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Summary. Stability selection was recently introduced by Meinshausen and Bühlmann as a very
general technique designed to improve the performance of a variable selection algorithm. It is
based on aggregating the results of applying a selection procedure to subsamples of the data.
We introduce a variant, called complementary pairs stability selection, and derive bounds both
on the expected number of variables included by complementary pairs stability selection that
have low selection probability under the original procedure, and on the expected number of high
selection probability variables that are excluded.These results require no (e.g. exchangeability)
assumptions on the underlying model or on the quality of the original selection procedure.
Under reasonable shape restrictions, the bounds can be further tightened, yielding improved
error control, and therefore increasing the applicability of the methodology.
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1. Introduction

The problem of variable selection has received a huge amount of attention over the last 15

years, motivated by the desire to understand structure in massive data sets that are now rou-

tinely encountered across many scientific disciplines. It is now very common, e.g. in biological

applications, image analysis and portfolio allocation problems as well as many others, for the

number of variables (or predictors) p that are measured to exceed the number of observations

n. In such circumstances, variable selection is essential for model interpretation.

In a notable recent contribution to the now vast literature on this topic, Meinshausen and

Bühlmann (2010) proposed stability selection as a very general technique designed to improve

the performance of a variable selection algorithm. The basic idea is that, instead of applying

one’s favourite algorithm to the whole data set to determine the selected set of variables, one

instead applies it several times to random subsamples of the data of size ⌊n=2⌋ and chooses those

variables that are selected most frequently on the subsamples. Stability selection is therefore inti-

mately connected with bagging (Breiman, 1996, 1999) and subagging (Bühlmann and Yu, 2002).

A particularly attractive feature of stability selection is the error control that is provided

by an upper bound on the expected number of falsely selected variables (Meinshausen and

Bühlmann (2010), theorem 1). Such control is typically unavailable when applying the original

selection procedure to the whole data set and allows the practitioner to select the threshold τ

for the proportion of subsamples for which a variable must be selected for it to be declared

significant.

Address for correspondence: Richard Samworth, Statistical Laboratory, Centre for Mathematical Sciences,
University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, UK.
E-mail: r.j.samworth@statslab.cam.ac.uk



56 R. D. Shah and R. J. Samworth

However, the bound does have a couple of drawbacks. Firstly, it applies to the ‘population

version’ of the subsampling process, i.e. to the version of the procedure that aggregates results

over the non-random choice of all . n
⌊n=2⌋/ subsamples. Even for n as small as 15, it is unrealistic to

expect this version to be used in practice, and in fact choosing around 100 random subsamples

is probably typical. More seriously, the bound is derived under a very strong exchangeability

assumption on the selection of noise variables (as well as a weak assumption on the quality of

the original selection procedure, namely that it is not worse than random guessing).

In this paper, we develop the methodology and conceptual understanding of stability selec-

tion in several respects. We introduce a variant of stability selection, where the subsamples

are drawn as complementary pairs from {1, . . . , n}. Thus the subsampling procedure outputs

index sets {.A2j−1, A2j/ :j =1, . . . , B}, where each Aj is a subset of {1, . . . , n} of size ⌊n=2⌋, and

A2j−1 ∩A2j =∅. We call this variant complementary pairs stability selection (CPSS).

At first glance it would seem that CPSS would be expected to yield very similar results to the

original version of stability selection. However, we show that CPSS in fact has the following

properties.

(a) The Meinshausen–Bühlmann bound holds for CPSS regardless of the number of com-

plementary pairs B chosen—even with B=1.

(b) There is a corresponding bound for the number of important variables excluded by CPSS.

(c) Our results have no conditions on the original selection procedure and in particular do not

require the strong exchangeability assumption on the selection of noise variables. Indeed,

we argue that even a precise definition of ‘signal’ and ‘noise’ variables is not helpful in

trying to understand the properties of CPSS, and we instead state the bounds in terms

of the expected number of variables chosen by CPSS that have low selection probability

under the base selection procedure, and the expected number of high selection probability

variables that are excluded by CPSS. See Section 2 for further discussion.

(d) The bound on the number of low selection probability variables chosen by CPSS can be

significantly sharpened under mild shape restrictions (e.g. unimodality or r-concavity)

on the distribution of the proportion of times that a variable is selected in both A2j−1

and A2j. We discuss these conditions in detail in Sections 3.2 and 3.3 respectively and

compare both the original and the new bounds to demonstrate the marked improvement.

Our improved bounds are based on new versions of Markov’s inequality that hold for random

variables whose distributions are unimodal or r-concave. However, it is important to note at

this point that the results are not just a theoretical contribution; they allow the practitioner

to reduce τ (and therefore to select more variables) for the same control of the number of low

selection probability variables chosen by CPSS. In Section 3.4, we give recommendations on

how a practitioner can make use of the bounds in applying CPSS.

In Section 4.1, we present the results of an extensive simulation study that was designed to

illustrate the appropriateness of our shape restrictions, and to compare stability selection and

CPSS with their base selection procedures. Section 4.2 gives an application of the methodology

to a colon cancer data set.

A review of some of the extensive literature on variable selection can be found in Fan and

Lv (2010). Work that is related more specifically to stability selection includes Bach (2008),

who studied the ‘bolasso’ (short for bootstrapped enhanced lasso). This involves applying the

lasso to bootstrap (with replacement) samples from the original data, rather than subsampling

without replacement. A final estimate is obtained by applying the lasso to the intersection of

the set of variables selected across the bootstrap samples. Various researchers, particularly in the

machine learning literature, have considered the stability of a feature selection algorithm, i.e. the
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insensitivity of the output of the algorithm to variations in the training set; such studies include

Lange et al. (2003), Kalousis et al. (2007), Kuncheva (2007), Loscalzo et al. (2009) and Han

and Yu (2010). Saeys et al. (2008) considered obtaining a final feature ranking by aggregating

the rankings across bootstrap samples.

2. Complementary pairs stability selection

To keep our discussion rather general, we assume only that we have vector-valued data z1, . . . , zn

which we take to be a realization of independent and identically distributed random elements

Z1, . . . , Zn. Informally, we think of some of the components of Zi as being ‘signal variables’,

and others as being ‘noise variables’, though for our purposes it is not necessary to define these

notions precisely. Formally, we let S ⊆{1, . . . , p} and N :={1, . . . , p}\S, thought of as the index

sets of the signal and noise variables respectively. A variable selection procedure is a statistic

Ŝn := Ŝn.Z1, . . . , Zn/ taking values in the set of all subsets of {1, . . . , p}, and we think of Ŝn as an

estimator of S. As a typical example, we may often write Zi = .Xi, Yi/ with the covariate Xi ∈R
p

and the response Yi ∈R, and our (pseudo-) log-likelihood might be of the form

n
∑

i=1

L.Yi, XT
i β/, .1/

forsomeβ∈R
p. Inthiscontext,weregardS :={k :βk �=0}asthesignal indices,andN ={k :βk =0}

as noise indices. Examples from graphical modelling can also be cast within our framework. Note,

however, that we do not require a (pseudo-) log-likelihood of the form (1).

We define the selection probability of a variable index k ∈{1, . . . , p} under Ŝn as

pk,n =P.k ∈ Ŝn/=E.1{k∈Ŝn}/: .2/

We take the view that, for understanding the properties of stability selection, the selection proba-

bilities pk,n are the fundamental quantities of interest. Since an application of stability selection

is contingent on a choice of base selection procedure Ŝn, all we can hope is that it selects variables

having high selection probability under the base procedure and avoids selecting those variables

with low selection probability. Indeed this turns out to be so; see theorem 1 below.

Of course, 1{k∈Ŝn} has a Bernoulli distribution with parameter pk,n, so we may view 1{k∈Ŝn} as

an unbiased estimator of pk,n (though pk,n is not a model parameter in the conventional sense).

The key idea of stability selection is to improve on this simple estimator of pk,n through sub-

sampling.

For a subset A={i1, . . . , i|A|}⊂{1, . . . , n} with ii < . . . <i|A|, we shall write

Ŝ.A/ := Ŝ|A|.Zi1 , . . . , Zi|A|/:

Definition 1 (CPSS). Let {.A2j−1, A2j/ : j = 1, . . . , B} be randomly chosen independent pairs

of subsets of {1, . . . , n} of size ⌊n=2⌋ such that A2j−1 ∩A2j =∅. For τ ∈ [0, 1], the CPSS version of

a variable selection procedure Ŝn is Ŝ
CPSS

n,τ ={k : Π̂B.k/� τ}, where the function Π̂B :{1, . . . , p}→
{0, 1=.2B/, 1=B, . . . , 1} is given by

Π̂B.k/ :=
1

2B

2B
∑

j=1

1{k∈Ŝ.Aj/}: .3/

Note that Π̂B.k/ is an unbiased estimator of pk,⌊n=2⌋, but, in general, a biased estimator of pk,n.

However, by means of the averaging that is involved in expression (3), we hope that Π̂B.k/will have

reduced variance compared with 1{k∈Ŝn}, and that this increased stability will more than compen-
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sate for the bias incurred. Indeed, this is so in other situations where bagging and subagging

have been successfully applied, such as classification trees (Breiman, 1996) or nearest neighbour

classifiers (Hall and Samworth, 2005; Biau et al., 2010; Samworth, 2011).

An alternative to subsampling complementary pairs would be to use bootstrap sampling. We

have found that this gives very similar estimates of pk,n, though most of our theoretical arguments

do not apply when the bootstrap is used (the approach in Section 3.3.1 is an exception in this

regard). In fact, taking subsamples of size⌊n=2⌋ can be thought of as the subsampling scheme that

most closely mimics the bootstrap (e.g. Dümbgen et al. (2012)).

It is convenient at this stage to define another related selection procedure based on sample

splitting.

Definition 2 (simultaneous selection). Let {.A2j−1, A2j/ : j = 1, . . . , B} be randomly chosen

independent pairs of subsets of {1, . . . , n} of size ⌊n=2⌋ such that A2j−1 ∩ A2j =∅. For τ ∈ [0, 1],

the simultaneous selection version of Ŝn is ŜSIM
n,τ ={k : Π̃B.k/� τ}, where

Π̃B.k/ :=
1

B

B
∑

j=1

1{k∈Ŝ.A2j−1/} 1{k∈Ŝ.A2j/}: .4/

For our purposes, simultaneous selection is a tool for understanding the properties of CPSS.

However, the special case of B = 1 of simultaneous selection was studied by Fan et al. (2009),

and a variant involving all possible disjoint pairs of subsets was considered in Meinshausen and

Bühlmann (2010).

3. Theoretical properties

3.1. Worst-case bounds

In theorem 1 below, we show that the expected number of low selection probability variables

chosen by CPSS is controlled in terms of the expected number chosen by the original selection

procedure, with a corresponding result for the expected number of high selection probability

variables not chosen by CPSS. The appealing feature of these results is their generality: they

require no assumptions on the underlying model or on the quality of the original selection pro-

cedure, and they apply regardless of the number B of complementary pairs of subsets chosen.

For θ∈ [0, 1], let Lθ ={k :pk,⌊n=2⌋ �θ} denote the set of variable indices that have low selection

probability under Ŝ⌊n=2⌋, and let Hθ = {k : pk,⌊n=2⌋ > θ} denote the set of those that have high

selection probability.

Theorem 1.

(a) If τ ∈ . 1
2

, 1], then

E|ŜCPSS

n,τ ∩Lθ|�
θ

2τ −1
E|Ŝ⌊n=2⌋ ∩Lθ|:

(b) Let N̂
CPSS
n,τ ={1, . . . , p}\Ŝ

CPSS

n,τ and N̂n ={1, . . . , p}\Ŝn. If τ ∈ [0, 1
2
/, then

E|N̂CPSS
n,τ ∩Hθ|�

1−θ

1−2τ
E|N̂⌊n=2⌋ ∩Hθ|:

In many applications, and for a good base selection procedure, we imagine that the set of

selection probabilities {pk,⌊n=2⌋ : k =1, . . . , p} is positively skewed in [0, 1], with many selection

probabilities being very low (predominantly noise variables), and with just a few being large
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(including at least some of the signal variables). To illustrate theorem 1, part (a), consider a

situation with p = 1000 variables and where the base selection procedure chooses 50 of them.

Then theorem 1, part (a), shows that on average CPSS with τ = 0:6 selects no more than a

quarter of the below-average selection probability variables chosen by Ŝ⌊n=2⌋.

Our theorem 1, part (a), is analogous to theorem 1 of Meinshausen and Bühlmann (2010).

The differences are that we do not require the condition that {1{k∈Ŝ⌊n=2⌋}
:k∈N} is exchangeable,

nor that the original procedure is no worse than random guessing, and our result holds for all

B. The price that we pay is that the bound is stated in terms of the expected number of low selec-

tion probability variables chosen by CPSS, rather than the expected number of noise variables,

which we do for the reasons that were described in Section 2. If the exchangeability and random

guessing conditions mentioned above do hold, then, writing q :=E|Ŝ⌊n=2⌋|, we recover

E|ŜCPSS

n,τ ∩N|�
1

2τ −1

q

p
E|Ŝ⌊n=2⌋ ∩Lq=p|�

1

2τ −1

q2

p
:

The final bound here was obtained in theorem 1 of Meinshausen and Bühlmann (2010) for the

population version of stability selection.

3.2. Improved bounds under unimodality

Despite the attractions of theorem 1, the following observations suggest that there may be scope

for improvement. Firstly, we expect we should be able to obtain tighter bounds as B increases.

Secondly, and more importantly, examination of the proof of theorem 1, part (a), shows that

our bound relies on first noting that

1+ Π̃B.k/�2 Π̂B.k/, .5/

and then applying Markov’s inequality to Π̃B.k/. For equality in Markov’s inequality, Π̃B.k/

must be a mixture of point masses at 0 and 2τ − 1, but Fig. 1 suggests that the distribution of

Π̃B.k/, which is supported on {0, 1=B, 2=B, . . . , 1}, can be very different from this. Indeed, our

experience, based on extensive simulation studies, is that when θ is close to q=p (which is where

the bound in theorem 1, part (a), is probably of most interest), the distribution of Π̃B.k/ over

k ∈ Lθ is remarkably consistent over different data-generating processes, and Fig. 1 is typical.

It is therefore natural to consider placing shape restrictions on the distribution of Π̃B.k/ which

encompass what we see in practice, and which yield stronger versions of Markov’s inequality.

As a first step in this direction, we consider the assumption of unimodality.

Theorem 2. Suppose that the distribution of Π̃B.k/ is unimodal for each k ∈ Lθ. If τ ∈ { 1
2
+

1=B, 1
2
+3=.2B/, 1

2
+2=B, . . . , 1}, then

E|ŜCPSS

n,τ ∩Lθ|�C.τ , B/θE|Ŝ⌊n=2⌋ ∩Lθ|,

where, when θ �1=
√

3,

C.τ , B/=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

2{2τ −1−1=.2B/}
if τ ∈ .min{ 1

2
+θ2, 1

2
+1=.2B/+ 3

4
θ2}, 3

4
]

4{1− τ +1=.2B/}

1+1=B
if τ ∈ . 3

4
, 1]:

:

The proof of theorem 2 is based on a new version of Markov’s inequality (theorem 3 in Appendix

A) for random variables with unimodal distributions supported on a finite lattice. There is also

an explicit expression for C.τ , B/ when θ>1=
√

3, which follows from theorem 3 in the same way,
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Fig. 1. Typical example of (a)–(c) the full probability mass function and (e)–(g) zoomed in from 0.2 onwards of
Π̃25.k/ for k 2Lq=p ( ), alongside (a), (e) the unrestricted, (b), (f) unimodal and (c), (g) � 1

2 -concave distribu-
tions ( ), which have maximum tail probability beyond 0.2 (this situation corresponds to selecting τ D0.6), and
(d) the observed mass function () and the extremal � 1

2 -concave mass function (×) on the x�1=2-scale and
(h) tail probabilities from 0.2 onwards for each of the distributions
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Fig. 2. Comparison of the bounds on EjŜCPSS
n,τ \Lq=pj for various values of the threshold τ : – – –, original

bound from theorem 1 of Meinshausen and Bühlmann (2010); � - � - �, our worst-case bound; . . . . . . ., unimodal
bound; - - - - - - - , r -concave bound (8); , true value of EjŜCPSS

n,τ \ Lq=pj for a simulated example (in this
case pD1000, qD50 and the number of signal variables was 8)

but we do not present it here because it is a little more complicated, and because we anticipate

the bound when θ is (much) smaller than 1=
√

3 being of most use in practice. See Section 3.4

for further discussion.

Fig. 2 compares the bounds that are provided by theorem 1 and theorem 2 as a function of

τ , for the illustration discussed after the statement of theorem 1.

3.3. Further improvements under r-concavity

The unimodal assumption allows for a significant improvement in the bounds that are attainable

from a naive application of Markov’s inequality. However, Fig. 1 suggests that further gains

may be realized by placing tighter constraints on the family of distributions for Π̃B.k/ that we

consider, to match better the empirical distributions that we see in practice.

A very natural constraint to impose on the distribution of Π̃B.k/ is log-concavity. By this,

we mean that, if f denotes the probability mass function of Π̃B.k/, then the linear interpol-

ant to {.i, f.i=B// : i= 0, 1, . . . , B} is a log-concave function on [0, 1]. Log-concavity is a shape

constraint that has received a large amount of attention recently (e.g. Walther (2002), Dümb-

gen and Rufibach (2009) and Cule et al. (2010)), and at first sight it seems reasonable in our

context, because, if the summands in expression (4) were independent, then we would have

Π̃B.k/∼ .1=B/ Bin.B, p2
k,⌊n=2⌋/, which is log-concave.

It is indeed possible to obtain a version of Markov’s inequality under log-concavity that leads

to another improvement in the bound on E|ŜCPSS
n,τ ∩ Lθ|. However, we found that, in practice,

the dependence structure of the summands in expression (4) meant that the log-concavity con-

straint was a little too strong. We therefore consider instead the class of r-concave distributions,

which we claim defines a continuum of constraints that interpolate between log-concavity and

unimodality (see propositions 1 and 2 below). This constraint has also been studied recently

in the context of density estimation by Seregin and Wellner (2010) and Koenker and Mizera

(2010); see also Dharmadhikari and Joag-Dev (1988).

To define the class, we recall that the rth generalized mean Mr.a, b;λ/ of a, b�0 is given by

Mr.a, b;λ/={.1−λ/ar +λbr}1=r
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for r > 0. This is also well defined for r < 0 if we take Mr.a, b;λ/ = 0 when ab = 0, and define

0r =∞. In addition, we may define

M0.a, b;λ/ := lim
r→0

Mr.a, b;λ/=a1−λbλ,

M−∞.a, b;λ/ := lim
r→−∞

Mr.a, b;λ/=min.a, b/:

We can now define r-concavity.

Definition 3. A non-negative function f on an interval I ⊂R is r concave if, for every x, y ∈ I

and λ∈ .0, 1/, we have

f{.1−λ/x+λy}�Mr{f.x/, f.y/;λ}:

Definition 4. A probability mass function f supported on {0, 1=B, 2=B, . . . , 1} is r concave if

the linear interpolant to {.i, f.i=B// : i=0, 1, . . . , B} is r concave.

When r < 0, it is easy to see that f is r concave if and only if f r is convex. Let Fr denote

the class of r-concave probability mass functions on {0, 1=B, 2=B, . . . , 1}. Then each f ∈ Fr

is unimodal and, as Mr.a, b;λ/ is non-decreasing in r for fixed a and b, we have Fr ⊃Fr′ for

r < r′. Furthermore, f is unimodal if it is −∞ concave, and f is log-concave if it is 0 concave.

The following two results further support the interpretation of r-concavity for r ∈ [−∞, 0] as an

interpolation between log-concavity and unimodality.

Proposition 1. A function f is log-concave if and only if it is r concave for every r< 0.

Proposition 2. Let f be a unimodal probability mass function supported on {0, 1=B, 2=B, . . . ,1}
and suppose both that f.0/ < . . .< f.l=B/ = f{.l+1/=B} = . . . = f.u=B/ and that f.u=B/ >

f{.u+1/=B}> . . . >f.1/, for some l�u. Then f is r concave for some r< 0.

In proposition 5 in Appendix A, we present a result that characterizes those r-concave dis-

tributions that attain equality in a version of Markov’s inequality for random variables with

r-concave distributions on {0, 1=B, 2=B, . . . , 1}. If we assume that Π̃B.k/ is r concave for all

k ∈Lθ, using inequality (5), for these variables we can obtain a bound of the form

P{Π̂B.k/� τ}�D.p2
k,⌊n=2⌋, 2τ −1, B, r/�D.θ2, 2τ −1, B, r/ .6/

where D.η, t, B, r/ denotes the maximum of P.X� t/ over all r-concave random variables sup-

ported on {0, 1=B, 2=B, . . . , 1} with E.X/ � η. Although D does not appear to have a closed

form, it is straightforward to compute numerically, as we describe in Appendix A.4. The lack

of a simple form means that a direct analogue of theorem 2 is not available. We can neverthe-

less obtain the following bound on the expected number of low selection probability variables

chosen by CPSS:

E|ŜCPSS

n,τ ∩Lθ|=
∑

k∈Lθ

P{Π̂B.k/� τ}�D.θ2, 2τ −1, B, r/|Lθ|: .7/

Our simulation studies suggest that r =− 1
2

is a sensible choice to use for the bound. In other

words, if f denotes the probability mass function of Π̃B.k/, then the linear interpolant to

{.i, f.i=B/−1=2/ : i = 0, 1, . . . , B} is typically well approximated by a convex function. This is

illustrated in Fig. 1(d) (note that the right-hand tail in this plot corresponds to tiny probabilities).

3.3.1. Lowering the threshold τ

The bounds obtained thus far have used the relationship (5) to convert a Markov bound for

Π̃B.k/ into a corresponding bound for the statistic of interest, Π̂B.k/. The advantage of this
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Fig. 3. Typical example of the probability mass function of Π̂25.k/ for k 2Lq=p ( , ), alongside the � 1
4 -con-

cave distribution ( , �), which has maximum tail probability beyond 0.4

approach is that E{Π̃B.k/} = p2
k,⌊n=2⌋ is much smaller than E{Π̂B.k/} = pk,⌊n=2⌋ for variables

with low selection probability, so the Markov bound is quite tight. However, for τ close to 1
2

,

inequality (5) starts to become weak, and bounds can only be obtained for τ > 1
2

in any case.

To solve this problem, we can apply our versions of Markov’s inequality directly to Π̂B.k/.

We have found, through our simulations, that, for variables with low selection probability, the

distribution of Π̂B.k/ can be modelled very well as a − 1
4

-concave distribution (Fig. 3). That the

distribution of Π̂B.k/ is closer to log-concavity than that of Π̃B.k/ is intuitive because, although

the summands in expression (3) are not independent, terms involving subsamples which have

little overlap will be close to independent. If we assume that Π̃B.k/ is − 1
2

concave and that Π̂B.k/

is − 1
4

concave for all k ∈Lθ, we can obtain our best bound

E|ŜCPSS

n,τ ∩Lθ|�min{D.θ2, 2τ −1, B,−1
2
/, D.θ, τ , 2B, − 1

4
/}|Lθ|, .8/

which is valid for all τ ∈ .θ, 1], provided that we adopt the convention that D.·, t, · , ·/ = 1 for

t � 0. The resulting improvements in the bounds can been seen in Fig. 2. Note the kink in

Fig. 2 for the r-concave bound (8) just before τ = 0:6. This corresponds to the transition from

where D.θ, τ , 2B, − 1
4
/ is smaller to where D.θ2, 2τ −1, B, − 1

2
/ is smaller.

We applied the algorithm that is described in Appendix A.4 to produce tables of values of

min{D.θ2, 2τ −1, 50,−1
2
/, D.θ, τ , 100,− 1

4
/}

over a grid of θ- and τ -values; see Table 1 and Table 2.

3.4. How to use these bounds in practice

The quantities |Lθ| and E|Ŝ⌊n=2⌋ ∩Lθ|, which appear on the right-hand sides of the bounds, will

in general be unknown to the statistician. Thus, when using the bounds, they will typically need

to be replaced by p and q respectively. In addition, several parameters must be selected, and in

this section we go through each of these in turn and give guidance on how to choose them.

3.4.1. Choice of B

We recommend B = 50 as a default value. Choosing B larger than this increases the computa-

tional burden, and may lead to the r-concavity assumptions being violated.
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Table 1. Values of min{D.θ2, 2τ � 1, 50, � 1
2 /, D.θ, τ , 100, � 1

4 /} for θ 2 {0.01,
0.02, 0.03, 0.04, 0.05}

τ Results for the following values of θ:

0.01 0.02 0.03 0.04 0.05

0.30 6:11×10−4 2:70×10−3 6:51×10−3 1:21×10−2 1:93×10−2

0.31 5:57×10−4 2:47×10−3 5:99×10−3 1:12×10−2 1:79×10−2

0.32 5:08×10−4 2:26×10−3 5:52×10−3 1:03×10−2 1:66×10−2

0.33 4:65×10−4 2:08×10−3 5:10×10−3 9:57×10−3 1:55×10−2

0.34 4:27×10−4 1:92×10−3 4:71×10−3 8:88×10−3 1:44×10−2

0.35 3:92×10−4 1:77×10−3 4:36×10−3 8:25×10−3 1:34×10−2

0.36 3:61×10−4 1:64×10−3 4:05×10−3 7:68×10−3 1:25×10−2

0.37 3:33×10−4 1:51×10−3 3:76×10−3 7:15×10−3 1:17×10−2

0.38 3:08×10−4 1:40×10−3 3:50×10−3 6:67×10−3 1:09×10−2

0.39 2:85×10−4 1:30×10−3 3:26×10−3 6:23×10−3 1:02×10−2

0.40 2:64×10−4 1:21×10−3 3:04×10−3 5:82×10−3 9:59×10−3

0.41 2:45×10−4 1:13×10−3 2:83×10−3 5:45×10−3 9:00×10−3

0.42 2:27×10−4 1:05×10−3 2:65×10−3 5:10×10−3 8:44×10−3

0.43 2:12×10−4 9:81×10−4 2:48×10−3 4:78×10−3 7:93×10−3

0.44 1:97×10−4 9:16×10−4 2:32×10−3 4:48×10−3 7:45×10−3

0.45 1:84×10−4 8:56×10−4 2:17×10−3 4:21×10−3 7:01×10−3

0.46 1:71×10−4 8:01×10−4 2:03×10−3 3:95×10−3 6:60×10−3

0.47 1:60×10−4 7:50×10−4 1:91×10−3 3:72×10−3 6:21×10−3

0.48 1:50×10−4 7:02×10−4 1:79×10−3 3:50×10−3 5:85×10−3

0.49 1:40×10−4 6:58×10−4 1:68×10−3 3:29×10−3 5:52×10−3

0.50 1:31×10−4 6:18×10−4 1:58×10−3 3:10×10−3 5:20×10−3

0.51 1:23×10−4 5:80×10−4 1:49×10−3 2:92×10−3 4:91×10−3

0.52 1:15×10−4 5:45×10−4 1:40×10−3 2:75×10−3 4:63×10−3

0.53 1:08×10−4 5:12×10−4 1:32×10−3 2:59×10−3 4:37×10−3

0.54 1:01×10−4 4:81×10−4 1:24×10−3 2:44×10−3 4:13×10−3

0.55 9:51×10−5 4:52×10−4 1:17×10−3 2:30×10−3 3:90×10−3

0.56 8:93×10−5 4:26×10−4 1:10×10−3 2:17×10−3 3:68×10−3

0.57 8:39×10−5 4:01×10−4 1:04×10−3 2:05×10−3 3:48×10−3

0.58 7:89×10−5 3:77×10−4 9:78×10−4 1:94×10−3 3:29×10−3

0.59 7:41×10−5 3:55×10−4 9:22×10−4 1:83×10−3 2:99×10−3

0.60 6:97×10−5 3:34×10−4 8:69×10−4 1:64×10−3 2:61×10−3

0.61 6:56×10−5 3:15×10−4 7:99×10−4 1:45×10−3 2:30×10−3

0.62 6:16×10−5 2:96×10−4 7:12×10−4 1:29×10−3 2:05×10−3

0.63 5:80×10−5 2:78×10−4 6:38×10−4 1:16×10−3 1:84×10−3

0.64 5:45×10−5 2:51×10−4 5:76×10−4 1:04×10−3 1:66×10−3

0.65 5:13×10−5 2:27×10−4 5:22×10−4 9:46×10−4 1:51×10−3

0.66 4:82×10−5 2:07×10−4 4:75×10−4 8:61×10−4 1:37×10−3

0.67 4:53×10−5 1:89×10−4 4:33×10−4 7:86×10−4 1:25×10−3

0.68 4:23×10−5 1:73×10−4 3:97×10−4 7:20×10−4 1:15×10−3

0.69 3:88×10−5 1:58×10−4 3:64×10−4 6:60×10−4 1:05×10−3

0.70 3:56×10−5 1:45×10−4 3:35×10−4 6:07×10−4 9:68×10−4

0.71 3:28×10−5 1:34×10−4 3:08×10−4 5:59×10−4 8:91×10−4

0.72 3:02×10−5 1:23×10−4 2:84×10−4 5:15×10−4 8:21×10−4

0.73 2:79×10−5 1:14×10−4 2:62×10−4 4:76×10−4 7:58×10−4

(continued)
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Table 1 (continued )

τ Results for the following values of θ:

0.01 0.02 0.03 0.04 0.05

0.74 2:57×10−5 1:05×10−4 2:42×10−4 4:39×10−4 7:00×10−4

0.75 2:37×10−5 9:70×10−5 2:23×10−4 4:06×10−4 6:47×10−4

0.76 2:19×10−5 8:95×10−5 2:06×10−4 3:75×10−4 5:97×10−4

0.77 2:02×10−5 8:27×10−5 1:90×10−4 3:46×10−4 5:52×10−4

0.78 1:87×10−5 7:63×10−5 1:76×10−4 3:20×10−4 5:10×10−4

0.79 1:72×10−5 7:04×10−5 1:62×10−4 2:95×10−4 4:70×10−4

0.80 1:59×10−5 6:48×10−5 1:50×10−4 2:72×10−4 4:34×10−4

0.81 1:46×10−5 5:97×10−5 1:38×10−4 2:51×10−4 3:99×10−4

0.82 1:34×10−5 5:48×10−5 1:27×10−4 2:30×10−4 3:67×10−4

0.83 1:23×10−5 5:03×10−5 1:16×10−4 2:12×10−4 3:37×10−4

0.84 1:13×10−5 4:60×10−5 1:06×10−4 1:94×10−4 3:09×10−4

0.85 1:03×10−5 4:20×10−5 9:71×10−5 1:77×10−4 2:82×10−4

0.86 9:35×10−6 3:82×10−5 8:84×10−5 1:61×10−4 2:57×10−4

0.87 8:47×10−6 3:46×10−5 8:02×10−5 1:46×10−4 2:33×10−4

0.88 7:64×10−6 3:12×10−5 7:24×10−5 1:32×10−4 2:11×10−4

0.89 6:85×10−6 2:80×10−5 6:50×10−5 1:19×10−4 1:89×10−4

0.90 6:10×10−6 2:49×10−5 5:80×10−5 1:06×10−4 1:69×10−4

3.4.2. Choice of θ

As mentioned at the beginning of Section 3.2, θ = q=p is a natural choice. In other words, we

regard the below-average selection probability variables as the irrelevant variables. Other choices

of θ are possible, but the use of expressions (6) and (7) to construct the bound suggests that the

inequality will be tightest when most of the variables have a selection probability that is close to θ.

3.4.3. Choice of q and threshold τ

One can regard the choice of q=E.|Ŝ⌊n=2⌋|/ (which is usually fixed through a tuning parameter

λ) as part of the choice of the base selection procedure. One option is to fix q by varying λ at

each evaluation of the selection procedure until it selects q variables. However, if the number of

variables selected at each iteration is unknown in advance (e.g. if λ is fixed, or if cross-validation

is used to choose λ at each iteration), then q can be estimated by Σ
p

k=1Π̂B.k/.

An important point to note is that, although choosing λ or q is usually crucial when carrying

out variable selection, this is not so when using CPSS. Our experience is that the performance of

CPSS is surprisingly insensitive to the choice of q (see also Meinshausen and Bühlmann (2010)).

That is to say, Lq=p does not vary much as q varies, and also the final selected sets for different

values of q tend to be similar (where different thresholds are chosen to control the selection

of variables in Lq=p at a prespecified level). Thus, when using CPSS, it is the threshold τ that

plays a role similar to that of a tuning parameter for the base procedure. The great advantage of

CPSS is that our bounds allow us to choose τ to control the expected number of low selection

probability variables selected.

To summarize: we recommend as a sensible default CPSS procedure taking B=50 and θ=q=p.

We then choose τ by using the bound (8) with |Lθ| replaced by p to control the expected number

of low selection probability variables chosen.
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Table 2. Values of min{D.θ2, 2τ � 1, 50, � 1
2 /, D.θ, τ , 100, � 1

4 /} for θ 2 {0.06,
0.07, 0.08, 0.09, 0.1}

τ Results for the following values of θ:

0.06 0.07 0.08 0.09 0.10

0.30 2:81×10−2 3:82×10−2 4:97×10−2 6:24×10−2 7:63×10−2

0.31 2:61×10−2 3:57×10−2 4:64×10−2 5:84×10−2 7:14×10−2

0.32 2:43×10−2 3:33×10−2 4:35×10−2 5:47×10−2 6:70×10−2

0.33 2:27×10−2 3:12×10−2 4:08×10−2 5:14×10−2 6:30×10−2

0.34 2:12×10−2 2:92×10−2 3:83×10−2 4:83×10−2 5:93×10−2

0.35 1:98×10−2 2:73×10−2 3:59×10−2 4:55×10−2 5:59×10−2

0.36 1:85×10−2 2:57×10−2 3:38×10−2 4:29×10−2 5:28×10−2

0.37 1:74×10−2 2:41×10−2 3:18×10−2 4:04×10−2 4:99×10−2

0.38 1:63×10−2 2:26×10−2 2:99×10−2 3:81×10−2 4:72×10−2

0.39 1:53×10−2 2:13×10−2 2:82×10−2 3:60×10−2 4:46×10−2

0.40 1:43×10−2 2:00×10−2 2:66×10−2 3:40×10−2 4:22×10−2

0.41 1:35×10−2 1:89×10−2 2:51×10−2 3:22×10−2 4:00×10−2

0.42 1:27×10−2 1:78×10−2 2:37×10−2 3:04×10−2 3:79×10−2

0.43 1:19×10−2 1:68×10−2 2:24×10−2 2:88×10−2 3:59×10−2

0.44 1:12×10−2 1:58×10−2 2:11×10−2 2:72×10−2 3:40×10−2

0.45 1:06×10−2 1:49×10−2 2:00×10−2 2:58×10−2 3:23×10−2

0.46 9:98×10−3 1:41×10−2 1:89×10−2 2:44×10−2 3:06×10−2

0.47 9:41×10−3 1:33×10−2 1:79×10−2 2:31×10−2 2:90×10−2

0.48 8:88×10−3 1:26×10−2 1:69×10−2 2:19×10−2 2:76×10−2

0.49 8:38×10−3 1:19×10−2 1:60×10−2 2:08×10−2 2:62×10−2

0.50 7:92×10−3 1:12×10−2 1:52×10−2 1:97×10−2 2:48×10−2

0.51 7:48×10−3 1:06×10−2 1:44×10−2 1:87×10−2 2:36×10−2

0.52 7:07×10−3 1:01×10−2 1:36×10−2 1:77×10−2 2:24×10−2

0.53 6:68×10−3 9:53×10−3 1:29×10−2 1:68×10−2 2:13×10−2

0.54 6:32×10−3 9:02×10−3 1:22×10−2 1:60×10−2 2:02×10−2

0.55 5:98×10−3 8:54×10−3 1:16×10−2 1:52×10−2 1:92×10−2

0.56 5:65×10−3 8:09×10−3 1:10×10−2 1:44×10−2 1:83×10−2

0.57 5:35×10−3 7:66×10−3 1:04×10−2 1:37×10−2 1:73×10−2

0.58 5:06×10−3 7:13×10−3 9:49×10−3 1:22×10−2 1:54×10−2

0.59 4:39×10−3 6:09×10−3 8:10×10−3 1:04×10−2 1:31×10−2

0.60 3:82×10−3 5:30×10−3 7:04×10−3 9:08×10−3 1:14×10−2

0.61 3:37×10−3 4:67×10−3 6:21×10−3 8:00×10−3 1:01×10−2

0.62 3:01×10−3 4:17×10−3 5:54×10−3 7:14×10−3 8:97×10−3

0.63 2:70×10−3 3:74×10−3 4:98×10−3 6:42×10−3 8:06×10−3

0.64 2:44×10−3 3:38×10−3 4:50×10−3 5:80×10−3 7:29×10−3

0.65 2:21×10−3 3:07×10−3 4:08×10−3 5:26×10−3 6:62×10−3

0.66 2:01×10−3 2:79×10−3 3:72×10−3 4:79×10−3 6:03×10−3

0.67 1:84×10−3 2:55×10−3 3:40×10−3 4:38×10−3 5:51×10−3

0.68 1:68×10−3 2:34×10−3 3:11×10−3 4:01×10−3 5:05×10−3

0.69 1:55×10−3 2:14×10−3 2:86×10−3 3:68×10−3 4:64×10−3

0.70 1:42×10−3 1:97×10−3 2:63×10−3 3:39×10−3 4:27×10−3

0.71 1:31×10−3 1:82×10−3 2:42×10−3 3:12×10−3 3:93×10−3

0.72 1:21×10−3 1:68×10−3 2:23×10−3 2:88×10−3 3:63×10−3

0.73 1:11×10−3 1:55×10−3 2:06×10−3 2:66×10−3 3:35×10−3

(continued)
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Table 2 (continued )

τ Results for the following values of θ:

0.06 0.07 0.08 0.09 0.10

0.74 1:03×10−3 1:43×10−3 1:90×10−3 2:46×10−3 3:09×10−3

0.75 9:51×10−4 1:32×10−3 1:76×10−3 2:27×10−3 2:86×10−3

0.76 8:78×10−4 1:22×10−3 1:63×10−3 2:10×10−3 2:64×10−3

0.77 8:12×10−4 1:13×10−3 1:50×10−3 1:94×10−3 2:44×10−3

0.78 7:50×10−4 1:04×10−3 1:39×10−3 1:79×10−3 2:26×10−3

0.79 6:92×10−4 9:61×10−4 1:28×10−3 1:65×10−3 2:08×10−3

0.80 6:38×10−4 8:86×10−4 1:18×10−3 1:53×10−3 1:92×10−3

0.81 5:88×10−4 8:16×10−4 1:09×10−3 1:41×10−3 1:77×10−3

0.82 5:41×10−4 7:51×10−4 1:00×10−3 1:29×10−3 1:63×10−3

0.83 4:97×10−4 6:89×10−4 9:20×10−4 1:19×10−3 1:50×10−3

0.84 4:55×10−4 6:32×10−4 8:43×10−4 1:09×10−3 1:37×10−3

0.85 4:16×10−4 5:77×10−4 7:71×10−4 9:95×10−4 1:25×10−3

0.86 3:79×10−4 5:26×10−4 7:02×10−4 9:07×10−4 1:14×10−3

0.87 3:44×10−4 4:77×10−4 6:37×10−4 8:23×10−4 1:04×10−3

0.88 3:11×10−4 4:31×10−4 5:76×10−4 7:44×10−4 9:37×10−4

0.89 2:79×10−4 3:88×10−4 5:18×10−4 6:69×10−4 8:42×10−4

0.90 2:49×10−4 3:46×10−4 4:63×10−4 5:97×10−4 7:53×10−4

4. Numerical properties

4.1. Simulation study

In this section we investigate the performance and validity of the bounds that were derived in

the previous section by applying CPSS to simulated data. We consider both linear and logistic

regression and different values of p and n. In each of these settings, we first generate independent

explanatory vectors X1, . . . , Xn with each Xi ∼ Np.0, Σ/. We use a Toeplitz covariance matrix

Σ with entries

Σij =ρ‖i−j|−p=2|−p=2,

and we look at various values of ρ in [0, 1/. So the correlation between the components decays

exponentially with the distance between them in Zp.

For linear regression, we generate a vector of errors "∼Nn.0, σ2I/ and set

Y =Xβ + ",

where the design matrix X has ith row XT
i . The error variance σ2 is chosen to achieve different

values of the signal-to-noise ratio SNR, which we define here by

SNR2 =
E‖Xβ‖2

E‖"‖2
:

For logistic regression, we generate independent responses

Yi ∼Bin.1, pi/, i=1, . . . , n,

where
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log

(

pi

1−pi

)

=γXT
i β:

Here γ is a scaling factor which is chosen to achieve a particular Bayes error rate.

In both cases, we fix the p-dimensional vector of coefficients β to have s≪p non-zero com-

ponents, s=2 of which we choose as equally spaced points within [−1, −0:5] with the remaining

s=2 equally spaced in [0:5, 1]. The indices of the non-zero components, S, are chosen to follow

a geometric progression up to rounding, with first term 1 and .s+1/th term p+1. The values

are then randomly assigned to each index in S, but this choice is then fixed for each particular

simulation setting.

With ρ>0, this set-up will have several signal variables correlated among themselves, and also

some signal correlated with noise. In this way, the framework above includes a very wide variety

of different data-generating processes on which we can test the theory of the previous section.

By varying the base selection procedure, its tuning parameters, the values of ρ, n, p, s and

also SNR and Bayes error rates, we have applied CPSS in several hundred different simulation

settings. For brevity, we present only a subset of these numerical experiments below, but the

results from those omitted are not qualitatively different.

In the graphs which follow, we look at CPSS applied to the lasso (Tibshirani, 1996), which

we implemented by using the package glmnet (Friedman et al., 2010) in R (R Development

Core Team, 2010). We follow the original stability selection procedure that was put forward

in Meinshausen and Bühlmann (2010) and compare this with the method suggested by our

r-concave bound (8). Thus we first choose the level l at which we wish to control the expected

number of low selection probability variables (so we aim to have E|ŜCPSS
n,τ ∩Lq=p|� l). Then we

fix q=
√

.0:8lp/ and set the threshold τ at 0.9. This ensures that, according to the original worst-

case bound, we control the expected number of low selection probability variables selected at

the required level. In the r-concave case, we take our threshold as

τ̃ =min{τ ∈{0, 1=.2B/, . . . , 1} : min{D.q2=p2, 2τ −1, B, − 1
2
/, D.q=p, τ , 2B, − 1

4
/}� l=p}:

We also give the results that we would obtain by using the lasso alone, but with the benefit of an

oracle which knows the optimal value of the tuning parameter λ, i.e. we take ŜλÅ

n as our selected

set, where

λÅ = inf{λ : E|Ŝλ

n ∩Lq=p|� l},

and Ŝ
λ

n is the selected set when using the lasso with tuning parameter λ applied to the whole

data set.

We present all of our results relative to the performance of CPSS using an oracle-driven

threshold τÅ, where τÅ is defined by

τÅ =min{τ ∈{0, 1=.2B/, . . . , 1} : E|ŜCPSS
n,τ ∩Lq=p|� l}:

Referring to Figs 4–7, the heights of the black bars, grey bars and crosses are given by

E|ŜCPSS
n,0:9 ∩S|

E|ŜCPSS
n,τÅ ∩S|

,
E|ŜCPSS

n,τ̃ ∩S|
E|ŜCPSS

n,τÅ ∩S|
,

E|ŜλÅ

n ∩S|
E|ŜCPSS

n,τÅ ∩S|

respectively. Thus the heights of the black and grey bars relate to the loss of power in using

the threshold suggested by the corresponding bounds. In all our simulations, we used B = 50.

Each scenario was run 500 times and, to determine the set Lq=p, in each scenario, we applied

the particular selection procedure Ŝ⌊n=2⌋ to 50000 independent data sets.
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bars are preferred): , worst-case procedure; , r -concave procedure; �, theoretical oracle-driven lasso
procedure
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Fig. 5. As in Fig. 4 but with nD500 and pD2000

It is immediately obvious from the results that, using the r-concave bound, we can recover sig-

nificantly more variables in S than when using the the worst-case bound. Furthermore, though

it is not shown in the graphs explicitly, we also achieve the required level of error control in all

except one case (where the r-concavity assumption fails). In fact the one particular example is

hardly exceptional in that we have E|ŜCPSS
n,τ̃ ∩ Lq=p| = 1:034 > 1 = l. Thus, in close accordance

with our theory, there are no significant violations of the r-concave bound.

We also see that the loss in power due to using τ̃ rather than τÅ is very low. In almost all of

the scenarios, we can select more than 75% of the signal that we could select with the benefit of
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Fig. 6. As in Fig. 4 but with logistic regression (nD200, pD1000)
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Fig. 7. As in Fig. 4 but with logistic regression (nD500, pD2000)

an oracle, and usually much more than this. It is interesting that the performances of the oracle

CPSS and oracle lasso procedures are fairly similar. The key advantage of CPSS is that it allows

for error control whereas there is in general no way of determining (or even approximating)

the optimal λÅ that achieves the required error control. In fact, the performance of CPSS with

our bound is only slightly worse than that of the oracle lasso procedure, and in a few cases,

particularly when ρ is small, it is even slightly better. In the cases where ρ� 0:75, we see that

CPSS is not quite as powerful. This is because having such large correlations between variables

causes {pk,⌊n=2⌋ : k = 1, . . . , p} to be relatively spread out in [0, 1]. As explained in Section 3.4,
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we expect our bound to weaken in this situation. However, even when the correlation is as high

as 0.9, we recover a sizable proportion of the signal that we would select if we had used the opti-

mal τÅ.

4.2. Real data example

Here we illustrate our CPSS methodology on the widely studied colon data set of Alon et al.

(1999), which is freely available from http://microarray.princeton.edu/oncology/

affydata/index.html. The data consist of 2000 gene expression levels from 40 colon

tumour samples and 22 normal colon tissue samples, measured by using Affymetrix oligo-

nucleotide arrays. Our goal is to identify a small subset of genes which we are confident are

linked with the development of colon cancer. Such a task is important for improving scientific

understanding of the disease and for selecting genes as potential drug targets.

The data were first preprocessed by averaging over the expression levels for repeated genes

(which had been tiled more than once on each array), log-transforming each gene expression

level, standardizing each row to have mean 0 and unit variance, and finally removing the col-

umns corresponding to control genes, so that p=1908 genes remained. The transformation and

standardization are very common preprocessing steps to reduce skewness in the data and help

to eliminate the effects of systematic variations between different microarrays (see for example

Amaratunga and Cabrera (2004) and Dudoit et al. (2002)).

We applied CPSS with l1- (lasso) penalized logistic regression as the base procedure, with

B = 50, and choosing τ by using both the r-concave bound of Section 3.4 and the original

bound of Meinshausen and Bühlmann (2010). We estimated the expected classification error in

the two cases by averaging over 128 repetitions of stratified random subsampling validation, tak-

ing eight cancerous and four normal observations in each test set. Thus, when applying CPSS,

we had n=40+22−12=50. We looked at q=8, 10, 12, and set τ to control E|ŜCPSS
n,τ ∩Lq=p|� l

with l=0:1 and l=0:5.

Rather than subsampling completely at random when using CPSS, we also stratified these

subsamples to include the same proportion of cancerous to normal samples as in the training

data that are supplied to the procedure. Without this step, some of the subsamples may not

include any samples from one of the classes, and applying Ŝ⌊n=2⌋ to such a subsample would

give misleading results. Using stratified random subsampling is still compatible with our theory,

provided that E|ŜCPSS
n,τ ∩Lθ| is interpreted as an expectation over random data which contain the

Table 3. Improvement in classification error over the naive
classifier which always determines the data to be from a
cancerous tissue†

q Improvement (%) for the Improvement (%) for the
worst-case procedure r-concave procedure

l=0.1 l=0.5 l=0.1 l=0.5

8 4.9 (0.5) 11.6 (1.1) 16 (2.3) 17.5 (5.1)
10 0.9 (0.1) 10.6 (0.9) 14.7 (1.6) 15.8 (4.4)
12 0.0 (0.0) 9.4 (0.8) 12.8 (1.1) 15.8 (4.1)

†Thus the classification errors are 33 1
3

% minus these quanti-
ties. We also give the average number of variables selected in
parentheses.
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(a) (b)

Fig. 8. For (a) l D 0.1 and (b) l D 0.5, we have plotted the proportion of times a gene was selected by our
r -concave CPSS procedure for all genes which were selected at least 5% of the time among the 128 repeti-
tions: �, gene selected in every repetition: �, gene never selected (thus dark vertical lines indicate that the
choice of q has little effect on the end result of CPSS)

Fig. 9. Heat map of the normalized, centred, log-intensity values of the genes selected when we use the
r -concave bound to choose τ such that we control EjŜCPSS

n,τ \Lq=pj�0.5

same class proportions as observed in the original data. In general, this approach of stratified

random subsampling is useful when the response is categorical.

The results in Table 3 show that, as expected, the new error bounds allow us to select more

variables than the conservative bounds of Meinshausen and Bühlmann (2010) for the same level

of error control and, as a consequence, the expected prediction error is reduced. Fig. 8 dem-

onstrates the robustness of the selected set to the different values of q. Finally, we also applied

CPSS on the entire data set with q = 8 and B = 50 and using the r-concave bound of Section

3.4 to choose τ to control E|ŜCPSS
n,τ ∩Lq=p|�0:5 (Fig. 9). We see that, with just five genes out of

1908, we manage to separate the two classes quite well.
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Appendix A

A.1. Proof of theorem 1
The proof of theorem 1 requires the following lemma.

Lemma 1.

(a) If τ ∈ . 1
2
, 1], then

P.k ∈ Ŝ
CPSS

n,τ /�
1

2τ −1
p2

k,⌊n=2⌋:
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(b) If τ ∈ [0, 1
2
/, then

P.k =∈ Ŝ
CPSS

n,τ /�
1

1−2τ
.1−pk,⌊n=2⌋/

2:

Proof.

(a) Let A={.A2j−1, A2j/ :j =1, . . . , B} be randomly chosen independent pairs of subsets of {1, . . . , n}
of size ⌊n=2⌋ such that A2j−1 ∩A2j =∅. Then

0�
1

B

B
∑

j=1

.1−1{k∈Ŝ.A2j−1/}/.1−1{k∈Ŝ.A2j /}/=1−2 Π̂B.k/+ Π̃B.k/: .9/

Now E{Π̃B.k/}=E[E{Π̃B.k/|A}]=p2
k,⌊n=2⌋ because Ŝ.A2j−1/ and Ŝ.A2j/ are independent conditional

on A. It follows using expression (9) that

P.k ∈ ŜCPSS
n,τ /=P{Π̂B.k/� τ}�P[ 1

2
{1+ Π̃B.k/}� τ ]=P{Π̃B.k/�2τ −1}�

1

2τ −1
p2

k,⌊n=2⌋ , .10/

where we have used Markov’s inequality in the final step.

(b) Define Π̂
N̂n
B and Π̃

N̂n
B by replacing Ŝn with N̂n := {1, . . . , p}\Ŝn in the definitions of Π̂B and Π̃B

respectively. Then, using the bound corresponding to expression (9) and Markov’s inequality
again,

P.k =∈ ŜCPSS
n,τ /=P{Π̂B.k/< τ}=P{Π̂

N̂n
B .k/> 1− τ}�P{Π̃

N̂n
B .k/> 1−2τ}�

1

1−2τ
.1−pk,⌊n=2⌋/

2 :

We now prove theorem 1 as follows.

(a) Note that

E|Ŝ⌊n=2⌋ ∩Lθ|=E

( p
∑

k=1

1{k∈Ŝ⌊n=2⌋} 1{pk, ⌊n=2⌋�θ}

)

=
p

∑

k=1

pk,⌊n=2⌋1{pk, ⌊n=2⌋�θ}:

By lemma 1, it follows that

E|ŜCPSS
n,τ ∩Lθ|=E

( p
∑

k=1

1{k∈ŜCPSS
n,τ } 1{pk, ⌊n=2⌋�θ}

)

=
p

∑

k=1

P.k ∈ ŜCPSS
n,τ /1{pk, ⌊n=2⌋�θ}

�
1

2τ −1

p
∑

k=1

p2
k,⌊n=2⌋ 1{pk, ⌊n=2⌋�θ} �

θ

2τ −1
E|Ŝ⌊n=2⌋ ∩Lθ|:

(b) The proof of part (b) is very similar to that of part (a) and so is omitted.

A.2. Proof of theorem 2
The proof of theorem 2 requires several preliminary results, and we use the following notation. Let G
denote the finite lattice {0, 1=B, 2=B, . . . , 1}= .1=B/Z∩ [0, 1]. If f is a probability mass function on G, we
write fi for f.i=B/, thereby associating f with .f0, f1, . . . , fB/∈R

B+1.
For t ∈G, we denote the probability that a random variable distributed according to f takes values that

are greater than or equal to t by Tt.f/ :=Σi�Bt fi. We also write E.f/ :=ΣB
i=1.i=B/fi for the expectation of

this random variable and supp.f/ :={i=B∈G : fi > 0} for the support of f.
Let U be the set of all unimodal probability mass functions f on G, and let Uη ={f ∈U :E.f/�η}. We

consider the problem of maximizing Tt over f ∈Uη. Since the cases η = 0 and t �η are trivial, there is no
loss of generality in assuming throughout that 0 <η <t and t ∈G, so in particular t �1=B.

Lemma 2. There is a maximizer of Tt in Uη.

Proof. Since Tt : R
B+1 → R is linear and therefore continuous, it suffices to show that Uη ⊂ R

B+1 is
closed and bounded. Now Uη is bounded as Uη ⊂ [0, 1]B+1. Moreover, the hyperplane H ={.x0, . . . , xB/ :
x0 +x1 + . . . +xB =1} is closed. Also, E is a continuous function on R

B+1, so E−1.[0, η]/ is closed. Now let
O={f ∈R

B+1 : f is not unimodal}. If f ∈O then there must exist i1 <i2 <i3 such that fi2 < min{fi1 , fi3}.
Clearly this inequality must hold for all g in a sufficiently small open ball about f , so O is open. We see that
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Uη =H ∩E−1.[0, η]/∩Oc:

Thus Uη is an intersection of closed sets and hence is closed.
We shall make frequent use of the following simple proposition in subsequent proofs.

Proposition 3. Suppose that .x1, . . . , xn/∈R
n and .y1, . . . , yn/∈R

n satisfy

n
∑

i=1

xi =
n

∑

i=1

yi,

and that there is some iÅ ∈{1, . . . , n} with xi �yi for all i� iÅ and xi �yi for all i> iÅ. Then

n
∑

i=1

ixi �
n

∑

i=1

iyi,

with equality if and only if xi =yi for i=1, . . . , n.

Proof. We have
∑

i�iÅ
i.xi −yi/� iÅ

∑

i�iÅ
.xi −yi/= iÅ

∑

i>iÅ
.yi −xi/�

∑

i>iÅ
i.yi −xi/:

The following result characterizes the extremal elements of Uη in the sense of maximizing the tail probability
Tt . In particular, it shows that such extremal elements can take only one of two simple forms.

Proposition 4. Any maximizer fÅ ∈Uη of Tt satisfies

(a) E.fÅ/=η,
(b) writing iM for B max{supp.fÅ/}, we have either

(i) fÅ
0 >fÅ

1 =fÅ
2 = . . . =fÅ

iM−1
�fÅ

iM
or

(ii) iM = t and fÅ
0 =fÅ

1 = . . . =fÅ
iM−1

�fÅ
iM

.

Proof.

(a) Suppose that fÅ ∈Uη maximizes Tt , but that E.fÅ/<η. Define im :=min{supp.fÅ/}. As η < τ , we
must have im <Bt. Define g by

gi =
{

0 if i< im,
fÅ

i − "1 if i= im,
fÅ

i + "2 if i> im

where "1, "2 >0 are chosen such that ΣB
i=0 gi =1, but are sufficiently small that E.g/�η. Then g∈Uη

but Tt.g/>Tt.f
Å/, which is a contradiction.

(b) Suppose first that there is a mode of fÅ which is at least t. Let g ∈Uη be such that gi =fÅ
i for i�Bt

and

gi =
1

Bt

Bt−1
∑

l=0

fÅ
l

for i<Bt. As fÅ
0 �fÅ

1 � . . . �fÅ
Bt , we can apply proposition 3 to see that

E.g/�E.fÅ/: .11/

But Tt.g/=Tt.f
Å/, so by optimality of fÅ we must have equality in expression (11). Thus propo-

sition 3 gives us that fÅ =g.
Next, define h∈Uη by hi =fÅ

i for i<Bt, hBt =Tt.f
Å/, and hi =0 for i>Bt. Then Tt.h/=Tt.f

Å/.
Again proposition 3 and the optimality of fÅ give that fÅ =h. Thus fÅ satisfies property (b)(ii) of
the theorem.

Now suppose that there is no mode of fÅ which is at least t, so fÅ
Bt �fÅ

Bt+1 � . . .�fÅ
B . Let g ∈Uη

satisfy gi =fÅ
i for i�Bt and g1 = . . . =gBt . We must have g0 >g1; otherwise fÅ would have a mode

at t. As Tt.g/=Tt.f
Å/, optimality of fÅ and proposition 3 imply fÅ =g.

Finally, let h∈Uη satisfy hi =fÅ
i for i�Bt and hBt =hBt+1 = . . . =hk−1 �hk, where k and hk are

chosen such that ΣB
i=0hi = 1. As before, proposition 3 allows us to deduce that fÅ = h. Thus fÅ

satisfies property (b)(i) of the theorem.

We can now state Markov’s inequality for random variables with unimodal distributions on G, which
may be of some independent interest.
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Theorem 3 (Markov’s inequality under unimodality). Let X be a random variable with a unimodal
distribution on G={0, 1=B, 2=B, . . . , 1}, and let t ∈G. If η :=E.X/� 1

3
, then

P.X� t/�

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

2η − t +1=B

t +1=B
if t ∈ .η, min{ 3

2
η +1=.2B/, 2η}],

η

2t −1=B
if t ∈ .min{ 3

2
η +1=.2B/, 2η}, 1

2
],

2η.1− t +1=B/

1+1=B
if t ∈ . 1

2
, 1].

Let d be defined by

d :=d.η, B/=−2.η − 1
2
/.6η +1/+

2−4η

B
+

.4η −1/2

B2
:

If η > 1
3

and d> 0, then

P.X� t/�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2η − t +1=B

t +1=B
if t ∈ .η, 1

2
+ .1=4η/.1+1=B−d1=2/],

2η.1− t +1=B/

1+1=B
if t ∈ . 1

2
+ .1=4η/.1+1=B−d1=2/, 1].

Finally, if η > 1
3

and d �0, then

P.X� t/�
2η − t +1=B

t +1=B
:

Proof. Proposition 4 tells us that P.X � t/ must be at most the maximum of the optimal solutions to
the following two optimization problems.

(a) Problem P:

maximize b.s−Bt/+ c in a, b, c, s

subject to a+ .s−1/b+ c=1,

s.s−1/b=2+ sc=Bη,

a>b� c�0,

s∈{Bt, Bt +1, . . . , B}:

(b) Problem Q:

maximize b in a, b

subject to Bta+b=1,

Bt.Bt −1/a=2+Btb=Bη,

b�a�0:

Problem P corresponds to case (b)(i) of proposition 4, and problem Q to case (b)(ii).
The solution to problem Q is determined entirely by the constraints, and we see that the optimal value

is

2η − t +1=B

t +1=B
: .12/

To solve problem P, we break it into B.1 − t/ + 1 subproblems: for s ∈ {Bt, Bt + 1, . . . , B}, we define
subproblem P.s/ as follows.

Maximize b .s−Bt/+ c in a, b, c

subject to a+ .s−1/b+ c=1,

s.s−1/b=2+ sc=Bη,

b� c,

a, b, c�0:
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Note that we have not included the a > b constraint. This is because proposition 4 ensures that this con-
straint is always satisfied at an optimal solution of problem P, so there exists sÅ such that every optimal
solution of problem P.sÅ/ corresponds to an optimal solution of problem P.

Now each subproblem is a standard linear programming problem, so we know that one of the basic
feasible solutions must be optimal. Since a> 0, all basic feasible solutions must have either c=0 or b= c.
Thus we may replace the subproblems P(s) by problem P′.s/.

Maximize b .s−Bt +1/ in a, b

subject to a+ sb=1,

s .s+1/b=2=Bη,

a, b�0:

The second constraint is enough to determine that the optimal value of problem P′.s/ is

2Bη.s−Bt +1/

s.s+1/
=:γ.s/: .13/

Now we can proceed to find an sÅ which maximizes γ over {Bt, Bt +1, . . . , B}. The sign of γ ′.s/ is the sign
of

−s2 +2.Bt −1/s+Bt −1:

This quadratic in s has roots

Bt −1±
√

{.Bt −1/2 +Bt −1}:

So γ.s/ is increasing for all s∈{Bt, Bt +1, . . . , B} with

s�Bt −1+
√

{.Bt − 1
2
/2 − 1

4
}=: s0: .14/

When s0 < B, we must have sÅ ∈ {2Bt − 2, 2Bt − 1}. In fact, by examining expression (13), we see that
γ.2Bt −2/=γ.2Bt −1/. Also, from expression (14), we see that, when t> 1

2
, we have that s0 �B, so sÅ =B.

So far, we have shown that

P.X� t/�max.b1, b2, b3/,

where bounds b1, b2 and b3 are given by

b1 :=b1.t, η, B/=
2η − t +1=B

t +1=B
1{η<t�min.2η,1/},

b2 :=b2.t, η, B/=
η

2t −1=B
1{η<t�1=2},

b3 :=b3.t, η, B/=
2η.1− t +1=B/

1+1=B
1{max.η,1=2/�t�1}:

All that remains now is to determine which of b1, b2 and b3 have the largest value. We first consider the
case when η � 1

3
. When t �min. 1

2
, 2η/,

sgn.b2 −b1/= sgn[{t − 3
2
η −1=.2B/}.t −1=B/]:

Now, for 1
2

<t �2η,

@b3

@t
=−

2η

1+1=B
�−

.2η +2=B/

.t +1=B/2
=

@b1

@t
:

Furthermore,

b3{
1
2
+1=.2B/, η, B}=η �

2η − 1
2
+1=.2B/

1
2
+3=.2B/

=b1{
1
2
+1=.2B/, η, B}:

Putting this together gives the required bound for η � 1
3
.
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When η > 1
3
, we can ignore b2 as it is dominated by b1. Comparing b1 and b3, we obtain the final cases

of the bound.
We now prove theorem 2 as follows.
Recalling that E{Π̃B.k/}=p2

k,⌊n=2⌋, we follow the proof of lemma 1, but apply theorem 3 at the last step
of expression (10) with t =2τ −1 to deduce that, if the distribution of Π̃B.k/ is unimodal, then

P.k ∈ ŜCPSS
n,τ /�P{Π̃B.k/�2τ −1}�C.τ , B/p2

k,⌊n=2⌋,

where C.τ , B/ is given in the statement of theorem 2. The bound for E|ŜCPSS
n,τ ∩Lθ| then follows in the same

way that theorem 1 follows from lemma 1.

A.3. Proofs of results on r-concavity
A.3.1. Proof of proposition 1
Suppose that f is log-concave, so we may write f = exp.−φ/ where φ is a convex function. If r < 0, then
−rφ is convex, and, as the exponential function is increasing and convex, f r = exp.−rφ/ is convex.

Conversely, suppose that f is not log-concave, so there exist x, y and λ∈ .0, 1/ with f{λx+ .1−λ/y}<
f.x/λ f.y/1−λ. Then, as Mr{f.x/, f.y/;λ} → f.x/λ f.y/1−λ as r → 0, we must have f{λx + .1 − λ/y} <
Mr{f.x/, f.y/;λ} for some r< 0, and so f cannot be r concave.

A.3.2. Proof of proposition 2
Let I ={1, . . . , l}∪{u, . . . , B−1}. The conditions on f imply that

fi > min{fi−1, fi+1}, i∈ I:

Then, as Mr.fi−1, fi+1, 1
2
/→min{fi−1, fi+1} as r →−∞, for each i∈ I, we may choose an ri < 0 with

fi >Mri
.fi−1, fi+1; 1

2
/: .15/

Set r = mini∈I.ri/. Observe that, as Mr.a, b; 1
2
/ is increasing in r for all fixed a and b, the inequalities (15)

are all satisfied when ri = r. Thus f r
i � 1

2
.f r

i−1 +f r
i+1/ for all i∈{1, . . . , B−1}, so f is r concave. �

By analogy with the unimodal case, let Fr,η ={f ∈Fr : E.f/ � η}. In maximizing Tt over Fr,η, there is
again no loss of generality in assuming 0 <η <t.

Lemma 3. For each r< 0, there is a maximizer of Tt in Fr,η.

Proof. This proof is almost identical to that of lemma 2, except here we let O = {f ∈ R
B+1 : f r is not

convex}. If f ∈O, then there must exist i1 <i2 <i3 such that

.i3 − i2/f
r
i1

+ .i2 − i1/f
r
i3

<.i3 − i1/f
r
i2

and it is clear that the above inequality must hold for all g in a sufficiently small open ball about f. Thus
O is open, and the rest of the proof is clear.

Proposition 5. Any maximizer fÅ ∈Fr,η of Tt satisfies

(a) E.fÅ/=η and
(b) fÅr is linear between fÅr

0 and fÅr
iM−1

, where iM =B max{supp.fÅ/}.

Proof.

(a) Suppose that E.fÅ/ < η. Define im := B min{supp.fÅ/}. Let φ= fÅr
and define a new sequence

ψ := .ψi : i=0, . . . , B/ by

ψi =
{∞ if i< im,

φi + "1 if i= im,
φi − "2 if i> im

where "1, "2 > 0 are chosen such that ΣB
i=0ψ

1=r

i =1, but are sufficiently small that E.ψ1=r/�η. Then
ψ is convex, so ψ1=r ∈Fr,η. Since η >0, we must have Tt.f

Å/>0 so max{supp.fÅ/}� t. Also, as we
are assuming η < τ , we must have im <t. Therefore Tt.ψ

1=r/>Tt.f
Å/, which is a contradiction.
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(b) Set φ=fÅr, so φ is convex and φ1=r =fÅ. Define ψ′ = .ψ′
0, . . . , ψ′

B/∈R
B+1 as follows. Take ψ′

i =φi

for i�Bt, but make ψ′ linear between ψ′
0 and ψ′

Bt such that g :=ψ′1=r has ΣB
i=0 gi =1 and g0 >0. This

is possible since E.fÅ/�η <t, so min{supp.fÅ/}<t. Note that ψ′ is still convex since we must have
ψ′

Bt −ψ′
Bt−1 �φBt −φBt−1. Also Tt.g/ =Tt.f

Å/. Applying proposition 3, we see that E.g/ �E.fÅ/.
Optimality of fÅ means that equality must hold, so fÅ =g and also φ=ψ′.

Now if φ is in fact linear between φ0 and φB, condition (b) of the theorem is satisfied and we
are done. Otherwise we may assume that φ is not a linear function between φBt−1 and φB and we
can define ψ such that ψi =φi for i � Bt, that ψ is linear between ψBt−1 and ψk−1 and ψi =∞ for
i>k. Here, k is chosen such that g :=ψ1=r has ΣB

i=0 gi =1, and the convexity of φ ensures that such
a k � B exists. Applying proposition 3, we see that E.g/ �E.fÅ/. Since Tt.g/ =Tt.f

Å/, as before,
optimality of fÅ allows us to conclude that fÅ =g.

A.4. Computing the r-concave tail probability bound
Here we describe a numerical algorithm that computes the function D that was defined in Section 3.3.
Note that this is the maximum of Tt.f/ over f ∈Fr,η. We shall only discuss the case where fÅ is decreasing,
as is always the case when t>2η. The increasing case is very similar and less important for our application.
We first note that we may parameterize the r-concave probability mass functions whose rth powers are
linear as follows:

fa,k;i = .a+ i/1=r
/ k

∑

j=0

.a+ j/1=r, i=0, 1, . . . , k, .16/

where k �B. As E.fa,k/ is strictly increasing in a, for each k, there is a unique ak for which E.fak ,k/=η. We
also note here that ak decreases with k. This is easily seen by observing that, regardless of the value of k,
the parameter a in expression (16) determines the ratio of fa,k;i to fa,k;j , for each i, j.

According to proposition 5, if fÅ ∈Fr,η maximizes Tt , then fÅr is linear up to its penultimate support
point. We can parameterize these in the following way. Write

k
∑

i=1

i.a+ i/1=r + .k +1/c

k
∑

j=0

.a+ j/1=r + c

=Bη,

and then solve for c:

c= c.a, k/=
Bη

k
∑

j=0

.a+ j/1=r −
k

∑

i=1

i.a+ i/1=r

k +1−Bη
:

We see that, as a ranges through [ak+1, ak], we obtain all the relevant probability mass functions supported
on 0, 1, . . . , k +1 via

ga,k;i =
.a+ i/1=r

k
∑

j=0

.a+ j/1=r + c.a, k/

, i=0, 1, . . . , k,

ga,k;k+1 =
c.a, k/

k
∑

j=0

.a+ j/1=r + c.a, k/

:

The tail probability of ga,k, when the threshold is t, is

Tt.ga,k/=1−
.k +1−Bη/

Bt−1
∑

i=0

.a+ i/1=r

k
∑

i=0

.k +1− i/.a+ i/1=r

.17/

and we may maximize this over a∈ [ak+1, ak] to obtain an optimal aÅ
k for each k. This is easily accomplished
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by using a general purpose optimizer such as optimize in R. To summarize, we have the following simple
procedure for computing Tt.f

Å/.

(a) For each k ∈{t, . . . , B}, determine (numerically) the solution in ak to E.fa,k/=η.
(b) Find aÅ

k :=argmaxa∈[ak+1 ,ak ]Tt.ga,k/, for each k.
(c) Let kÅ.t/ :=argmaxkTt.gaÅ

k
,k/.

Then Tt.f
Å/ =Tt.gaÅ

kÅ.t/
,kÅ.t//. When we wish to evaluate Tt.f

Å/ for a range of values of t, the process is
simplified by the observation that kÅ.t/ is increasing in t, and thus in step (b) we need only to consider
those k which are at least kÅ.t −1=B/.

Using the algorithm described above, we have computed

min{D.θ2, 2τ −1, 50, − 1
2
/, D.θ, τ , 100, − 1

4
/}

over a grid of θ- and τ -values (see Tables 1 and 2). An R implementation of the algorithm is available from
both authors’ Web sites.
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