
Variable selection in the accelerated failure time model via the

bridge method

Jian Huang and

Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242, USA

Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA

Shuangge Ma
Department of Epidemiology and Public Health, Yale University, New Haven, CT 06520, USA

Jian Huang: jian-huang@uiowa.edu

Abstract

In high throughput genomic studies, an important goal is to identify a small number of genomic
markers that are associated with development and progression of diseases. A representative example
is microarray prognostic studies, where the goal is to identify genes whose expressions are associated
with disease free or overall survival. Because of the high dimensionality of gene expression data,
standard survival analysis techniques cannot be directly applied. In addition, among the thousands
of genes surveyed, only a subset are disease-associated. Gene selection is needed along with
estimation. In this article, we model the relationship between gene expressions and survival using
the accelerated failure time (AFT) models. We use the bridge penalization for regularized estimation
and gene selection. An efficient iterative computational algorithm is proposed. Tuning parameters
are selected using V-fold cross validation. We use a resampling method to evaluate the prediction
performance of bridge estimator and the relative stability of identified genes. We show that the
proposed bridge estimator is selection consistent under appropriate conditions. Analysis of two
lymphoma prognostic studies suggests that the bridge estimator can identify a small number of genes
and can have better prediction performance than the Lasso.
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1 Introduction

High throughput technologies make it possible to identify genomic markers that are associated
with disease development and progression. Gene profiling studies have been extensively
conducted using microarrays. Identification of genomic markers from analysis of microarray
data may lead to a better understanding of the genomic mechanism beneath disease
development and assist future clinical diagnosis and prognosis. Among many disease outcomes
measured in microarray studies, censored disease-free or overall survival has attracted much
attention. See Alizadeh et al. (2000), Rosenwald et al. (2003), and Dave et al. (2004) for
representative examples. Because of the high dimensionality of gene expression data, standard
survival analysis techniques cannot be directly used. In addition, among the thousands of genes
surveyed, only a subset may be associated with disease. Thus, gene selection is needed along
with survival model construction.
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When analyzing censored survival data with microarray gene expression measurements, the
Cox proportional hazards model and the additive risk model have been adopted (Gui and Li
2005; Ma and Huang 2007). An alternative to those models is the accelerated failure time (AFT)
model. Unlike the Cox and additive models, the AFT model is a linear regression model, in
which logarithm (or in general a known monotone transformation) of the failure time is directly
regressed on gene expressions (Kalbfleisch and Prentice 1980). Compared with the Cox and
additive models, the AFT model has an intuitive linear regression interpretation (Wei 1992).
In this article, we apply the method of Zhou (1992) and Stute (1993), which uses the Kaplan–
Meier weights to account for censoring and has a weighted least squares loss function. The
simple form of the loss function makes this estimation approach especially suitable for high
dimensional data.

To tackle the high dimensionality problem of gene expression data, various dimension
reduction or variable selection techniques have been employed. Previously used dimension
reduction techniques include principal component analysis, singular value decomposition,
partial least squares, and others. Among the many variable selection techniques developed,
penalized selection has attracted extensive attentions. Penalization methods put penalties on
the regression coefficients. By properly balancing goodness of fit and model complexity,
penalization approaches can lead to parsimonious models with reasonable fit.

The most famous example of penalization methods is the Lasso (Tibshirani 1996), which has
been used in gene expression analysis with survival data (Gui and Li 2005; Ma and Huang
2007; Wang et al. 2008). However, it has been shown that the Lasso is in general not variable
selection consistent (Leng et al. 2006). Various penalization methods that can have consistent
selection have been proposed. Examples include the adaptive Lasso and the SCAD. Another
penalty that also enjoys consistent selection is the bridge penalty. Under conventional setup,
i.e., when the number of observations is much larger than the number of covariates, the bridge
penalty has been investigated. See for example Fu (1998). Huang et al. (2008a) shows that the
bridge penalty can have the oracle estimation and selection properties in linear regression
models with a divergent number of covariates.

In this article, we consider genomic studies where gene expressions are measured along with
censored disease survival. The bridge penalization approach is used for regularized estimation
and gene selection. The rest of the article is organized as follows. The AFT model and bridge
estimation are introduced in Sect. 2. An efficient computational algorithm is proposed in Sect.
3. Resampling based methods are proposed to evaluate prediction performance and relative
stability of selected genes in Sect. 4. Asymptotic selection consistency is established in Sect.
5. Analysis of two lymphoma studies are provided to illustrate the proposed method in Sect.
6. The article concludes with discussions in Sect. 7. Proofs are given in the Appendix.

2 Bridge estimation in the AFT model

Let Ti be logarithm of the failure time and Xi be the p-dimensional gene expressions for the
ith subject in a random sample of size n. The AFT model assumes

(1)

where α is the intercept, β ∈ IRp is the regression coefficient, and εi is the error term. When
Ti is subject to right censoring, we observe (Yi, δi, Xi), where Yi = min{Ti, Ci}, Ci is logarithm
of the censoring time, and δi = 1{Ti≤Ci} is the censoring indicator.

Estimation in the AFT model with an unspecified error distribution has been studied
extensively. The following two approaches have received special attentions. The first is the
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Buckley-James estimator which adjusts censored observations using the Kaplan–Meier
estimator (Buckley and James 1979); and the second is the rank based estimator motivated by
the score function of the partial likelihood function (Ying 1993). Although they both perform
well when there are a small number of covariates, with high dimensional gene expression data,
both approaches have high computational cost.

A computationally more feasible approach is the weighted least squares (LS) approach (Zhou
1992; Stute 1993). Let F̂n be the Kaplan–Meier estimator of F, the distribution function of T.

It can be computed as . Here wis are the jumps in the Kaplan–Meier

estimator computed as , i = 2, …, n. wis have also
been referred to as the Kaplan–Meier weights in Stute (1993). Here Y(1) ≤ ⋯ ≤ Y(n) are the
order statistics of Yi’s, δ(1), …, δ(n) are the associated censoring indicators, and X(1), …, X(n)
are the associated covariates. The weighted LS loss function is

We center X(i) and Y(i) with their wi-weighted means, respectively. Let

. Denote

. We can then rewrite the weighted LS loss
function as

(2)

The bridge penalized objective function is

(3)

where λ is a data dependent tuning parameter and γ > 0 is the bridge index. The value β̂n that
minimizes (3) is called the bridge estimator (Frank and Friedman 1993;Fu 1998).

The bridge estimator includes two important special cases. When γ = 2, it is the familiar ridge
estimator, which does not have a “built-in” variable selection mechanism. When γ = 1, it is the
Lasso estimator. In this article, we focus on the case with γ < 1.

3 Computation

3.1 Computational algorithm

Direct minimization of Ln(β) is difficult, since the bridge penalty is not convex. An
approximation approach is proposed in Huang et al. (2008a). As an alternative, we consider
the following approach, which is more efficient and does not need any approximation.

For 0 < γ < 1, define
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(4)

where τn is a penalty parameter.

Proposition 1 If , then β̂n minimizes Ln(β) if and only if (β̂n, θ̂) minimizes
Sn(β, θ) subject to θ̂j ≥ 0 for j = 1, …, p.

This proposition can be proved as in Huang et al. (2009), in which a similar result is shown
for the group bridge estimator in linear regression without censoring. Based on Proposition 1,
we propose the following iterative algorithm for computing the bridge estimate in the AFT
models.

1. Compute an initial estimate β(0). Specifically, we propose using the Lasso estimate,
i.e, the minimizer of Eq. 3 with γ = 1.

For s = 1, 2, …

2.

Compute , j = 1, …, p.

3.
Compute .

4. Repeat Steps 2–3 until convergence.

The proposed algorithm always converges, since at each step the non-negative objective
function (4) decreases. In our numerical studies, convergence is usually achieved within ten
iterations. In Step 1, we choose the Lasso estimate as the initial value with the penalty parameter
in the Lasso criterion determined by V-fold cross validation. Theorem 1 in Sect. 5 establishes
that the Lasso tends to select all the important genes plus a few false positives. Thus, using the
Lasso as the starting value will not miss any important genes. The main computational cost
comes from Step 3, which computes a weighted Lasso estimate and can be achieved with many
existing algorithms as such the LARS (Efron et al. 2004) or the boosting (Ma and Huang
2007). In this article, we adopt the boosting, since its computational cost is relatively insensitive
to the number of genes.

3.2 Tuning parameter selection

We use V-fold cross validation to determine the tuning parameter λ. For a pre-defined integer
V, partition the data randomly into V non-overlapping subsets with equal sizes. For a given λ,

we define , where β̂(−υ) is the bridge estimator of β based on the
data without the υth subset and Q(υ) is the function defined in (2) evaluated on the υth subset.
Optimal tuning is defined as the minimizer of the CV score. In this article, we set V = 5.

4 Evaluation

With gene expression data, p ≫ n. Most of the conventional evaluation techniques are valid
only under the p ≪ n scenario and cannot be applied here. In this study, we are most interested
in two aspects: (1) prediction performance. That is, whether the identified genes and
corresponding AFT models can make proper predictions for subjects not used in the model
estimation; and (2) stability of identified genes. Early studies have shown that gene signatures
identified from analysis of gene expression data may suffer from low reproducibility. That is,
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genes identified using different data sets may differ significantly. Ideally, evaluation should
be based on independent data, which is usually not available. As an alternative, we propose
the following resampling based approaches.

4.1 Evaluation of prediction

We propose prediction evaluation based on random partitions as follows.

1. Partition the data randomly into a training set of size n1 and a testing set of size n2
with n1 + n2 = n. We use n1 = 2/3n.

2. Compute the bridge estimate using the training set data. Cross validation is needed to
select the optimal tuning for the training set.

3. Use the training set estimate to make predictions for subjects in the testing set.
Specifically, we first compute the risk scores X′β̂. We then dichotomize the risk scores
at the median and create two risk groups (referred to as high and low risk groups
respectively). Compare the survival functions for the two risk groups, and compute
the logrank statistic.

4. To avoid over fitting caused by a “lucky” partition, we repeat Steps 1–3 B = 500 times.
Each time a new partition is made and the value of the logrank statistic is computed.

We partition the dataset in Step 1. To generate a fair evaluation, we recompute tuning
parameters for each individual partitions in Step 2. In Step 3, we adopt the logrank statistic as
the evaluation measurement. A larger logrank statistic suggests that the high and low risk
groups are better separated and the proposed approach is more effective. We create two risk
groups, mainly because of the small sample sizes. By repeating the partitioning process many
times, we can obtain a Monte Carlo estimation of the distribution of the logrank statistics (as
opposed to a single logrank statistic in several early studies). We call it the observed predictive
distribution (OPD) of the logrank statistic.

When n ≫ p, the logrank statistic is asymptotically χ2 distributed. With gene expression data
and n ≪ p, it is not clear how effective the χ2 approximation is. To tackle this problem, we
propose the following permutation based approach to generate the reference distribution for
the OPD. We first randomly permute the event times together with the censoring indicators.
We then follow the same procedure as for the OPD and obtain a Monte Carlo estimation of the
distribution of the logrank statistic under permutation. We call it permutation predictive
distribution (PPD) of the logrank statistic. With permutation, the event times and gene
expressions are expected to be independent. The distribution of logrank statistics so computed
can serve as the reference distribution for the OPD.

Calculations of the OPD and PPD are parallel: the OPD is calculated from the observed data,
whereas the PPD is calculated from the permuted data. Well separated OPD and PPD may
indicate that the propose approach can identify genes and models with satisfactory prediction
performance, whereas substantially overlapped distributions suggest that either the proposed
approach is not effective or the gene expressions do not have good discriminant power.

4.2 Evaluation of stability

The prediction evaluation described above assesses overall performance of the proposed
approach and selected genes/models. In what follows, we evaluate the relative stability of each
identified gene. The rationale behind the proposed approach is that, if a gene is more
“important” or more “stable”, it should be identified “more often” in analysis of multiple data
sets. Since multiple independent data sets not available, we resort to random sampling again.
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We first randomly sample n1 = 2/3n subjects. We then use the bridge approach to identify genes
in the sampled subset. We repeat this procedure B = 500 times. For the jth gene, we count cj,
the number of times it is identified. The proportion oj = cj/B gives a measure of the relative
importance and stability of the jth gene, and will be referred to as the observed occurrence
index (OOI). Following the same rationale as in the above section, we also permute the data
and recompute the occurrence index, which will be referred to as the permutation occurrence
index (POI) (since permutated data is used). The occurrence indexes are simply byproducts of
the prediction evaluation and incur no additional computational cost.

5 Asymptotic properties

In this section, we investigate asymptotic properties of the proposed bridge approach with p
≫ n. We are especially interested in the gene selection consistency property, because once
genes are consistently selected, standard approaches can lead to consistent estimates. We note
that for fixed p, the asymptotic results can be obtained easily using standard approaches. Since
the case with fixed p is not relevant to our data applications, we will not consider it here.

We note that, with the proposed iterative algorithm, the Lasso estimate is used as the starting
value. Genes not selected by the Lasso will not be selected in the final model. Thus, it is crucial
to first establish properties of the Lasso estimate under the present data/model setup. Careful
inspection of the proposed computational algorithm suggests that, once the initial estimate is
obtained, in each step, an adaptive Lasso estimate is computed. Thus, we are able to use similar
methods as in Huang et al. (2008b), which studies properties of the adaptive Lasso in high
dimensional linear regression models, to establish properties of the bridge estimate.

We consider the rescaled  defined in Sect. 2. For simplicity of notations, we use

X(i) and Y(i) to denote  hereafter. Let Y = (Y(1), …, Y(n))′. Let X be the n × p covariate

matrix consisting of row vectors . Let X1, …, Xp be the p columns of X. Let W =
diag(nw1, …, nwn) be the diagonal matrix of the Kaplan–Meier weights. For A ⊆ {1, …, p},

let XA = (Xj, j ∈ A) be the matrix with columns Xj’s for j ∈ A. Denote . Denote
the cardinality of A by |A|.

Let β0 = (β01, …, β0p)′ be the true value of the regression coefficients. Let A1 = {j : β0j ≠ 0}
be the set of nonzero coefficients and let q = |A1|. We make the following assumptions.

(A1) The number of nonzero coefficients q is finite.

(A2) (a) The observations (Yi, Xi, δi), 1 ≤ i ≤ n are independent and identically distributed;
(b) The errors ε1, …, εn are independent and identically distributed with mean 0 and
finite variance σ2. Furthermore, they are subgaussian, in the sense that there exist
K1, K2 > 0 such that the tail probabilities of εi satisfy P(|εi| > x) ≤ K2 exp(−K1x2) for
all x ≥ 0 and all i.

(A3) (a) The errors (ε1, …, εn) are independent of the Kaplan–Meier weights (w1, …,
wn); (b) The covariates are bounded. That is, there is a constant M > 0 such that |
Xij| ≤ M, 1 ≤ i ≤ n, 1 ≤ j ≤ p.

(A4) The covariate matrix satisfies the sparse Riesz condition (SRC) with rank q*: there
exist constants 0 < c* < c* < ∞, such that for q* = (3 + 4C)q and C = c*/c*, with

probability converging to 1, , ∀A with |A| = q* and ν ∈ IRq* where
‖ · ‖ is the ℓ2 norm.

Huang and Ma Page 6

Lifetime Data Anal. Author manuscript; available in PMC 2010 November 20.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



By (A1), the model is sparse in the sense that although the total number of covariates may be
large, the number of covariates with nonzero coefficients is still small. The tail probability
assumption in (A2) has been made with high-dimensional linear regression models. See for
example Zhang and Huang (2008). With assumption (A3), it can be shown that the subguassian
tail property still holds under censoring. The SRC condition (A4) has been formulated in study
of the Lasso with linear regressions without censoring (Zhang and Huang 2008). This condition
implies that all the eigenvalues of any d × d submatrix of X′WX/n with d ≤ q* lie between c*

and c*. It ensures that any model with dimension no greater than q* is identifiable.

We first consider the Lasso estimator defined as . With β̃ = (β̃1,
…, β̃p)′, let Ã1 = {j,β̃j ≠ 0} be the set of nonzero Lasso estimated coefficients.

Theorem 1 Suppose that (A1)–(A4) hold and . Then

i. With probability converging to 1, |Ã1| ≤ (2 + 4C)q.

ii. If λ/n → 0 and (log p)/n → 0, then with probability converging to 1, all the covariates
with nonzero coefficients are selected.

iii.

. In particular, if , then

.

This theorem suggests that, with high probability, the number of covariates selected by the
Lasso is a finite multiply of the number of covariates with nonzero coefficients. Moreover, all
the covariates with nonzero coefficients are selected with probability converging to one. This
justifies using the Lasso as the initial estimator in the algorithm proposed in Sect. 3.1. In
addition, the Lasso estimator is estimation consistent.

Starting from the initial Lasso estimator β̃, we denote β̂ as the estimate after one iteration (in

the algorithm described in Sect. 3.1). Simple algebra shows that the value of  computed in

Step 2 of the proposed algorithm is . Thus Step 3 of the proposed algorithm
is

β̂ computed above takes the form of an adaptive Lasso estimator. Of note, here, the penalty
parameter is the same as the λ used in the Lasso estimator.

For any vector x = (x1, x2, …), denote its sign vector by sgn(x) = (sgn(x1), sgn(x2), …) where
sgn(xi) = 1, 0, −1 if xi > 0,= 0, < 0, respectively.

Theorem 2 Suppose that (A1)–(A4) are satisfied, (log p)/n → 0, and . Then

The above theorem shows that the one-step estimator is sign consistent. Thus, the one-step
estimator is selection consistent, in the sense that it can correctly distinguish covariates with
zero and nonzero coefficients with probability converging to 1. Following similar arguments,
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we can prove that any finite-step estimator (computed from the algorithm described in Sect.
3.1) is sign consistent and hence selection consistent. We note that, although the one-step
estimator is selection consistent, our numerical studies suggest that iterating until convergence
tends to improve finite sample performance.

We note that in Theorem 2, we allow log p = o(n) or p = exp(o(n)). Thus the dimension of
covariates can be larger than the sample size, which accommodates gene expression data.

6 Data analysis

6.1 Mantle cell lymphoma data

A study using microarray expression analysis of mantle cell lymphoma (MCL) is reported in
Rosenwald et al. (2003). The primary goal of this study is to identify genes that have good
predictive power of patients’ survival risk. Among 101 untreated patients with no history of
previous lymphoma, 92 were classified as having MCL based on established morphologic and
immunophenotypic criteria. Survival times of 64 patients were available and the other 28
patients were censored. The median survival time was 2.8 years (range 0.02 to 14.05 years).
Lymphochip DNA microarrays were used to quantify mRNA expression in the lymphoma
samples from the 92 patients. The gene expression data that contains expression values of 8810
cDNA elements is available at http://llmpp.nih.gov/MCL/.

We model survival with the AFT model, and use the proposed bridge approach for gene
selection. Although there is no limitation on the number of genes that can be used in the
proposed approach, we pre-process the data as follows to exclude noises and gain further
stability: (1) Un-supervised screening: compute the interquartile ranges of all gene expressions.
Remove genes with interquartile ranges smaller than their first quartile. 6608 genes pass this
screening; (2) Supervised screening: compute correlation coefficients of the uncensored
survival times with gene expressions. Select 500 genes with the largest absolute values of the
correlation coefficients. We then standardize these 500 gene expressions to have zero mean
and unit variance. We note that the supervised screening utilizes the survival information. In
the random sampling based evaluation, to guarantee a fair evaluation, the supervised screening
needs to be conducted for each sampled data.

We employ the proposed approach and select the optimal tuning with 5-fold cross validation.
Genes selected with the bridge approach and their corresponding estimates are shown in Table
1. For comparison, we also provide the Lasso estimate. 40 and 34 genes are identified using
the Lasso and bridge approaches, respectively. Because of the special setup of the
computational algorithm, genes identified using the bridge are a subset of those identified using
the Lasso.

We evaluate prediction performance using the approach described in Sect. 4.1. For comparison,
we also evaluate the Lasso approach using the same evaluation technique. We show in Fig. 1
(upper panels) the density estimates of OPD and PPD. We can see that (1) the bridge yields
well separated OPD and PPD (Wilcoxon test p-value < 0.001), which suggests satisfactory
prediction performance. The 90% percentile of the PPD is 3.32, and 62% of the logrank
statistics from the OPD are larger than that value; (2) the PPD is close to the χ2 distribution,
but there is still very small discrepancy. The 95% and 90% percentiles of the PPD are 4.11 and
3.32, respectively, which are slightly larger than their counterparts (3.84 and 2.71) from the
χ2; (3) the prediction performance of Lasso is also satisfactory, but inferior compared to that
of the bridge. The mean and median of the Lasso OPD are 4.617 and 3.616, which are smaller
than their bridge counterparts (5.319 and 4.404).
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We evaluate stability of identified genes using the approach described in Sect. 4.2. Results are
shown in the lower panels of Fig. 1. For a better view, we only plot the 500 genes that pass the
screening in the whole dataset. We can see that (1) most of the identified genes have relatively
large OOI; (2) there are a few genes that are not identified, but have moderate OOI. It is still
not clear why those genes are not identified. Such a question is worth investigating in future
studies; and (3) with permutated data, the POI for all genes are small, with no genes having
significantly larger occurrence indexes than others.

6.2 Diffuse large B-cell lymphoma data

The DLBCL (diffuse large B-cell lymphoma) data was first analyzed in Rosenwald et al.
(2002). This dataset consists of 240 patients with DLBCL, including 138 patient deaths during
the followup. Expression profiles of 7399 genes are obtained. Missing values are imputed using
a K-nearest neighbors approach. We carry out supervised selection and select 500 genes with
the largest absolute values of marginal correlation coefficients with the uncensored event times
to gain further stability. Gene expressions are then normalized to have zero mean and unit
variance. We note that, in the random sampling based evaluation, the supervised screening is
conducted for each sampled data.

With the proposed approach and optimal tuning selected using 5-fold cross validation, 44 genes
are identified. As a comparison, the Lasso identifies 46 genes. The UNI-QID, gene names, and
bridge and Lasso estimated coefficients are shown in Table 2.

We evaluate prediction performance and show the results in Fig. 2. Similar conclusions as
those in Sect. 6.1 can be drawn. With the bridge, the OPD has mean and median 4.416 and
3.674, respectively, which are larger than their Lasso counterparts (3.53 and 2.59). 61% of the
logrank statistics from the OPD are greater than the 90% percentile of the PPD. The Wilcox
test suggests that the OPD and PPD are well separated (p-value < 0.001). Evaluation of stability
using the occurrence index is presented in Fig. 2 (lower panels). The observations are similar
to those summarized in Sect. 6.1.

6.3 Remark

Analyses of the MCL and DLBCL data suggest that the bridge approach is capable of
identifying a smaller number of genes than the Lasso. With gene expression data, a smaller
number of identified genes means more focused hypothesis for future confirmation studies,
and is thus preferred. In addition, prediction performance of the bridge is better than that of
the Lasso. We note that, although prediction is not based on completely independent data, by
properly using resampling and comparing the bridge and Lasso on the same basis, the prediction
comparison is expected to be valid.

7 Discussions

Genomic studies with high dimensional markers measured along with censored survival
outcomes are becoming more and more common. In this article, we model the relationship
between gene expressions and censored survival with AFT models. AFT models have been
commonly adopted and provide useful alternatives to the Cox and additive hazards models. Of
note, since it is still not clear how to compare different models under the “large p, small n”
setting, we do not pursue any model comparison. More methodological studies are needed
before such a comparison can be conducted.

We propose using the bridge penalty for gene selection. Our numerical studies suggest that the
bridge has better performance than the Lasso in terms of variable selection in AFT models.
There are other penalties, for example the adaptive Lasso and SCAD, that can be used in the
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present setup. Since it is beyond the scope of this paper to compare our proposed method with
all the existing ones, we only pursue comparison with the Lasso, which has been commonly
used as benchmark.

Acknowledgments

This work is partially supported by CA120988 from the National Cancer Institute and DMS 0805670 from the National
Science Foundation. We thank the editors and reviewers for their helpful and constructive comments on an earlier
version of the paper.

Appendix: Proofs

Let τ = (τ1, …, τn)′ where .

Lemma 1 Suppose that conditions (A2) and (A3) hold. Let . Let ξn =
max1≤j≤p |ξj|. Then

where C1 and C2 are two positive constants. In particular, when log (p)/n → 0,

Proof of Lemma 1 Let . Conditional on Xij’s, assumptions (A2) and (A3) imply

that ξj’s are subgaussian. Let . By (A2) and the maximal inequality for
subgaussian random variables (Van der Vaart and Wellner 1996, Lemmas 2.2.1 and 2.2.2),

for a constant C1 > 0. Therefore,

(5)

Since

(6)

and

(7)
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by Lemma 4.2 of Van de Geer (2008), (6) implies

Therefore, by (7) and the triangle inequality,

Now since , we have

(8)

The lemma follows from (5) and (8).

In the proofs below, let Y* = W1/2Y and X* = W1/2X. Then

where ‖ · ‖ is the ℓ2 norm.

Proof of Theorem 1, part (i) Part (i) follows from the proof of Theorem 1 of Zhang and Huang
(2008). The only difference is that here we use the subgaussian assumption to control certain
tail probabilities, instead of the normality condition assumed in Zhang and Huang (2008). Since
subgaussian random variables have the same tail behavior as normal random variables, the
argument of Zhang and Huang goes through.

Proof of Theorem 1, part (ii) Part (ii) follows from part (iii) and the assumption that the number
of nonzero coefficients is fixed. Thus the absolute values of the nonzero coefficients are
bounded away from 0 by a positive constant independent of n.

Proof of Theorem 1, part (iii) By the definition of β̃,

Thus

This implies

Huang and Ma Page 11

Lifetime Data Anal. Author manuscript; available in PMC 2010 November 20.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



That is,

(9)

Let B = A1 ∪ A2 = {j : β0j ≠ 0 or β̃j ≠ 0}. Note that |B| ≤ q* with probability converging to 1 by

part (i), where q* is given in (A4). Denote , β̃B = (β̃j, j ∈ B), and β0B = (β0j, j
∈ B). Denote

Since A1 ⊂ B,

(10)

By (9) and (10),

(11)

Let  be the projection of τ to the span of , i.e., . We have

Therefore, by the Cauchy–Schwarz inequality,

(12)

Combining (11) and (12),

(13)

By the SRC condition (A4), ‖ηB‖2 ≥ nc*‖β̃B − β0B‖2. Thus (13) implies

It follows that
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(14)

Now

We have

By Lemma 1,

Therefore,

(15)

The result follows from (14) and (15).

Proof of Theorem 2 The proof follows from the argument of Huang et al. (2008b). So we only
provide the basic idea below. Let aj = |β̃j|−1/2/2, 1 ≤ j ≤ p. By the Karush–Kunh–Tucker
conditions, β̂ = (β̂1, …, β̂p)′ is the unique solution of the adaptive Lasso if

(16)

and the vectors  are linearly independent. Recall A1 = {j : β0j ≠ 0}. Let s ̃n1 = (aj sgn

(β0j), j ∈ A1)′ and , β0A1 = (βj, j ∈ A1)′. So  is a n × q matrix.

Define

(17)

where . If sgn(β̂A1) = sgn(β0A1), then the equation in (16) holds for

. Thus, since  for this β̂,
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(18)

Let . It follows from (17) that

, so that by (18),

(19)

Thus, by (19) and (17),

where ej is the unit vector in the direction of the j-th coordinate. Therefore, to prove the theorem,
it suffices to show that each probability in the last line converges to zero. The same argument
as in Huang et al. (2008b) can be used here and is omitted. This completes the outline of the
proof.
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Fig 1.

MCL data. Left-upper panel: Lasso estimation. Green solid line: OPD; Red dash-dotted line:
PPD; Black dotted line: density function of 500 χ2 distributed random variables; Right-upper
penal: Bridge estimation. Green solid line: OPD; Red dash-dotted line: PPD; Black dotted line:
density function of 500 χ2 distributed random variables; Left-lower panel: permuted occurrence
index. Red “+” points correspond to genes identified using the bridge; Right-lower panel:
observed occurrence index. Red “+” points correspond to genes identified using the bridge
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Fig 2.

DLBCL data. Left-upper panel: Lasso estimation. Green solid line: OPD; Red dash-dotted line:
PPD; Black dotted line: density function of 500 χ2 distributed random variables; Right-upper
penal: Bridge estimation. Green solid line: OPD; Red dash-dotted line: PPD; Black dotted line:
density function of 500 χ2 distributed random variables; Left-lower panel: permuted occurrence
index. Red “+” points correspond to genes identified using the bridge; Right-lower panel:
observed occurrence index. Red “+” points correspond to genes identified using the bridge
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Table 1

Mantle cell lymphoma data

UNIQID Gene name Lasso Bridge

16541 Coagulation factor V (proaccelerin, labile factor) 0.180 0.133

16561 Aurora kinase B −0.040 −0.040

16822 Chemokine (C-C motif) ligand 3 −0.032 −0.044

17174 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 −0.048 −0.069

17434 RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae) −0.023 −0.041

23972 Zinc finger protein, multitype 2 0.012 0.041

24376 Serine (or cysteine) proteinase inhibitor, clade A, member 9 0.167 0.126

24379 Immunoglobulin superfamily receptor translocation associated 1 0.082 0.102

24488 Eukaryotic translation elongation factor 1 alpha 1 0.176 0.106

24845 Interleukin 2 receptor, beta 0.135 0.109

24972 0.038 0.042

26192 Aldolase B, fructose-bisphosphate 0.124 0.061

26474 Chemokine (C-C motif) ligand 3 −0.027 −0.063

26475 Chemokine (C-C motif) ligand 3 −0.054 −0.054

27116 RAB interacting factor −0.007392391 −0.046 −0.061

27659 Hypothetical protein MGC61571 0.027 0.080

27678 0.020 0.036

27838 Lymphocyte antigen 64 homolog, radioprotective 105kDa −0.069

27969 CDC-like kinase 3 −0.055

28075 Transforming, acidic coiled-coil containing protein 1 −0.019 −0.038

28638 BCL2-related protein A1 0.050 0.073

28645 EPH receptor B4 −0.029

28990 Cell division cycle 2, G1 to S and G2 to M −0.035 −0.021

29347 Split hand/foot malformation (ectrodactyly) type 1 0.017

29357 Polymerase (DNA directed), epsilon 2 (p59 subunit) −0.018 −0.031

29897 Asp (abnormal spindle)-like, microcephaly associated −0.029 −0.027

30110 Natural killer-tumor recognition sequence 0.056

30144 Natural killer-tumor recognition sequence 0.016 0.052

30284 PR domain containing 15 −0.031 −0.053

31049 Polymerase (DNA directed), theta −0.053 −0.043

31081 Asp (abnormal spindle)-like, microcephaly associated −0.036 −0.059

31101 Similar to CG1399-PB −0.028 −0.082

32023 Membrane-spanning 4-domains, subfamily A, member 1 0.023 0.071

32187 AF15q14 protein −0.024 −0.022

32830 Hypothetical protein LOC284019 −0.080 −0.108

32935 Zinc finger protein 148 (pHZ-52) 0.018 0.041

32979 0.036 0.073

33781 Chromosome 6 open reading frame 83 0.018 0.053

33851 GRIP and coiled-coil domain containing 2 0.044
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UNIQID Gene name Lasso Bridge

33880 HP1-BP74 −0.062 −0.055

Genes identified using the Lasso and Bridge: UNIQID, gene names, and estimates
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Table 2

DLBCL data

UNIQID Gene name Lasso Bridge

16117 diacylglycerol kinase, delta (130 kD) −0.155 −0.112

32446 −0.110 −0.101

26329 −0.030 −0.047

25933 0.031 0.074

29585 Epoxide hydrolase 2, cytoplasmic 0.081 0.067

28388 Bloom syndrome 0.044 0.127

17414 Occludin −0.033 −0.074

30348 chromatin assembly factor 1, subunit A (p150) −0.059 −0.071

17722 RAD23 homolog A (S. cerevisiae) −0.088 −0.102

28837 G1 to S phase transition 1 −0.035 −0.064

34827 pM5 protein −0.120 −0.094

24231 calnexin −0.032 −0.059

33026 Sialyltransferase 7D (N-acetyl galactosaminide alpha-2,6-sialyltransferase) −0.166 −0.148

29944 Solute carrier family 21 (organic anion transporter), member 12 −0.066 −0.100

28737 PAS domain containing serine/threonine kinase 0.081 0.114

34729 Forkhead box O1A (rhabdomyosarcoma) 0.233 0.167

34042 CD19 antigen 0.246 0.148

27704 Early B-cell factor 0.072 0.099

30355 Early B-cell factor 0.050 0.090

27681 G protein-coupled receptor 18 0.222 0.163

27341 Sarcoma amplified sequence 0.054 0.042

26231 −0.032

26185 −0.019 −0.072

24400 Monoglyceride lipase −0.068 −0.079

16636 Glucose regulated protein, 58 kD −0.057 −0.056

28641 Osteoblast specific factor 2 (fasciclin I-like) 0.081 0.100

26081 Growth arrest-specific 1 0.044 0.063

26020 Melanoma cell adhesion molecule 0.075 0.095

19363 Lymphotoxin beta (TNF superfamily, member 3) 0.040 0.089

27509 Matrix metalloproteinase 9 (gelatinase B, 92 kD gelatinase) 0.040 0.101

24433 0.083 0.146

28415 PTK7 protein tyrosine kinase 7 −0.034 −0.076

16179 Lymphocyte-specific protein tyrosine kinase 0.040 0.090

17140 Protein tyrosine phosphatase, non-receptor type 2 0.060

31728 Hypothetical protein FLJ00024 −0.057 −0.058

28681 CD58 antigen, (lymphocyte function-associated antigen 3) 0.034 0.070

17292 −0.052 −0.090

33912 Nuclear factor of kappa light polypeptide gene enhancer −0.034 −0.088

29117 —Frizzled homolog 1 (Drosophila) 0.145 0.100

17182 Caspase 10, apoptosis-related cysteine protease −0.035 −0.079
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UNIQID Gene name Lasso Bridge

16701 myosin, light polypeptide 2, regulatory, cardiac, slow 0.051 0.087

17391 tec protein tyrosine kinase −0.121 −0.103

30130 Homo sapiens cDNA FLJ12727 fis, clone NT2RP2000027 −0.168 −0.121

23922 −0.034 −0.089

32836 ESTs −0.168 −0.158

24612 immunoglobulin superfamily receptor translocation associated 1 0.050 0.093

Genes identified using the Lasso and Bridge: UNIQID, gene names, and estimates
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