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CHAPTER I

RESEARCH GOALS

1.1 Introduction

In recent years interest in integer programming, or
problems in which some of the decision variables are requir-
ed to be integer, has been increasing in all disciplines in-
volved in decision making. One class of integer programming
problems known as capacitated gquadratic assignment probleﬁs
deals with the allocation of interrelated variables among
regions. The optimal assignment is that arrangement which
minimizes the total interaction between the given regions.

Graves [13] formulated the problem of site selection
for college departments in a multi-campus university as a
capacitated quadratic assignment problem. His work went on
to develop an implicit enumeration solution procedure and to
examine one particular university's location decisions with-
in a planning context. Graves [13] besides demonstrating
the wide area of applicaﬁility emphasized that present solu-
tion ?rocedures drastically limit the size of problem which
can practically be soclved.

1.2 The Purpose of the Research

The work done in this research centers around inves-
tigating possible improvements in a least bound implicit enu-

meration solution procedure. In particular the performance




of two free variable entering strategies are compared for
various levels of factors which affect the general structure
of the problem. Consideration will also be given to the
question of whether or not certain factors examined signifi-
cantly affect problem solving difficulty.

1.3 Scope and Limitations

The scope of this research is to examine two free
variable entering strategies in light of a class of capaci-
tated quadratic assignment problem referred to as the office
building problem. The office building problem differs from
a more general capacitated quadratic assignment problem in
that it has a given number of variables that have a fixed
value. All results are to be viewed in light of the follow-
ing limitations:

(1) The two free variables entering strategies are only
compared for one solution algorithm.

(2) Only problems with a comparatively large number of
fixed variables, i.e., the office building problemn,
are considered.

1.4 The Thesis Plan

The plan of the thesis can be seen by the following

brief discussion of the contents of each chapter.

(1) Chapter 1: An Introduction. This chapter is con-
cerned with the goals and scope of the research ef-
fort.

(2) Chapter 2: A Discussion of the Problem and of Relat-

ed Literature. This chapter discusses the problem,
the solution procedure, and the method of analysis
in detail.

(3) Chapter 3: Development of the Experimental Design.
This chapter deals with a discussion of the experi-




(4)

(5)

mental treatments, the analysis of wvariance assump-
tions, the random problem generator, and the devel-
opment of a good experimental design.

Chapter 4: The Analysis. This chapter is an analy-
sis of the data collected from an experiment run
according to the design developed in Chapter 3,

Chapter 5: Conclusions and Recommendations. This
chapter concludes the paper. It contains the con-
clusions and findings of the research and offers
some additional areas in which further work could
be done along these same lines.




CHAPTER II

A REVIEW OF THE PROBLEM AND OF SIGNIFICANT LITERATURE

2.1 The Office Building Problem - An Example
Capacitated Quadratic Location Problem

Currently there is very little literature available
on the capacitated quadratic assignment problem. Graves
[13] discusses this problem and has developed an exact
solution procedure. Liﬁ [18] has established a framework
for statistical analysis of integer type problems. Both
of these contributions will be examined in detail and
placed in context as the problem examined in this work is
developed.

An example of the problem cof interest is how to lo-
cate or assign interrelated items to regions where each

item has a size, S and where each region to which items

i.r
can be assigned has a size constraint. The best assignment
is that which minimizes the total amount of interaction
between regions. One real world application of this prob-
lem would be locating a production corporation's supervi-
sory, suppert and service groups' offices in a multi-floor
production center. Each group's office could be viewed as
related to or interacting with other offices or work areas.

Another example of the problem might be to find the best

locations within a large corporation's multi-floor office




building for the offices of a newly-organized section.

The measuré of interaction or flow between various offices
in these problems could be formulated as the number of
trips between office i and office j during some given time
period. 1In these types of problems, referred to from now
on as the office building problem, all flow would be con-
sidered non-directional and each movement from one office
to another would represent one unit of flow. For example,
if someone moved from office i to office j, or vice versa,
32 times in the given time period, the flow between i and
j and j and i would equal 32.

The space available on each floor could be viewed
as representing the size constraint of each region. Like-
wise every office would have some size associated with it.
The general problem, then, stated in terms of the office
building problem would be to locate the N offices on the M
floors such that the size constraints are satisfied. By
including the cost of movements between the different
floors, the model can be reformulated in terms of cost.
Having done this, locations can be determined which mini-
mize the total cost of movement between floors for given
size constraints.

The following assumptions are made: (1) the offices
are non-divisible, that is, each office must be located in
its entirety on one and only one floor; and (2) the flow

between each office is deterministic and known. The size




of each floor and each office must also be known. (Note
that no restrictions have been put on the shape of the
floors or offices.) (3) The cost associated with a unit
movement from one floor to another is the same over time.

2.2 The Model

The following information is necessary for the for-
mulation of a capacitated quadratic model as representative
of the problem of locating interacting offices on a multi-
floor office building.

I. A description of the offices:

i) the number of offices

ii) how many offices are free to be assigned by
the model, and how many are fixed

iii) whether a given office's location is fixed
or free

iv) the size of each office

v) the amount of interaction between each office
IT. A description of the floors:

i). the number of floors

ii) the size of the floors
ITI. A description of the cost:

i) the cost of movement between the wvarious
floors

Mathematically, the model appears as follows:

minimize Z =

" .
T CkrFij| Y4k (1-Yjk)] [Yir(l-er)]:l(Z.l)
1 j=1

Il o~1 =2
Il o~
Mo~ =2

1 i




subject to the following three constraints:

k
where th
(1) 2
(2) M
{3) N
(4) k,
(5) 1,
(6) ij
(7) Fij
(8) Ak
(9) Si
(10) Cyyp

Il =~12

il =

1

e

r

j

SiY¥ik < Ap for all k=1, 2, .....M (2.2)
ij =1 for each j =1, 2, ....N {2.3)
ij =0, 1 for all j, k (2.4)

terms are defined as follows:

I

the value of the objective function
the number of flcors
the number of offices
floor indices; k, r =1, 2, ..... M
office indices; i, j =1, 2, ....N

1, if office j is located on floor k;
0, otherwise.

the flow between office i and office j; in this
case, the number of times someone moves per day
from office i to office j or vice versa.

the size of floor k. This represents a con-
straining size and limits the number of offices
that can be located on any one floor.

the size of office i. This represents the
space required by office i.

the cost associated with traveling from floor k
to floor r. .

The model's objective is to minimize the total cost

of movement between flocors in the context of the N offices,

M floors office building location problem. The component




0of the objective function, | Yir(l“er) ] will have the
value of one when office i1 is on floor r and office j is
not on floor r. Likewise, [ ij(l'Yik) ] will have a

value of one when office j is on floor k and when office

i is not on floor k. The product of these components will
produce a value of one only if office i is located on floor
r and office j is located on floor k, otherwise the pro-
duct's value is zero. The product of these deéision vari-
ables enables the model to consider and assign an appropri-
ate cost for every unit of between-floor movement. By
summing over all floor and office indices contained within
the objective function, the total value of Z or the total
weighted cost of movement between flcors is obtained. It
is precisely this quantity for which a minimum value is
desired.

The first constraint set is of the following form:
N
.Zl $i¥;x < Ax for all k =1, 2, ..... M
lz

This constraint, in essence, sums the size of each office
located on each of the M floors. This constraint requires
that no more office space will be assigned to a floor than
that floor can hold. The constant Ay in this case repre-
sents the initial area available for office assignment on
floor k. Note that this Ay may or may not be the same for

different floors.




The second constraint set is of the following form:

ij =1 for each 3 =1, 2, ..... N

He—132

This second constraint requires that every single office be
located somewhere amcng the M floors. This constraint as-
sures, for each office, exaétly one location in the final
feasible solution.

The last constraint requires that the decision vari-
able have only values of zerc or one. In practical terms,
this insures that a single office will not be split among
several floors.

2.3 A Capacitated Quadratic Assignment Problem
Sclution Procedure

The thrust of this paper is to examine the effect
free variable entering rules have on the time required to
obtain an optimal solution using an implicit enumeration
scheme. A general review of this procedure as used by
Graves [13] follows.

Implicit Enumeration

Implicit enumeration algorithms operate by implicit-
ly searching all possible solutions through examining cer-
tain well-chosen solutions and using the information obtain-
ed from the examination of these solutions, coupled with
dominance concepts and constraint infeasibility arguments
to eliminate non-optimal solutions from investigation in

the search for the optimal. The investigation of these
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solutions serves also to establish stricter optimal solu-
tion criteria. Although from a practical point of view it
can be proven that implicit enumeration searching tech-
niques will converge on the optimal solution, it has been
demonstrated that the computer resources required can be
very large and usually are unpredictable. However, im-
plicit enumeration, due to its emphasis on the logic of the
problem, is recognized by many to be a most promising
integer programming solution technique [13].

A brief description of the general procedure used
in implicit enumeration and branch and bound techniques is
given by Zionts [27].

1. Given a list of active partial solutions that
have not yet been explored, select one to ex-—
amine next. If appropriate, terminate the
search and conclude that the optimal solution
is the best one found so far, or that no op-
timal feasible solution exists. Otherwise,
go to step 2.

2. Examine the partial solution selected, and
draw some conclusions about its possible con-
tinuations that may exclude certain successor
partial solutions from consideration. This
includes adding the successor partial solution,
as appropriate, to the list. Then go to step 1.

As noted from Zionts' description, there are two
fundamental questions which need to be recognized and an-
swered. FPFirst, how does one select which sub-problem, or
partial sclution (as they are appropriately called in this
example), to examine next. Secondly, how does one draw

inference about the desirability of continuing or discard-

ing certain partial solutions.
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In answering the first guestion, it is important to
realize that the "order" is a function of two things: (1)
the structure of the searching tree, and (2) the rules by
which the free variables are entered into the searching
tree. A brief discussion of each of these is in order.

The term "structure" is used to denote the actual mechani-
cal way in which the decision variables are enumerated in
the solution process. For instance, one, two, or more free
variables could be assigned in each stage or step of the
solution procedure. Obviously, the possible number of
structures is very large; therefore, it is important that

a structure be chosen which is advantageous to the actual
solution procedure used. A simple structure which is rela-
tively straightforward‘to develop in an algorithmic way is
guite desirable, but perhaps more desirable in a structure
is the attribute of hierarchical dominance., A structure is
hierarchically dominant if every partial solution which
branches or flows from partial solution A is dominated by
partial solution A. The ideas of dominance and the struc-
ture of the partial solutions search tree will be further
discussed later. The second factor affecting the ordering
of the partial solutions is how one decides in what order
the free variables are to be entered into the searching
process. Practical experience shows that the order in
which the free variables are placed into partial solutions

can significantly affect how rapidly an implicit enumera-
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tion technigque converges to the optimal solution [21]. How-
ever, it is.extremely difficult to know the exact order in
which the variables should be entered into the searching
tree. The importance of free variable entering rules is
discussed more fully in Section 2.4.

The second basic question deals with the problem of
obtaining information as to whether or not continuation of
a partial solution could result in an optimal solution.

The approach used in dealing with this problem is that of
a simple branch and bound scheme. In brief, the apprecach
operates on the premise that the optimum value of the ov-
jective function z* lies between some upper bound (UB) and
some lower bound (LB).

For this minimization problem, the value of UB, the
upper bound, is always set equal to the smallest feasible
objective function value of all the known feasible sclu-
tions. The lower bound, LB, can be calculated by summing
the contribution to the objective function of those vari-
ables already assigned locations and the absolute minimum
contribution to the objective function of all those vari-
ables which are not presently assigned. Note that the
second portion of the lower bound is not required to be
constraint feasible. For this reason the lower bound wvalue
obtained for each partial solution will not always equal
the optimal location cobjective function value; however, the

optimal value of the objective function z* is guaranteed to
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be no lower than the lower bound value.

Knowing that the optimal solution to a partial solu-
tion can be no lower than the lower bound value for that
partial solution and remembering that the optimal solution
to the whole problem has to be less than or equal to the
upper bound value allows for the following test and infer-
ence to be drawn. Upon examination of each partial solu-
tion, a lower bound LB is calculated and that LB is com-
pared with the current upper bound UB of the problem. When-
ever the lower bound LB is greater than the upper bound UB,
it is certain that continuation of that partial solution
would not result in an optimal solution. A partial solu-
tion, then, that has a lower bound LB greater than the upper
bound UB can be excluded from further consideration. A
second test that should be performed is to determine if
those active partial scolutions satisfy all of the size con-.

straints, namely constraint set 1.

N
; S;Yip A, for allr =1, 2, ..... M

If any partial solution does not satisfy this constraint

set, it and all the nodes emanating from it can be eliminated
from further investigation. These two tests are to be per-
formed at each partial solution and in combination represent

the total inference and testing mechanism.
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The Decision Tree

As noted from Zionts' description, implicit enumera-
tion is a sequential process. In this problem the combina-
torial tree which is sequentially examined is developed by
expanding outward from an origin intc a series of subsequent
generations. The origin or beginning of the process in-
cludes only those variables that have an original value of
one. These variables, referred to as fixed variables, are
those which must be at a certain location. Each subsequent
generation or stage from its predecessor represents a set
of mutually exclusive and collectively exhaustive descen-
dents of the previous generation; and each partial solution
in generation, stége T, differs from its immediate prede-
cessor, stage T-1l, by having one previously unassigned free
variable now fixed at some location.

For examplé, in the multi-story office building prob-
lem, 15 out of 30 offices might have a fixed location due
to a policy determination. Consider that there are three
floors available on which to locate new offices and five
offices must be on the first floor, three on the second
floor, and seven on the third floor. A total of 15 offices
are left to be located. These variables which have no pre-
determined locations are called free variables.

The implicit enumeration procedure starts from an
origin with the 15 variables which have a fixed location as-

signed to them. It then makes three branches from that ori-
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gin. These three branches represent the assignment of the
first free variable to be considered to either the first,
second, or third floor. This branching process continues,
with the decision being always to branch from the ndde or
partial solution with the smallest lower bound value. Each
stage or generation of branching represents the addition of
one more free variable to the partial solution. This
branching scheme continues until all of the free wvariables
have been included for consideration. If no inferences re-
sulting in elimination of some partial solution are drawn,
this branching scheme will totally enumerate the solutions,
and a combinatorial tree would be developed which wouid
contain every possible location of the free variables. 1In
the example regarding the 15 free offices and the three
floors on which to locate them, there is a maximum of par-
tial solutions to examine if all partial solutions are to-
tally enumerated. Equation 2.5 relates the total number of

partial solutions in a totally enumerated search tree.

n
N = § MK (2.5)
P x=1
where Np = the maximum number of partial solutions
n the number of free variables

I H

M the number of locations
The termination of the branching process does assure, how-

ever, that constraint set 2 or
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1 for all i =1, 2, ,...,N

e~
S
]

ir

will be satisfied by not allowing offices to be assigned to
more than one floor in any one partial sclution.
Dominance

Looking at Equation 2.1 and remembering that all of
the cost Crx and all of the flbws Fij

is evident that 2* or the optimal value of any partial solu-

are non-negative, it
tion can not decrease as more variables are included in the
problem. Z =

M
£1 CkrFij [[ij(l—Yik) ] [Yir (l"er) ]:| (2.1)

1=
I} o~11=
1=

1 i=1 ]

Si¥iy < Ax for all k =1, 2, .....M (2.2)

Il 12

1

If each partial solution T+l is viewed as differing from its
parent partial solution T only by the addition of one free

variable, it is clear that the value of partial solution T+1

is always greater than or equal to the value of partial solu-

tion T. For this reason, if it can be determined that the
best solution to partial solution T is non-optimal, then in-
vestigation of any partial solutions branching from partial
solution T would be fruitless.

Equation 2.2 simply requires that the total amount

of space required by the offices assigned to each floor be
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no greater than the space each floor has available. Remem~-
bering once again that each partial solution differs from
the predecessor partial solution by the assignment of one
additional free variable, and that the area each floor has
available Ap is constant, and that S;, the size required by
each office, is non-negative, allows for the following
statement concerning feasibility: If any partial solution
T is found to be infeasible because of size or space con-
straints, then all partial solutions branching from partial
solution T are also space or size infeasible. This is due
t¢ the non-decreasing aspect of the size function, i.e.,
Equation 2.2.

Inference Technigues

In view of the dominance characteristics of the search
tree, the importance of the relationship between the order
or structure of the tree of partial solutions and the abil-
ity to draw inferences about each partial solution's feasi-
bility and optimality is more clearly understood. It is
easy to understand why strong inference technigques and
hierarchical dominance in the tree structure are so desirable.
0f course, even with a well-structured problem, unless
the inference techniques are strong, a relatively small prob-
lem may become unsolvable.due to the large number of partial
solutions to examine. For instance, for the problem dis-
cussed previously with three floors on which to locate of-

fices, given that there are 17 free variables there would
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be a total of 193,710,244 partial solutions to examine in
the absence of inference techniques. The large number of
partial solutions that has to be explored also points to-
ward the need for bound calculations that require very
little calculation effort and time. There existed two
key criteria to keep in mind concerning bounds and their
development. The first was speed or simplicity of cal-
culation. The second criterion was strength or the abil-
ity to distinguish partial soclutions whose continuation
would result in sub-optimal solutions from those whose
continuation would result in an optimal or near optimal
solution.

As is often the case, these two criteria were found
to be not directly complementary in that there exists a
trade-off between speed and strength. This trade-off can
be seen by realizing that basically the time required to
find the optimal solution is a function of the time re-
quired to explore and calculate bounds for partial solu-
tions investigated. So the time required to find an opti-
mal solution might be reduced either by reducing the time
required to calculate each bound or by reducing the number
of partial solutions examined.

Having reviewed the purpose behind the structure and
inference techniques and the relationship between them,
along with the importance of strong bounding techniques,

there remains to be discussed the actual details of the
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bound calculations. Associated with each partial solution
are the upper and lower bounds. Each bound's significance
lies in the fact that if the lower bound LB is greater than
the upper bound UB for any partial solution, then that
partial solution and all the partial solutions which branch
from it can be disregarded in the search for the optimal
solution. The test is structured in such a way that a good
estimate or "strong bound" is needed for both the lower and
upper bound. The bounds used in Graves [13] will now be
briefly discussed.

The Upper Bound

Generally, an upper bound can initially be set at in-
finity, or a solution can be discovered randomlyy or a good
solution can be obtained from a heuristic method. This
heuristic method consists of two phases. The first is a
constructive process in which the offices are located in a
logical way. The second phase is an improvement process
where simple changes are investigated to determine if the
constructed solution can be improved.

The Construction Phase

This phase begins by separating the problem's free
and fixed variables. The free variables are assigned, one
at each stage, to the location or floor that obtains the

smallest increase in the objective function value. This ini-

tial phase in which all of the free variables are assigned

does not, however, return to re-examine the placement deci-
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sion of a free variable at a later stage when another free
variable is under scrutiny. This process of re-examination
occurs in the interchange or improvement portion of the
heuristic once the first portion has e#hausted the free
variables list and a feasible solution is at hand.

The interchange phase attempts in a very simple way
to find any improvements of the feasible solution construc-
ted in the first phase.

The Interchange Process

The first portion of the interchange phase of the
heuristic examines the possible exchange of single free
variables located at some location by the construction
phase of thelheuristic with slack capacity at another loca-
tion. Similarly, the second portion of the iﬁterchange
rhase examines the possible exchange of a pair of located
free variables plus slack, one at each cof two locations,
with each other. In both parts of this improvement phase
an exchange is performed only if both a feasible solution
results and the value of the objective function is improved.
The improvement process concludes when some number of itera-
tions are completed.

The Lower Bound

The lower bound,simply, is an estimate of the lowest
value a partial solution's objective function could reach
should that partial sclution be carried forward to comple-

tion. Obviously, one could estimate a value of zero in each
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instance and indeed zero would be a lower bound, but this
type of estimation achieves little, for no real inference
can be drawn about a partial solution. As discussed pre-
viously, strength is one of the most significant attributes
a bound technique can have. Strength, in this case, implies
the ability of a bounding procedure to provide as high a
value as possible, and still guarantee that each value is a
lower bound.

The lower bound used in this problem views the objec-
tive function estimate as being composed of two major com-
ponents: the contribution of those variables already fixed
in a given partial solution to the objective function; and
the estimated contribution of the remaining free variables
to the objective function given the continuation of a given
partial solution. This first component is relatively easy
to calculate because all of the variables which are con-
sidered have fixed and known values.

The second component represents an estimate of the
cost asscociated with the free variables given their optimal
placement. It is important to determine this component in
such a way that its value represents a minimum or lower
bound value of the objective function. 1In this second com-
ponent, all free variables are considered in pairs. Each
one of the pairs has an implied placement at a location as
a result of viewing the individual contributions to the ob-

jective function, and choosing the location for each which
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would minimize this objective function's growth. If these
locations are the same for each individual of the pair,

then only the individual cobjective function contribution

is added to the estimate. However, if the implied locations
for the individuals of the pair are different, then it may
be possible to also add the activity of the flow betweeﬁ
these individuals as well as the individual contributions_
to the estimate. This latter feature strengthens the esti-
mating component, but will result only in a lower bound
where locating pairs at the same location despite different
implied locations when considered individually, will not re-
sult in a lower estimate of the objective function value
than that of the implied locations. As each pair 1is then
considered and the aggregate estimates are summed, the esti-
mated component value is developed and added to the first
component for a strengthened, estimated lower bound value.

2.4 A Review of the Importance of Free
Variable Entering Rules

Free variable entering rules are those rules which
govern the order in which free variables are considered in
the implicit enumeration solution procedure. As mentioned
earlier in this chapter, the order in which the free vari-
ables are assigned can drastically effect the time required
to obtain the optimal solution.

When any partial solution can be found to be one

which would result in a non-optimal partial solution if it
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were continued to completion, it and all nodes branching
from it can be excluded from further consideration. When
this occurs the search tree is said to have been pruned at
the given partial solution. Because a single prune elimi-
nates more partial solutions from investigation the closer
it takes place to the origin, it is desirable to have as
many prunes as possible take place as quickly as possible
in the decision tree. The.problem arises, however, in
that it is often difficult to know how to enter the free

variables in order that the most effective pruning can take

place. Whether or not a partial solution is pruned depends
not only on the free variable entering intc that partial
solution but also on the problem itself and all of the pre-
viously assigned free variables. The problem of determining
the most effective pruning strategy is compounded because
there are two different reasons for pruning a partial solu-
tion from further consideration. The first reason is that
the given partial solution's lower bound is greater than
the current upper bound and would consequently result in a
non-optimal solution. The second justification for pruning
is that of a given partial solution not satisfying the con-
straints, particularly the size constraints. _Such a par-
tial solution and all partial scolutions branching from it
can be excluded from further consideration because they all

are infeasible.
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One designing an algorithm is left then with heur;
istic procedures at best, by which to estimate a good free
variable entering scheme. However, as is the case with
most heuristic procedures, these heuristic schemes do not
always perform equally well on all problems. In general,

a heuristic procedure is developéd around some aspect or
structure of the general problem that may not be exhibited
in all examples. Perhaps this is the case with the two
heuristics examined in this study.

The first ranking scheme orders the free variables
by their constraint attribute.' In the office building
problem this would be by office size or space reguirement.
This first free variable ranking scheme examines each of
the free offices' size and ranks those offices accordingly
from largest to smallest. It was mentioned previously that
there are two basic reasons for pruning a partial solution
from further investigation, one being non-feasibility. It
was also pointed out that the closer a prune is to the ori-
gin, the more effective it is or the more partial solutions
it eliminates. With these points in mind, the logic of the
first ranking scheme becomes apparent. The free offices
are ranked_by largest size to smallest so that partial solu-
tions that result in infeasible location assignments occur
guickly. This procedure is expected to perform well espe-
cially when the size constraints are very active, but the

question should be addressed as to how well it will perform
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if the size constraints are not really active. Another
area of concern is its performance in view of the problem's
changing attributes.

The Second Ranking Scheme

The second ranking scheme orders the free variables
by their contribution to the lower bound calculation. 1In
the office building the free offices are ranked from largest
to smallest fixed flow, where the fixed flow of any free
variable is the sum of that variable's flow to all variables
which already have a fixed location at that stage in the
tree. The fixed flow of a variable then is a rough measure
of how much the addition of that variable will add to the
first component of the lower bound calculation. This rank-
ing scheme is attempting to quickly reach partial solutions
where non-optimal location assignments have been made, i.e.,
the LB is greater than UB, the current upper bound.

Both ranking schemes are designed to work well on
problems with certain structures.and characteristics. Both
are designed to improve the likelihood of early pruning for
either non—féasibility or non-optimality. Though they are
designed primérily for the occurrence of one type of prune,
this does not exclude the other type of pruning from taking
place during the solution process. In fact both types of
pruning are very likely to be employed in most sclution pro-
cedures. This only adds to the complication of knowing a
priori which ranking scheme will result in the most effec-

tive pruning strategy.
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The problem then becomes one of selection. If each
of these free variables entering rules can be used, which
one should be chosen so that the optimal solution can be
obtained and proven to be optimal in a minimum amount of
time? The use of each of these two ranking schemes in the
same implicit enumeration solution procedure now allows
the problem solver two algorithms from which to pick a so-
lution procedure. The question then becomes, given certain
cOnditipns which generally characterize the problem, which
of these two algorithms should be chosen.

There are many ways that algorithms have been com-
pared in the past. One of the most recently developed
methods involves statistical analysis. The remainder of
this chapter will deal with comparison methods and, in par-
ticular, a statistical procedure developed by Lin [18]. A
detailed review of Lin's work is in order because it is
this approach which will be used in analyzing the two solu-

‘tion algorithms under varying problem conditions in the re-
mainder of this work.

2.5 Some Comments on the Analysis Procedure

Within the past 15 years, numerous integer program-
ming solution techniques have been developed and proposed.
Generally, these solution procedures, when they are report-
ed, are accompanied by some computational experience relat-
ing the performance of the proposed algorithm to some

existing solution techniques. The way various algorithms'
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performances are compared vary, but in general, some mea-
sure of performance is chosen and collected for a series of
test problems. These measures of performance are then aver-
aged over the number of test problems for each solution
procedure. Finally, a comparison of means is used to indi-
cate which algorithm on the average performed in a superior
manner for those test problems. OQften the measure of per-
formance may differ among researchers; however, the com-
puter time reguired or the number of basic algorithmic
steps, such as the number of simplex iterations, are often
used. Conclusions that are drawn from computational re-
sults may differ according to the measure of performance or
the type of test problems used, so the choice of these can
be crucial. Test problems fall into the following three
groups: {l) either they are representations of real world
problems, (2) they are developed specifically to exploit
or test a certain algorithm's behavior, or (3) they are de-
veloped randomly.

The power and significance of any conclusions drawn i

from examination of the results depends upon the one of

these three groups from which the test problems are drawn.
In a strict sense, any conclusions drawn from tests where
the test problems came, the real world or developed test
problems, are valid only for the chosen test problems. The
implication of this weakness is made evident by the inabil-

ity of many researchers to report anything but vague find-
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ings from such comparisons [26]. When the test problems
are randomly generated, however, a more precise conclusion
can be drawn. When test problems are generated from a
random process, the measure of performance itself becomes

a random variable. The results of the test problems then
are realizations of a random variable and from these reali-
zations strong statistical inferences can be made.

Although the statistical_analysis is straightforward,
until recently there had been very little work done is this
area. In 1974, Rardin [22], and Rardin and Unger [23] made
the first known attempts tc draw such statistical inferences
by applying an analysis of variance in a computational com-
parison of various fixed charge network algorithms. Some
very strong conclusions were able to be drawn for some very
common sets of problem distributions, but a rigorous analy-
sis as to whether or not all of the necessary analysis of
variance assumptions were satisfied was not performed.

Ben Lin's Intent

Lin [18] realized the potential power available to
those interested in LP algorithm development and analysis
work through the use of statistical analysis., The primary
thrust of his work was devoted to examining whether or not
analysis of variance can be applied and, if at all, in
what way it can best be applied to the comparison of integer
programming solution techniques. Issues investigated in-

cluded whether or not all of the necessary assumptions for a
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valid analysis of variance were satisfied and if, in fact,
comparisons between different algorithms are desired, what
kind of design an invéstigation should use to yield the
most complete and desired information., Because Lin's work
is so applicable to the analysis done in this research on
the capacitated quadratic location problem, a brief review
of his work will be given here.

A Review of Lin's Findings

Lin had primarily two objectives to his dissertation
in 1975, First, he wanted to Qerify the validity of analy-
sis of variance as a means of investigating different al-
gorithms' performances and the effect certain problem param-
eters had on integer problem difficulty. Secondly, he
wanted to develop a broad methodology which would facilitate
such an analysis. He approached.thé problem by examining the
basic statistical issues involved and working an example.
From this work he was able to summarize the basic problem
by addressing two questions:

(1) Is an analysis of variance valid?
(2} How can it best be applied?

Is an ANOVA Valid? Analysis of Variance (ANOVA) is

one of the most commonly used tools in the analysis of data.
The principle of the technique is that if observations can
be classified according to one or more criteria, then the
total variation between the members of the observations

can be broken up into components which can be attributed
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to the different criteria of the classifications. By
testing the significance of these components, it is pos-
sible to determine which of the criteria are associated
with a significant proportion of the overall variation.
The accuracy of the assumptions in the model under-
lying the procedure is cone factor which can drastically
affect the power of the ANOVA technique. Equation 2.6 is

an example of the form of model assumed for an ANOVA.

le =M+ T; + El] (2.6)
where X = an observation
M = an overall mean
Ti = an effect due to class 1
Eij = a residual representing the variation

of observation X;; from the average
value of the i class

It can be seen from Equation 2.6 that the models as-
sumed in an ANOVA are all linear in the parameters. Ellwein
[11] in work done in 0-1 programming observed that solution
times of some integer linear programs (ILP) solution pro-
cedures grow exponentially with the number of discrete
variables. 1In light of this, Lin realized that an examina-
tion of ILP experimental data was necessary before an ANOVA
could be performed to determine whether or not all of the
assumptions of ANOVA were sufficiently satisfied. Besides

being linear in all parameters, it 1s also assumed that the
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residuals of the model are independent, normally distrib-
uted, and have constant variance. A brief examination of
each of these three assumptions and their importance now
follows. |

The Assumption of Independence of Residuals. The.

ANOVA procedure assumes that the residuals (Ei ) are mutu-

]
ally independent random variables. When the test problems
are  chosen randomly, this should always result; failure of
this assumption to hold, however, invalidates the procedure

completely.

The Assumption of Normality of the Residuals. The

ANOVA procedure also assumes that the residuals are normal-
ly distributed. It is well known, however, that the F-test
used in the ANOVA procedure 1is very robust to the normality
assumption. The result of using non-normal residuals is
that the true significance of the hypothesis tests will not
be exactly the one indicated. Several tests such as the
Chi-square or the Kolmogorov-Smirnov test are available to
test the normal distribution adequacy to describe the re-
siduals' characteristics. Lin [18] points out that even
though the normality assumption is not critical, a remedial
step for correction of serious departures from the assump-
tion is found in the use of data transformation.

The Assumption of the Equality of Residual Variance.

The third assumption about the residuals is that they have

equal variance at all levels of the experimental classifi-
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cation. If the variance of the residuals differs from one
observation to another, the usual ANOVA method of analysis
leads to a loss of efficiency in the estimation of effects
and a distortion of the significance level of analysis of
various comparisons. This assumption, unlike the normality
assumption, is crucial to the ANOVA method. Lin points out
that where the number of discrete variables affected classi-
fications, it could be expected that residual variance via
expected solution time would increase as the problem size

increased.

When the problem of inequality of residual variance
is encountered, Lin proposes three alternatives. First, it
may be necessary to proceed with the ANOVA in the usual man-
ner, interpreting the apparent conclusions with more or less
reserve. 'This alternative, as Lin points out, is not par-
ticularly appealing. The second alternative is to weight
each cobservation in proportion to the inverse of its error
variance. This approach may be reasonable when there are a
large number_of replicates in each cell; however this ap-
proach has a presupposition knowledge of the relative vari-
ances of any two observations and this is in practice sel-
dom known. A third alternative, and one which is often
used to obtain a constant error variance, is the use of
transformations. Remembering that a transformation may be
necessary to normalize the error distribution, Lin suggests

that this third approach appears to be the most promising.
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The problem of determining the best transform was
generally treated first by Box and Cox [6]. The principle
of the Box and Cox procedure is to find a transformation
which maximizes the likelihood that the transformed data
arose from a process with normally, independently, and
identically distributed residuals. A family of Box and
Cox transformations called the power transforms is of par-

ticular importance.

A
Y, A # 0
¢ -

Log ¥ , A =0

For the details of how X is chosen, see Box and Cox [6].

General Methodology

After finding that the ANOVA assumption can be satis-
fied with little or no data manipulation, Lin turned to the
problem of developing a general methodology for statistical
investigation of integer programming problems. The steps
involved result from practical as well as theoretical con-
siderations. The basic steps of the methodology are as fol-
lows:

(1) Selection of the Relevant Parameters

(2) CGeneration of Test Problems

(3) Selection of Experimental Design

(4) Experimentation

(5) A Pre-Analysis of the Realizations

(6) The Analysis of Variance

What follows are brief statements of some of the key compo-

nents of each step of the methodoclogy.
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Selection of the Relevant Parameters. This step is

primarily involved with determining which effects are to be
included in the investigation. 1Included in the effects
chosen to be investigated would be those of the different
algorithms to be compared as well as properties of the
problem which could affect the performance of either of the
algorithms. Selection of the response or measure of per-
formance by which to compare effects is also done in this
first step.

Generation of the Test Problems. Because it is nec-

essary to have the recorded measures of performance for the
individual runs be the realization of random variables, it
is necessary to generate the test problems randomly from
some designated distribution. The first step in this stage
is to specify the distribution from which problems are to
be selected randomly. Selection of the proper distribution
is important because any inferences made can only be ex-
tended to problems from that same distribution. The second
step is to develop a random problem generator, and validate
its performance. The final step entails the generation of
a specified number of test problems.

Selection of an Experimental Design. In this step

the actual experimental design is decided. Lin states prob-
ably the factorial designs are the most promising. Questions
should be answered concerning how many levels of the effects

are needed, should a full or fractional factorial design
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be used, and how many replicates are desired if indeed
replicates are desired. Once the design has been speci-
fied, the proposed model can be developed and the expected
mean squares determined.

The Experimentation. The experimentation consists

of running the experiment at all of the desired levels.
The levels of the parameters and resulting measure of per-
formance are collected and recorded. The experiments in
Lin's work would consist of solving different integer pro-

gramming problems on a computer.

A Pre-Analysis of the Realizations. This step deals

with two common problems likely to be encountered with the
realization from the experimental runs. The first problem
i1s how should censored data be treated. The second problem
deals with transforming the realizations that do satisfy

all of the critical ANOVA assumptions.

A realization becomes censored when the final measure

of performance can not be obtained because of the limited
length of the experiment. Perhaps an integer.programming
problem can not be solved within some time limit set on the
computer. In each such case, the experimental response
value is not obtained, but some information is gained. The
researcher knows the missing value falls outside some limit
or bound. A number of alternatives have been proposed for
treating censored data in the experimental design context.

The most common three are the following:
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(1) Consider the censored data point as a missing
value and use the usual least square error ap-
proach to estimate it.

(2) Use the bound or limit value as though it were
really the realization itself,.

(3) Try to estimate the true value of the censored
point.

Lin points out that by far the third approcach is the
more desirable. Work by Samﬁford and Taylor [24] is the
only known application of estimating the value of censored
data using the maximum likelihood method done in an experi-
mental setting, similar to the one encountered in Lin's
work. Lin adapted their work and proposed its use for cen-
sored data. Further information on the iterative estimating
procedure can be found in Sampford and Taylor [24].

The second area of concern in this step of the meth-
odology deals with whether or not the realizations satisfy
all of the necessary assumptions for an ANOVA to be calcu-
lated. The first phase of this step is to determine whether
or not the realizations do actually satisfy every assump-
tion, namely that the realizations are from a random vari-
able and that the residuals are independent, normally dis-
tributed random variables with equal variance. If the
realizations do satisfy all of these criteria, then the
ANOVA may be performed directly on these realizations. How-
ever, if these criteria are not satisfied, then the reali-
zations will have to be transformed so that they do. Lin

suggests using the Box and Cox power transform family with
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the maximum likelihood estimate for the appropriate power
transform. For more on the Box and Cox procedure, see BoOx
and Cox [6].

The Analysis of Variance. In this section the

amount of variance that can be attributed to the different
classifications is determined. The variance due to each
classification is then compared with the variance due to
the residuals by an F-test. This F-test for a given con-
fidence level can be used to assess the significance of

different treatments.
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CHAPTER III

THE ANALYSIS PROCEDURE

3.1 Introduction

This chapter deals with the two pre-experimentation
phases of the analysis methodology: (1) description of
the experiment, and (2) development of the design. The
first phase deals largely with the definition and descrip-
tion of the problem and of the factors to be varied. The
information obtained from any experiment significantly af-
fects which factors are varied and the manner in which they
are varied. It is important then to understand the general
treatments of interest and how these treatments affect the

treatment of principal interest. In this work the treat-

ments of direct interest are the two different free variables

ranking rules as they affect the implicit enumeration solu-

tion algorithm of the capacitated quadratic assignment prob-

lem. The fundamental logic of each ranking strategy sug-
gests that several parameters affecting the structure of
the problem might also affect the superiority of either of
the two free variable entering rules. The purpose of this
paper is not only to investigate the relative performances
of these ranking strategies, but also to point future algo-
rithm developers toward selection of the better scheme

under varied conditions; therefore several of these param~




39

eters will be varied in an attempt to determine how their
levels influence the selection of the better free variable
entering strategy.

3.2 The Experimental Treatments

The Response Variable

What response variable should be used as the measure
of a procedure's performance is perhaps the first.question
encountered in the development of an empirical comparative
study of integer solution procedures. Although many dif-
ferent measures have been suggested and reported, none are
accepted as the standard. Perhaps the two most commonly
used response measures are (1) the number of partial solu-
tions explored, and (2) the computer time required to ob-
tain and demonstrate that a s¢olution is indeed optimal.

Both of these measures are good indicators of per-
formance and, as could be expected, are generally very
highly correlated. The two measures, however, differ in
the type of units used to report pérforﬁance. The number
of partial solutions explored is an absolute measure, where-
as the computer time is relative to and dependent upon the
operating system in use.

Because of this distinction, the number of partial
solutions for which a lower bound is calculated will be
used as the measure of performance. This choice not only
eliminates machine dependency of the results but also serves

to reduce the error variation by eliminating the variance in
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computer time between identical problems. The number of
partial solutions examined before the optimal solution was
determined and demonstrated, using a given free variable
entering rule under varying problem conditions, then will
be the measure of that free variable entering strategy's
pérformance.

The Experimental Treatments

As discussed in Chapter II, the primary thrust of
this work is to examine the effect certain free variable
entering strategies have on the number of partial solutions
investigated before it is demonstrated that a solution is
optimal under varying problem conditions. The following is
a brief description of the two fundamental ranking strat-
egies and the three problem parameters or characteristics
viewed as possibly interactive with the performance of
these two fundamental ranking schemes.

The Ranking Scheme. Two fundamental ranking schemes

have been proposed for an implicit enumeration solution
procedure. The difficulty of determining the best ranking
has been previously discussed, as has been the rationale
behind the use of either of these two basic ranking strat-
egies. Presented here 1is a brief review of each rule.

The first strategy ranks all free variables by the
magnitude of its value in the constraint space, e.g., in
the office buildihg problem by the office's required size,

from largest to smallest. Computationally, this scheme de-
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termines which of the variables are free and then links
with that free variable its associated constraint related
value. These free variables are then ordered by that con-
straint attribute from the largest value to the smallest.

The second ranking scheme ranks all free variables
by their contribution to the first component of the lower
bound calculation process. In the office building problem
the free offices would be ranked by their interactions to
all offices already assigned a location. From a computa-
tional point of view, this ranking procedure determines
which of the variables are free and then determines that
variable's total interactions to all variables with a fixed
location. The free variables are then ranked by that value
from largest to smallest.

These procedures were coded in Fortran as was the
entire solution procedure. Listings of these codes are in-
cluded in Appendix A under subroutines SORT and SORT FX.

The Correlation Between the Optimized Attribute Ver-

the Constrained Attribute. Upon investigating the structure

of the capacitated quadratic problem, one immediately be-

comes aware of the importance of two blocks of characteris-
tics which, to a large degree, define the problem. One of
these data blocks describes the amount of space associated
with each variable within the constraint space. In the of-
fice building problem, this first data attribute would rep-

resent the size required by each office, remembering that
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each floor has a limited amount of space available on which
to locate offices. The second data characteristic describes
the relationship between the free and fixed variables. It
is some component of this block of the data for which an
optimum value is being sought. Once again in the office
building problem example, this second characteristic can be
viewed as the interactions between offices which have free
and fixed locations. The significance of each of these two
problem attributes is brought into perspective by realizing
that the first of these attributes influences the feasibil-
ity of a solution and the second affects the optimality of
a solution,

The correlation between these two attributes is being
used as the first parameter treatment for several reasons.
First of all, Ahrens [l1] demonstrated that the level of
correlation between the weight and value vectors for the
0-1 knapsack problem using implicit enumeration can affect
the time required to obtain the optimal solution. Secondly,
the level of correlation between the free variable's fixed
flow and size yields information about the relationship be-
tween the free variable entering strategies resulting from
the two free variable ranking schemes. For instance, if a
high positive correlation existed between these two data
characteristics, then one expects that the ranking of the
free variables from both of the ranking schemes might be

very similar. However, if a high negative correlation ex-
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isted then one expects the ranking rules to yield qﬁite
opposite results. This last situation seems to indicate
that indeed one ranking scheme, given certain conditions,
might perform in a superior manner, The point is that in
many cases one would naturally expect a high correlation
between these two attributes; i.e., in the office building
problem, big offices would more probably have more flow
than small offices, but this is not always the case in other
examples of the capacitated gquadratic assignment problem.

The Constraint Tightness. The second parameter

treatment is the tightness of the constraints, Recall con-

straining Equation 2.2:
N
Z S; Yjp. <A, forallr=1, 2, ..... M

Because the constraints represented by Equations 2.3 and 2.4
are in fact maintained by the solution process itself, this
equation or relationship determines whether or not a solu-
tion is feasible. The importance of pruning by infeasibil-
ity, one of the two basic reasons for the elimination of a
given partial solution from further consideration, becomes
obvious by remembering that the first ranking scheme enters
free variables by size from largest to smallest in an at-
tempt to facilitate effective pruning by infeasibility,

However, it is apparent that unless the constraints are in-
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deed active, i.e., unless the A,  are sufficiently small,
pruning due to infeasibility will not occur. For this
reason, the degree of tightness of the constraints repre-
sented by Equation 2.2 could very easily influence which
free variable entering strategy would perfofm in a superior
manner.

If one were to examine the partial solutions explor-
ed to determine an optimal solution with respect only to
the pruning méchanism, then it would appear that the num-
ber of solutions explored would increase as the probabil-
ity of prunihg by infeasibility decreased; however, this
view disregards the importance of the heuristic solution's
upper bound value. It might very well be that as more
slack is incorporated into the problem, that the heuristic
solution would find a sclution which is closer to the op-
timal value, thereby increasing the probability of pruning
by non-optimality. It appears then that very likely there
is some trade off between the pruning mechanisms as the
problem slack is changed.

0f course there exist many measures of constraint
tightness that could be used, but it is important to keep
in mind that the.purpose here is to investigate which free
variable entering rule is best in light of characteristics
of the problem which can be determined a priori to any solu-
tion generation. One manner in which the constraint tight-

ness might be manipulated is seen by looking at Equation 3.3.
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M N N
At = Z Ar = ‘Z Sini + Z SiFoi + L {(3.3)
r=1 i=1 i=1
where Ay = the total available floor space
A, = the floor space of floor r
Si = the size of office i

Fxj = office i [1, if fixed; 0, otherwise]

Foj; = office i [1, if free; 0, otherwise]
L = the slack in the system

M = the number of floors

N = the total number of offices

Equation 3.3 in regard to the office building problem
expresses the total amount of space on the M floors on which
to locate the N offices. This equation does nof, however,
give information as to how the total space is to be allocated
among the M floors. 1Ideally, the slack could be controlled
te the point that the slack on each floor would be equal.
Equation 3.4 relates the space available on each floor with

its components.

i

>
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S{Foiy + Ly (3.4)

where A, = the total floor space on floor r

S.

N the size of office 1

1
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inr = 1 if office i is fixed on floor r;.
0, otherwise
Foj, = 1 if free office i1 is to be located on floor r;

6, otherwise

L, = slack on floor r

N = the total number of floors

It can be seen from Equation 3.3 that given L, the
total slack, Ay, the sum of all of the available floor space
can be determined. However, because Foj, (the actual as-
signment of the free offices to the optimal floor} can not
be determined prior_to experimentation in Equation 3.4,
there is no way to identify or control L, the slack on each
of the floors. The questicon becomes, given that the slack
is to be considered from a macroscopic viewpoint, how shall
L, the total slack, be distributed to the individual flcors.

The problem of distributing the total slack of the
system to the M floors is dealt with by the following as-
sumption: it is assumed that all of the floors have egual
floor area, i.e., the area of each floor A, is constant and
is the total area divided by the number of floors. Note
that for a multi-floor office building this might often be
the case and in any event does not pose serious difficulties
in physical interpretation. The constraint tightness then
will be changed by increasing or decreasing the total space
in which to locate all of the offices, the only.variable
component of which is the slack, and distributing this total

space among the M floors such that the floor space on each




47

floor is equal. The slack L to be distributed among the M
floors will be calculated or scaled as a function of the
total space required by all of the free offices. Eguation

3.5 iliustrates this relationship.

N .
L=2A ) S8ijXj (3.5)

where I, = the total system slack
A = the slack constant
N = the number of total offices

S; = the size of office i

X; = 1 if office i is free; 0, otherwise
The amount of slack to be incorporated into the problem then
is viewed as some percent of the space needed by all of the

free variables.

The Number of Free Variables. The third parameter

‘treatment is the number of free variables for which an op-
timal solution is being sought. One recalls that Equation
2.5 relates the maximum number of partial solutions that
would be investigated with the number of free variables.

Given that no partial solution can be excluded from investi-

gaticn,
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where Np = the maximum number of partial solutions
M = the number of regions or floors
n = the number of free variables

From the form of Equation 2.5, it is easy to believe
Geoffrion [l12] when he reports that often it can be demon-
strated that problem difficulty and therefore the solution
time which is a function of the number of partial solutions
investigated, grows exponentially with the number of free
variables in a branch and bound solution process. As the
number of free wvariables in a problem increases, so does
the complexity of that problem. The number of free vari-
ables is being used as a factor in an attempt to determine
if problem difficulty is draStically affected by the number
of free variables and if the number of free variables is
interactive with the choice of entering strategies.

Review of the Treatments. 1In the analysis of the

comparative performance of the two specified free variable
entering rules, the number of partial solutions before the
optimal solution is identified and demonstrated shall be
used as the measure of each of the two strategies' perfor-
mances. fhe performance of the two free variable entering
strategies will be compared for different levels for three
characteristics which affect the structure of the problem.
The three treatments which will be manipulated
throughout the experiment are (1) the correlation between

the size and the fixed flow values of the free variables,
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(2) the constraint tightness, and finally (3) the number
of free variables.

3.3 Some Preliminary Statistical Comments

As previously stated, one factor which tremendously
affects the power of the analysis of variance technique is
the accuracy of the assumptions in the model underlying the
procedure. For this discussion, assume that a simple one-
way classification model can be used to describe each ob-

servation.

where M = +the overall mean
Ty = the effect from treatment 1
Eij = residual

The necessary assumptions for an ANOVA to be per-
formed are the following: (1) independence of residuals,

(2) normality of the residuals, and (3) equality of residual
variance.

Lin [18] points out as a result of these three assump-
tions that there exists two significant ramifications worthy
of discussion at this point. The first ramification is that
if indeed these three assumptions are to be satisfied, the
test problem needs to be generated from a random process sO
that the solutions of the problem would themselves be ran-

dom variables. The second ramification deals with the
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problems encountered in the event that all of.the analysis
of variance assumptions are not satisfied. Of course, if

a random generator is used, there is no reason to believe
that the residuals will not be independent. Examples do
exist, however, when the normality and equality of variance
assumptions might not be satisfied. As discussed in the
review of Lin's work, constant changes in the levels of

some problem parameters often affect the problem difficulty
in an exponential manner. If this does occur, obviously

the residuals will not have equal variance across all treat-
ments, e.g., the larger the number of free variables, the
larger the variances. It also occurs in some of these
problems that the residuals are not normally distributed.
Both of these failures to satisfy the assumptions can be
corrected by a transformation of the data. Much work has
been done on developing the best transformator for a given
data set; however, Lin {[18] found that the Box and Cox power
transform family handles this exponentially-increasing prob-
lem difficulty very well.

3.4 The Random Problem Generator

As indicated in previous sections, the selection of
test problems in analysis of the comparative performances
of solution procedures is crucial. It has been further
stated by Lin [18] that of the three principal types of
test problems (real world, designer developed, and randomly

generated} the last or randomly generated problems are pre-~
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ferred. This is due to the generalizability of conclus-
ions in that if an inference can be made about the superi-
ority of one procedure from a random set of problems, then
that inference can statistically be applied to all problems
belonging to the set from which the test problems were
drawn.

Little work has been done on developing parametric
generating schemes. Parametric problem generators are
generators which produce test problems having particular

properties associated with aspects of the problem of in-

‘terest to the investigator. Michaels and O'Neil [20] give

several distinct advantages of parametric random problem
generators.
(1) The virtually limitless supply of test problems;

(2) The ability to know and control problem charac-
teristics:

(3) The ability to conduct computational studies
of the effects of parameter variation;

(4) The opticn to regenerate a large test problem
upon request as opposed to being required to
save or store all of the data.

The advantages of parametric generators are appar-
ent. The remainder of this section is devoted to a system-
atic develcpment of the test problem generator used in this
research. The parametric generator developed is one that
controls the parameter treatments, which the literature

suggest have a significant effect on the capacitated qua-

dratic assignment problem's difficulty. These three param-
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etric treatments, as previously discussed, are (1) the cor-
relation between the free variables' flow to all fixed
variables and the free variables' size, (2} the tightness
of the size constraints, and (3) the number of free vari-
ables.

A Review of the Problem Generator Process

The problem generator randomly generates problems
by developing the attributes of a capacitated quadratic as-
signment problem in two fashions. Some attributes are gen-
erated randomly; others are defined in a controlled manner.

Section 2.1 revealed that the capacitated quadratic
office building location problem is generally described by
the following three groups of attributes: (1} attributes
dealing with the offices, (2} those dealing with the
floors, and (3) those relating the various costs of move-
ment between floors.

The random problem generator then needs to specify
all the attributes in these groups in order to develop or
generate a problem in its entirety. The manner in which
these attributes are defined, however, differ. Several at-
tributes of the problem, e.g., the number of free offices,
the size of the floors, and the relationship between a
given office's fixed flow and its size, are factors deter-
mining which levels will be changed throughout the design.
It is advantageous to designate these levels as fixed guan-

titative values, therefore it 1s necessary to exert a cer-
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tain amount of control over the random variables which
will be drawn upon to define these attributes. It is im-
portant to realize that even though these attributes are
being controlled and do therefore set some limitations on
the scope of any inference, the problems generated via
this controlled process are still random problems from
the set of problems characterized by the controls.

The problem generator developed in this work, or
the General Capacitated Quadratic Assignment Random Prob-
lem Generator, controls the following attributes:

I. Controlled Attributes

(1) Total number of offices
(2) The number of free offices
(3) The number of flcors

(4) The size of the floors

{(5) The correlations between the flow among free
offices and fixed offices and the size of the

free offices

(6) The density of nonzero flow values in the
flow matrix.

The problem generator randomly defines the following

attributes:
II. Randomized Attributes
(1) The selection of the free offices
(2) The location of the fixed offices
(3) The size of the offices
{(4) The flow between offices

(5) The cost of movement between floors
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The Generating Procedure

Outlined below is the procedure for the General Ca-
pacitated Quadratic Assignment Random Problem Generator.
Appendix B contains a computer code of this procedure.

Step 1. Given N, the number of total variables and
how many of these are free, select which of the N total
variables will have a fixed location and which will have
a free location.

Step 2. Determine in a random manner on which of

the M locations each of the fixed wvariables will be located.

Step 3. Generate the size and total fixed flow of
each free variable using a bi-variable normal distribution
so that the desired correlation exists between each free
office's fixed flow and the size.

Step 4. Generate from a uniform distribution the
size of each of the remaining fixed variables in order to
complete the size attribute of the variables.

Step 5. Given a desired nonzero density of the flow
matrix, generate the flow values from all free variables to
all fixed variables from either a uniform or negative ex-
ponential distribution and then modify or adjust the non-
zero components of this fixed flow for each free variable
so that the sum of these components equals the total fixed
flow for that free variable generated in Step 3.

Step 6. Generate the flow values that represent the

flow between the fixed wvariables. Once again these values
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can be generated from either a uniform or exponential dis-
tribution.

Step 7. Generate the flow values which represent
the flow from free variables to other free variables once
again by either a uniform or exponential distribution.

Step 8. Calgulate the floor space or region con-

straint constant given that the location and size of the

fixed variables, the size of the free wvariables, and the

total system slack assuming that the constraint constant
is the same for every set.

Step 9. If not specified, determine the cost of
movement between floors randomly, each cost to be within a
given range.

An Example Problem

To demonstrate the performance of this random problem
generator, let us proceed step by step through a sample
problem. Generate a problem with the following characteris-
tics:

(1} Ten total wvariables

(2) Four free variables

(3) Three regions

(4 An .80 nonzeroc density for the flow matrix

- {5) A .9 correlation between the free variables fix-

ed flow and size

(6) A total slack value of one half of the total
area required by the free variable
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{7) All flow values are generated from a uniform
distribution

(8) An equal cost of movement between all regions

The steps which follow all refer to the steps out-
lined in the previous section.

Step 1. Given the number of total and free variébles,
the procedure randomly places the appropriate number of
variables into vectors FIXED and FREE.

FREE = [ 3, 4, 9, 10 1

FIXED= [ 1, 2, 5, 6, 7, 8 ]

Step 2. Given the number of regions, the elements
of the vector FIXED are randomly assigned to vectors associ-

ated with those regions.

REG 1 = [ 5, 8 ]
REG 2 = [ 2, 6 ]

[ 1, 7]

REG 3

Step 3. Given that a certain correlation is desired,
generate the size and total fixed flow of each free variable
using a bi-variate normal distribution.

FXFLO [ 544, 480, 369, 521 ]

SIZE = [ 534, 478, 403, 492 ]

Step 4. Using a uniform distribution, generate the
size of the remaining fixed variables to complete the size
vector.

SIZE = [ 244, 64, 534, 478, 187, 145, 384, 201, 403,
492 ]
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Step 5. Given a desired nonzero density of the flow
matrix A, generate the flow values from all free variables
to all fixed variables such that the total fixed flow for

every free variable is equal to the value generated in Step

3.
111 0 0 127 120 186
122 81 0 145 0 132
A =
0 0 149 0 110 110
74 95 119 162 0 71

Step 6. Generate from a uniform distribution the
values of matrix B, where matrix B represents the flow be-

tween all of the fixed wvariables.

10 0 1 76 46 76
49 1 0 78 75 0

29 76 78 0 20 78

23 16 0 78 6 0

Step 7. Once again from a uniform distribution,
generate matrix C where matrix C represents the flow between

all free variables.
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78 27 4 0

Step 8. Knowing that P, the slack constant as a
percent of space reguired by the free variables, is equal

to .5, calculate 1L, the total slack.

where L = the total system slack
P = the percent of addition slack
5; = the size of office i
X; = 1 if office is free; 0 if office i is fixed
n = the number of free variables

L = (.5)(1907) = 953.

Knowing L, the total slack and the total space re-
quired by the free and fixed variables, calculate the total
system space and determine A,, the space per region given

that each region has the same size.

Ar = Ag = (1225 + 1907 + 953) _ ...,

m . 3
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Step 9. Given that a problem is desired with an

equal cost of movement between floors,

Cyp = C3 =Cyy3 =1

3.5 The Experimental Design

The second phase of the pre-experimentation methodol-
ogy consists of the development of an efficient design. The
pPrinciple of experimentation sets forth the importance of
varying the factors of independent treatments in order to
observe the effect such changes have on the dependent vari-
ables. Traditionally, factors tend to be varied individu-
ally, rather than in combination. Sequential experimenta-
tion as opposed to factorial experimentation, however, now
is viewed as inadequate for the following reasons. Firstly,
the sequential approach of varying treatment levels pre~
cludes the investigation of the interaction effect between
factors. Secondly, the sequential approach may lead thé
investigator to attribute effects which influence the de-
pendent variables to some of the treatments which effects
are in reality not a result of these factors, but rather
variations in some factors not included in the experiment.
The factorial design eliminates these two problem areas.

In Section 3.2., the effects and relative importance
of departure from the assumptions on the analysis of vari-

ance were discussed. Box [5] points out that designs with
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equal frequencies in all design classification cells have
two statistical advantages: the computations are extremely
simplified and the effects of inequality of error variance
are not serious. Therefore, the use of a factorial design
with an equal number of observations in each design cell

is of great benefit.

Recall from Chapter I that this student's intent is
to investigate the relative superiority of two basic free
variable entering strategies over varying problem condi-
tions. In Section 3.1, the three problem characteristics
of interest were introduced and developed. These three
treatments are:

{l) The correlation between the fixed flow and the
size of the free wvariables

(2) The constraint tightness

(3) The number of free wvariables

Each of these three treatments will be investigated
at three levels in an attempt to minimize the likelihood
that any non-linear characteristics that might be exhibited
will not be viewed as linear ones. The above prescribes a
design of the form of Figure 3.1. Note that there are two
levels for the entering rule effect and that these two lev-
els represent the two basic free variable entering strate-
gies. Further note that all other treatments have three
levels. These three levels are at fixed, equal intervals

and are quantitative values. The correlation levels will
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be fixed at .9, 0.0, and -.9. The constraint tightness
will be manipulated by adding to the space required by all
of the offices an additional slack of 50, 125, or 200 per-
cent of the total area required by the free variables.
Problem difficulty will be controlled to some extent by the
number of free variables. This design will include levels
of 12, 13, and 14 free variables. These last levels are
chosen because of the'capacity of the algorithm to find
and assure an optimum solution within a reasonable expen-
diture of resources.

The equal frequency, factorial design appreocach to
such an experiment would randomly generate a series of R
problems, characterized by the levels defining each cell,

and then would solve each problem. For each of these

problems, the number of branches explored would be recorded.

An analysis of variance of these observations would then
be performed to indicate whether or not the free variable
entering strategies statistically differ in performance.

It is interesting to note that experiments arranged
in this way use problems which can not be compared across
different levels of the parameter treatments; that is to
say that the variation ameong randomly generated problems
can only be understood in light of the levels of the dif-
ferent parametric treatments. This occurrence in experi-
mental design is known as "nesting".

A review of Figqure 3.1 indicates that the problem
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effect, although it can not be compared across different

parametric treatment levels, can be compared across the

free variable entering strategies. This results because

the series of problems solved in the cells where only the

free variable entering strategy levels are changed are

identical.

Thus, the problem effect is nested, but only

in the number of free variables, the correlation, and the

constraint tightness effects.

The realizations of the experiment in fact involve

five main effects besides error variance. Variance among

the number of partial solutions explored can be viewed as

being caused by:

(1)

(2)

(3)

(4)

(3)

the variation among the two free variable en-
tering strategies

the variation among the levels of the correla-
tion between free variables' fixed flow and size

the variation among the levels of constraint
tightness

the variation among the levels of the number of
free variables

the variation between problems generated within
levels of the parametric treatments.

The first four effects are all fixed level effects and the

fifth or problem effect is random.

A statistical model of the design can be seen in

Equation 3.7.
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M +Sl + Nj + SNij + Ck + SCik + NCjk + SNcijk

NCTjkl + SNCTijkl + P (T) (jk1) + SPim(T) (k1)

t Enijkl) (3.7)

Yijklm = the response on replicate M at the parame-
' tric treatment levels j, k, 1 for number of
free variables, correlation, and constraint
tightness respectively solved by free vari-

able entering strategy 1i.

M = the overall mean response

S = the effect due to the ith free variable en-
tering strategy

Nj = the effect due toc the jth number of free

variables level

SNij = the effect due to strategy versus number of
free variables interaction for strateqy i
and number of free variables j.

Cx = the effect due to the kth level of the cor-
relation treatment

8Cix = the effect due to the strategy i versus cor-
relation level k interaction

chk = the effect due to the number of free vari-
ables level j versus the correlation level
k interaction

SNC; s} = the effect due to the strategy i versus num-
] : ;
ber of free variables level j versus cor-
relation level k interaction

Ty = the effect due to the constraint tightness
level 1
ST31 = the effect due to the strategy i versus

constraint tightness level 1 interaction
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NTy; = the effect due to the jth level of the num-
ber of free variables wversus the 1lth level
of constraint tightness

SNTijl = the effect due to the strategy i versus
number of free variables level j versus
the constraint tightness level 1

CTk1 = the effect due to the correlation at level
k versus the constraint tightness at levell
SCTjx]1 = the effect due to the i strategy versus the

correlation at level k versus the constraint
tightness at level 1

NCTjkl = the effect due to the number of free wvari-
ables at level j versus the correlation level
k versus the constraint tightness at level l

SNCTijkl =
the effect due to strategy i versus the num-
ber of free variables at level j versus the

correlational level k versus the constraint
tightness at level 1

Pn(ik1)~ the effect due to problem or replicate M
with the jtR, kth, and 1th levels of number

of free variables, correlation, and con-
straint tightness respectively

SPim(jk1) o
the effect due to strategy i versus problem
M interaction

Note that one obvious difficulty does exist and that
is the individual SPjp(4k1) and Ep(jqx1) are observed on ex-
actly the same Yijklm' The result is that the variation due
to strategy versus problem interaction can not be distin-
guished from residual error unless an independent estimate
of error variance is available. However, this confounding

does not eliminate the ability to construct tests for sig-

nificance of either the main free variable entering strategy
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effect (S), the number of free variables effect (N), the
correlation between the free variables fixed flow and size
effect (C), the constraint tightness effect {(T), or the in-
teraction effects between any of these. Table 3.1 presents
the expected mean square table for the proposed design.

From Table 3.1, the proper test statistics are:

SS / (a-1)
F =
5 SS
SP(N,C,T) / bed{a-1)(e-1)
. 88y / (b-1)
N Ssp / bed(e-1)
- _ SSC / (c~1)
C SSp / bed(e-1)
. $S, / (d-1)
T Ss, / bed(e-1)
_ SSSN / (a-1) {b-1)
Fon =
SSSP / becd(a-1) {e-1)
. 55, / (a-1) (c-1}
SC SSgp / bed(a-1) (e~1)
. SSye / (b—l)(cfl)
NC. ss, / bcd(e-1)
L S . / (a=l) (d-1)

ST - -
SS¢p / becd(a-1) {(e-1)
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SSNT / (b-1) (d-1)

F =
NT ss, / bcd(e-1)
] ) SS.p / (e-1) (d-1)
cT sS, / bed (e-1)
_ SSgnc / (a-1) (b-1) {(c~1)}
Fone =
SSSP / becd{a-1) (e-1)
. _ SSgyr / (a-1) (b-1) (d-1)
SNT _ _
SSSP / bcd(a-1) (e-1)
S8 / (a=1) (c-1) (d-1)
Foep = SCT
SSSP / bcd(a-1) (e-1)
SS b-1) (c-1) (d-1
. _ NCT / ) {c=-1) ¢ )
NCT S, / bcd(e-1)
o _ SSSNCT / (a-1) (b-1) (c-1) (d-1)
SNCT

SSSP / bcd(a—l)(e—l)

Note: where SSS means the Sum of Squares for effect S and

where a, b, ¢, d, e are the number of levels for effects §,

N, C, T, P respectively.
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Chapter IV presents the results of an experiment run
according to this design. Before discussing these results,
a discussion of the parameters of the problem for which
levels were fixed is appropriate. The problem characteris-
tics which were given a fixed level through the experiment
were as follows:

i) The number of floors was set equal to three.

ii) The total number of cffices was set equal to
57.
iii) The cost of movement between floors was held

constant and equal for all movements.

iv) The density of nonzero entries in the flow
matrix was fixed so that 60 percent of all
flow values would equal zero.
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Effect

P
(N,C,T)

SN
sC
NC
ST
NT

CcT

Sp
(N,C,T)

SNC

SNT

Expected Mean

Square

52
SP(N,C,T)

2
&0 p(N,C,T)

2
29 p(n,cC,T)

2
4% p(N,C,T)

2
29 p(n,C,T)

2
9 sp(N,C,T)

G2
SP(N,C,T)

a02 +

P(N,C,T)

02 +

SP(N,C,T)

2
ac +
P(N,C,T)

a02 +
P{N,C,T)

2
g .
SpP(N,C,T)

2
° sp(N,C,T)

02 +
SP(N,C,T)

2
becdeg s

acdeozN

2
abded C

2
abceg T

cdeqg SN

2
bdec sc

2
ade
% Ne

2
beceg g

acea2
NT

abeg o

deg SNC

ce
9 gNT

[T}
Fh

(a=-1)

(b-1)

{c-1)

(d-1)

becd (e-1)

(a-1) (b-1)

(a=1) (c-1)

{b-1) (c-1)

{a-1} (d-1})

(b-1) (d-1)

(c-1) (d-1)

becd (a-1) (e-1)

(a-1) (b-1) {c-1)

(a~1) (b-1) (d-1)

R L

e e
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3.1 Expected Mean Squares (continued)

Effect
SCT
NCT

SNCT

Expected Mean Sguare

2 + beo2

(6]
SP(N,C,T) SCT

302 + anz

P(N,C,T) NCT

02 + edz

SP(N,C,T) SNCT

where the levels of 5, N, C, T, and P

and e respectively.

d.f.

——r—r——

(a1} (c-1) (d-1}

(b-1) (c-1) (d-1)

(a~1) (b=1l) (c-1) (d-

(N,C,T) are a, b, c,

1)

d,
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CHAPTER TV

ANALYSIS OF THE EXPERIMENTAL RESULTS

4.1 An Examination of Assumptions

The design as specified in Chapter IIT was run and
the appropriate measures of performance were collected.

The results of the experiment can be found in Appendix C.
Before proceeding to perform an analysis of variance, it is
necessary to investigate the experimental results to deter-
mine if the ANOVA assumptions are indeed satisfied for the
propeosed model. The assumptions of concern at this point
are the following.

(1) The residuals are to be normally distributed.

(2) The residuals are to be identically distributed,

e.g., the residuals are to have constant and
equal variance.

Box [4] has pointed out that the analysis of variance
method is very robust and actually is quite insensitive to
departures from normality in the underlying populations
being sampled. It has been shown that ANOVA methods are

relatively powerful as long as the distribution being sam-

pled is symmetric and is not bimodal. The equal variance

. assumption, however, appears to be highly significant and

is perhaps the most critical ANOVA assumption.
Figures 4.1 and 4.2 show the scatter diagrams of cell

means versus cell variance, and cell mean versus cell stan-
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dard deviation respectively of the residuals observed when
the appropriate ANOVA model was fitted to the results from
the experiment. It is evident in these figures that there
was a trend between cell mean and cell variance, i.e,, the
cell variance gets larger as the cell mean increases. Al-
though this trend is not desirable, the possibility of such
a trend was discussed in Chapter II. 1In Figure 4.1, it
appears as though the variance is increasing in an exponen-
tial manner. Because the family of power transforms will
be the only transform considered in this work, it appears
that the logarithm base 10 might be a transform which would
correct the exponentially-growing variance nicely. Lee [16]
adds credibility to this,noting that the log transform is
an excellent transformation for correcting trend between
cell mean and cell variance. The suggested transform then

is:

Yi = logloxl (4.1)

At this point, the number of partial solutions exam-
ined needs to be transformed, collected, and re-examined
with respect to the ANOVA assumptions. Appendix C shows
these transformed responses,

Figure 4.3 shows the scatter diagram of cell mean
versus cell variance of the residuals observed when the ap-~
priate ANOVA model was fitted to the transformed observa-

tions. Since Figure 4.3 appears scattered around a flat
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straight line, it suggests that cell variances are:rather
uniform. With only two replicates per cell, however, it is
impossible to further justify the hypothesis of equality of
variance by‘statistical tests. Figqure 4.4 is a histogram
of the residuals. Note that this histogram is definitely
unimodal. The ANOVA assumptions appear to be at least
loosely satisfied and at this point that is all that can be

said. It order to obtain more information about the equal-

ity of cell variance under the transformation, data must be

pocled.

4.2 An Analysis of Variance

Table 4.1 shows the sum of squares, degrees of free-
dom and mean square variation due to each of the main ef-
fects in the experiment. An examination of Table 4.1 re-
veals that the amount of variation attributed to N, the
number of free variables, is relatively insignificant.
This suggests that perhaps data can be pooled by elimina-
ting the distinction between the levels of the number of
free variables. This enables the original 2 by 3 and 3 by
3 design with two replicates to be collapsed into a 2 by 3
by 3 design with six replicates. Table 4.2 shows the
ANOVA results of this design.

This new design has six replicates per cell and
therefore contains sufficient degree oflfreedom remaining
afterlestimation of cell mean and cell variance to examine

statistically whether or not the variance is uniform through-
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Table 4.1 An ANOVA of the Transformed Observations
Effect Name 5.5, d.f. M.S. F
S Strategy .421 1 L4211 22.16
N Number .095 2 . 047 .19
C Correlation .329 2 .165 .67
T Tightness 24.247 2 12,123 49,36
SN SXN interaction .128 2 .064 3.37
sC SXC interaction .131 2 .066 3.47
NC NXC interaction .128 4 .032 .13
NT NXT interaction .181 4 . 045 .18
ST SXT interaction .038 2 .019 1.0
TC TXC interaction .036 4 .009 .036
SNT SXNXT interaction . 051 4 .013 .68
SNC SXNXC interaction .064 4 .016 .84
STC SXTXC interaction . 023 4 .006 .32
NTC NXTXC interaction .011 8 .001 .004
SNTC SXNXTXC interaction .024 8 .003 .16
P Problem 6.632 27 . 245
SP SXP interaction .514 27 .019

*Statistically significant at .99 confidence level
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Table 4.2 An ANOVA with the N Effect Pooled

*Statistically significant at .99 confidence level

Effect Name S5.8. d.f. M.S. F

S Strateqy .421 1 .421  17.915"
C Correlation .329 2 .164 .732
T  Tightness 24.247 2 12.124 54.125*
P Problem 2.015 9 .224 2.872%
sC SXC interaction .131 2 .066 2.808
ST SXT interaction .038 2 .019 .808
Sp SXP interaction 212 9 .023 .301
CT CXT interaction .036 4 .009 .080

SCT SXCXT interaction .023 4 .006 .255
E Error 5.602 72 .078
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out all of the design cells. Two basic statistical tests
of homoscadascity are the Hartley and Bartlett tests. The
Hartley statistic equalled 19.7. This value failed to

lead to a rejection of the hypothesis that the variances
were equal with six degrees of freedom, 18 classifications,
at 95 percent confidence level. The Bartlett statistic for
equality of variance equalled 34.2 and failed to reject the
equal variance hypothesis with 35 degrees of freedom only
at a confidence level of .50 percent. These statistics, then,
appear to indicate that equal variance may possibly exist
among the cells.

While these tests of the wvalidity of the equality of
variance assumption of the analysis of variance procedure
are not entirely satisfying, they do appear to justify the
application of the procedure. Figure 4.6 indicates that
the residuals of the transformed observations are apparently
non-normal, but they are unimodal. However, studies have
shown that the ANOVA is robust to the normality assumption
as long as the residuals are unimodal. Also the crucial as-
sumption of equality of variance appears to be satisfied for
the transformed observations.

4.3 Final Analysis of Variance

As outlined in the previous section, the original ex-
perimental design was reduced to a 2 by 3 by 3 design with
six replicates., A preliminary analysis of the proposed sta-

tistical model indicates that the logarithm function trans-
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forms the original observations in such a manner that the
ANOVA assumptions are at least loosely satisfied,
The model suggested by the collapsed design is as

follows:

Yijk = M + Si + Cj + SCij + Ty + STjk + CTjk

+ SCTijk + PL(J,k) + SPiL(j,k) _ {4.2)

where each letter suggests the same effect as Equation 3.7.

Main effects and interactions on this new model
whose F-ratios aré greater than their corresponding criti—
cal F-value are listed in Table.4.3. Table 4.4 gives the
estimate of the effect of moving from different levels of
each main effect. 1In Table 4.4, a positive effect indicates
that the mean number of partial solutions examined was lar-
ger at high levels, and in a likewise manner, a negative
value indicates that the mean number of partial solutions
examined was higher at the low level setting.

Before proceeding, it should be recalled that the
data analysis and statistical tests proposed in this chap-
ter are only approximate. It must be stressed that a value
bordering on a leéel of significance of the F-distribution
should be accepted as sighificant at that level only with
reservation.

4.4 Examination of Main Effects and Interactions

From Table 4.3, it can be seen that the only signifi-




Table 4.3 The Statistically Significant Effects

S, Strategy
T, Constraint Tightness

P, Problem Effect

82

Table 4.4 Estimates of the Main Effects

Treatment Estimated Effect
s -.062
T .511
C -.067

P .129
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cant main effects or interactions are S, the free variable
entering strategy: T, the constraint tightness; and F, the
problem effect. C, the correlation between the fixed flow
and size and all of the interactions,is insignificant.
Figure 4.6 is a graphic representation of all of the two-way
interactions. It appears from these graphs that masking of
the effects is not taking place, sc it ¢an be concluded that
indeed these interactions are inéignificant.

S, the free variable entering strategy effect, how-
ever, is significant at a .99 percent confidence level. The
estimate of the free variable entering strategy effect is
negative. This indicates that the mean number of partial
solutions explored before an optimal solution is found, and
demonstrated is larger for strategy 1 than for strategy 2.

Effect T, or the constraint tightness, was also found
to be significant at a .99 percent confidence level. The
estimated effect of T was positive. This means that as the
constraints are made tighter, the mean number of partial so-
lutions and thus problem difficulty increases.

A Newman-Keuls Range Test indicated that there was a
significant difference in the mean number of partial solu-
tions between the first and second levels, but not bhetween
the second and third levels. This indicates that little
simplification of the problem cccurs when more than 1.25
percent of the space required by the fixed variable is al-

lowed for the assignment of the free variables.
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Lastly, P, the problem effect, was found to be signi-
ficant at a .99 percent confidence level. This confirms the
suspicion of many that the implicit enumeration solution

procedure performance is highly problem dependent.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary of Results

The result of this study indicates that free variable
entering strategy two, or ranking by a free variable's con-
nectiveness with all fixed variables, is significantly
superior to strategy one, or ranking free variables by
their size requirement, for the class of capaciﬁated
quadratic assignment problems considered in this study. No
significant interaction was found to exist between strategy
selection and various problem parameters. The constraint
tightness was found to be the most significant effect of
the problem parameter examined. As was expected, problem
difficulty increased sharply as the constraints became more
and more active. The problem effect was also significant.
This finding reconfirms the belief held by many that inter-
pretation of the traditional form of analysis of the capaci-
tated quadratic assignment problem is extremely hampered by
the problematic effect.

The number of free variables and the correlation be-
tween the fixed flow and size of the free variables were
not found to be statistically significant. These findings
suggest areas for further work. Recall that the number of

free variables were 12, 13, and 14 for levels 1, 2, and 3
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respectively. It is quite possible that if the interval
between these levels was increased that the magnitude of
the problem might be changed sufficiently enough to be re-
flected in the chosen measure of performance.

The main results of the research effort can be sum-
marized as fcllows:

(1) The development of a capacitated quadratic as-
signment random problem generator.

The generator developed in this work provides randomly
created complete capacitated quadratic assignment problems.
The development of this generator facilitates the examina-
tion of these problems in future work.

(2) A demonstration of the validity of the analysis
of variance procedure as a means of comparing
the performance of solution algorithms over wide
ranges of problem conditions.

(3) The examination and selection of the better of
two basic heuristic free variable entering
strategies for a least bound branching implicit
enumeration solution procedure.

(4) An examination of several general factors of
the capacitated quadratic assignment problem in
order to determine their influence on problem
solution difficulty.

5.2 Recommendations for Further Research

At the conclusion of this research, certain areas
stand out as worthy of mention as possible areas for further
work. These areas are outlined and summarized in the fol-
lowing groups.

{1) The reformation of the capacitated quadratic as-

signment problem in terms of other practical
problems.
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The problems dealt with in this work were character-
ized by having a large number of variables with a fixed aé
opposed to a free assignment. The structure and logic of
other problems will likely suggest different heuristic free
variable entering strategies.

(2) The development of new free variable entering
strategies.

The results of this work indicate that strategy two
is superior to strategy one. This finding might suggest

and in no way precludes the existence of a still better

heuristic strategy. Some thought might be given to develop-

ing some rules which incorporate the components of both
strategies one and two, i.e., components of the objective
and constraints.

(3) An examination of other problem pafameters.

This study examined the effect three problem parame-
ters had on the capacitated quadratic assignment problem.
Two of these three parameters were determined t¢ be not
significantly related to problem solution difficulty at the
levels investigated. Some additicnal work could lcook at
these same parameters or entirely different ones in differ-

ent ways.
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PROGRAM BRAED (INPUT,OUTFUT,TAPESSINPUT, TAPEG=0UTPUT,
* TAPE1)
COMMON ZMIN({2000),IPRED(20600) ,IBUF{2000,3)
COMMON TVAR(S5+171)+SVARY(574+5)+JLOEPT(57)
COMMON SVARX(S57), VAR(l?i)gLISTl(S?)oLISTZ(S?)o
* LIST3(57)
COMMON SIZE(3)yDTSIZE(57) oFLONIS7,57)
COMMON ILODEFT(57) yOVARU(S7457)9OVARVIDT$57,3)
COMMON IVAR(171)4ILISTL(57) +ILIST2(57),ILISTI(57)
COMMON LST(2000)
INTEGER VARsTVARySUM, DTSIZESIZEF

WRITE (645 999)
999 FORMAT (1H1)

REAC IN VALUES FOR SIZEC(I),THE INITIAL CONSTRAINTS ON
CAMFUS SIZES.

READ(Se*} ILCHIP
REAC(S,700) (SIZE(I) 9I=1,3)
700 FORMAT(3I10)
WRITE (64 955)
955 FORMAT(1X,32HTHE STARTING POINT IS AS FOLLOWS)
WRITE (6, 956)
956 FORMAT(1X,S5Xy48HCAMPUS SIZE CCONSTRAINTS FOR CAMPUSES
¥ 142+3 RESF,)
HRITE(64700) (SIZE(I)+1I=1,3)

REAC IN VALUES FOR THE NUMBER OF CAMPUSES,NLC, THE
NUMEER OF DEPARTMENTS.NBDs, THE INITIAL ADDRESS FOR
THE SOLUTION VECTOR,IK, AND THE NUMBER OF OEPTS.
FIXED AT THE QUTSET,LO.

REAC(5,705) NLCoNBDo IKLCoNCT
705 FORMAT{SI10)

IPRED(IK) = =1

IKT=IK

REAC THE INITIAL VALUE FOR VAR(IK.NBO*NLC). THIS
VECTOR

IS A STRING OF Ds1 VARIABLES. THOSE WITHIN THE FIRST

NBD PLACES WITH A VALUE OF CNE REPRESENT QEPTS.

ON CAMPUS 1. SIMILARLY, THOSE IN THE NEXT NBO PLACES

WITH VALUE OF ONE ARE THOSE OQEPTS. PLACED ON CAMPUS

WHERE A VALUE OF CNE OCCURS, THOSE VALUES IN PLACES

REPRESENTED AS MULTIPLES QF NED AODDED OR SUBTRACTED

FROM THE AOCRESS WITH A ONE MUST 8E ZERO = HENCE, A

DEPT. CANNOT BE PLACED ON MORE THAN ONE CAMPUS,

NPROD = NBO*NLC
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READ(S,706) (VAR{J) 9 J=1,NBD}
LF1=NBO+1
LFZ2=2*NBD
READ(S.?DG)(VlR(J)pJ‘LFiyLFZ’
LF2=LF2+1
LF3=3%NBD | :
READ(S,?D&)(V#R(J) JELF24LF3)
706 FORMAT(S7I1)
CALL PACK({(IK)
WRITE (6,957} .
957 FORMAT(1Xs5X,41HTHE VECTOR STRINGS FOR THE STARTING
®*  PQINT,
*36H ASSIGNMENTS TQ CAMPUSES 142+3 RESP.)
WRITE(64707) {VAR{J)+J=1,NBD)
LF2=2%NBD
WRITE(6,707) (VARCTJ) 3 J=LF1,LF2)
LF2=LF2+1
WRITE(6,707) (VAR(J) o J=LF2,LF3)
T07 FORMATI(2X.5711)

READ IN VALUES FOR FLOW(I,J) ~ THE MATRIX DISPLAYING
THE FLOWS CONNECTING DEPTS. MATRIX IS ARRANGED WITH
NON=DIRECTIONAL FLOW TOTALS IN MIRROR IMAGE AROUND A
ZERO=VALUED MAIN DIAGONAL.

DO 720 LN=1,57

READ(S5,725) (FLOWILNyJ) +J=1,57)
725 FORMAT(3Xy12FEel)
728 CONTINUE

READ IN THE VALUES FOR THE CEFT. SIZES, OTSIZE(I).

REAC(5,726) (DISIZE(J) +J=1,57)
726 FORMAT(4X412I€)

SVARY (1,1)=SVARY(1,2)=SVARY (1,3)=0.10
D0 401 LN=1,NPROD
J={{LN=1) /NBD) +1
K=MOD{ {LN=1) 4 NBD) +1
IFIVARILN)SEQ«1)SVARY (1,J)= SV“RV(ioJlQDTSIZE{Kl
401 CONTINUE
WRITE (6,991)
991 FORMATI1X,5X,34HTHE LOAOS ON CAMPUSES AT OQUTSET)
HURITE {6,728) (SVARY(1:,K) ,K=1,3)
728 FORMAT(4X,3F15.0)

READ(5,728)CST12,CST13,CST23
WRITE (64990}

990 FORMAT(1Xs5X¢3I2ZHTHE COSTS PER UNIT FLOW BETHWEEN
¥26HCAMPUSES 1-291+342+~3 RESP,)
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WRITE (6,728)CST12,CST13,C5T23
IF{CST12.LE.CS5T13)60 TO 420
IF(CST13.LE.CST23)60 TO %22
COST1=CSTZ23
COST2=CST13
GO TO 435
420 IF(CST12.LE.CST23)G0 TO 425
COST1=CST23
CosT2=CsST12
. GO TO 435
422 IF(CST12.LE.CST23)G0 TO 430
COST1=CST13
COST2=CST23
GO TO 435
425 IF(CST13.LE.CS¥23)G0 TO 429
COST1=CST12
COST2=CST23
GO TO 435
429 COS5T1i=CsST12
COST2=CST13
GO TO 435
430 COS5T1=CST13
COosTZ=C57T12
435 CONTINUE
SENZ=0.0
CALL CPTRACE (SENZyNLCyNBD+IKT9CST124CST134CST234L0s1,
* Us)
SVARX (1) =UB
ZMINCUIX) =SVARX(1)
WRITE (6,989) SVARX (1)
989 FORMAT(1X+s5X+33HAGGREGATE FLOW COSTS AT OUTSET = ,
* F15.2)

IF(IDCHIP.EQe1) CALL SORT(NLCsNBD,IK)
IF(IDCHIP.EQs2) CALL SORTFX(NLCsNBD,IK)

SENZ=1.0

WRITE (6,925)L0

CALL SECOND(TIME1L)

CALL OPTRACE(SENZyNLCyNBD+IKyCST124CST13+CST234L0s1,
® UB)

CALL SECOND(TIME2)

TIME3=TIMEZ2=-TIME1L

Ius=us

WRITE (6,731)
731 FORMAT(1Xe42HA GOOD FEASIELE SOLUTION IS PRINTED
¥ BELONW.)
925 FORMAT(1X+SX+43IHTHE NUMBER OF DEPTYTS, FIXEDC AT THE
*  QUTSET = 41I8&)




93

WRITE(Ds730)SVARX (1) 9 (SVARY (I +K) 4K=1,3)
730 FORMAT(1X+5Xs23HAGGREGATE FLOW COSTS = +F10.247
*5X9 I1HCAMPUS LOADS FOR 14293 RESP. = 23F10.2)
WRITE (6+951)
951 FORMAT(1X+5Xs/919HDEPTS. ON CAMPUS 1)
WHRITE(6+733) (LIST1(I)»I=1419)
WRITE(6,732) (LIST1(I),I=20,38)
HRITE(63732)(LIST1(I) +I=39+457)
HRITE (64952)
952 FORMAT(1X+s5Xs/919HDEPTSe ON CAMPUS 2.)
WRITE(6,733) {LIST2(I) I=1,419)
WRITE(64732) {LIST2(I)+1=204+38)
WRITE (69732) (LISTZ2(I}»I=3%457)
WRITE (64 953)
353 FORMAT(1X+5Xy/¢19HOEPTSs ON CAMPUS 34)
WRITE(Bs733) (LIST3(I)»I=1,19)
WRITE (6+4732) {LIST3(I)+I=20+38)
HRITE (64732) (LIST3(I)1I=39457)
732 FORMAT{5X+1913)
733 FORMAT(/+5%X+1913)
WRITE (64652)
652 FORMAT(1X¢/4+42HTHE ORODER IN WHICH THE DEPTS. ARE
* ASSIGNED, ' :
*14H IS AS FCLLOWS)
WRITE(6,651) (JLDEPT(J)oJ=1,41I}
651 FORMATI{IX+413¢/97)
WRITE (64997) TIME3
997 FORMAT(1X+25HYIME TO RUN CPT=INTCHG = +F8.4)
WRITE {64 655)
655 FORMAT(1X,/+39HINTERMEDIATE SCLUTION STAGES NOMW
¥  FOLLOW)

740 CALL BRANCH(NLC,NBOsNCT»IK,IL)

D0 780 II=1,1IL

CALL TEST(NBOWNLCIIsF)

IF(F.EQ.B3)G0 TO 780

IKT=IKT+1

IPRECUIKT)=IK

DO 735 J=1,NPROD

VAR( J)=ZTVAR(II+J)
735 CONTINUE

CALL PACKI(IKT)

DO 745 M=14NCT
LST{M)=D
745 CONTINUE
CALL LBCALCI(NLCyNBD+IKT,COSTL,COST2,4X)
WRITE (64, 750)IKT o Xy (VAR(J) yJ=1,NBD)
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750 FORMAT(SX,6HIKT = 315+2XefHX = 9F5e 092X 13HVAR(IKT »J)
¥ = L5711}
LF1=NBD#+1
WRITE (6+751) (VAR(J) +J=LF1,LF3)}
751 FORMAT(114I1)
SENZ=0.0
CALL OPTRACE (SENZ¢NLCoyNBD»IKT+CST129CSTL3,CST23,5L0+1,
*= ue)
IXCT=I
IF(X.GEsDs0)GO TO 775
ZMINLIKT)=UB
GO TO 780
775 IMINCIKT)Y=UB+X
WRITE(By74L) ZMIN(IKT)
780 CONTINUE
74l FORMAT(LX+10X912HZMINCIKT) = o,F10.2)
IF(IKTLLT.NCTIGO TO 781
CALL CLEAN(IUEB,IKT4ICTR)
IKT=ICTR
781 CONTINUE

THE BRANCHING DECISION IS TO PROCEED FROM THE

VECTOR THAT HAS THE LOWEST LOWER BOUNO. IN THIS

FOR THAT VECTOR, THE ANTECEOENT NODES FOR EACH SUCH

VECTOR MUST BE EXCLUDED SINCE THEY WILL HAVE LOKWER

BOUNDS. THE VECTOR IPREO(IK) STORES THE IMMEOIATE

PRECECESSER TO THE SOLUTION VECTOR IN VAR(IK,NPROD).

THE COLLECTION OF PREDECESSER NODES FOR A GIVEN
VECTOR

ARE IN LST(X).

0O 782 I=24IKT
LST(I)=I
782 CONTINUE
DO 790 II=1.+IKTY
IJ=IKT+1=-I1
LVAL=IPRED(IJ)
785 IF(LVAL.LT.0)GO TO 79D
LSTI(LVALI=D
MM=LVAL
- LVAL=IPRED(MM)
GO TO 745
790 CONTINUE
TOPS=500000.
D0 795 II=1,IKT
IFI(LST(IIY+EQ.0)G0 YO 795
JELST(II)
IF(TOPS=ZMIN(J))IT95,795,79%
794 TOPS=ZIMIN{(J)
IK=2J
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801

810
811

930

908
850

860

CONTINUE
LB=ZIMIN(IK)
CALL UNPACK(IK)

00 80C J=1,NCTY

LST(J)=D

CONTINUE

WRITE (6,801)LBs1IK

FORMATIZXs4HLE = ¢I5+2X 4HIK = ,I5)

THE VALUE IK IS THE IDENTIFIER OF THE BEST NOODE
FROM WHICH TO BRANCH AT THIS STAGE, ITS CORRES.
LOWER BOUND HAS THE VALUE LEBE.

IF THE LB = UBy THE OFTIMAL PLACEMENT VECTOR
IS IODENTIFIED BY THE VALUE VAR(CIK,NPRODO). IF
LB LOES NOT EQUAL UBy A NEW UPPER BOUND MAY BE
GENERATED IF THE OPTRACE RETURN VALUE IMPROVES
UPON THE BOUNC.

Lo =0

00 810 I=1,NPROO

LO=LO+VAR(I)

CONTINUE :
IF(LOJEQeNBUOANDeLBJLE. (IUB+1))G0O TO 900
HRITE(6,930)IUB

FORMAT(1X914HUPPER BOUND = +I10)

GO TO 740

WRITE (6+850)

FORMAT (S5X+37HTHE OPTINMAL SOLUTION HAS BEEN REACHED!)

WRITE(64860)LEy (SVARY (IXCT oK) 4K=1,3)
FORMAT(S5X9L5HCOST OF FLOW = 41104/,

*31HCAMPUS LCALCS FOR 149293 RESFe = 93F10.0)

a7ro
890

875
910

I=0

DO 890 L=1.NBC

IF (VAR L)+EQ.0)GO TO 890D

WHRITE (6,870) L

FORMAT(1H +10X,4HDEPT2I%+2X+15HIS ON CAMPUS 1.)
CONTINUE

I=0

LI1=NBD+1

LI2=2*NBD

00 910 L=LI1,LIZ2

IF(VART LY.EQ.0)50 TO 910

LNBD=L=NBD

HRITE (64 875)LNBD .

FORMAT(1H 210X 4HDEPT 152X 15HIS ON CAMPUS 2.)
CONTINUE

95
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880
920

500

502
510

570

605

I=0

LI1=2%NBD+1

LI2=3*NBD

DO 920 L=LI1.LIZ2

IF(VARI( L)«EQ.0)G0 TO 920
LNBO=L=2*NBD
WRITE(6,880)LNBD

FORMAT(1H 510X 4HDEPT,I592X+15HIS ON CAMPUS 3.}
CONTINUE

CALL EXIT

END

SUBROUTINE SORT{(NLCsNBD,sIK)

COMMON ZMIN(2000) ,IPRED12000) .,IBUF(2000,3)
COMMON TVARI(Sy171)ySVARY(57+5)yJLOEPT(5T)
COMMON SVARX(S57)+VAR{171)4LISTL(57),LIST2(57),
* LIST3(57)

COMMON SIZE(3)+DTSIZE(S7) +FLOK(57,57)

COMMON ILDEPT(S7) +DVARU(S7+57)90VARV(57957,+3)
COMMON IVAR(171)ILISTL(57) ILIST2(57)ILISTI57)
COMMON LST(2000)

DIMENSION ISTORE(S57).+ZSUM(ST)

INTEGER VAR, TVAR.SUMo OTSIZESIZEF

00 500 J=1,NBL
JLDEPT(I) =D
CONTINUE

I=0

N1=NLC*NBD
N2=NLC~1

00 S70 L=1,NBC
I=I+1

DO 510 K=14N2
Ki=K#NBD+L
IF(VAR(L) +EQsVAR(K1))S10,502
I=1I-1

G0 TO 570
CONTINUE
JLOEPT(I)=L
CONTINUE

ICAM=1
MAXV==-9999
JLOC=D
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610

615

40

a0

ILoC=0

D0 610 J=1,1

L=JLDEPT (J) '
IF(L.EQ.D)GO TO 610
IF(MAXV.GE.OTSIZEIL))GO TO 610
MAXV=DTSIZE(L)

JLoCc=J

ILOC=L

CONTINUE

ISTOCRE(ICANT)=ILOC
JLOEPT(JLOC)=D
ICANT=ICANT+1
IFCICANT.LE.I)GO TO 605

D0 €15 J=1,1
JLDEPT(J)=ISTORE(D)
CONTINUE

RETURN
END

SUBROUTINE CLEAN(IUB+IKToICTR}

COMMON ZMIN(2000),IPRED(2000) 4IBUF(2000,3)

COMMON TVAR(S4+171)+SVARY(57+5)+JLOEPT(57)

COMMON SVARX(S57) o VAR(171)+LISTL(57) 4LIST2(57),
¥ LIST3(57)

COMMON SIZE(3)4DTSIZE(ST7) oFLOW(S7,57)

COMMON ILDEFT(57)+DVARU(S79s57)90VARV(57457+3)

COMMON IVAR(L7L) 4 ILISTL(ST)}+ILIST2(S57),ILISTI(57)

COMMON LST(2000)

INTEGER VAR

ICTR=1

DO 80 J=2,IKT

DO &40 K=2,IKT

IF(J.EQ.IPRED(X))IGC TO a0
CONTINUE

uB=1IyB

IF{(ZMIN(JY=UE) «6T«2.0)6G0 TO 840
ICTRFICTR+1

WRITE (1) (IBUF (JsK) 9K=1,y3) ¢ ZMIN(J)
CONTINUE

DO 90 I=2,4IKT
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00 85 K=1,3

IBUF(1,K)=0

CONTINUE

IPRED(I) =~=1

ZMIN(I)=0.0

CONTINUE

REWIND1

D0 100 J=24ICTR

READ(1) (IBUF (JyK) ¢K=1,3) 4y ZMIN(J)
CONTINUE

REWINDL

WRITE (6495) ICTR
FORMAT (10X 9 31HNOs CF SOLUTICNS TRANSFERRED = +1I5)
RETURN

END

SUBROUTINE UNPACK {JK)

COMMON ZMIN(2000) oIPRED(2000) 4IBUF(2000,3)
COMMON TVAR(S,171)3SVARY(57+5) +JLOEPT(S7) ,
COMMON SVARX(S7) s VAR(171) 4LISTL1(57) 4LIST2(5T),
* LIST3(ST)

COMMON SIZE(3)sDTSIZE(S7) +FLON(STST7)

COMMON ILDEPRT(S57) oOVARU(S7+57) o DVARV(57457,3)
COMMON IVAR(171)ILISTL1(S7)3ILIST2(S57),ILISTI(57)
COMMON LST(2000)

INTEGER VAR

OATA MASK/1B/

J=0
DO 4 I=1,4171,57
=J+1
IBUF(JKs JD=SHIFT{IBUF (JKyJ)} 4 3)
00 3 K=1,57
IBUF (JKy J)=SHIFT(IBUF(JKyJ) 9 1)
VAR(I+K=1)=1IBUF (JKyJ) cAND.MASK
CONTINUE
CONTINUE
RETURN
END




581
%80

99

SUBROUTINE FACK({JK)
COMMON ZMIN(2000) ,IPRED(2000) ,IBUF(2000,3)
COMMON TVAR(S171) 9 SVARY(S7+5) s JLOEPTI(ST)
COMMON SVARX (S7) o VAR(171) oLISTL(57) 4LIST2(57),
* LIST3(57)
COMMON SIZE(3)40OTSIZE(BT7) +FLCH(S57,+57)
COMMON ILDEPT(57) sDVARU(S7+57)9DVARV (ST 957+3)
COMMON IVAR(L7L)4ILISTL(S7},ILIST2(57),ILISTI(57)
COMMON LST(2000)
INTEGER VAR

J=0
D0 2 I=1,171,57

=J+41

IBUF (JK, J) =0

DO 1 K=1,57

IBUF (JKy J) =SHIFT (IBUF (JKed) o1)

IBUF (JKy J} =IBUF (JKsJ) e ORe VAR (I+K=1)
CONTINUE

CONTINUE

RETURN

END

SUBROGUTINE BRANCH(NLC,NBO+NCT4IK,IZ)

COMMON ZMINC(2000),IPRED(2000),IBUF(2000,3)

COMMON TVAR(54171)+SVARY(57+5)+JLOEPT(S7)

COMMON SVARX{S7),VAR(171) 4LISTL(57) ,LIST2(57),
* LIST3(57)

COMMON SIZE(3)sDTSIZE(S7) +FLON(S5T+57)

COMMON ILDEFT(57),0VARU(57,57),DVARV(57+57,3)
COMMON IVAR(171)ILISTL(S7)+ILIST2(S7)HILISTI(ST)
COMMON LST(2000)

INTEGER VAR+sTVAR,SUMy OTSIZE.SIZE,F

Ni=NLC*NBD

00 580 IL=1,NLC

00 581 K2=1,4N1
TVAR(ILK2)=VAR(K2)
CONTINUE

CONTINUE

00 585 Jz1.NBL
IF(JLOEPT(J) +EQ.D)GO TO 5485
JM=JLDEPT (J)




NZ=NLC~=1

00 583 K1=1,4N2

KiIM=K1*NBOD+JIM

IF({VAR(JM)+VAR(K1M)}) .EQ.1)GO TO S84

583 CONTINUE

GO 70 590

584 CONTINUE
585 CONTINUE
590 JLOC=J

550

16
17
310

00 550 IX=1.NLC

NZ2=IX=1

I14=JLOEPT(JLQOC) + N2®NBOD
TVAR(IXs1I14)=1

CONTINUE

I1Z=NLC
RETURN
END

SUBROUTINE TEST{(NBDsNLC+IKTHF)

COMMON ZMIN(2000),IPRED(2000)+IBUF(2000,3)

COMMON TVAR(54171)sSVARY{57+5)+JLOEPT(57)

COMMON SVARX(S57) 3 VAR(171) 4L IST1(S57) 4LIST2(57),
* LIST3(57)

COMMON SIZE(3)¢DTSIZE(S7)+FLON(S57+57)

COMMON ILDEPT(57)¢DVARU(ST+57)+0VARV(57:57¢3)
COMMON IVARTIL7TL) o ILISTIUS7} 4ILIST2(57),ILISTI(S7)
COMMON LST(2000)

INTEGER VAR TVARySUMs DTSIZE+SIZE,F

DO 350 L=1,NLC

KL = (L=1)%NBC + 1

KJ = L*NBD

SUM=D

DO 310 I=KL,KJ
IF(1.LE,NBD)GC TO 16
J=I=(L=1)*NBD

GO TO 17

J=1

SUM = SUM + TVAR(IKT,I)*OTSIZE(J)
CONT INUE
IF(SUMeLE.SIZE(L))IGO TO 348
F=0

100




348
350
360

405

408
410

411
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GO T0 360
F=1
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE LBCALCI(NLCsNBD+IKT,COST1,C0OST2,2)
COMMON ZMIN(2000) ,IPRED(2000) +IBUF(2800,43)

COMMON TVAR{S54171)4SVARY(57,5),JLOEPT(57)

COMMON SVARX(57)¢VAR(L71) 4LIST1{57) 4LIST2(57),
* LIST3(57) '

COMMON SIZE(3)yDTSIZE(S57),FLOK(S57,57}

COMMON ILCEPT(S57)+DVARU(S7+57)0VARVIST7+57+3)
COMMON IVAR{171)+ILISTL(S7) »ILIST2(S7)ILISTI(ST)
COMMON LST(2000)

INTEGER VARsTVARsSUMs DTSIZE.SIZE,F

IXCT=0

Z=0.0

00 410 J=1.NBC ‘
IF(JLCEPT(J).EQeU)GO TO &10
JM=JLOEPT (J)

N2=NLC=-1

DO 40% K1=1,N2
KIM=K1*NB8D+JNM
IF({VAR(JM)+VAR(KLIM)) LEQ.1)GO TO 408
CONTINUE

GO TO 411

CONTINUE

CONTINUE

J=NBD

LoC=J

I=0

D0 413 J=LOC,MBD
IFCJLDEPT{J})+.EQ.DIGO TO &13
I=I41

CONTINUE

IF(I.EQ.0)GO0 TO 575

IF{(1.AND+1B) «EQs1)GO TO %414




Wik

k1S

909

419

416

k17

L21

525

527

529

531

532

102

GO TO 416

"IF(C(LOC.AND+1B) «EQe1)GO TO 417

GO TO 909

iXxC1=1

N=LOC+1

NN=I+L0OC=2

LL=JLDEPT{(LQC)

GO TO 525

N=LOC+2

NN=I+L0OC=2

IXer=1

LL=JLDEPT(LOC)

GO To 525

IFU(LOC.AND.18B) 4EQeDY GO TO 415
IF(JLOEPT(LOC+1).EQ.D0)GO TO 419
N=LOC

NN=I+LOC~-1

GO TO 418
IF(JLDEPTILOC+1).EQ.D)GO TO 421
N=LGOC

NN=T+L0C=2

LL=JLOEPT(I+LOC~1)

GO TO %25

N=LOC+2

NN=I+L0C~1

LL=JLDEPT(LOC)

G0 TO 525

SMIN=0.0

DO S27 J=1,NBL

SMIN=SMIN + VAR(CJI*FLOWIJ,LL)
CONTINUE

RMIN=0.0

J1=NBC+1

J2=2%NB0

00 529 J=Ji14J2

RMIN=RMIN + VAR(J)*FLOW(J=NBO,LL)
CONTINUE

TMIN=0.0

J1=2*NBO+1

J2=3¥NBD

00 S31 J=J1,J2

TMIN=TMIN + VAR(J)*FLOW(J=2*NED,LL)
CONTINUE

IF{TMINJLLELFMIN)IGO TO 532
IF{RMINJ.LE.SMIN)GO TO 533
X=COST2*SMIN+COST1*RMIN

GO To 550

IF(TMINJLE.SMINIGO TO 535
X=COST2*SMIN+COST1*THMIN




533

534

535

536
550

S48

L18

K20

h22

L24

GO TO 550

IF(SMINLLE.THINIGO TO 534
X=COST2*RMIN+COST1*TMIN
G0 TO 550

X=COST2*RMIN+COST1*SMIN
G0 TO 550

IF{SMIN.LE+RMINIGO TO 536
X=COSTZ2¥TMIN+COST1*RMIN
GO YO 550

X=COSTZ2*TMIN+COST1*SMIN
Z=Z4+X

IF(IXCTo.NE«1)GO TO 548
IXCT=0

LL=JLODEPT(I+LOC)

GO TQ 525

CONTINUE

CONTINUE

DO 520 M=NyNN,2

LL=JLDEPT (M)

LLA=JLOEPT(M+1)

SMIN=D.0

SMIN1=0.0

DO 320 J=14NBLC

SMIN=SMIN + VAR(JI*FLOW(J.LL)
SHMINI=SMINL + VAR(JI*FLCW(J,LL1)
CONTINUE

RMIN=0.0

RMIN1=0.0

J1=NBO+1

JZ2=2%NBD

D0 &22 J=Jd1,J42

RMIN=RMIN + VARU(JI®FLON{J=NBO,LL)
RMINLI=RMINL + VAR(J)*FLOW(J=NEBD,LL1L)
CONTINUE

TMIN=0.0

THMIN1=0.0

J1=2*NBD+1

JZ2=3*NBQ

D0 &24 J=J1,42

TMIN=TMIN + VAR(J)I*FLOW{J=2*NED,LL)
TMINLI=TMINL + VAR(JI*FLOWH(J=2*NBDLL1)
CONTINUE

IF(TMINJLELRMINIGO TO 430
IF{RMIN.LE.SMINIGO TO 435
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430

435

k40

445

450

460

470

475

480

485

X=COSTZ2¥*SMIN+COST1*RMIN
ICMP=3
GO TO 460

IF{TMINCLE+SMINIGO TO 445
X=COST2*SMIN+COST1*THIN
ICMP=2

GO TO 460

IF(SHINJLETMINIGO TO 440
X=COST2*RMIN+COST1*TMIN
ICMP=1

GO TO 460

X=COSTZ*RMIN+COST1*SMIN
ICMP=3
GO TC 460

IF(SMINsLE.KMIN)IGO TO &50
X=COSTZ*TMIN+COST1*RMIN
ICHF=1

GO TO 460

X=COST2*TMIN+COST1*SMIN
ICMP=2
GO TO 460

IF(TMINL.LE.RMIN1)GO TO 470
IF(RMINLJLELSMINL1)GO TO 475
Y=COST2*SMINL+COST1*RMINL
JCMP=3

GO TO 495

IF(TMINLLLE.SMINL)GO TO 485

Y=COST2%*SMIN1+ COST1*TMIN1

JCMP=2
GO TO %95

IF(SHIN1L.LE.THINL)GO TO &80
Y=COSTZ2*RMINI+COSTLI*THMIN
JCMP=1

GO TO 495

Y=COST2*RMIN1+COST1*SMINL
JCMP=3
GO TO 495

IF(SMINL.LE+RMINL1)GO TO 490
Y=COST2*TMINL1+COST1*RMIN1
JCMP=1
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OO0

490

%95

500
520

575

580

»

¥

105

GO TO %495

Y=COST2* TMINL1+COST1*SMHINL
JCMP=2

IF(JCMP.EQe ICMPIGO TO SO0

Z=Z+X+Y+COSTL*FLOWLILL,,LLYL)

A=COSTZ2* (SMIN4SMINL) +COSTL1* (RMIN+RMINL)
OD=COSTL1*(SMIN+SMINL)+COSTZ2* (RMIN+RMINL)
B=COSTZ* (SMIN+SHINL)+COSTL*(THMIN+TMIN1)
E=COSTL1*(SMIN#SMINL) +COST2* (THIN+TMINL)
C=COSTZ* (RMINSRMINL) +COSTL* (THNIN+TMINL)
F1=COST1*(RMIN+RMINL1)+COST2%*(TMIN+TMIN1)
XZ=AMIN1(A,B.,CsDsE4F1)

IF{XZ.EQ.0)G0 TO 520
IFCIX4Y+COSTL*FLOW(LLSLL1)) JLE.XZ)GO TO 520
Z=Z=(X+Y+COSTAFLOW(LLsLL1))+X2

GO0 YO 520 :

I=Z+X+Y

CONTINUE

G0 T4 580

Zz=1,.0
CONTINUE
RETURN
END

SUBROUTINE OPTRACE(SENZ 4NLCyNBDyIKsCST124CST13,L5T23,
LOsI.UB)

COMMON ZMIN(2000).,IPRED(2000) ,IBUF€2000,3)

COMMON TVAR(S4171)+SVARY(5745),JLOEPT(57)

COMMON SVARX(S7)VARIL171) JLISTL(ST) JLIST2(57),
LIST3(ST)

COMMON SIZE(3)yDYSIZE(ST) JFLOWIST7,57)

COMMON ILDEFT(57)0VARU(S7457) +DVARVIST:57:+3)

COMMON IVARIL71) 4ILISTL(ST)JILIST2(57)ILISTI(S57)

COMMON LST(2000)

INTEGER VAR TVARSUMs OTSIZEWSIZESF

DO 3 I=1,NBO

SVARX(I)Y = 0.0

D0 4 J=1,NLC




QOO0

1o

11

12
ao0s

SVARY (I,J)=0.0

CONTINUE

G0 3 J=1,.NBUO

DVARU(I+J)=0.0

00 3 K=1.NLC
OVARV(IsJsK)=0e0

CONTINUE

00 8 L=1.NBD
LISTL(L)=LIST2(L)=LISTI(L)=0
CONTINUE

TO OBTAIN J1,J2,AND J3 AS WELL AS LISTi,
LIST2 AND LIST3 FROM VAR(IK,NBO®NLC)

J1=J42=J3=0

DO 9 L=1.NBD

J1=J1 + VAR({ L)

J2 = J2 + VAR NBD+L)
J3 = J3 + VAR( Z*NBD+L)
CONTINUE

I=0

00 10 L=1,.NBD

IF(VAR( L) «EQe0.0)G0 TG 10
I=1I+1

LISTL(IY=L

CONTINUE

I=0

LI1=NBO+1

LI2=2%NBO

DO 11 L=LI1.LI2

IF(VAR{( L)«EQ.0.0) GO TO 11
I=1I+1

LIST2(I) = L = NBD

CONTINUE

I=0

LI1=2¥NBD+1

LI2=3*NBD

DO 12 tL=LI1,L12

IF{VAR( L) «EQe0,03G60 TO 12
I=I+41

LIST3(I)=L=2%NBE

CONTINUE

ZSUM=0.0

JCOUNT = LO

I=ICOUNT

SVARY (X+1)2SVARY (I+2)=SVARY (I»3)=0.0
DO 810 JJ=1,J1

L1=LIST1(JJ)

SVARY (I,1)=2SVARY(I,1)+DTSIZE(LL)
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O0O0000O0

810

820

830

au0

15

13

18

19

30

00 810 JK=1,J2

L2=LISTZ2 (JK)

ZSUM=ZSUM + CST12*FLOW(L1,L2)
CONTINUE

00 820 JJ=1,J1

L1=LIST1(JJ)

DO 820 JL=1,J3

L3=LIST3I(JL)

ZSUM=ZSUM + CST13*FLOW(LL,L3)
CONTINUE

00 830 JK=14J2

L2=L1IST2 (JK)

SVARY (I, 2)=SVARY(I,2)+0TSIZE(L2)
00 830 JL=1.J3

L3=LIST3IJL)

ZSUM=ZSUM ¢ CSY23*FLOWIL2,L3)
CONTINUE

DO 840 JL=1,4J3

L3=LISTI(JL)

SVARY {1+ 3)=SVARY (I+3)+DTSIZE(L3)
CONTINUE

SVARX (I} = ZSUM

IFI(SENZ.EQeDeDe0RIEQeNBDIGO TO 845

TO OBTAIN THE ELIGIELE DEPT. LIST FROM

VAR(IK¢NBC*NLC)

00 15 I=1,NBD

ILDEPT(I) =D

CONTINUE

I=0

N2=NLC~-1

DO 19 L=1.NBD

I=1I+1

D0 18 K=14N2

K1=K®*NBD+L

IF{VARL L).EQeVARI K1))18,7
IzI=~1

GO TO 19

CONTINUE

ILDEFT(I)=L

ICTR=]

CONTINUE

ICOUNT = ICOUNT + 1
N100=NBD+1
IF{ICOUNT.EQ.N10D)GO TO 800

I = ICOUNT
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OO0O0O000 OO0

OO0

31

38

%0
45
46

47

50
51

52

55

108

00 65 J=1,ICTR
IFCILDEPT(J).EQ.D0) GO TO &5
ID = ILDEPTWJ)

K=1

THIS SECTIOM TESTS FOR FEASIBLE PLACEMENT OF A
DEFARTMENY ON A CAMPUS. THE =100 VALUE FOR THE
DEFTSe. CONTRIBUTICN TO INTER=-CAMPUS FLOW IS AN
ARBITRARY INCICATOR OF INFEASIBILITY.

OVARU{I,ID} = OTSIZE(ID)

T = SIZE(K) = SVARY(I~1,K)
IF(CVARU(IZID)&LE.T)GO TO &8
OVARV{(I,IDsK) = =100,0
K=K+ 1

GO TO 62

IF THIS IS A FEASIBLE PLACEFMENT, THEN THE
CONTRIBUTICN TO FLOWS MUST 8E CALCULATED.

IF(K.EQe1)G0 TO 45

IF(K.EQs2160 T0O 50

IF(K.EQ.3)G0 TO 55

GO TO &0

OVARV(I«IDs1) = 0.0

DO 46 JJ=1,J2

L2 = LIST2(JN)

DVARV(I,IDs1) = DVARVII+IOe1) + CST12*FLOW(ID.L2)}
CONTINUE

DO 47 JJ=1,J3

L3 = LIST3(JD)

DVARV(I+I041) = OVARV(I,IDs1) + CSTL13*FLOW(ID.L3)
CONTINUE

GO TO 60

DVARVIIyIDs2) = 0.0

00 S1 JJ=1,J1

L1 = LIST1(JD)

DVARV(I«IDe2) = DVARVI(ILIOs2) + CSTLZ*FLOW(ID.L1)
CONTINUE

DO 52 JJ=1,J3

L3 = LIST3(J4J)

DVARV(IsIDs2) = DVARVIIoIO09s2) + CST2I*FLOW(ID,L3)
CONTINUE '

GO 70 60

OVARV(I+1D43) = 0.0

D0 56 JJ=1,J1



http://IFCK.EQ.2lG0

OO0 0

OO0 0

QOO0

56

S7
60

62
65

74

75

7

78

79

109

L1 = LIST1(JJ)

OVARVI(I+IDs3) = OVARVII3IO0+3) + CST13*FLOW(ID,L1)
CONTINUE

00 S7 JJu=1,J2

L2 = LISTZ2(JJ)

DVARVI{IsIDy3) = DVARVII»IO0s3) + CST23*FLAW(ID.L2)
CONTINUE

CONTINUE

IF THE POSSIBLE PLACEMENTS OF A DEPT., ON A CANMPUS
ARE NOT EXHAUSTED, THEN THE CYCLE MUST CONTINUE.

K=K+ 1 :
IF{K«LE.3)G0 TO 38
CONTINUE

THE MINIMUM CONTRIBUTION TO FLOW CORRESPONDING
TO A DEPT. PLACEMENT MUST NOW BE FOUND.

XMIN = 100000.0

00 75 J=1,57

00 75 K=1,3

IO = ILDEPTLJ)

IF(IDLEQ.0)GO TO 75
IF(OVARVIIsIDsK)aLT40.0)G0 TO 75
IF{XMNINCLT 00060 TO 75

IFUXMIN =~ DVARVIIIUsK))TS5,75,74
XMIN = DVARV(I1ID.K)

IDC = ID

JC J

KC K
CONTINUE

Hh

INTERNAL RECORD-KEEPING ON THE ACTUAL BEST
PLACEMENT AT THIS STAGE MUST BE OONE.

GO TO(77+78,79)KC
LIST1(J1+1) = IDC
J1 = J1 + 1
GO TO 80

LIST2(J2+1)
JZ2 = J2 +1
GO TO &0

LIST3(J3+1)
J3 = J3 + 1
CONTINUE

IDC

IDC

it

SVARX (I)=SVARX(I=1)+XMIN
DO 90 KK=1,3
IF(KK+EQ«XC)GO TO 89




89
90

S09

125

128

126

129

127

130

SVARY (I KK)
GO TO 90
SVARY (1,KC)
CONTINUE

SVARY (I=1,KK)

ILDEPT(JC) = 0
ICOUNT = ICOUNT + 1
G0 TG 30

CONTINUE
I=ICOUNT - 1
UB = SVARX(I)

D0 390 ITER=1,5
NPROO=NBD*NLC

00 500 J=1,NPROD
IVAR(J) =D
CONTINUE

00 128 J=1,J1

L=LIST1(D)
ILIST1¢JI=LIST1(Y)

00 125 K=1,NBC

IF(L.EQe JLOEPT(K)}GO TO 128
CONTINUE

LISTi1(J)=0

CONTINUE

00 129 J=1,J2

L=L1IST2(J)
ILIST2(J)=LIST2(J)

00 126 K=1,NBC
IF(LEQJLOEPT(K)IIGO TO 129
CONTINUE

LIST2(J)=0

CONTINUE

DO 130 J=1,J3

L=L1IST3(J)
ILISTI(J)I=LISTI Y}

DO 127 K=1,NBC
IF(L.EQ.JLDEPT(K}))IGO TO 130
CONTINUE

LIST3(N =0

CONTINUE

DO 22% J=1,J1

B=1.0

C=1.0

L=LISTI(D)
IF{L.EQ.0)GO TO 225

SVARY (I=-1.,KC) + OVARU(I,.IOC)
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200

210

215

214
211

212
216

220

22%

ASUM=BSUM=CSUNM=0.0

IF(DTSIZE(L) «GTo (SIZE(2)~SVARY(I,2)))B=0.0
IF(CTSIZEIL) oGTo (SIZE(3)=SVARY(I+3)))C=0.0

00 200 J1B=1,J1
LM=ILIST1(J10)
IF(LM.EQ.0)GO TO 200
IF(LM.EQ.L)GO TO 200
ASUM=ASUM+FLON (LML)
CONTINUE

DO 210 K10=1,42
LM=TLIST2(X10)
IF(LM.EQ.8)GO TO 210
BSUMSBSUM+FLOWILN,L)
CONTINUE

00 215 L10=1,J3
LM=ILIST3(L10)
IF(LM.EQ.0)GO TO 215
CSUM=CSUM$FLOW{LM,L)
CONTINUE

X1=CST12¥BSUM+CST13¥CSUM

IF(E.EQ.0.0)G0 TO 211

Y=CST12¥ASUM+CST23*CSUM

IF(C.EQe0+0)G0 TO 212

Z=CST13*ASUM4+CST23*BSUM

GO TO 216

Y=100000.0
IF(C.NELDL0)G0 TO 214
Z=100000.0
X=AMINL1IX1,Y,2)
IFIX.EQ.X1)GO TO 22%
IF{X.EQ.Y)GDO TO 220
ILIST1(I)=LIST1(J)=0

SVARY (I1,1)=SVARY(I41)=DTSIZE(L)

J3=J3+1

ILIST3(J3)=LIST3(J43)=L
SVARY (I, 3)=SVARY(I+3)+4DTSIZE(L)

GO TO 225
ILIST1{(J}=LISTL(J)=0

SVARY (I,1)=SVARY(I,1)-DTSIZE(L)

J2=J2+1

ILIST2(J2)=LIST2(J2)=L
SVARY {1,2)=SVARY (I.2)+DTSIZE(L)

CONTINUE

DO 250 J=1.,J2

A=1.0

C=1.,0

L=LIST2(J)
IFIL.EQ.D)GO TO 250
ASUM=BSUM=CSUN¥=0.0
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230

235

240

229
231

232
241

245

250

IF(DTSIZE(L)Y «GTW (SIZE(1)=SVARY(I,1)))A=0.0
IF(DTSIZE(L) «GT L (SIZE(3)=SVARY(I,43)))1C=0.0
00 230 J10=1,J1

LM=ILIST1(J10)

IF(LM.EQ.0)GO TO 230

ASUM=ASUM+FLONW(LM,L)

CONTINUE

DO 235 K10=1,J2
LM=ILIST2(K10)
IF(LM.EQ.0)G0 TO 235
IF(LM.EQ.L)GO TO 235
BSUM=BSUM+FLOW (LML)
CONTINUE

00 240 L10=1,J3
LM=ILIST3(L10)
IF(LM.EQ.0)GO TO 240
CSUM=CSUM+FLOWI(LM,L)
CONTINUE
X=AMAX1(ASUM,ESUM,CSUM)
X1=CST12¥ASUM+CST23*CSUM
IF(A.EQe0.0)G0 TO 231
Y=CST12*B5UN+CST13*CSUM
IF(C+EQeB.0)G0 TO 232
Z=CST13*ASUM+4CST23*%BSUM
60 TO 241

Y=100000.
IF(CeMELD.0)G0 TO 229
Z=100000. '
X=AMINL(X1,Y.+2)

IF{X+EQ.X1)G0 TO 250
IF(X+EQsY)IGO TO 245
ILIST2WJ)=LIST2(J)=D
SVARY{I+2)=SVARY(I,2)=-DTSIZE(L)
J3=J3+1

ILISTI(J3)=LISTI(J3)=L

SVARY (I43)=SVARY(I,3)+DTSIZE(L)
GO T0 250

ILISTZ2(J)=L1IST2(J)=D

SVARY (I+2)=SVARY(I+2)~DTSIZE(L)
Ji1zJl+l

ILIST1(J1)=LIST1(J1)=L

SVARY (I+1)=SVARY{I,1)+0TSIZE(L)
CONTINUE

D0 280 J=1,43
A=8=1,0

L=LISTI())
IFIL.EQe8)GO YO 280
ASUM=BSUM=CSUNr=0.0

IF(DTSIZE(L). GT.(SIZE(i)-SVARY(I.I))lA 0.0
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255

26l

265

257

256

261
262

270

280

305

IF(DTSIZE(L) e GT+ {SIZE(2)~SVARY(I,42))08=0.0

D0 25% J10=1,J1

LM=ILIST1(J10)

IF(LM.EQ.G)GO TO 255
ASUM=ASUM+FLOWI{LM,L)

CONTINUE

00 260 K10=1,J2

LM=ILISTZ2(K10)

IFILM.EG.O0)GOD TO 2610
BSUM=ASUMHFLOWILM,L)

CONTINUE

00 265 L10=1,J3

LM=ILIST3I(LLID)

IF(LM.EQ.D)GO TO 265
IF(LM.EQ.L)GO TO 265
CSUM=CSUM+FLONWKILM,L)

CONTINUE
X1=CST13*ASUM+CST23*BSUNM
IF(A.EQ.D.0)G0 TO 256
Y=CST13*CSUM+CSTL12¥BSUM
IF(B.EQ.D0.0)G0 TO 261
Z=CST12%ASUN+CST23*CSUNM

GO0 TO 262

Y=100000.

IF(B«eNE+D.0)GO YO 257

Z=100000,

X=AMINL1(X1:Y47)

IFIX.EQ.X1)G0O TO 2840
IF(X.EQ.2Z2)G0 T0 270
ILIST3I(U)Y=LIST3I(J)=0

SVARY (I, 3)=SVARY(I+3)-DISIZELL)
J1=J1+i

ILISTL1(J1)=LIST1(J1)=L

SVARY (I.1)=SVARY(I.1)+DTSIZE(L)
GO TO 230

ILIST3tJ)=LIST3(J)=D

SVARY (I, 3)=SVARY (I 3)=DTSIZE(L)
J2=J2+1

ILIST2(J2)=L1IST2(J2)=L

SVARY (I,2)=SVARY(I,2)+4DTSIZE(L)
CONTINUE

DO 325 J=1,.J1

JC=e-1

L=LISTI (D)
IF(L.EQ.D)GO0 TO 325

ASUM=BSUM=CSUM=DSUM=ESUMN=FSUM=0.0

N=1
00 310 K=NsJ2
LL=LIST2{X)
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IF(LL.EQ.0)GO TO 310
IF(DOTSIZE(L) oGT o (SIZE(2)=SVARY (L2} +0TSIZE(LL)))}GO TO
* 310 \
IF(OTSIZE(LL) «GT« (SIZE(1)=SVYARY(1,1)+DTSIZE(L)))GO TO
* 310
JC=LL
KC=K
GO 7O 311
310 CONTINUE
60 TO 325
311 CONTINUE
IF{JC+EQ+=1)G0 TO 325
DO 315 JK=1,J41
JL=ILISTL (JK)
IF(JL.EQaQ0eO0ReJLLEQLL)IGO TO 315
ASUM=ASUM+FLONC(JL4L)
CSUM=CSUM+FLOWIJL+JC)
315 CONTINUE
00 316 JK=1,J3
JL=ILIST3I (JK)
IF(JL.EQ.D0)GO TO 316
ESUM=ESUM + FLOW(JL,L)}
FSUM=FSUM + FLOW(JL,JC)
316 CONTINUE
D0 320 K=1,J42
LM=ILISTZ2(K)
IF(LM.EQeD+ORLM.EQ.JCIGO TO 320
BSUM=BSUM+FLOK(LM,.JC)
DSUM=DSUM+FLON(LHM,L)
320 CONTINUE
IFC(CSTL3*ESUMSCST23#FSUMSCST12* (CSUH+0OSUM) ) «GT.
¥*(CSTL13*FSUM+CSTZ23I*ESUM+CST12* (ASUMBSUM)) IGO0 TO 321
IF(KC.EQeJ2)60 TO 325
N=KC+1
ASUM=BSUM=CSUM=0SUMN=ESUMN=FSUN=0.0
JC==1
IFINGTLJ2)60 TO 325
GO T0 305
321 ILISTI(H=LIST1(J}=D
Ji=J1+1
ILISY1(J1)=L1IST1tJ1)=JC
SVARY(I,1)=SVARY(I,1)=DTSIZE(L)+DTSIZE(JC)
ILIST2(KC)I=LISTZ2(KC)=0D
J2=2J2+1
ILIST2(J2)=LIST2(J2)=L
SVARY (1,2)=SVARY(1,2)~DTSIZE(JC)+DTSIZE(L)
325 CONTINUE

00 350 J=1,42
JC=-1
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L=LIST2())
IF(L.EQ.0)GO T0 350
ASUM=BSUM=CSUM=DSUM=ESUM=FSUM=0.0
N=1
330 00 33% K=No.J3
LL=LIST3(K)
IF(LL.EQ.0)GO TO 335
IF(DTSIZE(L) «GTo (SIZE(3)~SVARY (I3} +0TSIZE(LL)})IGO TO
® 335
IF(DTSIZEA(LL) oGT o (SIZE(2)=SVARY (1,42} +DTSIZE(L)})}GCG TO
* 335
JC=LL
KC=K
GO TO 336
335 CONTINUE
GO YO 3510
336 CONTINUE
IF(JC.EQ.~-1}60 TO 350
D0 337 JK=1,.J1
JLEILISTL(JX)
IF(JL.EQ.0)GO YO 337
ESUM=ESUM + FLOW(JLL)
FSUM=FSUM + FLOW({JL +JC)
337 CONTINUE
00 340 JK=1,J2
JL=ILIST2 (JK)
IFIJLJEQeOeOReJLLEQLIGO TO 340
ASUM=ASUM+FLONK(JL L)
CSUM=CSUM+FLONK(JL sJC)
340 CONTINUE
00 345 K=1,J43
LM=ILIST3I (K}
IF(LM.EQe0+OReLMeEQ.JCIGO TO 345
BSUM=BSUM+FLOW(LM,JO)
DSUM=0SUM+FLOWC(LM,.L)}
345 CONTIMNUE _
IFCI(CSTL2#ESUMSCSTI3¥FSUM+CST23* (CSUM+0SUM) ) 46T,
¥(CSTL12*FSUM+CSTLI*ESUM+CSTZ I (ASUM+BSUM) ) )IGO TO 346
IF(KC.EQ.J3)GO TO 350
N=KC+1
ASUM=BSUM=CSUN=DSUM=ESUM=FSUN=0.0
JC==1
IF(NJGTLJ3)GO TO 350
G0 TO 330
346 JLIST2(J)=LIST2(J)=D
Jd2=4d2+1
ILIST2(J2)=LIST2(J2)=JC
SVARY (I, 2)=SVARY(I1,2)~DTSIZE(L)+DTSIZE (JC)
ILISYTI(XKC)=LISTI(KC)=0
JIZJI+]
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ILIST3(J3I=LISTI(JII=L
SVARY (I+3)=SVARY (I,3)=0OTSIZE(JC)+0OTSIZE(L)
350 CONTINUE

D0 380 J=1,J3
JC=-1
L=LIST3(N)
IF(L.EQ.0)GO TO 380
ASUM=BSUM=CSUM=DSUM=ESUM=FSUN=0.0
N=1
355 D0 356 K=NeJ1
LL=LIST1(X)
IF(LL.EQ.0)GO TO 356
IF(OTSIZE(L) «6T.(SIZE(1)~SVARY(I,1) +DTSIZE(LL)IIGO TO
4 356
IF(DTSIZE(LL) «GTo (SIZE(3)~SVARY(I,3)+0TSIZE(L)))IGO TO
* 356
JC=LL
KC=X
GO TO 357
356 CONTINUE
GO TO 380
357 CONTINUE
IF(JC.EQ.-11GC VO 380
D0 360 JK=1,J43
JL=ILISTI (JK)
IF(JL.EQs0.0ReJLLEQWLIGO TO 3610
ASUM=ASUM+FLONW (JL L)
CSUM=CSUM+FLOK (JL oJC)
360 CONTINUE
DO 361 K=1eJ2
JL=ILISTZ2(K)
IF(JL.EQ.D)GO TO 361
ESUM=ESUM + FLOW(JL,L)
FSUM=FSUM + FLOWIJLJC)
361 CONTINUE
0O 365 K=1,J1
LM=ILIST1(K)
IF(LMeEQeGsORLM.EQJCIGO TO 365
BSUM=BSUM+FLONW(LMyJC)
DSUM=DSUM+FLONW(LM,L)
365 CONTINUE
IFC(CST2I¥ESUMSCSTLI2*FSUM+CST13#(CSUM+OSUM)) «GT W
P(CST23%FSUMSCSTLZ2*ESUM+CSTLI* (ASUMBSUM) ))IGO TO 370
IFIKC.EQ.J1)GQO TO 380
N=KC+1
ASUM=BSUM=CSUF=DSUM=ESUNM=FSUNM=0.0
JC==1
IF(N.GT.J1)G6GC TO 380
GO TO0 355




370

380

400

401

K02

405

406

410

b11

ILIST3I(J)=LISTI(J)=0

J33J3+1

ILISTI (I3 =LISTI(J3)=JC
SVARY(I+3)=SVARY(1,3)~0TSIZE(L)+DTSIZE(JC)
ILISTL(KC)=LIST1(KC)=0

J1sJ1+1

ILIST1(J1)=LISTI(JL)=L

SVARY (Iy1)=SVARY (I+1)=0OTSIZE(JC) +OTSIZE(L)
CONTINUE '

00 400 J=1,J1
L=ILIST1I(Y)
IF(L.EQ.D)G0 TO 400D
IVAR(L) =1

CONTINUE

00 401 J=1,J2
L=ILIST2(d)
IF(L.EQ.0)G0 TO 401
IVAR{NBO+L) =1 '
CONTINUE

DO 402 J=14d3
L=ILISTI (N
IF(L.EQeDIGO TO &02
IVAR(2*NBO+L) =1
CONTINUE

D0 405 L=1.NBL
LISTLIL)=LIST2(LI=LIST3(L)=0
ILIST1(L)=ILIST2(L)=ILIST3I(L)=0
CONTINUE

J1=J2=2J3=0

DO 406 L=1,NBC
J1=J1+IVARI(L)
J2=J2+IVAR(NBL+L)
J3=JI+IVAR(Z*NBD+L)
CONTINUE

J=0

DO %10 L=1.NBL

IF(IVAR(L) »EQe0}GO TO %10
J=J+1
ILISTLI(J)=LISTLJ)=L
CONTINUE

J=0

LI1=NBD+1

LIZ2=2*NBD

00 411 L=LI1,L1Z
IFCIVARIL)EQ.0)G0 TO %411
EME S
ILISTZ2(J)=LIST2(J)=L=NBD
CONTINUE
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J=0

LI1=2*NB0+1

LIZ2=3*NBD

00 412 L=LI1,LI2

IF(IVAR(L) «EQ.D0)GO TO &t2

=J+1

ILIST3(J)=LIST3I(J)=L=-2*%NBO
k12 CONTINUE

390 CONTINUE w
SENZ=0.0
LO=NBD
GO TC 805

845 CONTINUE i
UB=ZSUM ]
850 CONTINUE w
RETURN
END

SUBROUTINE SORTFX{(NLC,NBO,IK)

COMMON ZMIN(2000) +IPREDC(2000) ,IB8UF(2000,43)
COMMON TVAR{Sy171)+SVARY(5745),JLOEPT(57)
COMMON SVARX(S5T) 4 VAR(171)+LISTL(S7) +LIST2(57),
* LIST3(S7)

COMMON SIZE(3),0TSIZE(S7) yFLOW(S57,57)

COMMON ILDEPTIS7)+DVARUIST+5T)+DVARV(57457+3)
COMMON IVAR(L71)2ILISTLU(S?) JILIST2(S7)+ILISTI(ST)
COMMON LST(2000) 4 SUMFLOU(S7) 4ISTORE(STY)
OIMENSION ISTORE(S7)s2ZS5UM(57)

INTEGER VAR TVARsSUMyDTSIZE+SIZESF

DIMENSION SUNMFLO(57),4ISTORE (57)

ANNBEBREREERYRLERE
Y Y Y Y YT ey v

DO 300 J=1,NBC
JLDEPT(J) =0 1
ISTORE (J) =0 ~ k
300 CONTINUE

T FTYTYVYYRERYTTERY YT T¥Y T°F

THIS ISTORES AND ORDERS BY FLOW WRT FIXED VAR,
S I XYY Y P Y E Y FY S P RPN Y Y

I=0

N1=NLC*NBOD

N2=NLC=1




302

310

370
14

D0 370 L=1,NBL
I=1+1

00 310 K=1,N2
K1=K*NBO+L
IF(VAR(L) .EQ.VAR{Kt)) 310,302
I=I-1

GO TO0 370
CONTINUE
JLDEPT(I)SL
IGRAB=]

CONTINUE
FORMAT(5X,113)
WRITE (6,14} IGRAB

XS SRS E R IR R R R LA R L R L X

750
aoo

815

820

400
410
450

455

460

560
520
530

JC=0

D0 800 I=1,57
IF(JLDEPT(I).EQ.0} GO TO 750
JC=JC+1
ISTOREC(JC)=JLDEPTI(I)
CONTINUE

CONTINUE

DO 820 I=14IGRAB
FORMAT(5X4112)

WRITE (6,815) ISTORE(I)
CONTINUE

00 450 J=1,IGRAB
SUMFLC(J)=0.
KI=ISTORE (J)

DO 410 IN=1,3

00 400 K=1,57
SUM=VAR{K®IN)*FLOWIKI K}
SUMFLC(J)=SUNFLO(J)+SUM
CONTINUE

CONTINUE

CONTINUE

D0 460 I1=1,IGRAB
FORMAT(S5X+1F10.2)
WRITE(6445%) SUMFLO(I)
CONTINUE

KA=0

DO 580 II=1,IGRAB

MAX==5

DO 550 I=1,IGRASB
IF(KA.EQ.0) GO YO 530

00 520 J=1,KA
IF(JLDEPT (J) 4EQISTORECI)) GO TO 550
CONTINUE

CONTINUE
IF(SUMFLO(I}+GTMAX) GO TO 540
CONTINUE
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550

580
594

600

GO YO 550
MAX=SUMFLO(I)

LI=1

CONTINUE

KA=KA+1
JLDEPT(KA)Y=ISTORE(LI)
CONTINUE

G 600 I=1,IGRAB
FORMATISXN,11I2)

RRITE (6,590) JLDEFT(I)
CONTINUE

RETURN

END
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APPENDIX B

The Random Problem Generator Code
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11
10

122

PROGRAM LAST(INPUT,OUTPUT,TAPES=INPUTTAPES=0UTFPUT}

OIMENSION
OIMENSION
OIMENSION
DIMENSION
OIMENSION
DIMENSION
ODIMENSION
OIMENSION
DIMENSION
DIMENSION
DIMENSION

FV{60) ,FIXED(60)4LOCL(60),L0C2(60),LOC3(6D)
IFLCW(B6D,60) 4 IF(60)+S(60) 455(60)
IFXC(584+60)

IFR(60,60)

IFPR(60)

IFXFLO(BD,60D)

IP(60)+I000D(60)
SIGMA{3I)4RVEC(134+2) yWKVEC(1k)
MIF(60) sVAR(300)+FLOH (60, 60)
IFXF(60)

FVP{(60)

INTEGER SSeSyFVFIXEDWASSFVP,VAR
INTEGER SIZEFXsSIZEF+AT4AR
INTEGER SLOC1,SLOC2,+SLOC3HSORT

INTEGER Q

REAL LACKSA

DIMENSION
IPHC=1
NNCT=195%0

ASS (60)

REAQ(S+*) INFV
READ(Ss*)}INTV

READ(5,4¥%)

NLOC

READ(S5,*) IRN

READ(S5+*)
REAQ(54+%)
READ(S+*)
REAC(5+%)

IWRNMUP

SIGMA(1),SIGMA(2) ySIGMA(3)
PC

LACKSA

REAL(5,%)SORY

READ(5+*)
READ(S5,*)
READ(S5,*)

CST12,CS5T13,L5T23
Q
XM

FORMAT(2X,113)

CONTINUE

DO 15 I=1,IWRMUP
Z=RAND(IRN)

CONTINUE
K=0

XINTV=INTY

SEG=100./XINTV
FORMAT(2Xs1F6,2)
WRITE (69 2)SEG
DO 11 I=1,INTV

FVII)=0D
CONTINUE

IF(K.EQe INFV)

G0 TO S0

R=RAND (IRN)

RN=R*100

WRITE (6+2) RN
00 35 J=1,INTV




35
40

he
i

c
55

IF(RNLT+J*S5EG) GO TO &40
CONTINUE

JSTAR=J

IF{K.EQe0) GO TO 44

D0 42 I=1,K
IFUJSTARSEQ«FV{(I)) GO TO 10
CONTINUE

KzK+1

FY(K)=JSTAR

GO TO 10

CONTINUE

FORNAT{Z2X,11IH)

00 5% I=1.INFV
WRITE(6,1) FVI(I)
CONTINUE

(22 TETIE SRR Y S 3

62
58

61

63

64

68

69

KPD=0

00 bk I=1,INFV
MAX=99999

00 63 J=14INFY
IF(KPD.EQ+D) GO TO S8
DO 82 JOL=14KPD
IF(FV(J) .EQ.FVYP{JOL)) GO TO 563
CONTINUE

CONTINUE

IF(FV(J) .LT.MAX) GO TO 61
GO TO &3

JKDP=J

MAX=FV (JKDP)

CONTINUE

KPD=KPO+1

FVP (KPD} =FV (JKDP)
CONTINUE

D0 68 I=1.INFV

HRITE (641) FVPI(I)
CONTINUE

00 69 I=1,INFV
FVII)=FVPL(I)

CONTINUE

CERE23 2335353253082

60

70

INFX=INTV=INFV

DO 60 I=1,INFX
FIXED(I)=0

CONTINUE

K=0

00 80 I=1,INTV

00 70 J=1,INFV
IF(1.EQsFV(J)) GO TO 80
CONTINUE

K=K+1
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eo

85

100

912
1001
1200

1010
1020
1821

1022

1030

188

110

120

FIXED (K) =1

CONTINUE

00 85 I=1,INFX

WRITE (641) FIXED(I)
CONTINUE |

00 100 I=1, INFX

LOC1(I)=0

LOC2(I) =0

LOC3(I)=0

CONTINUE

10=0

00 912 I=1.NLCC

ASS(I)=0

CONTINUE

JOE=INFX=NLOC

R=RAND (IRN)

RN=R*¥100

D0 1610 I=1,NLOC
IF(RN.LT.(100*I/NLOC)) GO TO 1020
CONTINUE

KILL=I

D0 1022 I=1,NLOC |
IF(FIXED(KILL)+EQ.ASS(I)) GO TO 1001
CONTINUE

I0=1D+1
ASS(I0)=FIXED(KILL)
IF(ID.EQ.NLOC) GO TO 1030
GO TO 1001

CONTINUE

L1=1

L2=1

L3=1

LOC1 (1) =ASS (1)
LOC2(1) =ASS (2)
LOC3 (1) =ASS(3)

DO 150 I=1, INFX

DO 188 K0=1,IC

IF(FIXED(I) »EQeASS(KO)) GO TO 150

CONTINUE

RZRAND(IRN)

RN=R*100

IF(RN.GTeDeANCeRN<LT+3343) GO TO 110
IFIRNGT«3343.AN0DRN,LT.66,6) GO TO 120
IF(RNGT e66e6.ANDRN.LT.100) GO TO 130
Li=L1+1

LOCL(L1)=FIXEC(I)

GO0 TG 150

LZ=L2+1

LOC2(L2)=FIXEC(I)

G0 TC 150
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130 L3=L3+1
LOC3(L3)y=FIXEC(I)
GO TO 150
150 CONTIMNUE
111 FORMAT({2X,"LOC1™)
c WRITE(6,111)
IF(L1.EQ.0) GO TO 156
D0 155 I=1,L1
c HRITE (6+43) LOC1(I)
155 CONTINUE
156 CONTINUE
112 FORMAT(2X+*L0OC2™)
c HRITE{6,112)
IF{LZ.EQ.D) GO TO 161
DO 160 I=1.L2
c HRITE (6, 3) LOCZ2(I)
160 CONTINUE
161 CONTINUE
113 FORMAT(2X,™LOC3™
Cc WRITE (64113)
IF(L3.EQ.0) GO TO 166
00 165 I=1,L3
c WRITE (6,3) LOC3(I)
165 CONTINUE
166 CONTINUE

C¥ 2523383308880

C GENERATE BIVARATE NORMAL SS+IFXF A TOTAL OF INFV
C #¥¥3288%5sssuEs
ISEED=IRN
N=INFV
K=2
IR=INFV
CALL GGNRM(ISEEDsNyKsSIGMAy IRsRVECs WKVEC s IER)
00 170 I=14INFV
IFXFID=IFIX ({20 (INFX* {1 =PC) ) I*RVEC(I 1))+
O {(120%INFXI*(1=PCH) ))
IF{Q.NE.2) GO TO 167

IFXFID=IFIX(C(60*(INFX*(1=PC)) ) +{10%(1-PCI*RVEC(Is1))

* 1))
167 CONTINUE
SS(IN=IFIX((6S¥RVEC(I2)) +507)

170 CONTINUE

169 FORMATISX,"FXFLO™5X,"SIZE™)
c WRITE (6+169)

171 FORMAT(5X+2I1295X+1F6.3¢5Xe1F6.3)

D0 172 I=1,INFV

c WRITE(6+171) IFXF(I)eSS(I)+RVEC(IH1)RVEC(I2)

172 CONTINUE

COHPIIRRIN AV SRR RN
L ITIT YT LYY T VY
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I1Q=0
0C 200 I=1,INTV
00 202 J=1,INTV
IF(I.EQ.FIXED(J)) GO TO 20%
202 CONTINUE
IQ=IQ+1
S(I)=55(IQ)
GO TO 200
205 CONTINUE
S{I)=0
200 CONTINUE
R LI T TP Y Y VY FTTE Fgs
201 FORMATI(SX,11I10)
DO 204 I=1,INTV
c WRITE(6,201) S(I)
204 CONTINUE
CHLEERZIURISBPBREES
00 210 I=1,INTV
IF(5(1I).EQ.0) GO TO 211
GO TO 210
211 CONTINUE
R=RAND(IRN)
RN=R*400
S(I)=IFIX(RN)
210 CONTINUE
CRrYFBSBERBREBEBEREY
DO 215 I=1,INTY
C WRITE(6,201) SC(I)
215 CONTINUE
CHs5asyanrsasuas
DO 250 I=1, INFX
D0 252 J=I,INFX
R=RAND{IRN)
IF(R.GT.PC) GO TO 251
IFXC(I.J)=D
IFXC(JeI)=0D
GO TO 252
251 R=RAND(IRN)
RN=R*1400
IQQZ=IFIX(RN)
IFXC({I.J)=1QQzZ
IFX0(JoI)=1QQ2
IF(I.EQeJd) IFXO0(IoJ)}=0D
252 CONTINUE
250 CONTINUE
CEFIRRBAISEBRRERE SRR LAY
NCO=INFX=~1
00 260 I=1, INFVY
261 CONTINUE
B0 270 J=1,4 INFX
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262

270

280

290

29%
296

297

260

R=RAND (IRN)

IF(R.GT.PC) GO TO 262
IFXFLO(I,J)=0

GO TO 270

R=RAND (IRN)

IF(Q.EQe2) RN==XM*ALOG(R)
IF(Q.NE.2) RN=R¥*100.
I0QZ=IFIX(RN)

IFXFLC(I,J)=10QZ

CONTINUE

IT=0

DO 280 JI=1,INFX
IT=ITHIFXFLC(I4JI)

CONTINUE

IMOD=IFXF(I)~IT

WRITE(6+9%) (IFXFLO(IJ0) 3 JO=1,5 INFX)
HRITE (64*) IT,IMOD

IBOOM=0

DO 290 JJ=1,INFX
IFCIFXFLO(IsJJ) oLELD) IBOOM=IB00M=1
IF(IFXFLO(I+JJ) oGTe0) KLAST=JJ
IBOON=IBCOOM+1

CONTINUE

GGG=IMOD/IBCOM

IGGG=IFIX (GGG)

INGG=IBOOM*IGGG
IADD=IMOD=((IBOOM=1)*IGGG)

D0 295 JK=1,INFX
IF(IFXFLO(I,JK) 4 LE.O) GO TO 265
IF(JK.EQ.KLAST) GO TO 296
IFXFLC{I+JKI=IFXFLOUIJK) +IGGG
CONTINUE '
IFXFLC(IZKLAST)=IFXFLO(I,KLAST)}+IADD
IHOOK=0

DO 297 JL=1,INFX
IF(IFXFLOCI JL) L To0) IHOOK=1
CONTINUE

IF(IHOOK.EQ.1) GO TO 261
CONTINUE

CEB RS RBPIREBRIRLBL LRSS

1210

IF{(Q.EQ.1) GO TO 1501
IF(Q.EQe2) GO TO 1540
IcUE=0

DO 1225 II=1.INFV
MAX==99999

00 1206 I=1,INFV
IF(ICUE.EQ.0) GO TO 1211

00 1210 J=1,ICUE
IF(IEQ.IFPR(J)) GO TO 1200
CONTINUE
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1211 CONTINUE

1205

1200

1225

IFCIFXF{I)GT.MAX) GO TG 1205
GO TO 1200

IPOLD=I

MAX=IFXF{I)

CONTINUE

ICUE=ICUE+1

IFPR(ICUE)=IPOLD

CONTINUE

CrFVPENSRRAIINELYNEXNS

1520

1510
1500

1501

IPS5TAR=225

00 1500 I=1,INFYV
IPSTAR=IPSTAR=-2
ITIE=IFPR(I)
LCOUNT=INFV+1=]1

00 1510 J=1,INFV
JTIE=IFPRUJ)
IF(J.GE,LCOUNT) GO TO 1520
IFUITIE.EQ.JTIE) GO TO 1520
IPSTAR=IPSTAR=2
IFRUITIELZJTIE)=]IPSTAR
IFR{JTIELITIE)=IPSTAR

G0 TO 1510
IFRUITIELJTIE)=D
IFRC(JTIELITIE)=D

CONTINUE

CONTINUE

GO TQO 1549

CONTINKUE

CPIPSESERIN AR SINIRIILES

1536

1537
153%
1534
1531

00 1530 I=1,INFV

00 1535 J=1,INFV
IF(I.EQ.J) GO YO 1536
R=RAND (IRN)
IF(R.LT.PC) GO TO 1536
R=RAND {IRN)

RN=R*100.,
IQAZ=IFIX(RN)
IFR(I,J)=IQQZ
IFR(J,»I)Y=1IQ02

GO TO 1537

CONTINUE

IFR{I«J)=D

IFRUJLI) =0

CONTINUE

CONTINUE

CONTINUE

CONTINUE

GO TO 1549

CHEZB B33 00050
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1540

1544

1543
1542
1541

CONTINUE

00 1541 I=14INFV

00 1542 J=1,INFV
IFLY.EQeJ) GO TO 1543
R=RAND(IRN)
IFIR.GT.PC) GC TO 1544
IFR{I.J)=0

IFR{J,1I)=D

GO TC 1542
R=RAND(IRN)
RN==XM*ALOG (R)
IQQZ=IFIX(RN)
IFR(I,J)=IQ0Q2
IFR(J,I)=IQQZ
CONTINUE

CONTINUE

CONTINUE

CHYRRRRBAINS RSP ENFEREINERRERS

1549

c
1600

c
1601

c
1602

CONTINUE

DO 1600 I=1,INFX

WRITE (B *) ({IFX0(IsJ)eJ=1yINFX)
CONTINUE

00 1601 I=1,INFV

HRITE(6s*) (IFXFLO(IvJ}sJ=14 INFX)
CONTINUE

DO 1602 I=1,INFV

WRITE (69*) (IFR{I+J) +J=1,INFV)
CONTINUE

CRFLR SRR ENNALIEE

1701
1700

1703
1702

170%

00 1700 I=1,INFX
IXZFIXEOD(I)

DO 1701 J=1,INFX
JX=FIXED(J)
IFLOHC(IX 9 JXI=IFX0(I+J)
CONTINUE

CONTINUE

DO 1702 I=1,IKFV
IX=FVID)

00 1703 J=1,INFX
JX=FIXED(J)Y
IFLOR(IX9JX)=IFXFLC(I,J)
IFLOW(JUX o IX)=IFXFLO(I »J)
CONTINUE

CONTINUE

DO 1704 I=14INFV
IX=FV(I)

00 170% J=1,INFV

JX=FV {J)
IFLORC(IX+JXI=IFR(IyJ)
CONTINUE
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1704

CONTINUE

CR¥PERIERRABIRRBSRIUFRERINS

c
475

DO 475 I=14INTV

WRITE (6+%*) (IFLOW(IvJ) oJ=1,1INTV)

CONTINUE

T IIT YTV YYTE YT ¥Y

600

810
630

660

670
6510

SIZEFX=D0
00 63D I=1,INTV
DO 600 J=14 INFX

IF(I.EQ.FIXED(J)) GO TO 610

CONTINUE

GO TO B30
SIZEFX=SIZEFX+S5(])
CONTINUE

SIZEF=0

00 650 I=1,INTV

DO 660 J=1,INFV
IF(I.EQ.FV(J))} GO TO 670
CONTINUE

GO TO 650
SIZEF=SIZEF+5{])
CONTINUE
AT=SIZEFX+(SIZEF*LACKSA)
AQ=AT/NLOC

AR=IFIX(AQ)

CH¥REZERRINEIRENIIBIRIMES

651
c

FORMAT(5X,2112)
WRITE (65651) AT,AR

CrPSRNBSRASRRBENEES

805

810

a3o

a3s

840

5L0C1=0

sLocz2=0

SLOC3=0

00 810 I=1+INTV
00 800 J=1,L1

IF(I.EQ.LOC1(J)) GO TO 4805

CONTINUE
VAR(I)=0

GO To 810
SLOC1=SLOC1+S(I)
VAR(I)=1
CONTINUE

DO 84D I=1,INTV
DO 830 J=1,L2

IF(I.EQ.LOC2(J)}) GO TO 835

CONTINUE
VAR(INTV+I)=D
GO TO 840
SLOC2=5L0C2+S(I)
VARCINTV+I) =1
CONTINUE

130
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DO 880 I=1,INTVY
DO 870 J=1,L3
IF(1.EQ.LOC3J)) GO TO 875
870 CONTINUE
VAR (Z*INTV+1)=0
GO TO 880
875 SLOC3I=SLOC3I+SI(I)
VAR(Z®*INTV+I) =1
880 CONTINUE
c."#‘."’.'."." BEEERE
IF(AR,LT.SLOC1) GO TO 9040
IF(AR.LY.SLOCZ) GO TO 90¢
IF(ARLLT.SLOC3) GO TO 900
60 TO 910
901 FORMAT(™INFEASIBOLE LOCATION HAS OCCURED™)
900 CONTINUE
GO T0 S
910 CONTINUE
c."“"".".." L3 2 X
DO 1300 I=1,INTV
DO 1305 J=14INTYV )
FLOWN(ISJ)=IFLCKH({IJ)
1305 CONTINUE
1300 CONTINUE
c"“".'.".‘.“‘.‘
1101 FORMAT(3I10)
WRITE(6+1101) AR, AR, AR
1102 FORMAT(SI10)
WRITE(691102) NLOC,INTV,IPHCy INFXoNNCT
1103 FORMATI(S7I1)
HRITE{(D+1103)Y{VARII) I=1,INTV)
WRITE(6,1103) (VAR{INTV+I) +I=1,INTV)
INTVZ2=2%INTY
HWRITE(6+1103) (VAR(INTVZ+I),I=1,INTV)
1104 FORMAT(3X,12F€s1)
DO 953 I=1,INTV
HRITE(Ds1104) (FLOW(IZJ) s J=1,INTY)
953 CONTINUE
1105 FORMAT(4X,12I€)
WHRITE(6+1105) (S(I)eI=1,INTV)
1106 FORMAT (4X,3F15.0)
WRITE(6+1106)LST12,C5T13,CST23
c‘."'““"““““""““
sTOoP
END




FUNCTION RAND(IRN)
IRN=IRN*16777219
IF{IRN«LT«0)IRN==IRN
RANU=IRN/ (2814749767107 .E2)
RETURN :

END

SUBROUTINE GGNOR (ISEEQ+N4R)

CALL GGUB{ISEEDN4R)

DEVIATE
O 5 I=1,N
CALL MONRIS(R(I)R(I),I1ER)
S CONTINUE
RETURN
END
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FUNCTION = GENERATES PSEUDO NORMAL RANOOM

GET N RANDOM NUMBERS

TRANSFORMS EACH UNIFQRM

c
c
c
c
c
c NUMEERS. )
C  USAGE < CALL GGNOR(ISEED,NsR)
C PARAMETERS ISEED = INPUT., AN INTEGER VALUE IN THE
c EXCLUSIVE
c RANGE (1,21474836k7). ISEED IS
c REPLACED BY
C A NEW ISEED TO BE USED IN
c SUSBSEQUENT CALLS.
> N - INPUT NUMEER OF DEVIATES TO BE
c GENERATED.
c R - OUTFUT VECTOR CONTAINING THE
c NORMAL
c PSEUDQC RANDOM NUMBERS.
C  PRECISION - SINGLE
C REQD. IMSL ROUTINES = GGUBsMERFI,UERTST
C  LANGUAGE - FORTRAN
c------‘----‘----- -k e A 0 e A An A S e A A e b s D e e A s @ o A e e D A A e
c L B F E R K L LT 3B 1 ]
C LATEST REVISION - JANUARY 20,1975
c
CIMENSION RCN)
c
c
c
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c

133

SUBROUTINE GGNRM (ISEEDsNeKsSIGMAy IRyRVECIWKVEC,IER)

C=GGNRM~==wmmeecSeecncaal IBRARY Jeecccccccccnecccacccccanen

c

C~GGNRM1

FUNCTION GGNRM = MULTIVARIATE NORMAL DEVIATE
GENERATOR,
ENTRY GGNRM SHOULD BE USED ON
THE FIRST
CALL TO FACTOR THE SIGMA MATRIX
AND
GENERATE DEVIATES,
GGNRM1 = MULTIVARIATE NORMAL DEVIATE
GENERATOR.
ENTRY GGNRM1 SHOULO BE USED ON
ALL BUT THE

FIRST CALL, IF MULTIPLE CALLS
ARE NECESSARY,

USAGE = CALL GGNRM{ISEEDN,K.SIGMA,IR,
RVEC,WKVEC, IER)
CALL GGNRMI(ISEEDsNsKsSIGMA,IR,
RVEC+HKVEC S IER)
PARAMETERS ISEED - INPUT. AN INTEGER VALUE IN THE
EXCLUSIVE
RANGE (1,2147483647), ISEED IS
USED TO
INITIATE THE GENERATION, AND ON
EXITs HAS

BEEN REPLACED BY A NEW ISEED
FOR SUBSEGUENT

USE.
N - INPUT. NUMBER OFf K-~DEVIATE
VECTORS TO
GENERATE.
K - INPUT. NUMBER OF RANOOM DEVIATES
PER VECTOR.
SIGHA <« INPUT VECTOR OF LENGTH AT LEAST
K(K+1)/2

CONTAINING THE VARIANCE=-
COVARIANCE VALUES,

SIGMA IS A POSITIVE DEFINITE
MATRIX STQRED '

IN SYMMETRIC MATRIX MODE AND IS
REPLACED

BY ITS FACTOR(SQUARE=ROOT) ON
EXITa

IR = INPUT., ROW DIMENSION OF OUTPUT

MATRIX RVEC

IN THE CALLING PROGRAM. IR
MUST BE GREATER
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c THAN OR EQUAL TO N.
c RVEC = DUTPUT, N X K MATRIX OF
C MULTIVARIATE NORMAL
c DEVIATES,
c WKVEC = WORX AREA WHERE THE NORMAL
c DEVIATES
c ARE GENERATED. WKVEC MUST BE
c DIMENSIONED
c AT LEAST K IN LENGTH,
c 1ER - ERROR PARAMETER
c TERMINAL ERROR = 128+N
c N = 1y INOICATES AN INPUT
c ERROR TO '
c LUDECF(SIGMA).
c PRECISION = SINGLE
c REQD. IMSL ROUTINES ~ GGNOR,GGUELLUGECPyMERFILZUERTST
c LANGUAGE = FORTRAN
c----------------------------.--“---‘ L L L B X L L o K & F L K X L & XN L R L K I J
c L
c LATEST REVISION « FEBRUARY 18, 1975
c
DIMENSION SIGMA(1) yRVEC(IR+K) y HKVEC (K)
c CECOMPOSE SIGMA MATRIX

CALL LUDECP(SIGHMA,SIGMA,KyA,B,IER)
IF(IER «GT. 128) GO TO 9000

c RECALCULATE OIAGONAL OF
c SIGMA
L=10
D0 5 I=1,K
L = L+1
5 SIGMAIL) =.1.0/SIGMA(L)
60 TO 10
c ENTER GGNRM1 IF MORE K=
c DEVIATE
C RANDOM VECTORS
c DISTRIBUTED WITH
C THE SAME SIGMA ARE
c REQUIRED.
c
ENTRY GGNRM1
c
c GENERATE N X K NORMAL
c RANDOM DEVIATES
10 DO 25 J=1,4N
c GENERATE K NORMAL
c DEVIATES
CALL GGNOR(ISEED.KoWKVEC)
L =1 .
c CONVERT THE K UNIVARIATE
c NORMAL '
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RANDOM OEVIATES TO
MULTIVARIATE
NORMAL DEVIATES.
00 20 II=1,K
RVEC(J+II) = 0.0
DO 15 I=1,11
RVEC(Js1II) = RVEC(JyII)+DBLE(WKVEC(I))
¥ *®DBLE(SIGMA(L))
15 L =L+
21 CONTINUE
25 CONTINUE
GO TC 90D%
9000 CONTINUE
CALL VUERTST (IER,H6HGGNRM )}
9005 RETURN
END

SUBROUTINE GGUB (ISEEDsNoR)

-GGUB-------‘-‘s—‘-----L IBRARY 3------“ cSeeeeeeeeeemeoasawww

FUNCTION = BASIC UNIFORM (0,1) PSEUDO=-RANDOM
NUMBER
GENERATOR
USAGE = CALL GGUBUISEEDsNeR)

PARAMETERS ISEED INPUT. AN INTEGER VALUE IN THE
EXCLUSIVE
RANGE (1,2147483647), 1ISEED IS
REPLACED BY
A NEW ISEED TO BE USED IN
SUBSEQUENT CALLS.
N = INPUT. THE NUMBER OF OEVIATES TOC
BE GENERATED
: ON THIS CALL.
R (N} = OUTPUT VECTOR OF LENGTH Ny
CONTAINING THE
FLOATING POINT (041) DEVIATES.

PRECISION - SINGLE
LANGUAGE - FORTRAN |
LATEST REVISION = JANUARY 28,1974

DINENSION R(1)

i
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c ' I2ZP3iM = (2%%31) - 1
c S2PN3L = 1 7 (2%%31)
DATA I2ZP31M/72147483647 7,
. S2PN31/166140000000000000008/
DO S5 I=1,N

ISEED = MOC(168B7*ISEED,I2F31M)
5 R(I) = FLOAT(ISEED)*S2PN31
RETURN
END

SUBROUTINE LULECP (A,ULWNyD1,02,IER)

-LUDECPO-------S-O-‘---L IBRARY Jesosvasve vcevasseewes sscsecscuss

FUNCTION = CHOLESKY DECOMPOSITION OF A
MATRIX =
SYMMETRIC STORAGE MODE
USAGE = CALL LUDECP (AyULWsNyD1+D2+IER)
PARAMETERS A « INPUT VECTOR OF LENGTH N(Nt1)/2
CONTAINING
THE N 8Y N POSITIVE DEFINITE
SYMMETRIC

MATRIX STORED IN SYMMETRIC
STORAGE MODE,
uL
CONTAINING

DUTFUT VECTOR OF LENGTH NiN+#1)/2

THE DECOMPOSED MATRIX L SUCH
THAT A = L*
L=-TRAMSPOSE., L IS STORED IN
SYMMETRIC
STORAGE MQOE. THE OIAGONAL OF L
CONTAINS THE
RECIPROCALS OF THE ACTUAL
DIAGONAL ELEMENTS.
N = ORODER OF A, (INPUT)
D1,02 = COMFONENTS OF THE QETERMINANT OF
A
DETERMINANT(A) = D1+2+#p2,
(OUTPUT)
IER = ERROR PARAMETER.
TERMINAL ERROR = 128+N.
N = 1 INDICATES THAT MATRIX A
ALGORITHMICALLY NOT POSITIVE

OCOO0O00O0O0OC00000O0D0O0DOOOOO0O0O0O00O00000O0OC0

DEFINITE.
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OO0

(SEE THE CHAPTER L PRELUOE).
PRECISION = SINGLE
REQD. IMSL RQUTINES = UERTST
LANGUAGE = FORTRAN
LATEST REVISION = FEBRUARY 8,1974
DIMENSION A1) JUL(L)
DATA ZEROyONE9FOURySIXTNySIXTH/0e0914,
* ".'16.'.0625,
D1=0NE
D2=ZERO
RN = ONE/Z(N*SIXTN)
iP = 1
IER=D
DO 45 I = 14N
19 = IP
IR = 2
00 &40 J = 1,1
X = A(IP)

IF (J .EQ. 1) GO Y0 10
Do 5 K=IGQsIP1
X = X=ULIK}*UL(IR)

IR = IR+1
5 CONTINUE
10 IF (Ie.NEeJ) GO TO 30
DL = Di°X
IF (A(IP)+X*RN .LE. A(IFP)) GO TO 50
15 IF (ABS(D1) LE. ONE) GO TO 20 :

DI = 01 % SIXTH
D2 = 02 + FOUR
GO0 TO 1%

20 IF (ABS(D1) .GE. SIXTH) GO TO 25
D1 = 01 * SIXTN
D2 = 02 = FOUR
60 10 20

25 ULLIP)Y = ONE/SQART(X)
G0 TO 35

30 UL(IP) = X * UL(IR)

35 IPL = IP
iP = IP+1
IR = IR+t

LD CONTINUE

4S CONTINUE

GO TO 9005
50 IER = 129
90C¢0 CONTINUE
CALL UERTST(IER,6HLUDECP)
9005 RETURN




END
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SUBROUTINE MERFI (PyYyIER)

c

c - - - -
C=MERFCI

C=MDNRIS

c

C FUNCTION MERFI =
c FUNCTION.

c MERFCI =
c

c MONRIS -
c INTEGERAL.

C

C USAGE -
c -
C -
C PARAMETERS p -
c

C 1.0 AND 1.0

c

c 0.0 AND 2,0

c

c 0.0 AND 1.0

c X -
Cc IER -
c

c

Cc THE LEGAL

c

c IS GIVEN AS

c

c THE FUNCTION

c

c ARGUMENT) .

c PRECISION -
C REQDOs IMSL ROUTINES =~
c LANGUAGE -
c

c LA K B % L E N § 2 % X }

c LATEST REVISION -
c

OIMENSION

COMPUTE THE INVERSE ERROR

COMFUTE THE INVERSE COMPLEMENTED

ERROR FUNCTION.
COMFUTE THE INVERSE GAUSSIAN

CALL MERFI(PyXyIER)
CALL MERFCI(P4X,4IER)
CALL MDNRIS(P.X,IER)
INPUT VALUE
FOR MERFI P MUST BE BETHEEN =

FOR MERFCI P MUST BE BETKEEN
FOR MONRIS P MUST BE BETKEEN
OUTFUT RESULT OF COMPUTATION.
ERRCR INOICATOR
TERHMINAL ERROR = 128+N
N=1 INODICATES P LIES QUTSIOE
DOMAINe. PLUS OR MINUS INFINITY
THE RESULT (SIGN IS THE SIGN OF
VALUE COF THE NEAREST LEGAL
SINGLE

UERTST
FORTRAN

L B R R B B b L b L b b By L LR kX L L2 ¥ LYY LY P Yl F LY E Y FF

JANUARY 20, 1976

AL65),Cl173,D(25),,E(2D)
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EQUIVALENCE (A(24) 4C(1)) 4 CACLL1),0(1)),(ALL),

E(1))

DATA E/+962885376618940,

«12046751614643104,
«016078199342100,.002686704437162,
«000499634730235,.000098898218599,
«00002039181276%+.000004327271618,
+000000938081413,.000000206734721,
«000000046159699,.000000010416680,
«000000002371501,.000000000543928,
+000000000125549,.000000000029138,
+000000000006795,.000000000001531,
+00000000000037%,.000000000000088,
-000000000000021,.000000000000005,
«000000000000001/

DATA C/+9121568034175549~

«0162662818€7664,
«00DL33556472949,4000214438570074,
«0000026257510764+-.000003021091051,
-«000000012406062,.000000062406609,
-« 000000000540125,4~
«0000000014232048,
«00000000003438%,.000000000033585,
-+ 000000000001458,~
.000000000000868140,
.00000000GQ00053,.00080000000000240,
-.0000000000000027

DATA D/.956679709020493,~

«023107004309065,
: ~e004374236097508,~

«000576503422651, _

-.000010961022307,.000025108547025,

«000010562336068,.000002754412330,

«0000004324844984+-,000000020530337,

-.000000043891537,~
«000000017684010,

=+ 000000003991289,~
«000000000186932,

«000000000272323,.000000000132817,

«000000000031834,,000000000001670,

~.000000000002036,~
«000000000000965,

-.000000000000220 4~
-000000000060010,

«00D000000000013,.000000000000006,

-000000000000001/

OATA H1yH2sHIsHU 4 R2/=1.5688130423733,
»

-

2565490123147 8y=.55945763132983,
242879157162634y=1.4142135623731/

DATA XINF/31767772777707797777707




10

15

20

25

30

35
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INVERSE ERROGR FUNCTION ENTRY

INT =
X = p
GO 10 S

INVERSE COMFLEMENTED ERROR FUNCTION ENTRY
ENTRY MERFCI

INT = 2
X = 1e = P
GO TO0 5

INVERSE GAUSSIAN INTEGRAL ENTRY
ENTRY MONRIS

INT = 3
X = 1.‘P*P
IER = 0

SIGMA = SIGN({1ls¢X)

IF {aNOT o (X eGTe=10s ANDeXalTelse)) GO TO 45
Z = ABS{X)

IF(2.6T..8) GO TO 2%

H = 2%Z/.32=1.

N = 22

IPP = 1

L =1

L2 = 1

X3 = 1.

X = W

X6 = A(IPP)

X6 = X6 + A{IFP+LB2) * X4
X5 = X4 * W ¥ 2,-X3
X3 = Xk

X4 = X5

LB2 = LB2 + 1

IF (LB2 «LEe N} GO TO 15
GO TGO (20+35) L

Y = 2 * X6 * SIGHMA

IF (INT .NE. 3) GO YO 9405
GO TO &40

B = SQRT(~ALOG(1.=2%Z))

IF {2 «6GT. «9975) GO TO 30
W = Hi*B8+H2

IPP = 24

b

o

T

I

°
" Wo N

2
1
(4]
H3 * B8 + HY4
2
2
o)

o

TO 190
B * X6 * SIGMA

F (INT +NE. 33 GO YO 3005

HL<OMFZKMxOZF
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Ld Y = R2*Y

GO To 9005
45 ¥ = SIGMA*XINF
IER = 129

9000 CONTINUE :

CALL UERTST(IER+6HMERFI )
9005 RETURN

END

SUBROUTINE UERTST (IER.NAME)

-UERTST----------------LIBR“RY ecacssssavsassccnssessnenmaaes

FUNCTION
USAGE
PARAMETERS IER

ERROR MESSAGE GENERATION
CALL UERTSTU(IER,NANE)
ERROR PARAMETER. TYPE + N HWHERE
TYPE= 128 IMPLIES TERMINAL
64 IMPLIES WARNING WITH

FIX
32 IMPLIES HWARNING

N = ERROR COOE RELEVANT ToO
CALLING ROUTINE

O0O0OOOCGOOO000000O00000O000OCO0

4 NAFME « INPUT SCALAR CONTAINING THE NAME
OF THE
CALLING ROUTINE AS A b=
CHARACTER LITERAL
STRING.
LANGUAGE = FORTRAN
LATEST REVISION - AUGUST 1, 1973
DIMENSION ITYP(244) 4, IBIT (&)
INTEGER WARNyWHARF o TERMsPRINTR
EQUIVALENCE (IBIT(L1)+WARN) o(IBITI(2)4WARF),
* (IBIT(3),TERM)
DATA ITYP Z10HWARNING s 10H »
s 10HKARNING(WI1 OHTH FIX) ’
* 10HTERMINAL L10H ’
b 10HNON=DEFINE+10HO /s
» IBIT /s 32:645,128,0/
DATA PRINTR/6LCUTPUT/
IER2=IER

IF (IERZ2 +GEe. HARN) GO TQO S5




10

15

20

25 FORMAT(26H **% I M S LC(UERTST) +##¥»

»

IER1=4
GO 710 20

IF (IERZ +LTe TERM) GO

IER1=3
GO 70 20

IF (IER2 .LT. WARF) GO

IER1=2
GO 70 20

IER1=1

IER2=IER2-IBIT(IER1)

TO 10

T0 15

NON=-OEFINED

TERMINAL

WARNING(HWITH FIX)

WARNING

EXTRACT ¥*N*

PRINT ERROR MESSAGE

142

HRITE (PRINTR,25) {ITYP(I,IER1),1=1,2)4NAME,IER2Z,IER

8H (IER =
RETURN
END

9I3+:1H))

2281044X+sABy4X01I2,




APPENDIX C

The Experimental Results
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10

i1

12

13

14

PROBLEM
LEVEL

-1

STRATEGY
LEVEL

NUMBER
LEVEL

144

CONSTRAINT
CORRELATION TIGHTNESS

LRI it

1 i

1 0

1 -1

6 i

0 0

0 -1
-1 1
-1 t
-1 -1

1 1

1 0

1 -1

0 i

a 0
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CONSTRAINT
PROBLEM  STRATEGY  NUMBER  CORRELATION TIGHTNESS
o8s LEVEL LEVEL LEVEL LEVEL EE!EE

15 -1 -1 0 0 -1
16 -1 -1 0 -1 i
17 -1 -1 0 -1 9
18 -1 -1 0 -1 =1
19 -1 -1 -1 1 1
20 -1 -1 -1 1 0
21 -1 -1 -1 i -1
22 -1 -1 -1 0 1
23 -1 -1 -1 0 0
24 -1 -1 -1 0 -1
25 -1 -1 -1 -1 1
26 -1 -1 -1 -1 0
27 -1 -1 -1 -1 -1

28 -1 1 1 1 1
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CONSTRAINT
PROBLEM  STRATEGY  NUMBER  CORRELATION TIGHTNESS
B LR umE e Thoe o

29 -1 1 1 1 0
30 -1 1 1 1 -1
31 -1 1 1 0 1
32 -1 1 1 0 0
33 -1 1 1 | 0 -1
34 -1 1 1 -1 1
35 -1 1 1 -1 0
. 36 -1 1 1 -1 -1
37 -1 I S 0 1 1
38 -1 1 o 1 0
39 -1 1 0 1 -1
40 -1 1 0 0 1
41 -1 1 0 0 0
42 -1 1 0 0 -1




0B8s

- e

43

LL N

45
46
47
48
49
50
51
52
53
54
55

56

FROBLEM
LEVEL

STRATEGY
LEVEL

NUMBER
LEVEL

CORRELATION
LEVEL
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CONSTRAINT
TIGHTNMESS
LEVEL
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_ CONSTRAINT
PROBLEM  STRATEGY  NUMBER  CORRELATION TIGHTNESS
08S LEVEL LEVEL LEVEL LE VEL LEVEL

57 1 -1 1 1 -1
58 1 -1 1 0 1
59 1 -1 1 0 0
60 1 -1 1 6 -1
61 1 -1 ' 1 -1 1
62 1 -1 1 -1 0
63 1 -1 1 -1 -1
6l 1 -1 0 1 1
65 1 -1 0 i a
66 1 -1 0 1 -1
67 1 -1 g 0 1
68 1 -1 0 0 0
69 1 : -1 i g -1

70 1 -1 0 -1 1




0BS

71

72

73

Th

75

76

77

78

79

80

81

a2

83

84

FROBLEMNM
LEVEL

STRATEGY
LEVEL

NUMBER
LEVEL

CORRELATION
LEVEL

149

CONSTRAINT
TIGHTNESS
LEVEL




150

CONSTRAINT
PROBLEM  STRATEGY  NUMBER  CORRELATION TIGHTNESS
BT LEMELLREL e v Lee

8s 1 1 1 0 1
86 1 1 1 0 0
87 1 1 1 0 -1
88 1 1 1 -1 1
89 1 1 1 -1 0
90 1 1 1 -1 -1
91 1 1 0 1 1
32 1 1. 0 1 0
93 1 1 0 1 -1
94 1 1 0 0 1
95 1 1 0 0 0
a6 1 1 0 0 -1
97 1 1 0 -1. 1

98 1 1 ¢ . =1 0




QBS

99

100

101

102

103

104

105

106

107

108

PROELEM
LEVEL

STRATEGY
LEVEL

NUMBER
LEVEL

CCRRELATION
LEVEL

151

CONSTRAINT
TIGHTNESS
LEVEL




JBS

14

11

12

13

14

RESFONSE

1270

o7

67

1475

Le

Lo

2113

79

79

902

160

160

1132

226

RESICUAL

5374

=183.7

236.1

=234,.10

'53200

198.9

227.6

-82043

1685.8

37144

-3k

-2El.4

TRANSFORMED

RESPONSE

3.103840

1.82600

1.86200

J«03140

1.8€270

1.66274

332480

1.89760

1.837640

2.95520

2.20410

2e20414Y

3.05380

2.35410

TRANSFORMED

RESIOUAL

«37114
=.33740
«111610
. «11840
-.?4360
-+23710
«23170
= +69160
~.18770
«18390
=-.08080
« 40550
«17130

=.039435

152




JB5S

15

16

17

148

19

20

21

22

23

24

25

26

er

28

Re3FONSE

22e

16610

3¢

3ée

645

130

740

749

79

832

142

142

475

RESIDUAL

417.%
33h.7
=354, 8
L33.7
=197.6
-209;5
333.6
-233.8
=317.9
309.1
-333.1
=312.2
338.6

=33

TRANSFORMED

KESPONSE

235410

3.26350

24507840

2.50780

2.835060

2411330

2.11390

2.897610

1.337640

1.89760

2.92810

2+15220

2.15220

2.67660

TRANSFORMED

RcSLOUAL

« 443060

« 275710

« 00570

« 497440

. 02590

=.23238

«23110

« 04550

=-,4829(0

=-«011540

« 025740

=«262610

« 216840

«03620

153




154

TRANSFORMED TRANSFORMED
003 esTNST sesioun mEstoNse | Resioun
29 43 ~10bo 4 1.63340 -.50280
30 43 30745 1.63340 -4 06070
31 692 2.4 2.864010 «17140
32 43 ~15644 1463340 - 53760
33 43 333.8 1.63340 =.04010
34 1091 271.2 3.03780 .27890
35 42 -209.4 1.62320 -.58260
3€ 42 359.1 1.62320 -.02970
37 553 -32645 2.76560 .« 05800
38 136 14744 2.13354 -.07988
39 136 L7847 2.13350 41450
40 674 -311.8 2.82860 .U5690
41 136 «117.9 2.13350 - 10480
42 133 491,30 2.12380 41870




oBs

43

bl

45

46

47

LE

49

51

52

53

S4

55

56

RESFUNSE

- - -

934

13¢

136

%565

106

10¢

604

10¢

1086

1152

1086

106

806

RESIDUAL

~128.1

<208.+4

509, 4

-bC4,7

=313.4

526.8

678,10

-32244%

531.3

TRAKSFOKMED

RESPONSE

297030

2413350

213350

2.75200

2402530

2.02530

2.73100

2.02530

2+.025348

3.06140

2.62530

2.02530

24498630

2.22780

TRANSFORMED

RESIDUAL

e 13650

-~,13000

44220

=.08470

- .26490

+28150

-.033840

-«28040

«288610

+14860

-,29580

« 29570

-+05550

'.22480

155




uBs

57

60

61

62

BJ

65

b6

67

bé

b9

70

RESFONSE

169

2571

550

2801

126

826

1354

740

70

1917

32

82

1682

RESIDUAL

41.2

915.1

=-374.9

356.1

568.7

-'120.2

565.9

199.6

-575.0

-65.5

403.7

=~75243

-?303

-190.1

TRANSFORMED

RESPONSE

LA L -k W ¥ P

2.22780

J.41018

2.74030

2474030

Je 44730

2+91690

2.91690

3.13160

1.84500

1.845040

J.28260

1.91380

1.9134a0

3.225480

TRANSF ORMED

RESIDUAL

« 28420

«26790

«10G4740

«b1120

« 12490

« 09650

«b0240

«13110

-+066908

=.18264

«170840

-.70880

-+ 21380

«002810

156




a8s

71
72
73
74
75
76
77
78
75
80
81
32
83

84

TRANSFORMED
RESFPONSE RESIDUAL FESPUONSE

- e e - e W e B - i e -

67 ~956.6 1.826400
94 -31.2 1.973140
1902 672.b 3.27920
289 -3¢7.3 246080
1490 4b.8 227870
1785 L1443 3.25160
277 ~466.7 2ell24(
173 6143 2425040
261y 1102.1 3.41730
367 =L34,1 2.56460
236 147,8 2+37650
42< =255.1 2.31480
244 -421.2 2.38730

244 -9,.,3 238730

TRANSFORMED

RESIDUAL

-,.30524

-+2006410

240110

-.11460

«166740

«17U30

~+ 16730

11210

23360

-.07950

«21194

+04b80

-.03850

« 40350

157




uBs

85

86

a7

o8

89

390

91

92

43

34

95

95

g7

98

RESFONSE

1294

244

244

244

3204

67

3izs

67

67

228¢

67

RESIDUAL

17.0

-3706

~525.1

43.7¢

177647

=73442

-108.1

1624.4

=7T64.7

=G2,.8

702.1

'795.1

TRANSFORMED
RESFONSE

3.11193

2438730

2.38730

3.11390

2.38730

2438730

3.505640

i1.82608

1.82604

3449520

1.825600

1.82600

3.,35830

1.82600

TRANSFLRMED

ReSIOUAL

- - - -

+15360

=-+07341

424l

+ 06540

‘010610

«44l70

«50840

=.067660

-«18240

+ 43390
-.20190
-+.16860

«23280

- 72700

158




159
TRANSFORMED TRANSFORMZD
095 LTaNsE ResIoUML mEsowst REsToUa:
39 67 “77b 1.82600 - 15480
100 2512 73445 3.40000 +27350
! 101 226 -711.2 2.35410 -.22570
102 118 211 2.07180 «03850
? 133 2514 714.2 3.40030 «23590
i‘ 104 22e -72042 2.35410 -.24120
ﬁ 165 118 25.5 2.07180 « 04560
106 2501 67848 3.39810 « 19570
107 Z2E -729.1 2435410 -.25660

1u8 118 23+ 9 2.07180 « 05274
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