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We consider a nonparametric additive model of a conditional mean func-
tion in which the number of variables and additive components may be larger
than the sample size but the number of nonzero additive components is
“small” relative to the sample size. The statistical problem is to determine
which additive components are nonzero. The additive components are ap-
proximated by truncated series expansions with B-spline bases. With this
approximation, the problem of component selection becomes that of select-
ing the groups of coefficients in the expansion. We apply the adaptive group
Lasso to select nonzero components, using the group Lasso to obtain an ini-
tial estimator and reduce the dimension of the problem. We give conditions
under which the group Lasso selects a model whose number of components
is comparable with the underlying model, and the adaptive group Lasso se-
lects the nonzero components correctly with probability approaching one as
the sample size increases and achieves the optimal rate of convergence. The
results of Monte Carlo experiments show that the adaptive group Lasso pro-
cedure works well with samples of moderate size. A data example is used to
illustrate the application of the proposed method.

1. Introduction. Let (Yi,Xi), i = 1, . . . , n, be random vectors that are inde-
pendently and identically distributed as (Y,X), where Y is a response variable and
X = (X1, . . . ,Xp)′ is a p-dimensional covariate vector. Consider the nonparamet-
ric additive model

Yi = μ +
p∑

j=1

fj (Xij ) + εi,(1)

where μ is an intercept term, Xij is the j th component of Xi , the fj ’s are un-
known functions, and εi is an unobserved random variable with mean zero and
finite variance σ 2. Suppose that some of the additive components fj are zero. The
problem addressed in this paper is to distinguish the nonzero components from the
zero components and estimate the nonzero components. We allow the possibility
that p is larger than the sample size n, which we represent by letting p increase as
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n increases. We propose a penalized method for variable selection in (1) and show
that the proposed method can correctly select the nonzero components with high
probability.

There has been much work on penalized methods for variable selection and es-
timation with high-dimensional data. Methods that have been proposed include the
bridge estimator [Frank and Friedman (1993), Huang, Horowitz and Ma (2008)];
least absolute shrinkage and selection operator or Lasso [Tibshirani (1996)], the
smoothly clipped absolute deviation (SCAD) penalty [Fan and Li (2001), Fan and
Peng (2004)], and the minimum concave penalty [Zhang (2010)]. Much progress
has been made in understanding the statistical properties of these methods. In par-
ticular, many authors have studied the variable selection, estimation and predic-
tion properties of the Lasso in high-dimensional settings. See, for example, Mein-
shausen and Bühlmann (2006), Zhao and Yu (2006), Zou (2006), Bunea, Tsybakov
and Wegkamp (2007), Meinshausen and Yu (2009), Huang, Ma and Zhang (2008),
van de Geer (2008) and Zhang and Huang (2008), among others. All these au-
thors assume a linear or other parametric model. In many applications, however,
there is little a priori justification for assuming that the effects of covariates take
a linear form or belong to any other known, finite-dimensional parametric family.
For example, in studies of economic development, the effects of covariates on the
growth of gross domestic product can be nonlinear. Similarly, there is evidence
of nonlinearity in the gene expression data used in the empirical example in Sec-
tion 5.

There is a large body of literature on estimation in nonparametric additive
models. For example, Stone (1985, 1986) showed that additive spline estima-
tors achieve the same optimal rate of convergence for a general fixed p as for
p = 1. Horowitz and Mammen (2004) and Horowitz, Klemelä and Mammen
(2006) showed that if p is fixed and mild regularity conditions hold, then oracle-
efficient estimates of the fj ’s can be obtained by a two-step procedure. Here, oracle
efficiency means that the estimator of each fj has the same asymptotic distribution
that it would have if all the other fj ’s were known. However, these papers do not
discuss variable selection in nonparametric additive models.

Antoniadis and Fan (2001) proposed a group SCAD approach for regularization
in wavelets approximation. Zhang et al. (2004) and Lin and Zhang (2006) have in-
vestigated the use of penalization methods in smoothing spline ANOVA with a
fixed number of covariates. Zhang et al. (2004) used a Lasso-type penalty but did
not investigate model-selection consistency. Lin and Zhang (2006) proposed the
component selection and smoothing operator (COSSO) method for model selec-
tion and estimation in multivariate nonparametric regression models. For fixed p,
they showed that the COSSO estimator in the additive model converges at the
rate n−d/(2d+1), where d is the order of smoothness of the components. They also
showed that, in the special case of a tensor product design, the COSSO correctly
selects the nonzero additive components with high probability. Zhang and Lin
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(2006) considered the COSSO for nonparametric regression in exponential fam-
ilies.

Meier, van de Geer and Bühlmann (2009) treat variable selection in a nonpara-
metric additive model in which the numbers of zero and nonzero fj ’s may both be
larger than n. They propose a penalized least-squares estimator for variable selec-
tion and estimation. They give conditions under which, with probability approach-
ing 1, their procedure selects a set of fj ’s containing all the additive components
whose distance from zero in a certain metric exceeds a specified threshold. How-
ever, they do not establish model-selection consistency of their procedure. Even
asymptotically, the selected set may be larger than the set of nonzero fj ’s. More-
over, they impose a compatibility condition that relates the levels and smoothness
of the fj ’s. The compatibility condition does not have a straightforward, intuitive
interpretation and, as they point out, cannot be checked empirically. Ravikumar et
al. (2009) proposed a penalized approach for variable selection in nonparametric
additive models. In their approach, the penalty is imposed on the �2 norm of the
nonparametric components, as well as the mean value of the components to en-
sure identifiability. In their theoretical results, they require that the eigenvalues of
a “design matrix” be bounded away from zero and infinity, where the “design ma-
trix” is formed from the basis functions for the nonzero components. It is not clear
whether this condition holds in general, especially when the number of nonzero
components diverges with n. Another critical condition required in the results of
Ravikumar et al. (2009) is similar to the irrepresentable condition of Zhao and Yu
(2006). It is not clear for what type of basis functions this condition is satisfied.
We do not require such a condition in our results on selection consistency of the
adaptive group Lasso.

Several other recent papers have also considered variable selection in nonpara-
metric models. For example, Wang, Chen and Li (2007) and Wang and Xia (2008)
considered the use of group Lasso and SCAD methods for model selection and es-
timation in varying coefficient models with a fixed number of coefficients and co-
variates. Bach (2007) applies what amounts to the group Lasso to a nonparametric
additive model with a fixed number of covariates. He established model selection
consistency under conditions that are considerably more complicated than the ones
we require for a possibly diverging number of covariates.

In this paper, we propose to use the adaptive group Lasso for variable selection
in (1) based on a spline approximation to the nonparametric components. With this
approximation, each nonparametric component is represented by a linear combina-
tion of spline basis functions. Consequently, the problem of component selection
becomes that of selecting the groups of coefficients in the linear combinations. It
is natural to apply the group Lasso method, since it is desirable to take into the
grouping structure in the approximating model. To achieve model selection con-
sistency, we apply the group Lasso iteratively as follows. First, we use the group
Lasso to obtain an initial estimator and reduce the dimension of the problem. Then
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we use the adaptive group Lasso to select the final set of nonparametric compo-
nents. The adaptive group Lasso is a simple generalization of the adaptive Lasso
[Zou (2006)] to the method of the group Lasso [Yuan and Lin (2006)]. However,
here we apply this approach to nonparametric additive modeling.

We assume that the number of nonzero fj ’s is fixed. This enables us to achieve
model selection consistency under simple assumptions that are easy to interpret.
We do not have to impose compatibility or irrepresentable conditions, nor do we
need to assume conditions on the eigenvalues of certain matrices formed from
the spline basis functions. We show that the group Lasso selects a model whose
number of components is bounded with probability approaching one by a constant
that is independent of the sample size. Then using the group Lasso result as the
initial estimator, the adaptive group Lasso selects the correct model with probabil-
ity approaching 1 and achieves the optimal rate of convergence for nonparametric
estimation of an additive model.

The remainder of the paper is organized as follows. Section 2 describes the
group Lasso and the adaptive group Lasso for variable selection in nonparametric
additive models. Section 3 presents the asymptotic properties of these methods in
“large p, small n” settings. Section 4 presents the results of simulation studies to
evaluate the finite-sample performance of these methods. Section 5 provides an
illustrative application, and Section 6 includes concluding remarks. Proofs of the
results stated in Section 3 are given in the Appendix.

2. Adaptive group Lasso in nonparametric additive models. We describe
a two-step approach that uses the group Lasso for variable selection based on a
spline representation of each component in additive models. In the first step, we
use the standard group Lasso to achieve an initial reduction of the dimension in
the model and obtain an initial estimator of the nonparametric components. In the
second step, we use the adaptive group Lasso to achieve consistent selection.

Suppose that each Xj takes values in [a, b] where a < b are finite numbers. To
ensure unique identification of the fj ’s, we assume that Efj (Xj ) = 0,1 ≤ j ≤ p.
Let a = ξ0 < ξ1 < · · · < ξK < ξK+1 = b be a partition of [a, b] into K subintervals
IKt = [ξt , ξt+1), t = 0, . . . ,K − 1, and IKK = [ξK, ξK+1], where K ≡ Kn = nv

with 0 < v < 0.5 is a positive integer such that max1≤k≤K+1 |ξk −ξk−1| = O(n−v).
Let Sn be the space of polynomial splines of degree l ≥ 1 consisting of functions s

satisfying: (i) the restriction of s to IKt is a polynomial of degree l for 1 ≤ t ≤ K ;
(ii) for l ≥ 2 and 0 ≤ l′ ≤ l − 2, s is l′ times continuously differentiable on [a, b].
This definition is phrased after Stone (1985), which is a descriptive version of
Schumaker (1981), page 108, Definition 4.1.

There exists a normalized B-spline basis {φk,1 ≤ k ≤ mn} for Sn, where mn ≡
Kn + l [Schumaker (1981)]. Thus, for any fnj ∈ Sn, we can write

fnj (x) =
mn∑
k=1

βjkφk(x), 1 ≤ j ≤ p.(2)
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Under suitable smoothness assumptions, the fj ’s can be well approximated by
functions in Sn. Accordingly, the variable selection method described in this paper
is based on the representation (2).

Let ‖a‖2 ≡ (
∑m

j=1 |aj |2)1/2 denote the �2 norm of any vector a ∈ R
m. Let βnj =

(βj1, . . . , βjmn)
′ and βn = (β ′

n1, . . . ,β
′
np)′. Let wn = (wn1, . . . ,wnp)′ be a given

vector of weights, where 0 ≤ wnj ≤ ∞,1 ≤ j ≤ p. Consider the penalized least
squares criterion

Ln(μ,βn) =
n∑

i=1

[
Yi − μ −

p∑
j=1

mn∑
k=1

βjkφk(Xij )

]2

+ λn

p∑
j=1

wnj‖βnj‖2,(3)

where λn is a penalty parameter. We study the estimators that minimize Ln(μ,βn)

subject to the constraints
n∑

i=1

mn∑
k=1

βjkφk(Xij ) = 0, 1 ≤ j ≤ p.(4)

These centering constraints are sample analogs of the identifying restriction
Efj (Xj ) = 0,1 ≤ j ≤ p. We can convert (3) and (4) to an unconstrained opti-
mization problem by centering the response and the basis functions. Let

φ̄jk = 1

n

n∑
i=1

φk(Xij ), ψjk(x) = φk(x) − φ̄jk.(5)

For simplicity and without causing confusion, we simply write ψk(x) = ψjk(x).
Define

Zij = (ψ1(Xij ), . . . ,ψmn(Xij ))
′.

So, Zij consists of values of the (centered) basis functions at the ith observation of
the j th covariate. Let Zj = (Z1j , . . . ,Znj )

′ be the n × mn “design” matrix corre-
sponding to the j th covariate. The total “design” matrix is Z = (Z1, . . . ,Zp). Let
Y = (Y1 − Y , . . . , Yn − Y)′. With this notation, we can write

Ln(βn;λ) = ‖Y − Zβn‖2
2 + λn

p∑
j=1

wnj‖βnj‖2.(6)

Here, we have dropped μ in the argument of Ln. With the centering, μ̂ = Y . Then
minimizing (3) subject to (4) is equivalent to minimizing (6) with respect to βn,
but the centering constraints are not needed for (6).

We now describe the two-step approach to component selection in the nonpara-
metric additive model (1).

Step 1. Compute the group Lasso estimator. Let

Ln1(βn, λn1) = ‖Y − Zβn‖2
2 + λn1

p∑
j=1

‖βnj‖2.
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This objective function is the special case of (6) that is obtained by setting wnj = 1,
1 ≤ j ≤ p. The group Lasso estimator is β̃n ≡ β̃n(λn1) = arg minβn

Ln1(βn;λn1).

Step 2. Use the group Lasso estimator β̃n to obtain the weights by setting

wnj =
{‖β̃nj‖−1

2 , if ‖β̃nj‖2 > 0,
∞, if ‖β̃nj‖2 = 0.

The adaptive group Lasso objective function is

Ln2(βn;λn2) = ‖Y − Zβn‖2
2 + λn2

p∑
j=1

wnj‖βnj‖2.

Here, we define 0 · ∞ = 0. Thus, the components not selected by the group Lasso
are not included in Step 2. The adaptive group Lasso estimator is β̂n ≡ β̂n(λn2) =
arg minβn

Ln2(βn;λn2). Finally, the adaptive group Lasso estimators of μ and fj

are

μ̂n = Y ≡ n−1
n∑

i=1

Yi, f̂nj (x) =
mn∑
k=1

β̂jkψk(x), 1 ≤ j ≤ p.

3. Main results. This section presents our results on the asymptotic proper-
ties of the estimators defined in Steps 1 and 2 of Section 2.

Let k be a nonnegative integer, and let α ∈ (0,1] be such that d = k + α > 0.5.
Let F be the class of functions f on [0,1] whose kth derivative f (k) exists and
satisfies a Lipschitz condition of order α:∣∣f (k)(s) − f (k)(t)

∣∣ ≤ C|s − t |α for s, t ∈ [a, b].
In (1), without loss of generality, suppose that the first q components are

nonzero, that is, fj (x) 	= 0,1 ≤ j ≤ q , but fj (x) ≡ 0, q + 1 ≤ j ≤ p. Let A1 =
{1, . . . , q} and A0 = {q +1, . . . , p}. Define ‖f ‖2 = [∫ b

a f 2(x) dx]1/2 for any func-
tion f , whenever the integral exists.

We make the following assumptions.
(A1) The number of nonzero components q is fixed and there is a constant

cf > 0 such that min1≤j≤q‖fj‖2 ≥ cf .
(A2) The random variables ε1, . . . , εn are independent and identically distrib-

uted with Eεi = 0 and Var(εi) = σ 2. Furthermore, their tail probabilities sat-
isfy P(|εi | > x) ≤ K exp(−Cx2), i = 1, . . . , n, for all x ≥ 0 and for constants C

and K .
(A3) Efj (Xj ) = 0 and fj ∈ F , j = 1, . . . , q .
(A4) The covariate vector X has a continuous density and there exist constants

C1 and C2 such that the density function gj of Xj satisfies 0 < C1 ≤ gj (x) ≤ C2 <

∞ on [a, b] for every 1 ≤ j ≤ p.
We note that (A1), (A3) and (A4) are standard conditions for nonparametric ad-

ditive models. They would be needed to estimate the nonzero additive components
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at the optimal �2 rate of convergence on [a, b], even if q were fixed and known.
Only (A2) strengthens the assumptions needed for nonparametric estimation of
a nonparametric additive model. While condition (A1) is reasonable in most ap-
plications, it would be interesting to relax this condition and investigate the case
when the number of nonzero components can also increase with the sample size.
The only technical reason that we assume this condition is related to Lemma 3
given in the Appendix, which is concerned with the properties of the smallest and
largest eigenvalues of the “design matrix” formed from the spline basis functions.
If this lemma can be extended to the case of a divergent number of components,
then (A1) can be relaxed. However, it is clear that there needs to be restriction on
the number of nonzero components to ensure model identification.

3.1. Estimation consistency of the group Lasso. In this section, we con-
sider the selection and estimation properties of the group Lasso estimator. De-
fine Ã1 = {j :‖β̃nj‖2 	= 0,1 ≤ j ≤ p}. Let |A| denote the cardinality of any set
A ⊆ {1, . . . , p}.

THEOREM 1. Suppose that (A1) to (A4) hold and λn1 ≥ C
√

n log(pmn) for
a sufficiently large constant C.

(i) With probability converging to 1, |Ã1| ≤ M1|A1| = M1q for a finite con-
stant M1 > 1.

(ii) If m2
n log(pmn)/n → 0 and (λ2

n1mn)/n2 → 0 as n → ∞, then all the
nonzero βnj ,1 ≤ j ≤ q , are selected with probability converging to one.

(iii)
p∑

j=1

‖β̃nj − βnj‖2
2 = Op

(
m2

n log(pmn)

n

)
+ Op

(
mn

n

)

+ O

(
1

m2d−1
n

)
+ O

(
4m2

nλ
2
n1

n2

)
.

Part (i) of Theorem 1 says that, with probability approaching 1, the group Lasso
selects a model whose dimension is a constant multiple of the number of nonzero
additive components fj , regardless of the number of additive components that
are zero. Part (ii) implies that every nonzero coefficient will be selected with high
probability. Part (iii) shows that the difference between the coefficients in the spline
representation of the nonparametric functions in (1) and their estimators converges
to zero in probability. The rate of convergence is determined by four terms: the
stochastic error in estimating the nonparametric components (the first term) and
the intercept μ (the second term), the spline approximation error (the third term)
and the bias due to penalization (the fourth term).

Let f̃nj (x) = ∑mn

j=1 β̃jkψ(x),1 ≤ j ≤ p. The following theorem is a conse-
quence of Theorem 1.
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THEOREM 2. Suppose that (A1) to (A4) hold and that λn1 ≥ C
√

n log(pmn)

for a sufficiently large constant C. Then:

(i) Let Ãf = {j :‖f̃nj‖2 > 0,1 ≤ j ≤ p}. There is a constant M1 > 1 such
that, with probability converging to 1, |Ãf | ≤ M1q .

(ii) If (mn log(pmn))/n → 0 and (λ2
n1mn)/n2 → 0 as n → ∞, then all the

nonzero additive components fj ,1 ≤ j ≤ q , are selected with probability converg-
ing to one.

(iii) ‖f̃nj − fj‖2
2 = Op

(
mn log(pmn)

n

)
+ Op

(
1

n

)

+ O

(
1

m2d
n

)
+ O

(
4mnλ

2
n1

n2

)
, j ∈ Ã2,

where Ã2 = A1 ∪ Ã1.

Thus, under the conditions of Theorem 2, the group Lasso selects all the nonzero
additive components with high probability. Part (iii) of the theorem gives the rate
of convergence of the group Lasso estimator of the nonparametric components.

For any two sequences {an, bn, n = 1,2, . . .}, we write an � bn if there are con-
stants 0 < c1 < c2 < ∞ such that c1 ≤ an/bn ≤ c2 for all n sufficiently large.

We now state a useful corollary of Theorem 2.

COROLLARY 1. Suppose that (A1) to (A4) hold. If λn1 � √
n log(pmn) and

mn � n1/(2d+1), then:

(i) If n−2d/(2d+1) log(p) → 0 as n → ∞, then with probability converging to
one, all the nonzero components fj ,1 ≤ j ≤ q , are selected and the number of
selected components is no more than M1q .

(ii) ‖f̃nj − fj‖2
2 = Op

(
n−2d/(2d+1) log(pmn)

)
, j ∈ Ã2.

For the λn1 and mn given in Corollary 1, the number of zero components can
be as large as exp(o(n2d/(2d+1))). For example, if each fj has continuous second
derivative (d = 2), then it is exp(o(n4/5)), which can be much larger than n.

3.2. Selection consistency of the adaptive group Lasso. We now consider the
properties of the adaptive group Lasso. We first state a general result concerning
the selection consistency of the adaptive group Lasso, assuming an initial consis-
tent estimator is available. We then apply to the case when the group Lasso is used
as the initial estimator. We make the following assumptions.

(B1) The initial estimators β̃nj are rn-consistent at zero:

rn max
j∈A0

‖β̃nj‖2 = OP (1), rn → ∞,
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and there exists a constant cb > 0 such that

P
(

min
j∈A1

‖β̃nj‖2 ≥ cbbn1

)
→ 1,

where bn1 = minj∈A1‖βnj‖2.
(B2) Let q be the number of nonzero components and sn = p−q be the number

of zero components. Suppose that:

(a)
mn

n1/2 + λn2m
1/4
n

n
= o(1),

(b)
n1/2 log1/2(snmn)

λn2rn
+ n

λn2rnm
(2d+1)/2
n

= o(1).

We state condition (B1) for a general initial estimator, to highlight the point
that the availability of an rn-consistent estimator at zero is crucial for the adaptive
group Lasso to be selection consistent. In other words, any initial estimator satisfy-
ing (B1) will ensure that the adaptive group Lasso (based on this initial estimator)
is selection consistent, provided that certain regularity conditions are satisfied. We
note that it follows immediately from Theorem 1 that the group Lasso estimator
satisfies (B1). We will come back to this point below.

For β̂n ≡ (β̂
′
n1, . . . , β̂

′
np)′ and βn ≡ (β ′

n1, . . . ,β
′
np)′, we say β̂n =0 βn if

sgn0(‖β̂nj‖) = sgn0(‖βnj‖),1 ≤ j ≤ p, where sgn0(|x|) = 1 if |x| > 0 and = 0
if |x| = 0.

THEOREM 3. Suppose that conditions (B1), (B2) and (A1)–(A4) hold. Then:

(i) P(β̂n =0 βn) → 1.

(ii)
q∑

j=1

‖β̂nj − βnj‖2
2 = Op

(
m2

n

n

)
+ Op

(
mn

n

)

+ O

(
1

m2d−1
n

)
+ O

(
4m2

nλ
2
n2

n2

)
.

This theorem is concerned with the selection and estimation properties of the
adaptive group Lasso in terms of β̂n. The following theorem states the results in
terms of the estimators of the nonparametric components.

THEOREM 4. Suppose that conditions (B1), (B2) and (A1)–(A4) hold. Then:

(i) P(‖f̂nj‖2 > 0, j ∈ A1 and ‖f̂nj‖2 = 0, j ∈ A0) → 1.

(ii)
q∑

j=1

‖f̂nj − fj‖2
2 = Op

(
mn

n

)
+ Op

(
1

n

)

+ O

(
1

m2d
n

)
+ O

(
4mnλ

2
n2

n2

)
.
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Part (i) of this theorem states that the adaptive group Lasso can consistently
distinguish nonzero components from zero components. Part (ii) gives an upper
bound on the rate of convergence of the estimator.

We now apply the above results to our proposed procedure described in Sec-
tion 2, in which we first obtain the the group Lasso estimator and then use it as the
initial estimator in the adaptive group Lasso.

By Theorem 1, if λn1 � √
n log(pmn) and mn � n1/(2d+1) for d ≥ 1, then the

group Lasso estimator satisfies (B1) with rn � nd/(2d+1)/
√

log(pmn). In this case,
(B2) simplifies to

λn2

n(8d+3)/(8d+4)
= o(1) and

n1/(4d+2) log1/2(pmn)

λn2
= o(1).(7)

We summarize the above discussion in the following corollary.

COROLLARY 2. Let the group Lasso estimator β̃n ≡ β̃n(λn1) with λn1 �√
n log(pmn) and mn � n1/(2d+1) be the initial estimator in the adaptive group

Lasso. Suppose that the conditions of Theorem 1 hold. If λn2 ≤ O(n1/2) and satis-
fies (7), then the adaptive group Lasso consistently selects the nonzero components
in (1), that is, part (i) of Theorem 4 holds. In addition,

q∑
j=1

‖f̂nj − fj‖2
2 = Op

(
n−2d/(2d+1)).

This corollary follows directly from Theorems 1 and 4. The largest λn2 allowed
is λn2 = O(n1/2). With this λn2, the first equation in (6) is satisfied. Substitute it
into the second equation in (6), we obtain p = exp(o(n2d/(2d+1))), which is the
largest p permitted and can be larger than n. Thus, under the conditions of this
corollary, our proposed adaptive group Lasso estimator using the group Lasso as
the initial estimator is selection consistent and achieves optimal rate of conver-
gence even when p is larger than n. Following model selection, oracle-efficient,
asymptotically normal estimators of the nonzero components can be obtained by
using existing methods.

4. Simulation studies. We use simulation to evaluate the performance of the
adaptive group Lasso with regard to variable selection. The generating model is

yi = f (xi) + εi ≡
p∑

j=1

fj (xij ) + εi, i = 1, . . . , n.(8)

Since p can be larger than n, we consider two ways to select the penalty pa-
rameter, the BIC [Schwarz (1978)] and the EBIC [Chen and Chen (2008, 2009)].
The BIC is defined as

BIC(λ) = log(RSSλ) + dfλ · logn

n
.
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Here, RSSλ is the residual sum of squares for a given λ, and the degrees of freedom
dfλ = q̂λmn, where q̂λ is the number of nonzero estimated components for the
given λ. The EBIC is defined as

EBIC(λ) = log(RSSλ) + dfλ · logn

n
+ ν · dfλ · logp

n
,

where 0 ≤ ν ≤ 1 is a constant. We use ν = 0.5.
We have also considered two other possible ways of defining df: (a) using the

trace of a linear smoother based on a quadratic approximation; (b) using the num-
ber of estimated nonzero components. We have decided to use the definition given
above based on the results from our simulations. We note that the df for the group
Lasso of Yuan and Lin (2006) requires an initial (least squares) estimator, which
is not available when p > n. Thus, their df is not applicable to our problem.

In our simulation example, we compare the adaptive group Lasso with the group
Lasso and ordinary Lasso. Here, the ordinary Lasso estimator is defined as the
value that minimizes

‖Y − Zβn‖2
2 + λn

p∑
j=1

mn∑
k=1

|βjk|.

This simple application of the Lasso does not take into account the grouping struc-
ture in the spline expansions of the components. The group Lasso and the adaptive
group Lasso estimates are computed using the algorithm proposed by Yuan and
Lin (2006). The ordinary Lasso estimates are computed using the Lars algorithms
[Efron et al. (2004)]. The group Lasso is used as the initial estimate for the adaptive
group Lasso.

We also compare the results from the nonparametric additive modeling with
those from the standard linear regression model with Lasso. We note that this is
not a fair comparison because the generating model is highly nonlinear. Our pur-
pose is to illustrate that it is necessary to use nonparametric models when the un-
derlying model deviates substantially from linear models in the context of variable
selection with high-dimensional data and that model misspecification can lead to
bad selection results.

EXAMPLE 1. We generate data from the model

yi = f (xi) + εi ≡
p∑

j=1

fj (xij ) + εi, i = 1, . . . , n,

where f1(t) = 5t, f2(t) = 3(2t − 1)2, f3(t) = 4sin(2πt)/(2 − sin(2πt)), f4(t) =
6(0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin(2πt)2 + 0.4 cos(2πt)3 + 0.5 sin(2πt)3),

and f5(t) = · · · = fp(t) = 0. Thus, the number of nonzero functions is q = 4. This
generating model is the same as Example 1 of Lin and Zhang (2006). However,
here we use this model in high-dimensional settings. We consider the cases where
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p = 1000 and three different sample sizes: n = 50,100 and 200. We use the cubic
B-spline with six evenly distributed knots for all the functions fk . The number of
replications in all the simulations is 400.

The covariates are simulated as follows. First, we generate wi1, . . . ,wip, ui ,
u′

i , vi independently from N(0,1) truncated to the interval [0,1], i = 1, . . . , n.
Then we set xik = (wik + tui)/(1 + t) for k = 1, . . . ,4 and xik = (wik + tvi)/(1 +
t) for k = 5, . . . , p, where the parameter t controls the amount of correlation
among predictors. We have Corr(xik, xij ) = t2/(1 + t2), 1 ≤ j ≤ 4, 1 ≤ k ≤ 4,
and Corr(xik, xij ) = t2/(1 + t2), 4 ≤ j ≤ p, 4 ≤ k ≤ p, but the covariates of the
nonzero components and zero components are independent. We consider t = 0,1
in our simulation. The signal to noise ratio is defined to be sd(f )/sd(ε). The error
term is chosen to be εi ∼ N(0,1.272) to give a signal-to-noise ratio (SNR) 3.11 : 1.
This value is the same as the estimated SNR in the real data example below, which
is the square root of the ratio of the sum of estimated components squared divided
by the sum of residual squared.

The results of 400 Monte Carlo replications are summarized in Table 1. The
columns are the mean number of variables selected (NV), model error (ER), the
percentage of replications in which all the correct additive components are in-
cluded in the selected model (IN), and the percentage of replications in which
precisely the correct components are selected (CS). The corresponding stan-
dard errors are in parentheses. The model error is computed as the average of
n−1 ∑n

i=1[f̂ (xi) − f (xi)]2 over the 400 Monte Carlo replications, where f is the
true conditional mean function.

Table 1 shows that the adaptive group Lasso selects all the nonzero components
(IN) and selects exactly the correct model (CS) more frequently than the other
methods do. For example, with the BIC and n = 200, the percentage of correct
selections (CS) by the adaptive group Lasso ranges from 65.25% to 81%, which
is much higher than the ranges 30–57.75% for the group Lasso and 12–15.75%
for the ordinary Lasso. The adaptive group Lasso and group Lasso perform better
than the ordinary Lasso in all of the experiments, which illustrates the importance
of taking account of the group structure of the coefficients of the spline expansion.
Correlation among covariates increases the difficulty of component selection, so it
is not surprising that all methods perform better with independent covariates than
with correlated ones. The percentage of correct selections increases as the sample
size increases. The linear model with Lasso never selects the correct model. This
illustrates the poor results that can be produced by a linear model when the true
conditional mean function is nonlinear.

Table 1 also shows that the model error (ME) of the group Lasso is only slightly
larger than that of the adaptive group Lasso. The models selected by the group
Lasso nest and, therefore, have more estimated coefficients than the models se-
lected by the adaptive group Lasso. Therefore, the group Lasso estimators of the
conditional mean function have a larger variance and larger ME. The differences
between the MEs of the two methods are small, however, because as can be seen
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TABLE 1
Example 1. Simulation results for the adaptive group Lasso, group Lasso, ordinary Lasso, and linear model with Lasso, n = 50,100 or 200, p = 1000.
NV, average number of the variables being selected; ME, model error; IN, percentage of occasions on which the correct components are included in the
selected model; CS, percentage of occasions on which correct components are selected, averaged over 400 replications. Enclosed in parentheses are the

corresponding standard errors. Top panel, independent predictors; bottom panel, correlated predictors

Adaptive group Lasso Group Lasso Ordinary Lasso Linear mode with Lasso

NV ME IN CS NV ME IN CS NV ME IN CS NV ME IN CS

Independent predictors

n = 200 BIC 4.15 26.72 90.00 80.00 4.20 27.54 90.00 58.25 9.73 28.44 95.00 18.00 3.35 31.89 0.00 0.00
(0.43) (4.13) (0.30) (0.41) (0.43) (4.45) (0.30) (0.54) (6.72) (5.55) (0.22) (0.40) (1.75) (5.65) (0.00) (0.00)

EBIC 4.09 26.64 92.00 81.75 4.18 27.40 92.00 60.00 9.58 28.15 95.00 32.50 3.30 32.08 0.00 0.00
(0.38) (4.06) (0.24) (0.39) (0.40) (4.33) (0.24) (0.50) (6.81) (5.25) (0.22) (0.47) (1.86) (5.69) (0.00) (0.00)

n = 100 BIC 4.73 28.26 85.00 70.00 5.03 29.07 85.00 35.00 17.25 29.50 82.50 12.00 6.35 31.57 5.00 0.00
(1.18) (5.71) (0.36) (0.46) (1.22) (6.01) (0.36) (0.48) (8.72) (5.89) (0.38) (0.44) (2.91) (7.22) (0.22) (0.00)

EBIC 4.62 28.07 84.25 74.00 4.90 28.87 84.25 38.00 15.93 29.35 84.00 27.75 5.90 31.53 5.00 0.00
(0.89) (5.02) (0.36) (0.42) (1.20) (5.72) (0.36) (0.50) (9.06) (5.25) (0.36) (0.45) (2.97) (6.40) (0.22) (0.00)

n = 50 BIC 4.75 28.86 80.00 65.00 5.12 29.97 80.00 32.00 18.53 30.05 75.00 11.00 12.53 32.52 22.50 0.00
(1.22) (5.72) (0.41) (0.48) (1.29) (6.15) (0.41) (0.48) (12.67) (6.26) (0.41) (0.31) (3.80) (8.37) (0.43) (0.00)

EBIC 4.69 28.94 78.00 65.00 5.01 29.82 78.00 36.00 17.27 30.50 77.50 26.00 10.33 31.64 20.00 0.00
(1.98) (6.48) (0.40) (0.48) (1.21) (6.11) (0.40) (0.49) (15.32) (7.89) (0.39) (0.44) (3.19) (8.17) (0.41) (0.00)

Correlated predictors

n = 200 BIC 3.20 27.76 66.00 60.00 3.85 28.12 66.00 30.00 9.13 28.80 56.00 11.00 1.08 32.18 0.00 0.00
(1.27) (4.74) (0.46) (0.50) (1.49) (4.76) (0.46) (0.46) (7.02) (5.36) (0.51) (0.31) (0.33) (8.99) (0.00) (0.00)

EBIC 3.23 27.60 68.00 63.00 3.92 27.85 68.00 31.00 9.24 28.22 58.00 13.75 1.30 32.00 0.00 0.00
(1.24) (4.34) (0.45) (0.49) (1.68) (4.50) (0.45) (0.48) (7.18) (5.30) (0.52) (0.44) (1.60) (8.92) (0.00) (0.00)

n = 100 BIC 2.88 27.88 60.00 56.00 3.28 28.33 60.00 22.00 8.80 28.97 52.00 8.00 1.00 32.24 0.00 0.00
(1.91) (4.88) (0.50) (0.56) (1.96) (4.92) (0.50) (0.42) (10.22) (5.45) (0.44) (0.26) (0.00) (9.20) (0.00) (0.00)

EBIC 3.04 27.78 61.75 58.00 3.44 28.16 61.75 24.00 9.06 28.55 54.00 10.00 1.00 32.09 0.00 0.00
(1.46) (4.85) (0.49) (0.54) (1.52) (4.90) (0.49) (0.43) (11.24) (5.42) (0.46) (0.28) (0.00) (8.98) (0.00) (0.00)

n = 50 BIC 2.50 28.36 48.50 38.00 3.10 29.37 48.50 20.00 8.01 30.48 30.00 5.00 1.00 33.28 0.00 0.00
(1.64) (5.32) (0.50) (0.55) (1.78) (5.98) (0.50) (0.41) (11.42) (6.77) (0.46) (0.23) (0.00) (9.42) (0.00) (0.00)

EBIC 2.48 28.57 48.00 38.00 3.07 30.13 48.00 18.00 8.24 30.89 32.00 6.00 1.00 33.25 0.00 0.00
(1.62) (5.51) (0.51) (0.55) (1.76) (7.60) (0.51) (0.40) (11.46) (6.40) (0.48) (0.24) (0.00) (9.38) (0.00) (0.00)
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from the NV column, the models selected by the group Lasso in our experiments
have only slightly more estimated coefficients than the models selected by the
adaptive group Lasso.

EXAMPLE 2. We now compare the adaptive group Lasso with the COSSO
[Lin and Zhang (2006)]. This comparison is suggested to us by the Associate Ed-
itor. Because the COSSO algorithm only works for the case when p is smaller
than n, we use the same set-up as in Example 1 of Lin and Zhang (2006). In
this example, the generating model is as in (8) with 4 nonzero components. Let
Xj = (Wj + tU)/(1 + t), j = 1, . . . , p, where W1, . . . ,Wp and U are i.i.d. from
N(0,1), truncated to the interval [0,1]. Therefore, corr(Xj ,Xk) = t2/(1 + t2) for
j 	= k. The random error term ε ∼ N(0,1.322). The SNR is 3:1. We consider three
different sample sizes n = 50,100 or 200 and three different number of predictors
p = 10,20 or 50. The COSSO estimator is computed using the Matlab software
which is publicly available at http://www4.stat.ncsu.edu/~hzhang/cosso.html.

The COSSO procedure uses either generalized cross-validation or 5-fold cross-
validation. Based the simulation results of Lin and Zhang (2006) and our own
simulations, the COSSO with 5-fold cross-validation has better selection perfor-
mance. Thus, we compare the adaptive group Lasso with BIC or EBIC with the
COSSO with 5-fold cross-validation. The results are given in Table 2. For indepen-
dent predictors, when n = 200 and p = 10,20 or 50, the adaptive group Lasso and
COSSO have similar performance in terms of selection accuracy and model error.
However, for smaller n and larger p, the adaptive group Lasso does significantly
better. For example, for n = 100 and p = 50, the percentage of correct selection
for the adaptive group Lasso is 81–83%, but it is only 11% for the COSSO. The
model error of the adaptive group Lasso is similar to or smaller than that of the
COSSO. In several experiments, the model error of the COSSO is 2 to more than
7 times larger than that of the adaptive group Lasso. It is interesting to note that
when n = 50 and p = 20 or 50, the adaptive group Lasso still does a descent job
in selecting the correct model, but the COSSO does poorly in these two cases.
In particular, for n = 50 and p = 50, the COSSO did not select the exact correct
model in all the simulation runs. For dependent predictors, the comparison is even
mode favorable to the adaptive group Lasso, which performs significantly better
than COSSO in terms of both model error and selection accuracy in all the cases.

5. Data example. We use the data set reported in Scheetz et al. (2006) to illus-
trate the application of the proposed method in high-dimensional settings. For this
data set, 120 twelve-week old male rats were selected for tissue harvesting from
the eyes and for microarray analysis. The microarrays used to analyze the RNA
from the eyes of these animals contain over 31,042 different probe sets (Affymet-
ric GeneChip Rat Genome 230 2.0 Array). The intensity values were normalized
using the robust multi-chip averaging method [Irizzary et al. (2003)] method to

http://www4.stat.ncsu.edu/~hzhang/cosso.html
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TABLE 2
Example 2. Simulation results comparing the adaptive group Lasso and COSSO. n = 50,100 or 200, p = 10,20 or 50. NV, average

number of the variables being selected; ME, model error; IN, percentage of occasions on which all the correct components
are included in the selected model; CS, percentage of occasions on which correct components are selected,

averaged over 400 replications. Enclosed in parentheses are the corresponding standard errors

p = 10 p = 20 p = 50

NV ME IN CS NV ME IN CS NV ME IN CS

Independent predictors

n = 200 AGLasso(BIC) 4.02 0.27 100.00 98.00 4.01 0.34 96.00 92.00 4.10 0.88 98.00 90.00
(0.14) (0.10) (0.00) (0.14) (0.40) (0.10) (0.20) (0.27) (0.39) (0.19) (0.14) (0.30)

AGLasso(EBIC) 4.02 0.27 100.00 99.00 4.05 0.32 100.00 94.00 4.08 0.87 98.00 90.00
(0.14) (0.09) (0.00) (0.10) (0.22) (0.09) (0.00) (0.24) (0.30) (0.16) (0.14) (0.30)

COSSO(5CV) 4.06 0.29 100.00 98.00 4.10 0.37 100.00 92.00 4.49 1.53 94.00 84.00
(0.24) (0.07) (0.00) (0.14) (0.39) (0.11) (0.00) (0.27) (1.10) (0.86) (0.24) (0.37)

n = 100 AGLasso(BIC) 4.06 0.56 99.00 90.00 4.11 0.63 98.00 87.00 4.27 1.04 93.00 81.00
(0.24) (0.19) (0.10) (0.30) (0.42) (0.26) (0.14) (0.34) (0.58) (0.64) (0.26) (0.39)

AGLasso(EBIC) 4.06 0.54 99.00 91.00 4.10 0.59 98.00 89.00 4.22 1.01 93.00 83.00
(0.24) (0.21) (0.10) (0.31) (0.39) (0.22) (0.14) (0.31) (0.56) (0.60) (0.26) (0.38)

COSSO(5CV) 4.17 0.53 96.00 89.00 4.18 1.04 83.00 63.00 4.89 6.63 30.00 11.00
(0.62) (0.19) (0.20) (0.31) (0.96) (0.64) (0.38) (0.49) (1.50) (1.29) (0.46) (0.31)

n = 50 AGLasso(BIC) 4.18 0.72 98.00 84.00 4.25 0.99 96.00 79.00 4.30 1.06 90.00 71.00
(0.66) (0.56) (0.14) (0.36) (0.72) (0.60) (0.20) (0.41) (0.89) (0.68) (0.30) (0.46)

AGLasso(EBIC) 4.16 0.70 98.00 84.00 4.24 1.02 94.00 78.00 4.27 1.04 92.00 73.00
(0.64) (0.52) (0.14) (0.36) (0.70) (0.62) (0.20) (0.42) (0.86) (0.64) (0.27) (0.45)

COSSO(5CV) 4.41 1.77 61.00 58.00 5.06 5.53 33.00 20.00 5.96 7.60 8.00 0.00
(1.08) (1.35) (0.46) (0.42) (1.54) (1.88) (0.47) (0.40) (2.20) (2.07) (0.27) (0.00)
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TABLE 2
(Continued)

p = 10 p = 20 p = 50

NV ME IN CS NV ME IN CS NV ME IN CS

Correlated predictors

n = 200 AGLasso(BIC) 3.75 0.49 82.00 70.00 3.71 1.20 75.00 66.00 3.50 1.68 68.00 62.00
(0.61) (0.14) (0.39) (0.46) (0.68) (0.89) (0.41) (0.46) (0.92) (1.29) (0.45) (0.49)

AGLasso(EBIC) 3.75 0.49 82.00 70.00 3.73 1.18 75.00 68.00 3.58 1.60 70.00 65.00
(0.61) (0.14) (0.39) (0.46) (0.65) (0.88) (0.41) (0.45) (0.84) (1.27) (0.46) (0.46)

COSSO(5CV) 3.70 0.53 69.00 41.00 3.89 1.24 57.00 36.00 4.11 1.76 41.00 16.00
(0.58) (0.17) (0.46) (0.49) (0.60) (0.90) (0.50) (0.48) (0.86) (1.33) (0.49) (0.37)

n = 100 AGLasso(BIC) 3.72 1.40 78.00 68.00 3.68 1.78 70.00 64.00 3.02 3.07 63.00 59.00
(0.66) (0.70) (0.40) (0.45) (0.74) (1.15) (0.46) (0.48) (1.58) (2.37) (0.49) (0.51)

AGLasso(EBIC) 3.70 1.46 75.00 66.00 3.71 1.74 72.00 64.00 3.20 2.98 65.00 60.00
(0.72) (0.78) (0.41) (0.46) (0.68) (1.06) (0.42) (0.48) (1.42) (1.96) (0.46) (0.50)

COSSO(5CV) 3.98 1.42 41.00 26.00 4.14 1.76 30.00 6.00 4.24 6.88 8.00 0.00
(0.64) (0.74) (0.49) (0.42) (2.27) (1.11) (0.46) (0.24) (2.96) (2.91) (0.27) (0.00)

n = 50 AGLasso(BIC) 3.30 2.26 70.00 62.00 3.06 3.02 65.00 60.00 2.87 4.01 52.00 42.00
(1.16) (1.09) (0.46) (0.49) (1.52) (2.14) (0.46) (0.50) (1.56) (3.69) (0.44) (0.52)

AGLasso(EBIC) 3.32 2.20 70.00 64.00 3.10 3.01 68.00 62.00 2.90 3.88 50.00 42.00
(1.14) (1.06) (0.46) (0.48) (1.51) (2.12) (0.45) (0.49) (1.54) (3.62) (0.42) (0.52)

COSSO(5CV) 4.14 3.77 25.00 6.00 4.20 6.98 5.00 0.00 4.90 9.93 1.00 0.00
(2.25) (2.02) (0.44) (0.24) (2.88) (2.82) (0.22) (0.00) (3.30) (4.08) (0.10) (0.00)
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obtain summary expression values for each probe set. Gene expression levels were
analyzed on a logarithmic scale.

We are interested in finding the genes that are related to the gene TRIM32. This
gene was recently found to cause Bardet–Biedl syndrome [Chiang et al. (2006)],
which is a genetically heterogeneous disease of multiple organ systems including
the retina. Although over 30,000 probe sets are represented on the Rat Genome
230 2.0 Array, many of them are not expressed in the eye tissue and initial screen-
ing using correlation shows that most probe sets have very low correlation with
TRIM32. In addition, we are expecting only a small number of genes to be related
to TRIM32. Therefore, we use 500 probe sets that are expressed in the eye and
have highest marginal correlation in the analysis. Thus, the sample size is n = 120
(i.e., there are 120 arrays from 120 rats) and p = 500. It is expected that only a
few genes are related to TRIM32. Therefore, this is a sparse, high-dimensional
regression problem.

We use the nonparametric additive model to model the relation between the ex-
pression of TRIM32 and those of the 500 genes. We estimate model (1) using the
ordinary Lasso, group Lasso, and adaptive group Lasso for the nonparametric ad-
ditive model. To compare the results of the nonparametric additive model with that
of the linear regression model, we also analyzed the data using the linear regression
model with Lasso. We scale the covariates so that their values are between 0 and
1 and use cubic splines with six evenly distributed knots to estimate the additive
components. The penalty parameters in all the methods are chosen using the BIC
or EBIC as in the simulation study. Table 3 lists the probes selected by the group
Lasso and the adaptive group Lasso, indicated by the check signs. Table 4 shows
the number of variables, the residual sums of squares obtained with each estimation
method. For the ordinary Lasso with the spline expansion, a variable is considered
to be selected if any of the estimated coefficients of the spline approximation to
its additive component are nonzero. Depending on whether BIC or EBIC is used,
the group Lasso selects 16–17 variables, the adaptive group Lasso selects 15 vari-
ables and the ordinary Lasso with the spline expansion selects 94–97 variables, the
linear model selects 8–14 variables. Table 4 shows that the adaptive group Lasso
does better than the other methods in terms of residual sum of squares (RSS). We
have also examined the plots (not shown) of the estimated additive components
obtained with the group Lasso and the adaptive group Lasso, respectively. Most
are highly nonlinear, confirming the need for taking into account nonlinearity.

In order to evaluate the performance of the methods, we use cross-validation and
compare the prediction mean square errors (PEs). We randomly partition the data
into 6 subsets, each set consisting of 20 observations. We then fit the model with 5
subsets as training set and calculate the PE for the remaining set which we consider
as test set. We repeat this process 6 times, considering one of the 6 subsets as test
set every time. We compute the average of the numbers of probes selected and the
prediction errors of these 6 calculations. Then we replicate this process 400 times
(this is suggested to us by the Associate Editor). Table 5 gives the average values
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TABLE 3
Probe sets selected by the group Lasso and the adaptive group Lasso in the data example using BIC

or EBIC for penalty parameter selection. GL, group Lasso; AGL, adaptive group Lasso; Linear,
linear model with Lasso

Probes GL(BIC) AGL(BIC) Linear(BIC) GL(EBIC) AGL(EBIC) Linear(EBIC)

1389584_at
√ √ √ √ √ √

1383673_at
√ √ √ √ √ √

1379971_at
√ √ √ √ √ √

1374106_at
√ √ √ √

1393817_at
√ √ √ √ √

1373776_at
√ √ √ √ √

1377187_at
√ √ √ √ √

1393955_at
√ √ √ √ √

1393684_at
√ √ √ √

1381515_at
√ √ √ √

1382835_at
√ √ √ √ √

1385944_at
√ √ √ √ √

1382263_at
√ √ √ √ √ √

1380033_at
√ √ √ √

1398594_at
√ √ √

1376744_at
√ √ √ √

1382633_at
√ √ √ √

1383110_at
√ √

1386683_at
√ √

over 400 replications. The adaptive group Lasso has smaller average prediction
error than the group Lasso, the ordinary Lasso and the linear regression with Lasso.
The ordinary Lasso selects far more probe sets than the other approaches, but this
does not lead to better prediction performance. Therefore, in this example, the
adaptive group Lasso provides the investigator a more targeted list of probe sets,
which can serve as a starting point for further study.

TABLE 4
Analysis results for the data example. No. of probes, the number of probe sets selected; RSS, the

residual sum of squares of the fitted model

BIC EBIC

No. of probe sets RSS No. of probe sets RSS

Adaptive group Lasso 15 1.52e–03 15 1.52e–03
Group Lasso 17 3.24e–03 16 3.40e–03
Ordinary Lasso 97 2.96e–07 94 8.10e–08
Linear regression with Lasso 14 2.62e–03 8 3.75e–03
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TABLE 5
Comparison of adaptive group Lasso, group Lasso, ordinary Lasso, and linear regression model
with Lasso for the data example. ANP, the average number of probe sets selected averaged across

400 replications; PE, the average of prediction mean square errors for the test set

Adaptive Linear
group Lasso Group Lasso Ordinary Lasso model with Lasso

ANP PE ANP PE ANP PE ANP PE

BIC 15.75 1.86e–02 16.45 2.89e–02 78.48 1.40e–02 9.25 2.26e–02
(0.85) (0.47e–02) (0.88) (0.49e–02) (3.62) (0.90e–02) (0.88) (1.41e–2)

EBIC 15.55 1.78e–02 16.75 1.99e–02 80.00 1.23e–02 9.15 2.03e–02
(0.82) (0.42e–02) (0.84) (0.47e–02) (3.50) (0.89e–02) (0.86) (1.39e–02)

It is of interest to compare the selection results from the adaptive group Lasso
and the linear regression model with Lasso. The adaptive group Lasso and the lin-
ear model with Lasso select different sets of genes. When the penalty parameter is
chosen with the BIC, the adaptive group Lasso selects 5 genes that are not selected
by the linear model with Lasso. In addition, the linear model with Lasso selects
5 genes that are not selected by the adaptive group Lasso. When the penalty pa-
rameter is selected with the EBIC, the adaptive group Lasso selects 10 genes that
are not selected by the linear model with Lasso. The estimated effects of many of
the genes are nonlinear, and the Monte Carlo results of Section 4 show that the
performance of the linear model with Lasso can be very poor in the presence of
nonlinearity. Therefore, we interpret the differences between the gene selections
of the adaptive group Lasso and the linear model with Lasso as evidence that the
selections produced by the linear model are misleading.

6. Concluding remarks. In this paper, we propose to use the adaptive group
Lasso for variable selection in nonparametric additive models in sparse, high-
dimensional settings. A key requirement for the adaptive group Lasso to be selec-
tion consistent is that the initial estimator is estimation consistent and selects all
the important components with high probability. In low-dimensional settings, find-
ing an initial consistent estimator is relatively easy and can be achieved by many
well-established approaches such as the additive spline estimators. However, in
high-dimensional settings, finding an initial consistent estimator is difficult. Un-
der the conditions stated in Theorem 1, the group Lasso is shown to be consistent
and selects all the important components. Thus the group Lasso can be used as
the initial estimator in the adaptive Lasso to achieve selection consistency. Fol-
lowing model selection, oracle-efficient, asymptotically normal estimators of the
nonzero components can be obtained by using existing methods. Our simulation
results indicate that our procedure works well for variable selection in the models
considered. Therefore, the adaptive group Lasso is a useful approach for variable
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selection and estimation in sparse, high-dimensional nonparametric additive mod-
els.

Our theoretical results are concerned with a fixed sequence of penalty parame-
ters, which are not applicable to the case where the penalty parameters are selected
based on data driven procedures such as the BIC. This is an important and chal-
lenging problem that deserves further investigation, but is beyond the scope of
this paper. We have only considered linear nonparametric additive models. The
adaptive group Lasso can be applied to generalized nonparametric additive mod-
els, such as the generalized logistic nonparametric additive model and other non-
parametric models with high-dimensional data. However, more work is needed to
understand the properties of this approach in those more complicated models.

APPENDIX: PROOFS

We first prove the following lemmas. Denote the centered versions of Sn by

S 0
nj =

{
fnj :fnj (x) =

mn∑
k=1

bjkψk(x), (βj1, . . . , βjmn) ∈ R
mn

}
, 1 ≤ j ≤ p,

where ψk’s are the centered spline bases defined in (5).

LEMMA 1. Suppose that f ∈ F and Ef (Xj ) = 0. Then under (A3) and (A4),
there exists an fn ∈ S 0

nj satisfying

‖fn − f ‖2 = Op(m−d
n + m1/2

n n−1/2).

In particular, if we choose mn = O(n1/(2d+1)), then

‖fn − f ‖2 = Op(m−d
n ) = Op

(
n−d/(2d+1)).

PROOF. By (A4), for f ∈ F , there is an f ∗
n ∈ Sn such that ‖f − f ∗

n ‖2 =
O(m−d

n ). Let fn = f ∗
n − n−1 ∑n

i=1 f ∗
n (Xij ). Then fn ∈ S 0

nj and |fn − f | ≤
|f ∗

n − f | + |Pnf
∗
n |, where Pn is the empirical measure of i.i.d. random variables

X1j , . . . ,Xnj . Consider

Pnf
∗
n = (Pn − P)f ∗

n + P(f ∗
n − f ).

Here, we use the linear functional notation, for example, Pf = ∫
f dP , where

P is the probability measure of X1j . For any ε > 0, the bracketing number
N[·](ε, S 0

nj ,L2(P )) of S 0
nj satisfies logN[·](ε, S 0

nj ,L2(P )) ≤ c1mn log(1/ε) for
some constant c1 > 0 [Shen and Wong (1994), page 597]. Thus, by the maxi-
mal inequality; see, for example, van der Vaart (1998, page 288), (Pn − P)f ∗

n =
Op(n−1/2m

1/2
n ). By (A4), |P(f ∗

n − f )| ≤ C2‖f ∗
n − f ‖2 = O(m−d

n ) for some con-
stant C2 > 0. The lemma follows from the triangle inequality. �
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LEMMA 2. Suppose that conditions (A2) and (A4) hold. Let

Tjk = n−1/2m1/2
n

n∑
i=1

ψk(Xij )εi, 1 ≤ j ≤ p,1 ≤ k ≤ mn,

and Tn = max1≤j≤p,1≤k≤mn |Tjk|. Then

E(Tn) ≤ C1n
−1/2m1/2

n

√
log(pmn)

(√
2C2m

−1
n n log(pmn)

+ 4 log(2pmn) + C2nm−1
n

)1/2
,

where C1 and C2 are two positive constants. In particular, when mn log(pmn)/

n → 0,

E(Tn) = O(1)
√

log(pmn).

PROOF. Let s2
njk = ∑n

i=1 ψ2
k (Xij ). Conditional on Xij ’s, Tjk’s are sub-

Gaussian. Let s2
n = max1≤j≤p,1≤k≤mn s2

njk . By (A2) and the maximal inequality for
sub-Gaussian random variables [van der Vaart and Wellner (1996), Lemmas 2.2.1
and 2.2.2],

E
(

max
1≤j≤p,1≤k≤mn

|Tjk|
∣∣{Xij ,1 ≤ i ≤ n,1 ≤ j ≤ p}

)
≤ C1n

−1/2m1/2
n sn

√
log(pmn).

Therefore,

E
(

max
1≤j≤p,1≤k≤mn

|Tjk|
)

≤ C1n
−1/2m1/2

n

√
log(pmn)E(sn),(9)

where C1 > 0 is a constant. By (A4) and the properties of B-splines,

|ψk(Xij )| ≤ |φk(Xij )| + |φ̄jk| ≤ 2 and E(ψk(Xij ))
2 ≤ C2m

−1
n(10)

for a constant C2 > 0, for every 1 ≤ j ≤ p and 1 ≤ k ≤ mn. By (10),
n∑

i=1

E[ψ2
k (Xij ) − Eψ2

k (Xij )]2 ≤ 4C2nm−1
n(11)

and

max
1≤j≤p,1≤k≤mn

n∑
i=1

Eψ2
k (Xij ) ≤ C2nm−1

n .(12)

By Lemma A.1 of van de Geer (2008), (10) and (11) imply

E

(
max

1≤j≤p,1≤k≤mn

∣∣∣∣∣
n∑

i=1

{ψ2
k (Xij ) − Eψ2

k (Xij )}
∣∣∣∣∣
)

≤
√

2C2m
−1
n n log(pmn) + 4 log(2pmn).



NONPARAMETRIC COMPONENT SELECTION 2303

Therefore, by (12) and the triangle inequality,

Es2
n ≤

√
2C2m

−1
n n log(pmn) + 4 log(2pmn) + C2nm−1

n .

Now since Esn ≤ (Es2
n)1/2, we have

Esn ≤ (√
2C2m

−1
n n log(pmn) + 4 log(2pmn) + C2nm−1

n

)1/2
.(13)

The lemma follows from (9) and (13). �

Denote

βA = (β ′
j , j ∈ A)′ and ZA = (Zj , j ∈ A).

Here, βA is an |A|mn × 1 vector and ZA is an n × |A|mn matrix. Let CA =
Z′

AZA/n. When A = {1, . . . , p}, we simply write C = Z′Z/n. Let ρmin(CA) and
ρmax(CA) be the minimum and maximum eigenvalues of CA, respectively.

LEMMA 3. Let mn = O(nγ ) where 0 < γ < 0.5. Suppose that |A| is bounded
by a fixed constant independent of n and p. Let h ≡ hn � m−1

n . Then under (A3)
and (A4), with probability converging to one,

c1hn ≤ ρmin(CA) ≤ ρmax(CA) ≤ c2hn,

where c1 and c2 are two positive constants.

PROOF. Without loss of generality, suppose A = {1, . . . , k}. Then ZA = (Z1,
. . . ,Zq). Let b = (b′

1, . . . ,b′
q)

′, where bj ∈ Rmn . By Lemma 3 of Stone (1985),

‖Z1b1 + · · · + Zqbq‖2 ≥ c3(‖Z1b1‖2 + · · · + ‖Zqbq‖2)

for a certain constant c3 > 0. By the triangle inequality,

‖Z1b1 + · · · + Zqbq‖2 ≤ ‖Z1b1‖2 + · · · + ‖Zqbq‖2.

Since ZAb = Z1b1 + · · · + Zqbq , the above two inequalities imply that

c3(‖Z1b1‖2 + · · · + ‖Zqbq‖2) ≤ ‖ZAb‖2 ≤ ‖Z1b1‖2 + · · · + ‖Zqbq‖2.

Therefore,

c2
3(‖Z1b1‖2

2 + · · · + ‖Zqbq‖2
2)

(14)
≤ ‖ZAb‖2

2 ≤ 2(‖Z1b1‖2
2 + · · · + ‖Zqbq‖2

2).

Let Cj = n−1Z′
j Zj . By Lemma 6.2 of Zhou, Shen and Wolf (1998),

c4h ≤ ρmin(Cj ) ≤ ρmax(Cj ) ≤ c5h, j ∈ A.(15)

Since CA = n−1Z′
AZA, it follows from (14) that

c2
3(b

′
1C1b1 + · · · + b′

qCqbq) ≤ b′CAb ≤ 2(b′
1C1b1 + · · · + b′

qCqbq).
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Therefore, by (15),

b′
1C1b1

‖b‖2
2

+ · · · + b′
qCqbq

‖b‖2
2

= b′
1C1b1

‖b1‖2
2

‖b1‖2
2

‖b‖2
2

+ · · · + b′
qCqbq

‖bq‖2
2

‖bq‖2
2

‖b‖2
2

≥ ρmin(C1)
‖b1‖2

2

‖b‖2
2

+ · · · + ρmin(Cq)
‖bq‖2

2

‖b‖2
2

≥ c4h.

Similarly,

b′
1C1b1

‖b‖2
2

+ · · · + b′
qCqbq

‖b‖2
2

≤ c5h.

Thus, we have

c2
3c4h ≤ b′CAb

b′b
≤ 2c5h.

The lemma follows. �

PROOF OF THEOREM 1. The proof of parts (i) and (ii) essentially fol-
lows the proof of Theorem 2.1 of Wei and Huang (2008). The only change
that must be made here is that we need to consider the approximation error
of the regression functions by splines. Specifically, let ξn = εn + δn, where
δn = (δn1, . . . , δnn)

′ with δni = ∑qn

j=1(f0j (Xij )−fnj (Xij )). Since ‖f0j −fnj‖2 =
O(m−d

n ) = O(n−d/(2d+1)) for mn = n1/(2d+1), we have

‖δn‖2 ≤ C1

√
nqm−2d

n = C1qn1/(4d+2)

for some constant C1 > 0. For any integer t , let

χt = max|A|=t
max‖UAk

‖2=1,1≤k≤t

|ξ ′
nVA(s)|

‖VA(s)‖2
and χ∗

t = max|A|=t
max‖UAk

‖2=1,1≤k≤t

|ε′
nVA(s)|

‖VA(s)‖2
,

where VA(SA) = ξ ′
n(ZA(Z′

AZA)−1S̄A − (I − PA)Xβ for N(A) = q1 = m ≥ 0,
SA = (S′

A1
, . . . , S′

Am
)′, SAk

= λ
√

dAk
UAk

and ‖UAk
‖2 = 1.

For a sufficiently large constant C2 > 0, define

�t0 = {
(Z,εn) :xt ≤ σC2

√
(t ∨ 1)mn log(pmn),∀t ≥ t0

}
and

�∗
t0

= {
(Z,εn) :x∗

t ≤ σC2

√
(t ∨ 1)mn log(pmn),∀t ≥ t0

}
,

where t0 ≥ 0.
As in the proof of Theorem 2.1 of Wei and Huang (2008),

(Z,εn) ∈ �q ⇒ |Ã1| ≤ M1q
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for a constant M1 > 1. By the triangle and Cauchy–Schwarz inequalities,

|ξ ′
nVA(s)|

‖VA(s)‖2
= |ε′

nVA(s) + δ′
nVA(s)|

‖VA(s)‖2
≤ |ε′

nVA(s)|
‖VA‖2

+ ‖δn‖.(16)

In the proof of Theorem 2.1 of Wei and Huang (2008), it is shown that

P(�∗
0) ≥ 2 − 2

p1+c0
− exp

( 2p

p1+c0

)
→ 1.(17)

Since

|δ′
nVA(s)|

‖VA(s)‖2
≤ ‖δn‖2 ≤ C1qn1/(2(2d+1))

and mn = O(n1/(2d+1)), we have for all t ≥ 0 and n sufficiently large,

‖δn‖2 ≤ C1qn1/(2(2d+1)) ≤ σC2

√
(t ∨ 1)mn log(p).(18)

It follows from (16), (17) and (18) that P(�0) → 1. This completes the proof of
part (i) of Theorem 1.

Before proving part (ii), we first prove part (iii) of Theorem 1. By the definition
of β̃n ≡ (β̃

′
n1, . . . , β̃

′
np)′,

‖Y − Zβ̃n‖2
2 + λn1

p∑
j=1

‖β̃nj‖2 ≤ ‖Y − Zβn‖2
2 + λn1

p∑
j=1

‖βnj‖2.(19)

Let A2 = {j :‖βnj‖2 	= 0 or ‖β̃nj‖2 	= 0} and dn2 = |A2|. By part (i), dn2 = Op(q).
By (19) and the definition of A2,

‖Y − ZA2 β̃nA2
‖2

2 + λn1
∑

j∈A2

‖β̃nj‖2

(20)
≤ ‖Y − ZA2βnA2

‖2
2 + λn1

∑
j∈A2

‖βnj‖2.

Let ηn = Y − Zβn. Write

Y − ZA2 β̃nA2
= Y − Zβn − ZA2(β̃nA2

− βnA2
) = ηn − ZA2(β̃nA2

− βnA2
).

We have

‖Y − ZA2 β̃nA2
‖2

2 = ‖ZA2(β̃nA2
− βnA2

)‖2
2 − 2η′

nZA2(β̃nA2
− βnA2

) + η′
nηn.

We can rewrite (20) as

‖ZA2(β̃nA2
− βnA2

)‖2
2 − 2η′

nZA2(β̃nA2
− βnA2

)
(21)

≤ λn1
∑

j∈A1

‖βnj‖2 − λn1
∑

j∈A1

‖β̃nj‖2.
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Now ∣∣∣∣ ∑
j∈A1

‖βnj‖2 − ∑
j∈A1

‖β̃nj‖2

∣∣∣∣ ≤ √|A1| · ‖β̃nA1
− βnA1

‖2

(22)
≤ √|A1| · ‖β̃nA2

− βnA2
‖2.

Let νn = ZA2(β̃nA2
− βnA2

). Combining (20), (21) and (22) to get

‖νn‖2
2 − 2η′

nνn ≤ λn1
√|A1| · ‖β̃nA2

− βnA2
‖2.(23)

Let η∗
n be the projection of ηn to the span of ZA2 , that is, η∗

n = ZA2(Z
′
A2

×
ZA2)

−1Z′
A2

ηn. By the Cauchy–Schwarz inequality,

2|η′
nνn| ≤ 2‖η∗

n‖2 · ‖νn‖2 ≤ 2‖η∗
n‖2

2 + 1
2‖νn‖2

2.(24)

From (23) and (24), we have

‖νn‖2
2 ≤ 4‖η∗

n‖2
2 + 2λn1

√|A1| · ‖β̃nA2
− βnA2

‖2.

Let cn∗ be the smallest eigenvalue of Z′
A2

ZA2/n. By Lemma 3 and part (i), cn∗ �p

m−1
n . Since ‖νn‖2

2 ≥ ncn∗‖β̃nA2
− βnA2

‖2
2 and 2ab ≤ a2 + b2,

ncn∗‖β̃nA2
− βnA2

‖2
2 ≤ 4‖η∗

n‖2
2 + (2λn1

√|A1|)2

2ncn∗
+ 1

2
ncn∗‖β̃nA2

− βnA2
‖2

2.

It follows that

‖β̃nA2
− βnA2

‖2
2 ≤ 8‖η∗

n‖2
2

ncn∗
+ 4λ2

n1|A1|
n2c2

n∗
.(25)

Let f0(Xi ) = ∑p
j=1 f0j (Xij ) and f0A(Xi ) = ∑

j∈A f0j (Xij ). Write

ηi = Yi − μ − f0(Xi) + (μ − Y) + f0(Xi ) − ∑
j∈A2

Z′
ijβnj

= εi + (μ − Y) + fA2(Xi) − fnA2(Xi ).

Since |μ − Y |2 = Op(n−1) and ‖f0j − fnj‖∞ = O(m−d
n ), we have

‖η∗
n‖2

2 ≤ 2‖ε∗
n‖2

2 + Op(1) + O(ndn2m
−2d
n ),(26)

where ε∗
n is the projection of εn = (ε1, . . . , εn)

′ to the span of ZA2 . We have

‖ε∗
n‖2

2 = ‖(Z′
A2

ZA2)
−1/2Z′

A2
εn‖2

2 ≤ 1

ncn∗
‖Z′

A2
εn‖2

2.

Now

max
A : |A|≤dn2

‖Z′
Aεn‖2

2 = max
A : |A|≤dn2

∑
j∈A

‖Z′
jεn‖2

2 ≤ dn2mn max
1≤j≤p,1≤k≤mn

|Z ′
jkε|2,
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where Zjk = (ψk(X1j ), . . . ,ψk(Xnj ))
′. By Lemma 2,

max
1≤j≤p,1≤k≤mn

|Z ′
jkεn|2 = nm−1

n max
1≤j≤p,1≤k≤mn

|(mn/n)1/2 Z ′
jkεn|2

= Op(1)nm−1
n log(pmn).

It follows that,

‖ε∗
n‖2

2 = Op(1)
dn2 log(pmn)

cn∗
.(27)

Combining (25), (26) and (27), we get

‖β̃A2
− βA2

‖2
2 ≤ Op

(
dn2 log(pmn)

nc2
n∗

)
+ Op

(
1

ncn∗

)

+ O

(
dn2m

−2d
n

cn∗

)
+ 4λ2

n1|A1|
n2c2

n∗
.

Since dn2 = Op(q), cn∗ �p m−1
n and c∗

n �p m−1
n , we have

‖β̃A2
−βA2

‖2
2 ≤ Op

(
m2

n log(pmn)

n

)
+Op

(
mn

n

)
+O

(
1

m2d−1
n

)
+O

(
4m2

nλ
2
n1

n2

)
.

This completes the proof of part (iii).
We now prove part (ii). Since ‖fj‖2 ≥ cf > 0,1 ≤ j ≤ q , ‖fj − fnj‖2 =

O(m−d
n ) and ‖fnj‖2 ≥ ‖fj‖2 − ‖fj − fnj‖2, we have ‖fnj‖2 ≥ 0.5cf for n suf-

ficiently large. By a result of de Boor (2001), see also (12) of Stone (1986), there
are positive constants c6 and c7 such that

c6m
−1
n ‖βn‖2

2 ≤ ‖fnj‖2
2 ≤ c7m

−1
n ‖βnj‖2

2.

It follows that ‖βnj‖2
2 ≥ c−1

7 mn‖fnj‖2
2 ≥ 0.25c−1

7 c2
f mn. Therefore, if ‖βnj‖2 	= 0

but ‖β̃nj‖2 = 0, then

‖β̃nj − βnj‖2
2 ≥ 0.25c−1

7 c2
f mn.(28)

However, since (mn log(pmn))/n → 0 and (λ2
n1mn)/n2 →, (28) contradicts part

(iii). �

PROOF OF THEOREM 2. By the definition of f̃j ,1 ≤ j ≤ p, parts (i) and (ii)
follow from parts (i) and (ii) of Theorem 1 directly.

Now consider part (iii). By the properties of spline [de Boor (2001)],

c6m
−1
n ‖β̃nj − βnj‖2

2 ≤ ‖f̃nj − fnj‖2
2 ≤ c7m

−1
n ‖β̃nj − βnj‖2

2.
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Thus,

‖f̃nj − fnj‖2
2 = Op

(
mn log(pmn)

n

)
+ Op

(
1

n

)
(29)

+ O

(
1

m2d
n

)
+ O

(
4mnλ

2
n1

n2

)
.

By (A3),

‖fj − fnj‖2
2 = O(m−2d

n ).(30)

Part (iii) follows from (29) and (30). �

In the proofs below, for any matrix H, denote its 2-norm by ‖H‖, which is equal
to its largest eigenvalue. This norm satisfies the inequality ‖Hx‖ ≤ ‖H‖‖x‖ for a
column vector x whose dimension is the same as the number of the columns of H.

Denote βnA1
= (β ′

nj , j ∈ A1)
′, β̂nA1

= (β̂
′
nj , j ∈ A1)

′ and ZA1 = (Zj , j ∈ A1).
Define CA1 = n−1Z′

A1
ZA1 . Let ρn1 and ρn2 be the smallest and largest eigenvalues

of CA1 , respectively.

PROOF OF THEOREM 3. By the KKT, a necessary and sufficient condition for
β̂n is ⎧⎪⎪⎨⎪⎪⎩

2Z′
j (Y − Zβ̂n) = λn2wnj

β̂nj

‖β̂nj‖
, ‖β̂j‖2 	= 0, j ≥ 1,

2‖Z′
j (Y − Zβ̂n)‖2 ≤ λn2wnj , ‖β̂nj‖ = 0, j ≥ 1.

(31)

Let νn = (wnj β̂j /(2‖β̂nj‖), j ∈ A1)
′. Define

β̂nA1
= (Z′

A1
ZA1)

−1(Z′
A1

Y − λn2νn).(32)

If β̂nA1
=0 βnA1

, then the equation in (31) holds for β̂n ≡ (β̂
′
nA1

,0′)′. Thus,
since Zβ̂n = ZA1 β̂nA1

for this β̂n and {Zj , j ∈ A1} are linearly independent,

β̂n =0 βn if

{
β̂nA1

=0 βnA1
,

‖Z′
j (Y − ZA1 β̂nA1

)‖2 ≤ λn2wnj/2, ∀j /∈ A1.

This is true if

β̂n =0 βn if

{‖βnj‖2 − ‖β̂nj‖2 < ‖βnj‖2, ∀j ∈ A1,

‖Z′
j (Y − ZA1 β̂nA1

)‖2 ≤ λn2wnj/2, ∀j /∈ A1.

Therefore,

P(β̂n 	=0 βn) ≤ P(‖β̂nj − βnj‖2 ≥ ‖βnj‖2,∃j ∈ A1)

+ P
(‖Z′

j (Y − ZA1 β̂nA1
)‖2 > λn2wnj/2,∃j /∈ A1

)
.
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Let f0j (Xj ) = (f0j (X1j ), . . . , f0j (Xnj ))
′ and δn = ∑

j∈A1
f0j (Xj )−ZA1βnA1

.
By Lemma 1, we have

n−1‖δn‖2 = Op(qm−2d
n ).(33)

Let Hn = In − ZA1(Z
′
A1

ZA1)
−1Z′

A1
. By (32),

β̂nA1
− βnA1

= n−1C−1
A1

(
Z′

A1
(εn + δn) − λn2νn

)
(34)

and

Y − ZA1 β̂nA1
= Hnεn + Hnδn + λn2ZA1C−1

A1
νn/n.(35)

Based on these two equations, Lemma 5 below shows that

P(‖β̂nj − βnj‖2 ≥ ‖βnj‖2,∃j ∈ A1) → 0,

and Lemma 6 below shows that

P
(‖Z′

j (Y − ZA1 β̂nA1
)‖2 > λn2wnj/2,∃j /∈ A1

) → 0.

These two equations lead to part (i) of the theorem.
We now prove part (ii) of Theorem 3. As in (26), for ηn = Y − Zβn and

η∗
n1 = ZA1(Z

′
A1

ZA1)
−1Z′

A1
ηn,

we have

‖η∗
n1‖2

2 ≤ 2‖ε∗
n1‖2

2 + Op(1) + O(qnm−2d
n ),(36)

where ε∗
n1 is the projection of εn = (ε1, . . . , εn)

′ to the span of ZA1 . We have

‖ε∗
n1‖2

2 = ‖(Z′
A1

ZA1)
−1/2Z′

A1
εn‖2

2 ≤ 1

nρn1
‖Z′

A1
εn‖2

2 = Op(1)
|A1|
ρn1

.(37)

Now similarly to the proof of (25), we can show that

‖β̂nA1
− βnA1

‖2
2 ≤ 8‖η∗

n1‖2
2

nρn1
+ 4λ2

n2|A1|
n2ρ2

n1

.(38)

Combining (36), (37) and (38), we get

‖β̂nA1
− βnA1

‖2
2 = Op

(
8

nρ2
n1

)
+ Op

(
1

nρn1

)
+ O

(
1

m2d−1
n

)
+ O

(
4λ2

n2

n2ρ2
n1

)
.

Since ρn1 �p m−1
n , the result follows. �

The following lemmas are needed in the proof of Theorem 3.

LEMMA 4. For νn = (wnj β̃j /(2‖β̃nj‖), j ∈ A1)
′, under condition (B1),

‖νn‖2 = Op(h2
n) = Op

(
(b2

n1cb)
−2r−1

n + qb−1
n1

)
.



2310 J. HUANG, J. L. HOROWITZ AND F. WEI

PROOF. Write

‖νn‖2 = ∑
j∈A1

w2
j = ∑

j∈A1

‖β̃nj‖−2 = ∑
j∈A1

‖βnj‖2 − ‖β̃nj‖2

‖βnj‖2 · ‖β̃nj‖2
+ ∑

j∈A1

‖βnj‖−1.

Under (B2),

∑
j∈A1

|‖βnj‖2 − ‖β̃nj‖2|
‖βnj‖2 · ‖β̃nj‖2

≤ Mc−2
b b−4

n1 ‖β̃n − βn‖

and
∑

j∈A1
‖βnj‖−2 ≤ qb−2

n1 . The claim follows. �

Let ρn3 be the maximum of the largest eigenvalues of n−1Z′
j Zj , j ∈ A0, that is,

ρn3 = maxj∈A0 ‖n−1Z′
j Zj‖2. By Lemma 3,

bn1 � O(m1/2
n ), ρn1 �p m−1

n , ρn2 �p m−1
n and ρn3 �p m−1

n .(39)

LEMMA 5. Under conditions (B1), (B2), (A3) and (A4),

P(‖β̂nj − βnj‖2 ≥ ‖βnj‖2,∃j ∈ A1) → 0.(40)

PROOF. Let Tnj be an mn × qmn matrix with the form

Tnj = (0mn, . . . ,0mn, Imn,0mn, . . . ,0mn),

where Omn is an mn × mn matrix of zeros and Imn is an mn × mn identity matrix,
and Imn is at the j th block. By (34), β̂nj − βnj = n−1Tnj C−1

A1
(Z′

A1
εn + Z′

A1
δn −

λn2νn). By the triangle inequality,

‖β̂nj − βnj‖2 ≤ n−1‖Tnj C−1
A1

Z′
A1

εn‖2 + n−1‖Tnj C−1
A1

Z′
A1

δn‖2
(41)

+ n−1λn2‖Tnj C−1
A1

νn‖2.

Let C be a generic constant independent of n. The first term on the right-hand side

max
j∈A1

n−1‖Tnj C−1
A1

Z′
A1

εn‖2 ≤ n−1ρ−1
n1 ‖Z′

A1
εn‖2

= n−1/2ρ−1
n1 ‖n−1/2Z′

A1
εn‖2(42)

= Op(1)n−1/2ρ−1
n1 m−1/2

n (qmn)
1/2.

By (33), the second term

max
j∈A1

n−1‖Tnj C−1
A1

Z′
A1

δn‖2 ≤ ‖C−1
A1

‖2 · ‖n−1Z′
A1

ZA1‖1/2
2 · ‖n−1δn‖2

(43)
= Op(1)ρ−1

n1 ρ
1/2
n2 q1/2m−d

n .
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By Lemma 4, the third term

max
j∈A1

n−1λn2‖Tnj C−1
A1

νn‖2 ≤ nλn2ρ
−1
n1 ‖νn‖2 = Op(1)ρ−1

n1 n−1λn2hn.(44)

Thus, (40) follows from (39), (42)–(44) and condition (B2a). �

LEMMA 6. Under conditions (B1), (B2), (A3) and (A4),

P
(‖Z′

j (Y − ZA1 β̂nA1
)‖2 > λn2wnj/2,∃j /∈ A1

) → 0.(45)

PROOF. By (35), we have

Z′
j (Y − ZA1 β̂nA1

) = Z′
j Hnεn + Z′

j Hnδn + λn−1Z′
j ZA1C−1

A1
νn.(46)

Recall sn = p − q is the number of zero components in the model. By Lemma 2,

E
(

max
j /∈A1

‖n−1/2Z′
j Hnεn‖2

)
≤ O(1){log(snmn)}1/2.(47)

Since wnj = ‖β̂nj‖−1 = Op(rn) for j /∈ A1 and by (47), for the first term on the
right-hand side of (46), we have

P(‖Z′
j Hnεn‖2 > λn2wnj/6,∃j /∈ A1)

≤ P(‖Z′
j Hnεn‖2 > Cλn2rn,∃j /∈ A1) + o(1)

(48)
= P

(
max
j /∈A1

‖n−1/2Z′
j Hnεn‖2 > Cn−1/2λn2rn

)
+ o(1)

≤ O(1)
n1/2{log(snmn)}1/2

Cλn2rn
+ o(1).

By (33), the second term on the right-hand side of (46)

max
j /∈A1

‖Z′
j Hnδn‖2 ≤ n1/2 max

j /∈A1
‖n−1Z′

j Zj‖1/2
2 · ‖Hn‖2 · ‖δn‖2

(49)
= O(1)nρ

1/2
n3 q1/2m−d

n .

By Lemma 4, the third term on the right-hand side of (46)

max
j /∈A1

λn2n
−1‖Zj ZA1C−1

A1
νn‖2

≤ λn2 max
j∈A1

‖n−1/2Zj‖2 · ‖n−1/2ZA1C−1/2
A1

‖2 · ‖C−1/2
A1

‖2 · ‖νn‖2(50)

= λn2ρ
1/2
n3 ρ

−1/2
n1 Op(qb−1

n1 ).

Therefore, (45) follows from (39), (48), (49), (50) and condition (B2b). �

PROOF OF THEOREM 4. The proof is similar to that of Theorem 2 and is
omitted. �
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