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Variable Selection With the Strong Heredity

Constraint and Its Oracle Property
Nam Hee CHOI, William LI, and Ji ZHU

In this paper, we extend the LASSO method (Tibshirani 1996) for simultaneously fitting a regression model and identifying important

interaction terms. Unlike most of the existing variable selection methods, our method automatically enforces the heredity constraint, that

is, an interaction term can be included in the model only if the corresponding main terms are also included in the model. Furthermore, we

extend our method to generalized linear models, and show that it performs as well as if the true model were given in advance, that is, the

oracle property as in Fan and Li (2001) and Fan and Peng (2004). The proof of the oracle property is given in online supplemental materials.

Numerical results on both simulation data and real data indicate that our method tends to remove irrelevant variables more effectively and

provide better prediction performance than previous work (Yuan, Joseph, and Lin 2007 and Zhao, Rocha, and Yu 2009 as well as the

classical LASSO method).
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1. INTRODUCTION

Consider the usual regression situation: we have training data

(x1, y1), . . . , (xi, yi), . . . , (xn, yn), where xi = (xi1, . . . , xij, . . . ,

xip) are the predictors and yi is the response. To model the re-

sponse y in terms of the predictors x1, . . . , xp, one may consider

the linear model

y = β0 + β1x1 + · · · + βpxp + ǫ,

where ǫ is the error term. In many important practical problems,

however, the main terms x1, . . . , xp alone may not be enough to

capture the relationship between the response and the predic-

tors, and higher-order interactions are often of interest to scien-

tific researchers. For example, many complex diseases, such as

cancer, involve multiple genetic and environmental risk factors,

and scientists are particularly interested in assessing gene–gene

and gene–environment interactions.

In this paper, we consider a regression model with main

terms and all possible two-way interaction terms, that is,

y = β0 + β1x1 + · · · + βpxp

+ α12(x1x2) + α13(x1x3) + · · · + αp−1,p(xp−1xp) + ǫ. (1)

The goal here is to find out which terms, especially which in-

teraction terms, have an important effect on the response. For

example, x1, . . . , xp may represent different genetic factors, y

may represent a certain phenotype, and we are interested in de-

ciphering how these genetic factors “work together” to deter-

mine the phenotype. Later, we extend the setting to generalized

linear models and develop an asymptotic theory there.

There are two important challenges in this problem: predic-

tion accuracy and interpretation. We would like our model to

accurately predict on future data. Prediction accuracy can often

be improved by shrinking the regression coefficients. Shrinkage

sacrifices unbiasedness to reduce the variance of the predicted
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value and hence may improve the overall prediction accuracy.

Interpretability is often realized via variable selection. With a

large number of variables (including both the main terms and

the interaction terms), possibly larger than the number of ob-

servations, we often would like to determine a smaller subset

that exhibits the strongest effects.

Variable selection has been studied extensively in the litera-

ture; for example, see Breiman (1995), Tibshirani (1996), Fan

and Li (2001), and Shen and Ye (2002). In particular, LASSO

(Tibshirani 1996) has gained much attention in recent years.

The LASSO criterion penalizes the L1-norm of the regression

coefficients to achieve a sparse model:

min
βj,αjj′

n
∑

i=1

((

yi − β0 −
∑

j

βjxij −
∑

j<j′
αjj′(xijxij′)

)2

+ λ

(

∑

j

|βj| +
∑

j<j′
|αjj′ |

))

. (2)

The L1-norm penalty can shrink some of the fitted coefficients

to be exactly zero when making the tuning parameter suffi-

ciently large. However, LASSO and other methods mentioned

above are for the case when the candidate variables can be

treated individually or “flatly.” When interaction terms exist,

there is a natural hierarchy among the variables, that is, an in-

teraction term can be included in the model only if both of the

corresponding main terms are also included in the model. This

is referred to as the marginality in generalized linear models

(McCullagh and Nelder 1989; Nelder 1994) or the strong hered-

ity in the analysis of designed experiments (Hamada and Wu

1992). Justifications of effect heredity can be found in Chipman

(1996) and Joseph (2006). A generic variable selection method,

however, may select an interaction term but not the correspond-

ing main terms, and such models are difficult to interpret in

practice.

In this paper, we extend the LASSO method so that it si-

multaneously fits the regression model and identifies interac-

tion terms obeying the strong heredity constraint. Furthermore,
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we show that when the regularization parameters are appropri-

ately chosen, our new method has the oracle property (Fan and

Li 2001; Fan and Peng 2004), that is, it performs as well as if

the correct underlying model were given in advance. Such the-

oretical property has not been previously studied for variable

selection with heredity constraints.

The rest of the paper is organized as follows. In Section 2,

we introduce our new model and an algorithm to fit the model.

Asymptotic properties are studied in Section 3, and numerical

results are in Section 4. We conclude the paper with Section 5.

2. STRONG HEREDITY INTERACTION MODEL

In this section, we extend the LASSO method for selecting

interaction terms while at the same time keeping the strong

heredity constraint. We call our model the strong heredity in-

teraction model (SHIM). After introducing the model in Sec-

tion 2.1, we develop an algorithm to compute the SHIM esti-

mate in Section 2.2. We then extend SHIM to generalized linear

models in Section 2.3.

2.1 Model

We reparameterize the coefficients for the interaction terms

αjj′ , j < j′, j, j′ = 1, . . . ,p, as αjj′ = γjj′βjβj′ , and consider the

following model:

g(x) = β0 + β1x1 + · · · + βpxp + γ12β1β2(x1x2)

+ γ13β1β3(x1x3) + · · · + γp−1,pβp−1βp(xp−1xp). (3)

Notice the difference in the coefficients of the interaction terms

between (1) and (3). In (3), the coefficient for the interaction

term (xjxj′) is expressed as the product of γjj′ , βj and βj′ , in-

stead of a single parameter αjj′ . By writing the coefficient as a

product, the model itself enforces the heredity constraint. That

is, whenever the coefficient for either xj or xj′ , that is, βj or βj′ ,

is equal to zero, the coefficient for the interaction term (xjxj′) is

automatically set to zero; vice versa, if the coefficient for (xjxj′)

is not equal to zero, it implies that both βj and βj′ are not equal

to zero.

For the purpose of variable selection, we consider the follow-

ing penalized least squares criterion:

min
βj,γjj′

n
∑

i=1

(

(yi − g(xi))
2 + λβ(|β1| + · · · + |βp|)

+ λγ (|γ12| + · · · + |γp−1,p|)
)

, (4)

where g(x) is from (3), and the penalty is the L1-norm of the

parameters, as in LASSO (2). There are two tuning parameters,

λβ and λγ . The first tuning parameter λβ controls the estimates

at the main effect level: if βj is shrunken to zero, variable xj

and all its “descendants,” that is, the corresponding interaction

terms that involve xj are removed from the model. The second

tuning parameter λγ controls the estimates at the interaction ef-

fect level: if βj and βj′ are not equal to zero but the correspond-

ing interaction effect is not strong, γjj′ still has the possibility

of being zero, so it has the flexibility of selecting only the main

terms.

To further improve the criterion (4), we apply the adaptive

idea which has been used extensively in the literature, including

Breiman (1995), Zou (2006), Wang, Li, and Jiang (2007), and

Zhang and Lu (2007), that is, to penalize different parameters

differently. We consider

min
βj,γjj′

n
∑

i=1

(

(yi − g(xi))
2 + λβ(w

β

1 |β1| + · · · + wβ
p |βp|)

+ λγ (w
γ

12|γ12| + · · · + w
γ

p−1,p|γp−1,p|)
)

, (5)

where w
β
j and w

γ

jj′ are prespecified weights. The intuition is that

if the effect of a variable is strong, we would like the corre-

sponding weight to be small, hence the corresponding parame-

ter is lightly penalized. If the effect of a variable is not strong,

we would like the corresponding weight to be large, hence the

corresponding parameter is heavily penalized. How to prespec-

ify the weights w
β
j and w

γ

jj′ from the data is discussed below.

Computing Adaptive Weights. Regarding the adaptive

weights w
β
j and w

γ

jj′ for the regression parameters in (5), we

consider three possibilities:

1. Set all the weights equal to 1. We denote this as “plain.”

2. Following Breiman (1995) and Zou (2006), we can com-

pute the weights using the ordinary least squares (OLS)

estimates from the training observations:

w
β
j =

∣

∣

∣

∣

1

β̂OLS
j

∣

∣

∣

∣

, w
γ

jj′ =
∣

∣

∣

∣

β̂OLS
j · β̂OLS

j′

α̂OLS
jj′

∣

∣

∣

∣

,

where β̂OLS
j and α̂OLS

jj′ are the corresponding OLS esti-

mates. We denote this as “Adaptive(OLS).”

3. When n < p, the OLS estimates are not available, we can

compute the weights using the ridge regression estimates,

that is, replacing all the above OLS estimates with the

ridge regression estimates, and we denote this as “Adap-

tive(Ridge).” We recognize that when using the ridge re-

gression estimates as weights, there is an issue of select-

ing the tuning parameter for the ridge regression. We note

that in our simulation studies (Section 4.1), we used a sep-

arate validation set to select the tuning parameter, while in

real data analysis (Section 4.3), we used cross-validation.

We also experimented with GCV and BIC. We found that

the result of the Adaptive(Ridge) SHIM is not sensitive to

the choice of the ridge penalty.

2.2 Algorithm

To estimate the parameters βj and γjj′ , we can use an iterative

approach, that is, we first fix βj and estimate γjj′ , then we fix

γjj′ and estimate βj, and we iterate between these steps until the

solution converges. Since at each step, the value of the objective

function (5) decreases, the solution is guaranteed to converge.

When βj, j = 1, . . . ,p, are fixed, (5) becomes a LASSO

problem, hence we can use either the LARS/LASSO algorithm

(Efron et al. 2004) or a quadratic programming package to effi-

ciently solve for γjj′ , j < j′. When γjj′ , j < j′, are fixed, we can

sequentially solve for βj: for each j = 1, . . . ,p, we fix γjj′ , j < j′,
and β[−j] = (β1, . . . , βj−1, βj+1, . . . , βp), then (5) becomes a

simple LASSO problem with only one parameter βj, and we

can solve it with a closed form formula. We note that the se-

quential strategy of fixing (p − 1) βj’s and solving for the other

βj is similar to the shooting algorithm in Fu (1998) and Fried-

man et al. (2007).

In summary, the algorithm proceeds as follows:
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1. Standardization. Center y. Center and normalize each

term xj, xjxj′ , j < j′, j, j′ = 1, . . . ,p.

2. Initialization. Initialize β̂
(0)
j and γ̂

(0)

jj′ , j < j′, j, j′ =
1, . . . ,p, with some plausible values. For example, we can

use the least square estimates or the simple regression es-

timates by regressing the response y on each of the terms.

Let m = 1.

3. Update γ̂jj′ . Let

ỹi = yi − β̂
(m−1)
1 xi1 − · · · − β̂(m−1)

p xip,

i = 1, . . . ,n,

x̃i,jj′ = β̂
(m−1)
j β̂

(m−1)

j′ (xijxij′),

i = 1, . . . ,n; j < j′, j, j′ = 1, . . . ,p,

then

γ̂
(m)

jj′ = arg min
γjj′

n
∑

i=1

((

ỹi −
∑

j<j′
γjj′ x̃i,jj′

)2

+ λγ

∑

j<j′
w

γ

jj′ |γjj′ |
)

.

4. Update β̂j.

• Let β̂
(m)
j = β̂

(m−1)
j , j = 1, . . . ,p.

• For each j in 1, . . . ,p, let

ỹi = yi −
∑

j′ �=j

β̂
(m)

j′ xij′ −
∑

j′<j′′,j′,j′′ �=j

β̂
(m)

j′ β̂
(m)

j′′ (xij′xij′′),

i = 1, . . . ,n,

x̃i = xij +
∑

j′<j

γ̂
(m)

j′j β̂
(m)

j′ (xij′xij) +
∑

j′>j

γ̂
(m)

jj′ β̂
(m)

j′ (xijxij′),

i = 1, . . . ,n,

then

β̂
(m)
j = arg min

βj

n
∑

i=1

(

(ỹi − βjx̃i)
2 + λβw

β
j |βj|

)

.

5. Compute the relative difference between Qn(θ̂
(m−1)

) and

Qn(θ̂
(m)

):

�(m) = |Qn(θ̂
(m−1)

) − Qn(θ̂
(m)

)|
|Qn(θ̂

(m−1)
)|

,

where

Qn(θ) =
n

∑

i=1

(yi − g(xi))
2 + λβ(w

β

1 |β1| + · · · + wβ
p |βp|)

+ λγ (w
γ

12|γ12| + · · · + w
γ

p−1,p|γp−1,p|)
for θ = (β1, . . . , βp, γ12, . . . , γp−1,p).

6. Stop the algorithm if �(m) is small enough. Otherwise, let

m = m + 1 and go back to step 2.

Finally, we recognize that the SHIM criterion, similar as

SCAD (Fan and Li 2001) and Bridge (Fu 1998), is noncon-

vex. Hence convergence of the algorithm to the global mini-

mum is not guaranteed. To assess this limitation, we conducted

an empirical investigation on the real dataset (Section 4.3). We

ran our fitting procedure 100 times, using randomized starting

values (based on OLS estimates from 100 bootstrap samples),

and examined the resulting coefficient estimates. The results are

surprisingly similar: the mean absolute difference between the

original estimate and a new estimate is within the range of 10−8.

This experiment implies that our fitting algorithm may not be

getting stuck in any local minimum and is reaching a global

optimum.

2.3 Extension to Generalized Linear Models

The SHIM method can be naturally extended to likelihood

based generalized linear models. Assume that the data Vi =
{(xi, yi)}, i = 1, . . . ,n, are collected independently. Condition-

ing on xi, suppose Yi has a density f (g(xi), yi), where g is a

known link function with main terms and all possible interac-

tion terms:

g(x) = β0 + β1x1 + · · · + βpxp + α12(x1x2)

+ α13(x1x3) + · · · + αp−1,p(xp−1xp)

= β0 + β1x1 + · · · + βpxp + γ12β1β2(x1x2) + · · ·

+ γp−1,pβp−1βp(xp−1xp). (6)

As before, for the purpose of variable selection, we consider the

following penalized negative log-likelihood criterion:

min
βj,γjj′

−
n

∑

i=1

(

ℓ(g(xi), yi) + λβ(w
β

1 |β1| + · · · + wβ
p |βp|)

+ λγ (w
γ

12|γ12| + · · · + w
γ

p−1,p|γp−1,p|)
)

, (7)

where ℓ(·, ·) = log f (·, ·) is the conditional log-likelihood of Y .

Similar to what we suggested in Section 2.1, one can specify the

weights w
β
j and w

γ

jj′ using unpenalized maximum likelihood es-

timates or L2-penalized maximum likelihood estimates. Later

in Section 3, we show that under certain regularity conditions,

using the unpenalized maximum likelihood estimates for spec-

ifying the weights guarantees that SHIM possesses the asymp-

totic oracle property.

3. ASYMPTOTIC ORACLE PROPERTY

In this section, we study the asymptotic behavior of SHIM

based on the generalized linear model setting introduced in Sec-

tion 2.3. In Section 3.1, we consider the asymptotic properties

of SHIM estimates when the sample size n approaches to in-

finity. Furthermore, in Section 3.2, we consider the asymptotic

properties of SHIM estimates when the number of covariates pn

also increases as the sample size n increases.

3.1 Asymptotic Oracle Property When n → ∞

We show that when the number of predictors is fixed and the

sample size approaches to infinity, SHIM possesses the oracle

property under certain regularity conditions, that is, it performs

as well as if the true model were known in advance (Fan and Li

2001).
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Problem Setup. Let β∗
j and α∗

jj′ denote the underlying true

parameters. We further assume that the true model obeys the

strong heredity constraint: α∗
jj′ = 0 if β∗

j = 0 or β∗
j′ = 0. Let

θ∗ = (β∗⊤,γ ∗⊤)⊤ where

γ ∗
jj′ =

⎧

⎨

⎩

α∗
jj′

β∗
j β∗

j′
if β∗

j �= 0 and β∗
j′ �= 0,

0 otherwise.

We consider the SHIM estimates θ̂n:

θ̂n = arg min
θ

Qn(θ)

= arg min
θ

−
n

∑

i=1

(

ℓ(g(xi), yi)

+ n

p
∑

j=1

λ
β
j |βj| + n

∑

k<k′
λ

γ

kk′ |γkk′ |
)

, (8)

where g is defined in (6). Note that Qn(θ) in (8) is equivalent to

the criterion in (7) by letting λ
β
j = 1

n
λβw

β
j and λ

γ

kk′ = 1
n
λγ w

γ

kk′ .

Furthermore, we define

A1 = {j :β∗
j �= 0},

A2 = {(k, k′) :γ ∗
kk′ �= 0}, A = A1 ∪ A2,

that is, A1 contains the indices for main terms whose true coef-

ficients are nonzero, and A2 contains the indices for interaction

terms whose true coefficients are nonzero. Let

an = max{λβ
j , λ

γ

kk′ : j ∈ A1, (k, k′) ∈ A2},

bn = min{λβ
j , λ

γ

kk′ : j ∈ A
c
1, (k, k′) ∈ A

c
2, k, k′ ∈ A1}.

Notice that to compute bn, we do not consider every case of

γ ∗
kk′ = 0, that is, (k, k′) ∈ Ac

2. Instead, we only consider the

cases where γ ∗
kk′ is zero and the two corresponding β∗

k and β∗
k′

are nonzero, that is, (k, k′) ∈ Ac
2 and k, k′ ∈ A1.

Oracle Property of SHIM. The asymptotic properties of

SHIM when the sample size increases are described in the fol-

lowing lemma and theorems. The regularity conditions (C1)–

(C3) and the proofs are given in the Supplemental Material.

Lemma 1. Assume that an = o(1) as n → ∞. Then under the

regularity conditions (C1)–(C3), there exists a local minimizer

θ̂n of Qn(θ) such that ‖θ̂n − θ∗‖ = Op(n
−1/2 + an).

Lemma 1 implies that if the tuning parameters λ
β
j and λ

γ

kk′
associated with the nonzero coefficients converge to 0 at a rate

faster than n−1/2, then there exists a local minimizer of Qn(θ),

which is
√

n-consistent.

Theorem 1 (Sparsity). Assume that
√

nbn → ∞ and the lo-

cal minimizer θ̂n given in Lemma 1 satisfies ‖θ̂n − θ∗‖ =
Op(n

−1/2). Then under the regularity conditions (C1)–(C3),

P
(

β̂Ac
1
= 0

)

→ 1 and P
(

γ̂ Ac
2
= 0

)

→ 1.

Theorem 1 shows that SHIM can consistently remove the

noise terms with probability tending to 1. Specifically, when

the tuning parameters for the nonzero coefficients converge

to 0 faster than n−1/2 and those for zero coefficients are big

enough so that
√

nan → 0 and
√

nbn → ∞, then Lemma 1 and

Theorem 1 imply that the
√

n-consistent estimator θ̂n satisfies

P(θ̂ Ac = 0) → 1.

Theorem 2 (Asymptotic normality). Assume that
√

nan → 0

and
√

nbn → ∞. Then under the regularity conditions (C1)–

(C3), the component θ̂ A of the local minimizer θ̂n given in

Lemma 1 satisfies
√

n(θ̂ A − θ∗
A

) →d N(0, I−1(θ∗
A

)),

where I(θ∗
A

) is the Fisher information matrix of θ A at θ A = θ∗
A

assuming that θ∗
Ac = 0 is known in advance.

In Theorem 2, we find that the SHIM estimates for nonzero

coefficients in the true model have the same asymptotic distrib-

ution as they would have if the zero coefficients were known in

advance. Therefore, based on Theorems 1 and 2, we can con-

clude that asymptotically SHIM performs as well as if the true

underlying model were given in advance, that is, it has the or-

acle property (Fan and Li 2001), when the tuning parameters

satisfy the conditions
√

nan → 0 and
√

nbn → ∞.

Now the remaining question is how we specify the adap-

tive weights so that the conditions
√

nan → 0 and
√

nbn → ∞
are satisfied. It turns out that the Adaptive(MLE) weights in-

troduced in Section 2.1 satisfy those conditions. Following the

idea in Wang, Li, and Tsai (2007a), let

λ
β
j = log(n)

n
λβw

β
j = log(n)

n
λβ

∣

∣

∣

∣

1

β̂MLE
j

∣

∣

∣

∣

,

λ
γ

kk′ = log(n)

n
λγ w

γ

kk′ = log(n)

n
λγ

∣

∣

∣

∣

β̂MLE
k · β̂MLE

k′

α̂MLE
kk′

∣

∣

∣

∣

.

Using the fact that β̂MLE and α̂MLE are
√

n-consistent estimates

of β∗ and α∗, it can be easily shown that the tuning parameters

λ
β
j and λ

γ

kk′ defined above satisfy the conditions for the oracle

property. Therefore, we can conclude that by tuning the two

regularization parameters λβ and λγ and using the prespecified

weights Adaptive(MLE), SHIM asymptotically possesses the

oracle property.

3.2 Asymptotic Oracle Property When pn → ∞
as n → ∞

In this section, we consider the asymptotic behavior of SHIM

when the number of predictors pn is allowed to approach infin-

ity as well as the sample size n. Similar to that of Fan and Peng

(2004), we show that under certain regularity conditions, SHIM

still possesses the oracle property.

We first redefine some notations because now the number of

predictors pn changes with the sample size n. We denote the

total number of parameters qn = (pn + 1)pn/2. We add a sub-

script n to V, f (·, ·) and θ to denote that these quantities now

change with n. Similarly for A1, A2, and A which are defined

in Section 3.1, and we let sn = |An|.
Oracle Property of SHIM. The asymptotic properties of

SHIM when the number of predictors increases as well as the

sample size are described in the following lemma and theorems.

The regularity conditions (C4)–(C6) and the proofs are given in

the Supplemental Material.
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Lemma 2. Assume that the density fn(Vn, θ
∗
n) satisfies the

regularity conditions (C4)–(C6). If
√

nan → 0 and q5
n/n → 0 as

n → ∞, then there exists a local minimizer θ̂n of Qn(θn) such

that

‖θ̂n − θ∗
n‖ = Op

(√
qn

(

n−1/2 + an

))

.

Theorem 3. Suppose that the density fn(Vn, θ
∗
n) satisfies the

regularity conditions (C4)–(C6). If
√

nqnan → 0,
√

n/qnbn →
∞, and q5

n/n → 0 as n → ∞, then with probability tending to 1,

the
√

n/qn-consistent local minimizer θ̂n in Lemma 2 satisfies

the following:

(a) Sparsity. θ̂nAc
n
= 0.

(b) Asymptotic normality.

√
nAnI1/2

n

(

θ∗
nAn

)(

θ̂nAn
− θ∗

nAn

)

→d N(0,G),

where An is an arbitrary m × sn matrix with a finite m such

that AnA⊤
n → G and G is a m × m nonnegative symmetric ma-

trix and In(θ
∗
nAn

) is the Fisher information matrix of θnAn
at

θnAn
= θ∗

nAn
.

Note that because the dimension of θ̂nAn
approaches to in-

finity as the sample size n grows, for asymptotic normality of

SHIM estimates, we consider an arbitrary linear combination

Anθ̂nAn
, where An is an arbitrary m × sn matrix with a finite m.

The AE pointed out the reference to Zou and Zhang (2009),

in which the asymptotic oracle property of Elastic-Net was

studied. We note that the condition for the asymptotic oracle

property in Zou and Zhang (2009) is weaker, in the sense that

they only require pn/nv → 0, where 0 < v < 1, while we re-

quire q5
n/n → 0. The main reason that Zou and Zhang (2009)

could achieve a better rate is that in Elastic-Net, when the reg-

ularization parameter for the L1-norm penalty is set to zero,

Elastic-Net reduces to the ridge regression, for which one can

obtain an analytic solution, hence achieve a tighter bound on

‖β̂ − β∗‖. Unfortunately, the SHIM criterion is more compli-

cated than Elastic-Net, and we could not obtain an analytic so-

lution when either of the regularization parameters is set to zero.

Similar as in Section 3.1, now the remaining question is

whether the Adaptive(MLE) weights introduced in Section 2.1

satisfy the conditions for the oracle property. Let

λ
β
nj = log(n)qn

n
λβw

β
j = log(n)qn

n
λβ

∣

∣

∣

∣

1

β̂MLE
j

∣

∣

∣

∣

,

λ
γ

n,kk′ = log(n)qn

n
λγ w

γ

kk′ = log(n)qn

n
λγ

∣

∣

∣

∣

β̂MLE
k · β̂MLE

k′

α̂MLE
kk′

∣

∣

∣

∣

.

Using the fact that β̂MLE and α̂MLE are
√

n/qn-consistent esti-

mates of β∗ and α∗ and assuming q4
n/n → 0, it can be easily

shown that the tuning parameters λ
β
nj and λ

γ

n,kk′ defined above

satisfy the conditions for the oracle property:
√

nqnan → 0 and√
n/qnbn → ∞. Therefore, we can conclude that by tuning the

two regularization parameters λβ and λγ and using the prespec-

ified weights Adaptive(MLE), SHIM asymptotically possesses

the oracle property.

4. NUMERICAL RESULTS

4.1 Simulation Study

In this section, we use simulation data to demonstrate the ef-

ficacy of SHIM, and compare the results with those of LASSO,

a method that does not guarantee the heredity constraint. Fur-

thermore, we compare the performance of SHIM with two other

methods, Yuan, Joseph, and Lin (2007) and Zhao, Rocha, and

Yu (2009), which also address the variable selection problem

with heredity constraint.

We mimicked and extended the simulations in Zhao, Rocha,

and Yu (2009). There are p = 10 predictors with only the first

4 affecting the response. The total number of candidate terms

(including all possible two-way interaction terms) is p + p(p −
1)/2 = 55. Each of the 10 predictors is normally distributed

with mean zero and variance one. The 10 predictors are gen-

erated either independently or with correlation Corr(Xj,Xj′) =
0.5|j−j′|. With each of independent predictors and correlated

predictors, we considered five different cases with coefficients

shown in Table 1. The signal to noise ratio (SNR) was set to 4.0

in every case.

Case 1 is a model with no interaction effect; Case 2 is a model

with interaction effects of moderate size; Case 3 represents a

model with interaction effects of large size; and Case 4 is a

model where the size of interaction effects is larger than that of

the main effects. Case 5 is a model that does not even obey the

heredity constraint.

We generated n = 200 training observations from each of the

above models. To select the tuning parameters for SHIM and

other methods, we considered three criteria: GCV, BIC, and the

validation error on a separate validation set with m = 200 ob-

servations. The three criteria are defined as follows:

GCV = σ̂ 2

(1 − df /n)2
,

BIC = log σ̂ 2 + (df )(log n)/n,

Validation Error = 1

m

m
∑

i=1

(yval
i − f̂ (xval

i ))2,

where σ̂ 2 = 1
n

∑n
i=1(yi − f̂ (xi))

2 and df is the number of

nonzero estimates. We simulated 100 replicates. For each repli-

cate and each method, we selected three models that minimize

GCV, BIC, and the validation error respectively.

In the following subsections, we compare our method SHIM

with other methods in terms of the prediction accuracy and the

variable selection performance.

Table 1. Simulation study: coefficients of the true models

x1 x2 x3 x4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

Case 1 7 2 1 1 0 0 0 0 0 0

Case 2 7 2 1 1 1.0 0 0 0.5 0.4 0.1

Case 3 7 2 1 1 7 7 7 2 2 1

Case 4 7 2 1 1 14 14 14 4 4 2

Case 5 0 0 0 0 7 7 7 2 2 1



Choi, Li, and Zhu: Variable Selection With the Strong Heredity Constraint 359

Prediction Performance

We first compare the prediction accuracy of SHIM with those

of other methods: Oracle, OLS, LASSO, CAP, and CARDS.

“Oracle” refers to the OLS applied only to the relevant terms,

which serves as an optimal bench mark. CAP and CARDS re-

fer to Zhao, Rocha, and Yu (2009) and Yuan, Joseph, and Lin

(2007) that also address the heredity constraint. Specifically,

Yuan, Joseph, and Lin (2007) extends the LARS algorithm

(Efron et al. 2004), and Zhao, Rocha, and Yu (2009) suggests

a Composite Absolute Penalty (CAP) to enforce the heredity

constraint.

We computed the mean squared error (MSE) on a test set

with 10,000 observations to measure the prediction accuracy.

We found that for the purpose of prediction, validation error

performs the best, GCV is the next, and BIC performs the worst

among the three criteria for all methods. Validation error, how-

ever, is not always available in real data. Therefore, we chose to

report the prediction performance based on both validation er-

ror and GCV. Figures 1 and 2 show boxplots of the 100 MSEs

from 100 replicates for both independent and correlated cases.

We can see that both LASSO and SHIM perform much better

than OLS; this illustrates that some regularization or shrinkage

is crucial for prediction accuracy. Furthermore, SHIM seems to

perform consistently better than LASSO. This is observed not

only in Cases 1–4, where the true models obey the heredity con-

straint, but also in Case 5, where the true model does not obey

the heredity constraint. In Case 5, although SHIM would never

select the right model and would estimate some irrelevant main

terms with nonzero coefficients (in order to include the relevant

interaction terms), the magnitude of these estimates are small

(due to the flexibility of having two tuning parameters), hence

the prediction accuracy is not jeopardized too much. This re-

sult is not surprising if one notices that prediction and variable

selection are two different aspects of model fitting.

Figure 1. Simulation results: the boxplots of MSE values in inde-

pendent cases. “VAL” refers to when we select the tuning parameters

based on validation errors and “GCV” refers to when we use the GCV

criterion. “ALASSO-1” and “ASHIM-1” respectively refer to the adap-

tive LASSO and the adaptive SHIM with the weights based on the OLS

estimates; “CAP” refers to Zhao, Rocha, and Yu (2009) and “CARDS”

refers to Yuan, Joseph, and Lin (2007). As a benchmark, “Oracle”

refers to the OLS applied only to the relevant terms.

Figure 2. Simulation results: the boxplots of MSE values in cor-

related cases. “VAL” refers to when we select the tuning parame-

ters based on validation errors and “GCV” refers to when we use the

GCV criterion. “ALASSO-2” and “ASHIM-2” respectively refer to the

adaptive LASSO and the adaptive SHIM with the weights based on

the ridge regression estimates; “CAP” refers to Zhao, Rocha, and Yu

(2009) and “CARDS” refers to Yuan, Joseph, and Lin (2007). As a

benchmark, “Oracle” refers to the OLS applied only to the relevant

terms.

Comparing SHIM (nonadaptive version) with CAP (Zhao,

Rocha, and Yu 2009) and CARDS (Yuan, Joseph, and Lin

2007), we can see that the prediction accuracy of SHIM is con-

sistently better than CARDS and CAP in both independent and

correlated cases, especially when the effect of interaction terms

is large compared to the effect of main terms.

Variable Selection Performance

We also compare the variable selection performance of

SHIM with those of the other methods.

Following Wang, Li, and Tsai (2007b), we define “underfit-

ted,” “correctly fitted,” and “overfitted” models. Suppose there

are q candidate terms and only q0 ≤ q number of relevant terms

in the true model. We let IF = {1,2, . . . ,q} denote the index set

of the full model, IT = {j1, j2, . . . , jq0
} denote the index set of

the true model, and I denote the index set of a selected model.

Then we define a model as underfitted if IT � I, overfitted if

IT � I, and correctly fitted if I = IT .

For the purpose of variable selection, we found that BIC out-

performs GCV and validation error, which agrees with the dis-

cussion in Wang, Li, and Tsai (2007b), Wang and Leng (2007)

and Zhang and Lu (2007). Variable selection results based on

BIC are shown in Table 2. We can see that when there is no

interaction effect (Case 1), the three heredity methods, that

is, SHIM, CAP, and CARDS, perform similarly and all better

than LASSO. When the interaction effects are relatively strong

(Cases 3 and 4), SHIM tends to select the correct model more

often than other methods. When the interaction effects are weak

(Case 2), hence easily missed, none of the methods is able to

select the exact correct model. In Case 5, since the true model

does not obey the heredity constraint, SHIM, CAP, and CARDS

can never identify the correct model.
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Table 2. Simulation results: variable selection based on BIC. “Underfitted,” “Correctly fitted,” and “Overfitted” respectively represent the

numbers of replicates that are underfitted, correctly fitted, and overfitted among the 100 replicates. “ALASSO” and “ASHIM” refer to the

adaptive LASSO and the adaptive SHIM with the OLS weights for independent cases and the ridge regression weights for correlated cases;

“CAP” refers to Zhao, Rocha, and Yu (2009) and “CARDS” refers to Yuan, Joseph, and Lin (2007)

LASSO ALASSO SHIM ASHIM CAP CARDS

Independent cases

Case 1 Underfitted 21 30 3 14 23 14

Correctly fitted 23 27 17 49 42 44

Overfitted 56 43 80 37 35 42

Case 2 Underfitted 100 100 98 98 97 99

Correctly fitted 0 0 0 0 1 0

Overfitted 0 0 2 2 2 1

Case 3 Underfitted 93 97 17 20 41 59

Correctly fitted 0 0 78 78 17 13

Overfitted 7 3 5 2 42 28

Case 4 Underfitted 99 100 10 19 29 44

Correctly fitted 0 0 87 76 12 17

Overfitted 1 0 3 5 59 39

Case 5 Underfitted 50 64 1 6 29 42

Correctly fitted 2 10 0 0 0 0

Overfitted 48 26 99 94 71 58

Correlated cases

Case 1 Underfitted 18 48 22 65 19 17

Correctly fitted 38 26 53 31 54 61

Overfitted 44 26 25 4 27 22

Case 2 Underfitted 95 100 88 93 85 93

Correctly fitted 1 0 0 1 1 3

Overfitted 4 0 12 6 14 4

Case 3 Underfitted 91 99 9 27 22 44

Correctly fitted 1 0 88 68 29 36

Overfitted 8 1 3 5 49 20

Case 4 Underfitted 98 100 3 22 16 33

Correctly fitted 0 0 97 72 31 38

Overfitted 2 0 0 6 53 29

Case 5 Underfitted 59 83 1 14 16 33

Correctly fitted 15 6 0 0 0 0

Overfitted 26 11 99 86 84 67

To further assess the variable selection results, we also plot-

ted the “sensitivity” and “specificity” of selected models via

BIC in Figures 3 and 4, where sensitivity and specificity are

defined as follows:

sensitivity = the proportion of the number of selected relevant

terms to the total number of relevant terms

and

specificity = the proportion of the number of unselected

irrelevant terms to the total number of irrelevant

terms.

Therefore, a dot in a figure located at the upper left cor-

ner would mean that the corresponding method (via BIC) ef-

fectively selects relevant terms and removes irrelevant terms.

We can see that overall models selected by SHIM are closer

to the upper left corner than other methods, especially when

the effects of interaction terms are relatively large. In Case 5

(interaction-only model), because SHIM, CAP, and CARDS se-

lect relevant interaction terms as well as irrelevant main terms

due to the heredity constraint, their specificities are slightly

lower than that of LASSO, but the sensitivities remain high, es-

pecially for SHIM. Overall, SHIM (via BIC) seems to perform

better than LASSO, CAP, and CARDS on variable selection,

and the performance of SHIM also seems to be more stable

than those of other methods (Figures 3 and 4).

4.2 Analyzing Designed Experiments Using SHIM

In designed experiments, economic considerations may com-

pel the investigator to use few experiments (runs). Many effi-

cient experimental designs have been proposed in the literature.

Among them fractional factorial designs are thoroughly stud-

ied and widely used. While the design of experiments litera-

ture is replete with research on the construction of the efficient

designs, the methodologies of analysis have not received the

same amount of attention. Traditional analysis methods (e.g.,

stepwise, all subset) continue to be a dominating choice for

researchers in the DOE area. Wu and Hamada (2000) stated

three principles in the analysis of the designed experiment: ef-
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Figure 3. Simulation results: sensitivity and 1-specificity of the selected models based on BIC in independent cases. Each dot corresponds to

a replicate among 100 replicates. “CAP” refers to Zhao, Rocha, and Yu (2009) and “CARDS” refers to Yuan, Joseph, and Lin (2007).

fect sparsity (i.e., only a few of all candidate factors are active),

effect hierarchy (e.g., main effects are more likely to be sig-

nificant than two-factor interactions), and effect heredity (e.g.,

two-factor interaction x1x2 should be in the model only if the

main effects x1 and x2 are also in the model).

The proposed method appears to be particularly suitable for

analyzing the designed experiments, as SHIM encourages effect

sparsity and requires effect heredity in the model. In this section

we explore the use of SHIM in analyzing designed experiments.

We consider a simulation study, in which a minimum-aberration

26−2
IV design was used to generate simulated data. Six two-level

factors are studied in a 16-run design, which is defined by x5 =
x1x2x3 and x6 = x1x2x4. Similar to those in Table 1, four cases

of model are considered and shown in Table 3.

To assess SHIM, we generated 1000 simulations and re-

corded (1-specificity, sensitivity) as defined in Section 4.1. In

each simulation, the data are generated by using the true mod-

els of Table 3, plus a random error of N(0,1). We then com-

pare SHIM with LASSO, CARDS, and CAP. The results based

on BIC-selected models are shown in Figure 5. One can see

that SHIM performs consistently better than other methods in

terms of removing irrelevant effects, especially when the hered-

ity property is relatively strong (Cases 3 and 4).

4.3 Real Data Analysis

In this section, we apply our method SHIM to a real dataset.

This dataset was from Hung et al. (2004) for a case-control

study of bladder cancer. It consists of the genotypes on 14 loci

and the status of smoking behavior for 201 bladder cancer pa-

tients and 214 controls. Four of the genotypes are two-level

factors, nine are three-level factors, and one is a five-level fac-

tor. We represent all genotypes with dummy variables, hence

a total of 4 + 2 × 9 + 4 = 26 dummy variables. The status of

smoking behavior is represented with two predictors: one is a

three-level factor (nonsmoker, light smoker, and heavy smoker),

and the other is a continuous variable, measuring the number of
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Figure 4. Simulation results: sensitivity and 1-specificity of the selected models based on BIC in correlated cases. Each dot corresponds to a

replicate among 100 replicates. “CAP” refers to Zhao, Rocha, and Yu (2009) and “CARDS” refers to Yuan, Joseph, and Lin (2007).

packs consumed per year. Since the response variable is binary

(case/control), we used the negative binomial log-likelihood as

the loss function rather than the squared error.

We randomly split the data into training (n = 315) and testing

(N = 100). Tuning parameters were chosen via five-fold cross-

validation based on the training data. Fitted models were eval-

uated on the testing data, with the classification rule given by

sgn(ĝ(x)).

We considered three cases. In the first case, we used only the

genetic information, that is, the 14 loci genetic factors. There

Table 3. DOE example setting: coefficients of the true models

x1 x2 x3 x1x2 x1x3 x2x3

Case 1 7 2 1 0 0 0

Case 2 7 2 1 1 0 0

Case 3 7 2 1 7 7 7

Case 4 7 2 1 14 14 14

are a total of 336 candidate terms, including the main terms

and all possible two-way interaction terms (between two dif-

ferent loci). In the second case, we considered the 14 genetic

factors and the categorical smoke status. There are a total of

390 candidate terms, including all possible two-way interaction

terms among the genetic factors and the interaction terms be-

tween genetic factors and the categorical smoke status. In the

third case, we replaced the categorical smoke status with the

continuous smoke status, where we considered the interactions

between genetic factors and the continuous smoke status. For

comparison, we fitted both LASSO and SHIM in each case.

We used Adaptive(Ridge) as the prespecified weights because

the number of terms is larger than the number of observations

in the first two cases. Misclassification errors, sensitivities, and

specificities (all on the test data) of these models are summa-

rized in Table 4. As we can see, the models that use the genetic

factors and the continuous smoke status perform slightly better

than other models in terms of the error rate. This may be heuris-
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Figure 5. DOE example results: sensitivity and 1-specificity of the selected models based on BIC. Each dot corresponds to a replicate among

1000 replicates. “CAP” refers to Zhao, Rocha, and Yu (2009) and “CARDS” refers to Yuan, Joseph, and Lin (2007).

tically understood as that the continuous smoke-status contains

more information than the categorical smoke status.

We then focused on the third case. Terms selected by

Adaptive-LASSO and Adaptive-SHIM are shown in the upper

part of Table 5. Notice that both methods selected the smoke

status (PackYear), GSTM1, and MPO. LASSO also selected an

interaction term, NQO1 × PackYear, but it does not obey the

heredity constraint; on the other hand, SHIM selected the main

term NQO1, but not the interaction term.

To further assess the terms that were selected, we applied a

bootstrap analysis. The lower part of Table 5 summarizes the

terms that were selected with selection frequency higher than

30% based on B = 100 bootstrap samples. As we can see, the

five terms selected by SHIM using the training data are the only

five terms that had the selection frequency higher than 30% in

bootstrap samples. So SHIM is fairly stable in terms of select-

ing terms. We can also see that the smoke status was always

selected, followed immediately by MPO. The interaction term

NQO1×PackYear was selected half of the time by LASSO, but

never by SHIM; instead, SHIM selected the main term NQO1

half of the time.

These results seem to be consistent with the findings in Hung

et al. (2004). The five terms selected by SHIM are among the

ones that were shown to have a significant effect on increasing

the risk of bladder cancer in Hung et al. (2004).

5. CONCLUSION

In this paper, we have extended the LASSO method for si-

multaneously fitting a regression model and identifying inter-

action terms. The proposed method automatically enforces the

heredity constraint. In addition, it enjoys the “oracle” property

under mild regularity conditions. We demonstrate that our new

method tends to remove irrelevant variables more effectively

and provide better prediction performance than the classical

LASSO method, as well as two other more recent work.

The heredity that we have considered in this paper is the so-

called strong heredity, that is, an interaction term can be in-

cluded in the model only if both of the corresponding main



364 Journal of the American Statistical Association, March 2010

Table 4. Real data analysis results: misclassification error, sensitivity,

and specificity on the test data

Misclassification

error Sensitivity Specificity

SHIM using the genetic factors

LASSO Plain 0.44 0.48 0.63

Adaptive 0.41 0.52 0.65

SHIM Plain 0.36 0.54 0.73

Adaptive 0.38 0.46 0.77

SHIM using the genetic factors and the categorical smoke

status variable

LASSO Plain 0.35 0.58 0.71

Adaptive 0.37 0.56 0.69

SHIM Plain 0.35 0.65 0.65

Adaptive 0.34 0.65 0.67

SHIM using the genetic factors and the continuous smoke

status variable

LASSO Plain 0.34 0.60 0.71

Adaptive 0.32 0.67 0.69

SHIM Plain 0.33 0.67 0.67

Adaptive 0.32 0.65 0.71

terms are also included in the model. There is another type of

heredity, weak heredity (Hamada and Wu 1992), in which only

one of the main terms is required to be present when an in-

teraction term is included in the model. Extending our SHIM

framework to enforce the weak heredity is straightforward: in-

stead of reparameterizing the coefficient for xjxj′ as the product

γjj′βjβj′ , we may write it as γjj′(|βj|+ |βj′ |). So if the coefficient

for xjxj′ is not equal to zero, it implies that at least one of βj and

βj′ is not equal to zero.

Table 5. Real data analysis results: the upper part lists the terms that

were selected using the training data, and the lower part lists the terms

that were selected (with selection frequency higher than 30%) based

on 100 bootstrap samples. The numbers in the parentheses are the

corresponding selection frequencies out of B = 100 bootstrap

samples. LASSO and SHIM were used with the genetic factors

and the continuous smoke-status variable

Adaptive LASSO Adaptive SHIM

Selected terms using the training data

PackYear PackYear

GSTM1 GSTM1

MPO MPO

(NQO1) × (PackYear) NQO1

– MnSOD

Selected terms using 100 bootstrap samples

PackYear (100%) PackYear (100%)

MPO (78%) MPO (82%)

(NQO1) × (PackYear) (49%) GSTM1 (57%)

GSTM1 (43%) NQO1 (46%)

NQO1 (37%) MnSOD (40%)

MnSOD (36%) –

(COMT) × (PackYear) (35%) –

(MPO) × (PackYear) (32%) –

(XRCC1) × (PackYear) (30%) –

SUPPLEMENTAL MATERIALS

Conditions and proof: Part 1 describes the regularity condi-

tions that are needed for the asymptotic oracle properties of

SHIM (Lemmas 1 and 2, Theorem 1–3) shown in Section 3.

In Part 2, the proof of those properties is provided. (shim-

supp.pdf)
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