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Abstract: Varying coefficient (VC) models are commonly used to study
dynamic patterns in many scientific areas. In particular, VC models in
quantile regression are known to provide a more complete description of
the response distribution than in mean regression. In this paper, we develop
a variable selection method for VC models in quantile regression using a
shrinkage idea. The proposed method is based on the basis expansion of
each varying coefficient and the regularization penalty on the Euclidean
norm of the corresponding coefficient vector. We show that our estimator
is obtained as an optimal solution to the second order cone programming
(SOCP) problem and that the proposed procedure has consistency in vari-
able selection under suitable conditions. Further, we show that the esti-
mated relevant coefficients converge to the true functions at the univariate
optimal rate. Finally, the method is illustrated with numerical simulations
including the analysis of forced expiratory volume (FEV) data.
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1. Introduction

Varying coefficient (VC) models have been widely used as a useful generalization
of the linear regression model to depict dynamic behaviors in scientific research.
Because of their flexibility and interpretability, much work has been done on
their parameter estimation and hypothesis testing, but mostly in the mean re-
gression setting until some authors such as Honda [6], Cai and Xu [2] and Kim
[9] paid attention to the quantile regression setting in the early 2000s.

Quantiles themselves can be defined without moment conditions. Inspecting
several conditional quantiles can provide us with a more complete description of
the data than inspecting only the conditional mean. These advantages have pro-
pelled many researchers to consider the quantile regression framework not only
in parametric models but also in semi-parametric or nonparametric models. Re-
garding VC models, Honda [6] and Cai and Xu [2] considered a VC model for the
conditional quantiles using local polynomials. Kim [9] proposed a polynomial-
spline-based methodology for the same model. For longitudinal data analysis,
Wang et al. [22] developed the partially linear VC model in quantile regression.
In spite of remarkable progress in estimation and hypotheses testing, it is not
well understood how to conduct variable selection efficiently for the VC model
in the quantile regression framework.

Variable selection is important for any regression problem in that ignoring
important predictors brings out seriously biased results, whereas including spu-
rious predictors leads to substantial loss in estimation efficiency. Due to their
computational efficiency, various shrinkage methods such as the nonnegative
garrotte, the Least Absolute Shrinkage and Selection Operator (LASSO) and
the Smoothly Clipped Absolute Deviation (SCAD) have been used in parametric
models and recognized as promising methods to allow us to do estimation and
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variable selection simultaneously. Furthermore, the past decade has observed
their extensions to semi-parametric and nonparametric models using basis ap-
proximation techniques. Regarding variable selection in VC models, Wang et al.
[23] and Wang and Xia [21] proposed penalization methods for selecting nonzero
coefficients using the SCAD penalty [4] and the adaptive LASSO penalty [26],
respectively. Noh and Park [14] improved the performance of the estimator in
Wang et al. [23] by extending the result of Zou and Li [27] to VC models.
However, most existing research about the variable selection for VC models is
concentrated on mean regression. Since there are few such works in the quantile
regression context, we are stimulated to develop a shrinkage method for the VC
model in quantile regression.

While Kai et al. [8] recently developed a variable selection method for the
parametric part of a partially linear VC model in quantile regression using
SCAD, they assumed that there is no sparsity of the variables in the nonpara-
metric part. Different from their work, we propose a variable selection method
for estimating coefficient functions using a nonparametric approach. We approx-
imate each varying coefficient function with a B-spline basis [3] and consider a
penalized check loss function based on the Euclidean norm of the correspond-
ing coefficient vector. Our variable selection method uses a penalization of the
norm of each coefficient vector. Therefore, our work shares the same motivation
as in Wang et al. [23] and Xue [24]. However, because our interest lies in the
estimation of the conditional quantile of the response, we need to use the check
loss instead of the squared loss. Therefore, we take a different approach both
theoretically and computationally. In particular, the non-differentiability of the
check loss function requires us to develop a different computational algorithm.
Furthermore, to show its asymptotic properties, we have to adopt a different
approach from the one used in mean regression to handle the issues caused by
the non-differentiability of the check loss. We will discuss these issues in the
proof of our main results, which are given in detail in the Appendix.

The rest of the article is organized as follows. Section 2 introduces the es-
timator that we propose. We present a computational algorithm for obtaining
the estimator and selection methods for the tuning parameters in Section 3. Its
asymptotic properties are fully described in Section 4. Finally, we report nu-
merical simulation results as well as an application of our methodology to the
forced expiratory volume (FEV) data in Section 5. All the technical proofs are
provided in the Appendix.

2. Methodology

2.1. Varying coefficient model

Suppose that {(Yi, Ui,Xi)}
n
i=1 is an independent and identically distributed

(i.i.d.) random sample, where Xi = (X
(0)
i , X

(1)
i , . . . , X

(p)
i ) ∈ R

p+1 is the (p+1)-
dimensional covariate vector with X0

i ≡ 1, Yi ∈ R is the response of interest and
Ui ∈ [0, 1] is the univariate index variable. We consider the following VC model
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for the conditional quantile of Yi given (Xi, Ui):

Yi = X⊤
i ατ (Ui) + ei,τ =

p
∑

k=0

X
(k)
i αk,τ (Ui) + ei,τ , i = 1, . . . , n, (2.1)

where ατ (u) = (α0,τ (u), α1,τ (u), . . . , αp,τ (u))
⊤ is a coefficient vector and the

errors ei,τ are independent random variables with the τth quantile 0 and ei,τ is

independent of (Ui,Xi). We assume that only s covariates among the X
(k)
i ’s are

relevant in model (2.1). It is unknown which s covariates are relevant, nor what
the value of s is. Without loss of generality, we let αk(·), k = 1, . . . , s be the
nonzero coefficient functions, and αk(·), k = s + 1, . . . , p, be identically zero.
Additionally we suppress the subscript “τ” whenever no confusion is caused
hereafter.

2.2. Regularized estimation using one-step group SCAD

We assume that each coefficient function αk(u), k = 0, . . . , p, can be approxi-
mated by a set of basis functions, that is,

αk(u) ≈

qk
∑

l=1

γklBkl(u), k = 0, . . . , p, (2.2)

where {Bkl(·), l = 1, . . . ,∞} for all k = 0, . . . , p span a function space Fk which
is assumed to contain αk(u), and qk is the number of basis functions that are
needed to approximate αk(u). Following the approximation (2.2), model (2.1)
can be rewritten as

Yi ≈

p
∑

k=0

qk
∑

l=1

γklX
(k)
i Bkl(Ui) + ei. (2.3)

The parameters γkl in the basis expansion can be estimated by minimizing

l0(γ) =

n
∑

i=1

ρ

(

Yi −

p
∑

k=0

qk
∑

l=1

γklX
(k)
i Bkl(Ui)

)

, (2.4)

where ρ(t) = 2(τ − I(t < 0))t is the check loss function at a given quantile level
0 < τ < 1. We denote the minimizer of (2.4) as γ̃ = (γ̃⊤

0 , γ̃⊤
1 , . . . , γ̃⊤

p )⊤, where

γ̃k = (γ̃k1, . . . , γ̃kqk)
⊤. The statistical properties of the estimator of αk(·) based

on γ̃ are fully addressed in Kim [9].
Now suppose that some variables are irrelevant in (2.1) so that the corre-

sponding coefficients are zero functions. Since, using the approximation (2.2),
each function αk(u) in (2.1) is characterized by a set of parameters γk =
(γk1, . . . , γkqk )

⊤, we should not select nonzero individual components γkl, but
choose the whole nonzero vector γk. For that purpose, we use the regularized
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estimation by adding penalties not to an individual element γkl but to the Eu-
clidean norm ‖γk‖2 of a coefficient vector γk. To gain some insights into the pro-
posed method, consider the approximation of αk(·) as gk(·) =

∑qk
l=1 γklBkl(·).

We note that its squared L2-norm can be rewritten as ‖gk‖
2
L2

= γ⊤
k Hkγk, where

Hk is a qk × qk matrix with entries hll′ =
∫ 1

0 Bkl(u)Bkl′ (u) du. Since the rel-
evance of a coefficient function αk(·) is equivalent to ‖αk‖L2

> 0, we add to
(2.4) thresholding penalties based on ‖γk‖w where ‖γk‖w ≡ (γ⊤

k Hkγk)
1/2 is

the weighted Euclidean norm of a vector γk ∈ R
qk . Examples of penalties in-

clude the LASSO or the SCAD penalty. Such penalties are called group LASSO
[25] penalty and group SCAD [23] penalty, respectively.

In this paper, we use a one-step group SCAD penalty, which is a local linear
approximation of the group SCAD. It is known that the one-step group SCAD
outperforms the group SCAD both in theoretical and computational aspects.
For details, we refer to Noh and Park [14]. Let pλ(·) be the SCAD penalty
function. The function pλ is defined on R

+ by its derivative as

p′λ(x) = λI(x ≤ λ) +
(aλ− x)+

a− 1
I(x > λ)

for some constant a > 2 and I(·) is the indicator function. In this paper, we
define the one-step group SCAD regularized estimator of γ = (γ⊤

0 ,γ⊤
1 , . . . ,γ⊤

p )⊤

as the minimizer γ̂ = (γ̂⊤
0 , . . . , γ̂⊤

p )⊤ of

l(γ) =

n
∑

i=1

ρ

(

Yi −

p
∑

k=0

qk
∑

l=1

γklX
(k)
i Bkl(Ui)

)

+ n

p
∑

k=1

νk‖γk‖w (2.5)

where νk = p′λ(‖γ̃k‖w). Note that for a given basis {Bk1(·), . . . , Bkqk(·)}, if there
exist constants α ≥ 0 and 0 < N1, N2 < ∞, not depending on qk, such that

N1q
−α
k

qk
∑

l=1

γ2
kl ≤

∫ 1

0

[

qk
∑

l=1

γklBkl(t)

]2

dt ≤ N2q
−α
k

qk
∑

l=1

γ2
kl, ∀k = 0, . . . , p, (2.6)

the Euclidean norm of γk, ‖γk‖2, can be easily used in the penalty of (2.5)
instead of the weighted Euclidean norm, ‖γk‖w. This is because the condition
(2.6) enables the direct translation between the Euclidean norm of the estimated
coefficient vector γ̂k and the L2-norm of the estimated function α̂k. B-splines
(α = 1) and Riesz bases (α = 0) are examples of such bases. For these reasons,
we will use ‖γk‖2 in the penalty throughout this paper.

3. Implementation of the proposed estimator

Since quantile regression typically requires a non-differentiable and asymmetric
check loss function, the computation of the estimator defined in (2.5) is quite
demanding when penalizing the Euclidean norm of γk. In particular, the it-
erative algorithm using local quadratic approximation of

∑p
k=1 νk‖γk‖2 is not
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so useful for our estimator as for the one of Wang et al. [23]. On account of
this fact, for variable selection of model (2.1), Tang et al. [20] considered the
penalty based on the ℓ1-norm of γk instead. However, their proposal needs to
be justified theoretically in that such penalization cannot generally guarantee
groupwise sparsity in the estimator γ, which is necessary for variable selection in
nonparametric models. In our work, while still using the Euclidean norm of γk,
we show that the minimization of l(γ) in (2.5) is equivalent to a second-order
cone programming problem. Since it is a well-known convex optimization prob-
lem, the estimator γ̂ can be calculated using computationally efficient methods
from the optimization literature.

3.1. Computational algorithms

Let π(·) = (B1(·), . . . , Bqk(·))
⊤ be a set of basis functions for the estimation of

αk(·). We define Π(U,X) = (X(0)π(U)⊤, . . . , X(p)π(U)⊤)⊤, πi = π(Ui) and
Πi = Π(Ui,Xi), i = 1, . . . , n. Using these notations, the optimization problem
(2.5) is reformulated as:

min
γ,v,η+,η−

(

τ

n
∑

i=1

η+i + (1 − τ)

n
∑

i=1

η−i + n

p
∑

k=1

νkvk

)

(3.1)

such that η+i − η−i = Yi −Π⊤
i γ, i = 1, . . . , n

‖γk‖2 ≤ vk, k = 1, . . . , p

η+i ≥ 0, η−i ≥ 0, i = 1, . . . , n

The reformulation (3.1) shows that the problem to minimize (2.5) is expressed
as one of the second order cone programming (SOCP) problems in which a
linear objective function is minimized over the intersection of an affine set and
second-order (quadratic) cones. For more details, we refer to Lobo et al. [13] and
Alizadeh and Goldfarb [1]. It is clear that (3.1) always has a feasible solution
because the original problem (2.5) is an unconstrained optimization problem.
Therefore, an optimal solution to (3.1) can be obtained by using the convex
optimization algorithms such as primal-dual interior point methods. In our sim-
ulations, we use CVX [5] to solve the SOCP problem (3.1).

3.2. Selection of tuning parameters

Variable selection in nonparametric models needs to determine two regulariza-
tion parameters. One is a smoothing parameter for controlling the smoothness
of the estimated coefficient functions. The other is a shrinkage parameter for
managing the complexity that is the number of covariates in the model. In our
model, they are the number of basis functions (qk) to approximate each coeffi-
cient αk(·) and the penalty parameter (λ).

For an initial estimator γ̃, we need to choose the number qk of basis for each
coefficient function. To choose the qk, we use the Schwarz-type Information
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Criterion (SIC) [17] as follows:

SIC(qini) = log
n
∑

i=1

ρ(Yi −Π⊤
i γ̃qini) +

log n

2n

p
∑

k=0

qinik . (3.2)

where qini = (qini0 , qini1 , . . . , qinip )⊤. For the proposed estimator, we need to
choose qk’s again for the minimization of (2.5). Further, we also have to deter-
mine the penalty parameter λ. For the simplicity of implementation, we use the
same qk’s for an initial estimator. This is justified by the fact that the optimal
order of qk for the proposed estimator is the same as that of the initial estimator.
For the selection of λ, we use SIC as follows:

SIC(λ) = log

n
∑

i=1

ρ(Yi −Π⊤
i γ̂λ) +

logn

2n
edf, (3.3)

where edf is the number of zero residuals. The number of zero residuals is widely
used as a measure of the effective dimension of the fitted models in quantile re-
gression. Li and Zhu [12] provided its justification in L1-norm penalized quantile
regression and Koenker et al. [10] heuristically argued that in the case of uni-
variate quantile smoothing splines the number of zero residuals is a plausible
measure for the effective dimension. Additionally, a recent work by Lee and Noh
[11] showed that the proposed SIC in (3.3) with such edf gives consistency in
model selection for model (2.1).

4. Asymptotic properties

As a desirable property of nonparametric variable selection, Storlie et al. [19]
defined a selection procedure to be nonparametric oracle (np-oracle) if it identi-
fies all relevant variables and estimates the nonzero coefficient functions at the
optimal nonparametric rate simultaneously. Wang et al. [23] showed that the
estimator for (2.1) in mean regression is np-oracle. In this section, we extend
their results to the case of quantile regression.

We focus our asymptotic analysis on the case of B-spline basis functions.
Note that if we use normalized B-splines of the order d + 1 with bk uniform
internal knots to approximate αk(·), the number of basis functions qk is equal
to bk + d + 1. The extension to general basis expansions satisfying (2.6) or to
the case of the penalty based on ‖γk‖w can be obtained using similar technical
arguments given in this paper.

To investigate asymptotic properties of our estimator, we consider the case
where qk tends to infinity as n goes to infinity. Hence, we should use the notation
qk,n because qk depends on n. However, since the assumption that qk,n = qn
for all k does not incur any loss of generality in the asymptotic analysis as long
as lim supn→∞(max0≤k≤p qk,n/min0≤k≤p qk,n) < ∞ is guaranteed, we suppress
the dependence of qk,n on k for simplicity. Since we focus on B-splines in our
asymptotic analysis, we use the notation bn instead of bk,n in this section and
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in the Appendix. Similarly, we use the notation λn since λ needs to vary as n
increases. Finally, we use an ≈ bn to indicate that there exist constants 0 < A <
B < ∞ such that A ≤ an/bn ≤ B for sufficiently large n. To derive asymptotic
properties of the proposed estimator, we make the following assumptions.

(A1) αk(·) ∈ Hr, k = 0, . . . , p for a constant r > 3/2, whereHr is the collection
of all functions on [0, 1] for which the mth order derivative satisfies the
Hölder condition of the order γ with r ≡ m+ γ and 0 < γ ≤ 1.

(A2) The conditional distribution of U , given X = x, has a bounded density
fU|X : 0 < c1 ≤ fU|X(u|x) ≤ c2 < ∞ uniformly in x and u for some
positive constants c1 and c2.

(A3) E(X(k)|U) = 0 and P (|X(k)| < M) = 1 for some M < ∞, k = 1, . . . , p.
There exist two positive definite matrices Σ1 and Σ2 such that Σ1 ≤
Var(X|U) ≤ Σ2 uniformly in U , where Var(X|U) denotes the conditional
covariance matrix of X given U and A ≤ B means that B−A is a positive
semi-definite matrix.

(A4) The random variables e1, . . . , en are i.i.d. and have a density function
fe(·) that is continuous at 0 with 0 < fe(0) < N < ∞ for some positive
constant N .

This set of assumptions is the same as those used by Kim [9] to develop the
convergence of the unpenalized estimator for model (2.1). Now, we describe the
main result of our paper.

Theorem 1. Suppose that Assumptions (A1)-(A4) hold and that bn ≈ n1/(2r+1).
Further, we assume that λn → 0 and λn/(n

−1/2bn) → ∞ as n goes to infinity.
Then, we have

(a) with probability approaching 1, α̂k(·) are nonzero varying coefficients for
k = 1, . . . , s and α̂k(·) = 0 for k = s+ 1, . . . , p.

(b) ‖α̂k−αk‖L2
= Op(n

1/(2r+1)), k = 0, 1, . . . , s, where ‖f‖L2
is the L2-norm

of the function f .

The detailed proof of Theorem 1 is given in the Appendix. We briefly provide
the main idea of the proof. First, to handle the issue of non-differentiability of
the check function, we uniformly approximate by a quadratic function of γ the
difference between l0(γ) and l0(γ

0) (which is non-differentiable) when γ and γ0

differ by a term of order n−1/2bn. Here, γ
0 is a coefficient vector that makes the

corresponding coefficient function vector α0(u) best approximate the true one
α(u) within the function space under consideration. For the precise definition
of γ0, we refer to Lemma 2 in Appendix. Using this approximation, we then
show asymptotic properties of our estimator with the idea of the proof in Wang
et al. [23].

Part (a) of Theorem 1 shows that the proposed estimator consistently iden-
tifies the relevant covariates with probability tending to 1. Part (b) provides
the convergence rate of the nonzero coefficient functions. If αk(·) has a bounded
second derivative, and if piecewise linear splines with bn ∼ n1/5 are used, then
Theorem 1 (b) implies that ‖α̂k −αk‖L2

= Op(n
−2/5), which is the same as the
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univariate optimal rate for nonparametric regression with i.i.d. data [18]. As a
result, Theorem 1 shows that our estimator is np-oracle.

5. Numerical studies

In this section, we use B-splines as the basis functions in our implementation
of the proposed method. Following the recommendation of Ruppert [16], in our
simulation we use a common value of qk, which we will call q as before. Thus the
number of basis functions q is equal to b+d+1, where b is the number of interior
knots for approximating a coefficient function and d is the degree of the spline.
We use equally spaced knots for all simulations in this paper. As for the degree
of the spline, Kim [9] recommended the use of lower degree splines because
higher degree splines would induce unnecessary interactions between the spline
basis and the collinearity among variables in varying coefficient models. In our
simulations, we use d = 3 corresponding to cubic splines.

5.1. Simulation examples

When the underlying error distribution has a fat tail, is not normal or has infi-
nite variance, the median regression (MR) estimator that minimizes the sum of
absolute errors is often considered as a robust alternative to the least squares
regression (LSR) estimator in order to understand the conditional central ten-
dency in a dataset. In this section, we compare the performance of the median
regression estimator for the model (2.1) with that of the least squares regression
estimator while the tails of the error becomes gradually fat using the contami-
nated normal distribution. The LSR estimator can be obtained by substituting
the check loss with the squared loss in (2.4) and (2.5). Since the LSR estimator
in the model (2.1) is regarded as a special case of the estimator in Wang et al.
[23] where the number of repeated measurements is one, it is easy to see that
the estimator has the same asymptotic properties as the MR estimator. For the
LSR estimator, we use the Bayesian Information Criterion (BIC) to select the
tuning parameters as follows:

BICini(b) = log

n
∑

i=1

(Yi −Π⊤
i γ̃

LS)2 +
logn

n
(p+ 1)(b + d+ 1),

BICfin(λ) = log
n
∑

i=1

(Yi −Π⊤
i γ̂

LS
λ )2 +

logn

n
edf,

where γ̂LS
λ is the estimator in mean regression and edf is the number of nonzero

elements in γ̂LS
λ . Theoretical background of this type of BIC criterion can be

found partly in Huang and Yang [7] and the same type of BIC was also consid-
ered in Tang et al. [20] to select the tuning parameters.

In our simulations, we consider the following two models:

Model (I) : Yi = 2 sin(2πUi) + 8Ui(1 − Ui)X
(1)
i + ei

Model (II) : Yi = 4Ui + 2 sin(2πUi)X
(1)
i + 2X

(2)
i − 1.5X

(3)
i + ei,
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where (X
(1)
i , . . . , X

(6)
i )⊤ is generated from a truncated multivariate normal dis-

tribution with mean vector consisting of all zeros and covariance matrix given

by cov(X
(k1)
i , X

(k2)
i ) = 0.5|k1−k2| for any 1 ≤ k1, k2 ≤ 6. The support of each

marginal distribution is restricted to [−5, 5] and e is a symmetric random error
independent of the covariates. Because the median and mean of the error coin-
cide when the error is symmetric, both the LSR and the MR estimator aim for
the same quantity and hence are directly comparable. The index variable U is

randomly generated from Uniform(0,1). It is clear that only the covariateX
(1)
i is

relevant in model (I) and that the covariates X
(1)
i , X

(2)
i , and X

(3)
i are relevant

in model (II). To investigate the effect of relatively heavy tail error distribu-
tions, we consider the contaminated normal distribution CN(ρ;σ1, σ2) that is
the mixture of N(0, σ2

1) and N(0, σ2
2) with weights 1− ρ and ρ, respectively. To

be more specific for our simulations, we set σ1 = 1 for model (I) and σ1 = 1.5
for model (II). For both models, we set σ2 = 5 and take the values of ρ equal
to 0, 0.1 and 0.2. As ρ increases, the error distribution gradually changes from
a normal distribution to a relatively heavy tail distribution. For each model,
we generate two random samples of n = 200 and n = 400 and then repeat the
simulations 500 times.

To compare the MR and LSR estimates for α(u), we first calculate the ab-
solute deviation error (ADE) defined as

ADE(α̂) =
1

ngrid

p
∑

j=1

ngrid
∑

r=1

|α̂j(ur)− αj(ur)|,

where the ur’s are the equally spaced grid points on the support of U with
ngrid = 201. We define the relative absolute deviation error (RADE) by

RADE(α̂) =
ADE (α̂MR)

ADE (α̂)

for an estimator α̂ of the coefficient function vector, where α̂MR(·) is the MR
estimator. Table 1 shows the sample mean and standard deviation of the RADE
with respect to the LSR and unpenalized MR (uMR) estimators over 500 sim-
ulations. From the RADE with respect to the LSR estimator, we see that the
LSR estimator slightly outperforms the MR estimator in terms of the estimation
accuracy when the error is normal (ρ = 0). However, when the error distribution
becomes relatively heavier which is the case when ρ = 0.1 or 0.2, the perfor-
mance of the LSR estimator deteriorates more rapidly than that of the MR
estimator. This shows that the quantile regression estimator in the VC model
is more useful than the least squares estimator when the error deviates from a
normal distribution. The RADE with respect to the uMR estimator implies that
the estimation efficiency has substantially improved by the variable selection.
Additionally, when comparing models (I) and (II) in terms of the RADE with
respect to the uMR, we observe that the sparser model has more benefits from
the variable selection.
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Table 1

Sample mean and standard deviation of the RADE with respect to LSR and uMR estimators

RADE

Model n Error wrt LSR wrt uMR

I n = 200 ρ = 0 1.706(1.351) 0.168(0.106)

ρ = 0.1 0.913(0.947) 0.190(0.128)

ρ = 0.2 0.698(0.802) 0.221(0.164)

n = 400 ρ = 0 1.369(0.754) 0.137(0.052)

ρ = 0.1 0.811(0.495) 0.139(0.061)

ρ = 0.2 0.610(0.456) 0.145(0.079)

II n = 200 ρ = 0 1.363(0.421) 0.553(0.151)

ρ = 0.1 1.044(0.418) 0.570(0.168)

ρ = 0.2 0.933(0.503) 0.641(0.248)

n = 400 ρ = 0 1.262(0.281) 0.501(0.101)

ρ = 0.1 0.973(0.263) 0.499(0.110)

ρ = 0.2 0.880(0.279) 0.517(0.121)

Table 2

Variable selection results of LSR and MR estimators

No. of estimated zeros Proportion of models

Correct Incorrect Underfit Correct fit Overfit

Model n Error MR LSR MR LSR MR LSR MR LSR MR LSR

I n = 200 ρ = 0 4.750 4.912 0.000 0.000 0.00 0.00 81.00 92.80 19.00 7.20

ρ = 0.1 4.568 4.356 0.000 0.026 0.00 2.60 70.20 55.80 29.80 41.60

ρ = 0.2 4.412 4.268 0.012 0.140 1.20 14.00 59.00 40.00 39.80 46.00

n = 400 ρ = 0 4.980 5.000 0.000 0.000 0.00 0.00 98.00 100.00 2.00 0.00

ρ = 0.1 4.950 4.808 0.000 0.000 0.00 0.00 95.40 84.40 4.60 15.60

ρ = 0.2 4.888 4.574 0.000 0.012 0.00 1.20 90.60 67.20 9.40 31.60

II n = 200 ρ = 0 2.570 2.766 0.002 0.002 0.20 0.20 67.40 79.80 32.40 20.00

ρ = 0.1 2.446 2.506 0.008 0.062 0.80 4.60 58.20 58.00 41.00 37.40

ρ = 0.2 2.384 2.386 0.100 0.236 8.00 16.60 49.40 42.80 42.60 40.60

n = 400 ρ = 0 2.908 2.964 0.000 0.000 0.00 0.00 91.40 96.60 8.60 3.40

ρ = 0.1 2.870 2.848 0.000 0.000 0.00 0.00 87.80 86.40 12.20 13.60

ρ = 0.2 2.784 2.752 0.000 0.004 0.00 0.40 81.20 78.20 18.80 21.40

The results of variable selection for each estimator is given in Table 2. As a
performance measure of the variable selection, we report in the column “Cor-
rect” the average number of irrelevant coefficient functions correctly estimated
to be zero functions and in the column “Incorrect” the average number of rele-
vant coefficient functions incorrectly estimated to be zero functions. In another
aspect, we summarize the variable selection results by discriminating three dif-
ferent situations. In the column “Correct fit”, we present the percentage of
trials for which the estimated model coincides with the true model. When the
estimated model misses at least one relevant covariate (even if some irrelevant
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covariates are selected), we count it as an underfitted model and report its per-
centage in the column “Underfit”. Finally, we show in the column “Overfit” the
percentage of overfitted cases in which the estimated model includes all rele-
vant covariates and some irrelevant covariates. Overall, similar conclusions are
obtained in terms of variable selection as in the result of estimation accuracy.
Additionally, Table 2 suggests that both the MR and the LSR estimator have
a tendency to overfit more than to underfit. A possible explanation for this
phenomenon is that both estimators determine the amount of penalization for
variable selection using the estimator of the L2 norm of each coefficient. When
the sample size is relatively small, the instability of estimation could bring out a
situation where the L2 norm estimates of some irrelevant coefficients are larger
than those of other irrelevant ones, which results in overfit. However, even in
such a situation, the L2 norm estimates of relevant coefficients are not likely to
be smaller than those of irrelevant ones so underfit is less frequent than overfit.
Similar results can be found in Wang and Xia [21], who also uses the L2 norm
estimate of each coefficient for variable selection.

Throughout the simulation, we observed that the performance of our esti-
mator is fairly dependent on that of the initial estimator because our variable
selection method uses the initial estimator to determine the amount of shrinkage
for each coefficient function. However, this dependency can be eliminated in a
certain degree by using the final estimate as a new initial estimator if necessary.
An example of this kind of iterations is found in Tang et al. [20].

5.2. Application to forced expiratory volume data

The forced expiratory volume (FEV) is the amount of air which is forcibly
exhaled from the lungs in the first second. The FEV data from Rosner [15]
contain measurements of FEV in liters, age (U) in years, height (H) in inches,
sex (S = 0 for girls/S = 1 for boys), and smoking status (SM = 1 for a regular
smoker/SM = 0 otherwise) which were collected from 654 children aged 3-19. To
assess the effect of smoking status on FEV and the lower conditional quantiles
of FEV as a measure for poor pulmonary functioning, Kim [9] considered the
VC model (2.1) in quantile regression as follows:

qτ = β0(u) + β1(u)× S + β2(u)× SM + β3(u)×H + β4(u)× (H × S). (5.1)

In this subsection, we illustrate our proposed method by showing how it selects
relevant covariates in model (5.1) with respect to different quantile levels.

We consider the conditional first vigintile (q0.2) and median (q0.5) for the
analysis. In order to detect smoking effects accurately, we only consider chil-
dren over the age 10 (345 subjects) because there are no smokers among the
children below the age 10. We use piecewise linear (d = 1) and quadratic (d = 2)
splines with equispaced knots. Since the number of covariates in model (5.1) is
relatively small, choosing different number of knots for each coefficient function
is computationally allowed. Hence, we determine the degree of splines and the
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Fig 1. Coefficient estimates by piecewise linear splines.

number of equispaced knots for each coefficient function simultaneously using
the SIC values in (3.2).

Through the proposed procedure, all the covariates except the smoking sta-
tus are selected as relevant for both quantiles. FEV is known to increase in
accordance with the body growth, which is measured by the height to a cer-
tain extent. Typically boys tend to have a larger FEV on average than girls as
they grow. Based on this information, our selection results of covariates coin-
cide with the previous results commonly known in the medical science. Figure
1 shows the coefficient function estimates for the selected covariates. Since only
a small number of data are available beyond the age of 15, we restrict our at-
tention to the estimates below the age of 15 in Figure 1. At both quantiles, the
estimated baseline function β0(u) increases linearly, which implies that FEV
increases with age. This makes sense because all the children in the data were
in the middle of growth. Regarding the effect of sex on FEV, the difference
between boys and girls becomes bigger in both quantiles if we ignore the age
range beyond 15.

One of the interesting results in our analysis is that the relevance of smoking
status on FEV is found to be different according to the quantile level. The
smoking status is not selected for the median level (q0.5), while it is selected
for the relatively low quantile (q0.2). In Figure 2, we observe that the coefficient
function of smoking status in the first vigintile is negative during all the period
except at age 10 and for the age range 17-18. The coefficients in those ranges
are not reliable because the smoking period of a 10-year old boy is supposed to
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Fig 2. Coefficient estimates of smoking status when q = 0.5 and 0.2.

be very short and few observations exist in the age range 17-18. Consequently,
our result shows that the negative effect of smoking on FEV is not clear at
the median level. However, smoking smoking should at least be considered as a
relevant factor which has some negative effects on the group who has weak
lungs, especially at the period of growth. This kind of heterogeneity would
not have been revealed by variable selection procedures for mean regression.
However, to investigate the relationship between the smoking status and FEV
more rigorously, we need to know not only the smoking status of each subject
but also the years they have been smoking for. This relationship should be
checked again with such data.

6. Conclusion and future work

In this paper, we proposed an efficient variable selection method for varying co-
efficient models in quantile regression when all coefficient functions are assumed
to be varying. Theoretically, we showed that our method has a nonparametric
oracle property, which is desirable as a variable selection procedure. From a
practical point of view, we illustrated through a simulation study that when the
error is asymmetric or has a fat tail, our estimator is more robust than the one
in mean regression in terms of the consistency of the variable selection method
and the efficiency of the estimation procedure.

For more efficient estimation through variable selection, it is also important
to separate varying and constant coefficients among the nonzero coefficients. For
that purpose, it is possible to use the hypothesis testing given in Section 4 of
Wang et al. [22] after identifying the nonzero coefficients based on our method.

Finally we addressed variable selection issues of varying coefficient models
under the assumption that there are no repeated measurements for each subject.
To extend our work to a longitudinal data setting seems a promising and useful
project for practitioners. We leave it as a future work.
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Appendix

For the proof of Theorem 1, we recall three lemmas from Kim [9].

Lemma 2. [9, Lemma A.1] Assume that (A1)-(A4) hold. Then, there exists a

spline coefficient vector γ0 = (γ0
0
⊤
, . . . ,γ0

p
⊤
)⊤ and some positive constants W1

and W ∗
1 that depend only on m,W0, p and M (but not necessarily all of them),

such that:

(a) supu∈[0,1] |αk(u)− π(u)⊤γ0
k | ≤ W1b

−r
n

(b) sup(u,X)∈[0,1]×Rp+1 |Π(u,X)⊤γ0 − x⊤α(u)| ≤ W ∗
1 b

−r
n

Lemma 3. [9, Lemma A.4] Define Hn =
∑n

i=1 ΠiΠ
⊤
i . Assume that (A1)-(A4)

hold and that limn→∞ bnn
δ−1 = 0 for some 0 < δ < 1. Then, the eigenvalues of

n−1bnHn are uniformly bounded away from zero and infinity in probability.

Lemma 4. [9, Lemma A.7 (i)(ii)]

(i) For any sequence {Ln} satisfying 1 ≤ Ln ≤ b
η0/10
n for some 0 < η0 <

(r − 1/2)/(2r + 1), we have:

sup
(γ−γ0)⊤Hn(γ−γ0)≤L2

nbn

b−1
n

∣

∣

∣

∣

∣

n
∑

i=1

{ρ(ei −Π⊤
i (γ − γ0)−Rni)− ρ(ei − Rni)

+Π⊤
i (γ − γ0)(2τ − 2I(ei < 0))− Ee(ρ(ei −Π⊤

i (γ − γ0)− Rni)

−ρ(ei −Rni))}

∣

∣

∣

∣

∣

= op(1), (6.1)

where Ee stands for the conditional expectation given (Xi, Ui), i = 1, . . . , n and
Rni = Π⊤

i γ
0 −Xiα(Ui).

(ii) For any ǫ > 0, there exists L ≡ Lǫ (sufficiently large) such that as n → ∞,

P

{

b−1
n

(

inf
(γ−γ0)⊤Hn(γ−γ0)≤Lbn

n
∑

i=1

[

Ee(ρ(ei −Π⊤
i (γ − γ0)−Rni)− ρ(ei −Rni))

]

−

∣

∣

∣

∣

∣

n
∑

i=1

Πi(2τ − 2I(ei < 0))

∣

∣

∣

∣

∣

)

> 1

}

> 1− ǫ (6.2)

Lemma 5. Under the same assumptions as in Theorem 1, we have that ‖γ̂ −
γ0‖2 = Op(n

−1/2bn).



Variable selection of VC models 1235

Proof of Lemma 5. From Theorem 1 in Kim [9], it follows that ‖γ̃ − γ0‖2 =
Op(n

−1/2bn). Since γ0
k = 0, k = s+ 1, . . . , p, from (2.6) we have:

‖γ̃k‖2 = Op(b
1/2
n ), 1 ≤ k ≤ s (6.3)

‖γ̃k‖2 = Op(b
1/2
n max{n−1/2b1/2n , b−r

n }), s+ 1 ≤ k ≤ p. (6.4)

Assume that ‖γ − γ0‖2 = C1n
−1/2bn and that C1 is large enough. From (6.3),

it follows that ‖γ̃k‖2 > aλn for all 1 ≤ k ≤ s with probability tending to one,
where a appears in the definition of pλn . This means that, with probability
tending to one, p′λn

(‖γ̃k‖2) = 0 for all 1 ≤ k ≤ s. Since ‖γk‖2 − ‖γ0
k‖2 ≤

‖γ − γ0‖2 = Op(n
−1/2bn) = op(1), it follows from the definition of pλn that

n
s
∑

k=1

p′λn
(‖γ̃k‖2)(‖γk‖2 − ‖γ0

k‖2) = op(bn) and

n

p
∑

k=s+1

p′λn
(‖γ̃k‖2)(‖γk‖2 − ‖γ0

k‖2) ≥ 0 (6.5)

because ‖γ0
k‖2 = 0 for k = s + 1, . . . , p. Define Qn(γ) =

∑n
i=1[ρ(Yi −Π⊤

i γ) −
ρ(Yi −Π⊤

i γ
0)] =

∑n
i=1[ρ(ei −Π⊤

i (γ − γ0)−Rni)− ρ(ei −Rni)]. By Lemma 4,
we have

P

(

inf
‖γ−γ0‖2=C1n−1/2bn

Qn(γ) > bn

)

→ 1,

and hence it follows from (6.5) that

P

(

inf
‖γ−γ0‖2=C1n−1/2bn

(l(γ)− l(γ0)) > 0

)

→ 1,

as n → ∞. By the convexity of l(γ) and the fact that l(γ̂) − l(γ) ≤ 0, there
exists some Cξ, for any ξ > 0, such that as n → ∞,

P (‖γ̂ − γ0‖2 ≤ Cξn
−1/2bn) > 1− ξ.

Proof of Theorem 1 (a). Different from the mean regression, the gradient func-
tion of l0(γ) =

∑n
i=1 ρ(Yi−Π⊤

i γ) is not useful to establish asymptotic properties
of the estimator γ̂. The reason is because the check function is not differentiable
at zero and some of the estimated residuals are exactly zero in quantile regres-
sion. Because of these two reasons, the gradient function of l0(γ) evaluated at γ̂
is not directly applicable since it involves the first derivative of the check func-
tion evaluated at each residual Yi −Π⊤

i γ̂. As an alternative, we may consider
the subgradient function of l0(γ). However, the subgradient function of l0(γ) is
so complicated that it is very difficult to derive easy-to-check optimality con-
ditions. Even though Tang et al. [20] seemed to derive the concise optimality
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conditions as in the case of mean regression when penalizing by the Euclidean
norm of γk, their optimality conditions are not correct. So in our work we derive
the consistency in variable selection using a certain lower bound of the differ-
ence of two check loss functions. Since the selection consistency regarding the
relevant coefficients is clear from Theorem 1 (b), which we will show, we focus
on the case of the irrelevant coefficients.

Suppose that there exists a (s + 1) ≤ k0 ≤ p such that the probability of
α̂k0

(·) being a zero function does not converge to one. Then, there exists ǫ > 0
such that, for infinitely many n,

P (γ̂k0
6= 0) = P (α̂k0

6= 0) ≥ ǫ.

Let γ∗ be the vector obtained from γ̂ with γ̂k0
being replaced by 0. It will be

shown that there exists a η > 0 such that l(γ̂) − l(γ∗) > 0 with probability at
least η for infinitely many n, which contradicts with the fact that l(γ̂)−l(γ∗)≤ 0.

From Lemma 5 and because n−1/2bn ≪ λ, we may assume that νk = λ for
s+ 1 ≤ k ≤ p. Since ρ(u)− ρ(v) ≥ 2(τ − I(v ≤ 0))(u − v) for any u, v ∈ R, we
have

l(γ̂)− l(γ∗)

≥ −

n
∑

i=1

(2τ − 2I(ei ≤ 0))Π⊤
i (γ̂ − γ∗)

− 2

n
∑

i=1

(I(ei ≤ 0)− I(Yi ≤ Π⊤
i γ

∗))Π⊤
i (γ̂ − γ∗) + nλ‖γ̂k0

‖2

≥

(

−2

∥

∥

∥

∥

∥

n
∑

i=1

(τ − I(ei ≤ 0))Πi

∥

∥

∥

∥

∥

2

−2

∥

∥

∥

∥

∥

n
∑

i=1

(I(ei ≤ 0)− I(ei ≤ rni))Πi

∥

∥

∥

∥

∥

2

+ nλ

)

‖γ̂k0
‖2, (6.6)

where rni = Rni +Π⊤
i (γ̂

∗ − γ0).

From assumptions (A3) and (A4), we obtain that for any L > 0,

E

p
∑

k=0

qn
∑

l=1

{

n
∑

i=1

(I(ei ≤ Ln−1/2bn)− I(ei ≤ −Ln−1/2bn))|X
(k)
i Bkl(Ui)|

}2

≤

p
∑

k=1

qn
∑

l=1

nM2E
{

(I(e ≤ Ln−1/2bn)− I(e ≤ −Ln−1/2bn))|Bkl(U)|
}2

+

p
∑

k=1

qn
∑

l=1

n(n− 1)M2
{

E(I(e ≤ Ln−1/2bn)− I(e ≤ −Ln−1/2bn))|Bkl(U)|
}2

≤M2
{

n(2Ln−1/2bnN) + n2(2Ln−1/2bnN)2
}

= O(nb2n).
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This implies that

∥

∥

∥

∥

∥

n
∑

i=1

(I(ei ≤ 0)− I(ei ≤ rni))Πi

∥

∥

∥

∥

∥

2

= O(n1/2bn) (6.7)

because max1≤i≤n |rni| ≤ O(b−r
n ) + ‖β̂∗ − β0‖ = Op(n

−1/2bn). By simple cal-
culations, one has that ‖

∑n
i=1(τ − I(ei < 0))Πi‖2 = Op(n

1/2). From this fact

combined with (6.7) and λ/(n−1/2bn) → ∞, we can conclude that nλ‖γ̂k0
‖2

dominates the other terms in (6.6), which contradicts to l(γ̂) − l(γ∗) being
negative.

Proof of Theorem 1 (b). It is easy to see that, for all k = 0, 1, . . . , s,

1

n

n
∑

i=1

[α̂k(Ui)− αk(Ui)]
2 ≤

2

n

n
∑

i=1

[π⊤
i (γ̂k − γ0

k)]
2 +

2

n

n
∑

i=1

R2
ni

≤
2

n
(γ̂k − γ0

k)
⊤

n
∑

i=1

πiπ
⊤
i (γ̂k − γ0

k) + 2Cb−2r
n .

By Lemma 3 and 5, the desired result is obtained.
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