiol., 62, 692–703.

7. Quinn,T.P., Erb,I., Gloor,G., Notredame,C., Richardson,M.F. and
Crowley,T.M. (2019) A �eld guide for the compositional analysis of
any-omics data. GigaScience, 8, giz107.

8. Weiss,S., Xu,Z.Z., Peddada,S., Amir,A., Bittinger,K., Gonzalez,A.,
Lozupone,C., Zaneveld,J.R., Vázquez-Baeza,Y., Birmingham,A.
et al. (2017) Normalization and microbial differential abundance
strategies depend upon data characteristics.Microbiome, 5, 27.

9. Segata,N., Izard,J., Waldron,L., Gevers,D., Miropolsky,L.,
Garrett,W.S. and Huttenhower,C. (2011) Metagenomic biomarker
discovery and explanation. Genome Biol., 12, R60.

10. Paulson,J.N., Stine,O.C., Bravo,H.C. and Pop,M. (2013) Differential
abundance analysis for microbial marker-gene surveys. Nat. Methods,
10, 1200–1202.

11. Robinson,M.D., McCarthy,D.J. and Smyth,G.K. (2010) edgeR: a
Bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics, 26, 139–140.

12. Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol., 15, 550.

13. Robinson,M.D. and Oshlack,A. (2010) A scaling normalization
method for differential expression analysis of RNA-seq data. Genome
Biol., 11, R25.

14. Anderson,M.J. (2001) A new method for non-parametric multivariate
analysis of variance. Austral Ecol., 26, 32–46.

15. Clarke,K.R. (1993) Non-parametric multivariate analyses of changes
in community structure. Aust. J. Ecol., 18, 117–143.

16. La Rosa,P.S., Brooks,J.P., Deych,E., Boone,E.L., Edwards,D.J.,
Wang,Q., Sodergren,E., Weinstock,G. and Shannonet,W.D. (2012)
Hypothesis testing and power calculations for taxonomic-based
human microbiome data. PLoS One, 7, e52078.
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