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Abstract
This paper1 presents novel algorithms and applications for a particular class of mixed-norm reg-
ularization based Multiple Kernel Learning (MKL) formulations. The formulations assume that
the given kernels are grouped and employl1 norm regularization for promoting sparsity within
RKHS norms of each group andls,s≥ 2 norm regularization for promoting non-sparse combina-
tions across groups. Various sparsity levels in combining the kernels can be achieved by varying
the grouping of kernels—hence we name the formulations as Variable Sparsity Kernel Learning
(VSKL) formulations. While previous attempts have a non-convex formulation, here we present
a convex formulation which admits efficient Mirror-Descent(MD) based solving techniques. The
proposed MD based algorithm optimizes over product of simplices and has a computational com-
plexity of O

(
m2ntot lognmax/ε2

)
wherem is no. training data points,nmax,ntot are the maximum no.

kernels in any group, total no. kernels respectively andε is the error in approximating the objective.
A detailed proof of convergence of the algorithm is also presented. Experimental results show that
the VSKL formulations are well-suited for multi-modal learning tasks like object categorization.
Results also show that the MD based algorithm outperforms state-of-the-art MKL solvers in terms
of computational efficiency.
Keywords: multiple kernel learning, mirror descent, mixed-norm, object categorization, scalabil-
ity
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1. Introduction

This paper studies the problem of Multiple Kernel Learning (MKL) (Lanckriet et al., 2004; Bach
et al., 2004; Sonnenburg et al., 2006; Rakotomamonjy et al., 2008) when the given kernels are
assumed to be grouped into distinct components. Further, the focus is on thescenario where
prior/domain knowledge warrants that each component is crucial for the learning task at hand. One
of the key contributions of this paper is a highly efficient learning algorithm for this problem.

Recently Szafranski et al. (2008) extended the framework of MKL to thecase where kernels
are partitioned into groups and introduced a generic mixed-norm (that is(r,s)-norm;r,s≥ 0) regu-
larization based MKL formulation (refer (11) in Szafranski et al., 2008)in order to handle groups
of kernels. The idea is to employ ar-norm regularization over RKHS norms for kernels belonging
to the same group and as-norm regularization across groups. Though a generic formulation was
presented, the focus of Szafranski et al. (2008) was on applicationswhere it is known that most of
the groups of kernels are noisy/redundant and hence only those mixed-norms promoting sparsity
among kernels within and across groups were employed, for example, 0< r,s< 2 (following the
terminology of Szafranski et al. (2008) this class of mixed-norm MKL formulations are henceforth
called as “Composite Kernel Learning (CKL)” formulations). This paper presents a complementary
study and focuses on applications where the domain knowledge guarantees that every group of ker-
nels is crucial. Needless to say, all the groups of kernels need not be “equally” important and not
all kernels belonging to a group may be important. More specifically, the focus of this paper is on
the cases wherer = 1 ands≥ 2 (including the limiting case2 s= ∞). Here,p= 1 is employed for
promoting sparsity among kernels belonging to the same group ands≥ 2 for promoting non-sparse
combinations of kernels across groups. Note that the extreme cases: a) all of the kernels belong
to one group b) Each group consists of a single kernel; correspond to the extreme sparse and non-
sparse combinations of the given kernels. Since by varying the values ofs and the groupings of
kernels various levels of sparsity in combining the given kernels can be achieved, the formulations
studied here are henceforth called as “Variable Sparsity Kernel Learning” (VSKL) formulations.
As mentioned earlier, VSKL formulations are not well-studied in literature and this paper presents
novel algorithms and applications for these formulations.

The VSKL formulations are motivated by multi-modal learning applications like object catego-
rization where multiple feature representations need to be employed simultaneously for achieving
good generalization. For instance, in the case of flower categorization feature descriptors for shape,
color and texture need to be employed in order to achieve good visual discrimination as well as
significant within-class variation (Nilsback and Zisserman, 2006). Combining feature descriptors
for object categorization using the framework of MKL for object categorization has been a topic
of interest for many recent studies (Varma and Ray, 2007; Nilsback andZisserman, 2008) and is
shown to achieve state-of-the-art performance. A key finding of Nilsback and Zisserman (2006) is
the following: in object categorization tasks, employing few of the feature descriptors or employing
a canonical combination of them often leads to sub-optimal solutions. Hence,in the framework
of MKL, employing a blockl1 regularization, which is equivalent to selecting the “best” among
the given kernels, as well as employing al2 regularization, which is equivalent to working with a
canonical combination of the given kernels, may lead to sub-optimality. This observation clearly
shows that state-of-the-art object categorization techniques (which are based on blockl1 regularized
formulation) can further be improved. This paper proposes to employ the VSKL formulations for

2. This limiting case was discussed in an earlier version of this paper (Nath et al., 2009).
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object categorization where the kernel are grouped based on the feature descriptor generating them.
The ls(s≥ 2)-norm regularization leads to non-sparse combinations of kernels generated from dif-
ferent feature descriptors and thel1 norm leads to sparse selection of non-redundant/noisy kernels
generated from a feature descriptor.

With this motivation, the key aspect investigated in this paper is an efficient algorithm for solving
the VSKL formulations which are instances of non-smooth convex optimization problems. Except
in the cases wheres= 2 or s= ∞ or no. groups is one, the formulations cannot be solved using
standard interior point based convex optimization software. Moreover, even in these special cases
the generic interior point algorithms do not scale well to large data sets. The wrapper approach
presented in Szafranski et al. (2008) cannot be employed for solvingthe VSKL formulations (that
is, with ls,s≥ 2 regularization across groups) efficiently as it solves a non-convex variant of the
original convex formulation! The methods discussed in Szafranski et al.(2008); Kloft et al. (2010)
are however efficient in the case 1≤ s< 2 (that is, sparse regularization across groups). In summary,
efficient techniques for solving VSKL formulations indeed need to be devised. This paper adapts
the Mirror-Descent (MD) (Ben-Tal et al., 2001; Beck and Teboulle, 2003; Ben-Tal and Nemirovski,
2001) procedure for solving a specific dual of VSKL leading to extremelyscalable algorithms.
MD is similar in spirit to the steepest descent algorithm; however involves a prox-function based
regularizer rather than Euclidean norm based regularizer in the per-step auxiliary problem solved
at each iteration. The prox-function is cleverly chosen based on the geometry of the feasibility set.
Here, the feasibility set for the optimization problem tackled by MD turns out to be direct product of
simplices, which is not a standard set-up discussed in optimization literature. Wepropose to employ
the entropy function as the prox-function in the auxiliary problem solved byMD at each iteration
and justify its suitability for the case of direct product of simplices. The MD based procedure for
solving the dual of VSKL is henceforth called asmirrorVSKL .

Apart from the derivation of themirrorVSKL algorithm, we also provide a detailed proof of its
asymptotic convergence.mirrorVSKL is also of independent interest to the MKL community as it
can solve the traditional MKL problem; namely the case when the number of groups is unity. The
key advantages ofmirrorVSKL oversimpleMKL are:a) In case ofsimpleMKL in addition to gradient
computation, the reduced gradient and step-size need to be determined which requires substantial
computational effort; whereas in case ofmirrorVSKL , pre-dominant computation at each iteration
is that of calculating the gradient since the auxiliary problem has an analytical solution and the step-
size can be computed easilyb) It can be shown that the number of iterations withmirrorVSKL is
nearly-independent of the number of kernels whereas no such a statement can be made in case of
simpleMKL .

Simulations were performed on three real-world object categorization data sets: Caltech-101 (Fei-
Fei et al., 2004), Caltech-256 (Griffin et al., 2007) and Oxford flowers (Nilsback and Zisserman,
2006) for comparing the generalization ability of the VSKL and existing MKL formulations. The
results show that the proposed formulation are well-suited for multi-modal tasks like object cate-
gorization. In the special case of number of groups unity, themirrorVSKL andsimpleMKL algo-
rithms were compared in terms of computational effort and scalability. The scalability experiments
were performed on few UCI data sets (Blake and Merz, 1998) following the experimental set-up
of Szafranski et al. (2008). Results showed thatmirrorVSKL scales well to large data sets with
large no. kernels and in some cases was eight times faster thansimpleMKL .

The remainder of this paper is organized as follows: in Section 2, the VSKL and related MKL
formulations are presented. The section also presents a specific dual ofVSKL which admits efficient
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MD based solving techniques. The main contribution of the paper,mirrorVSKL is presented in
Section 3. A detailed proof of convergence ofmirrorVSKL is also presented. Section 4 presents a
summary of the numerical experiments carried for verifying the major claims of the paper. Section 5
concludes the paper with a brief summary and discussion.

2. Variable Sparsity Kernel Learning Formulation

This section presents the VSKL formulation and a specific dual of it. Thoughthe formalism can
be extended to various learning tasks we focus on the task of binary classification in the rest of
the paper. We begin by introducing some notation: let the training data set be denoted byD =
{(xi ,yi), i = 1, . . . ,m | xi ∈ X , yi ∈ {−1,1}}. Here,xi represents theith training data point with
labelyi . Let Y denote the diagonal matrix with entries asyi . Suppose the given kernels are divided
into n groups and thej th group hasn j number of kernels. Let the feature-space mapping induced
by thekth kernel of thej th component beφ jk(·) and the corresponding gram-matrix of training data
points beK jk.3 Also, letQ jk = YK jkY.

For now, to keep things simple, let us assume that each of the kernels is suchthat the induced
feature mapping is finite dimensional; later on we will generalize and remove this assumption. Each
individual example can now be described by a concatenation of all the feature vectors:

x⊤ =
[

φ11(x)⊤ . . .φ jk(x)⊤ . . .φnnn(x)
⊤
]

.

Consider the problem of learning a linear discriminant function of the form

f (x) =
n

∑
j=1

n j

∑
k=1

w⊤jkφ jk(x)−b.

Given a training set the idea is to learn aw≡ [w⊤11w
⊤
12. . .w

⊤
nnn

]⊤ andb which generalizes well. This
could be achieved by minimizing an objective of the form (Vapnik, 1998):

J(w) = Ω(w) + C L(D),

whereΩ is a suitable regularizing function,L is a loss function which penalizes errors on the training
set andC is a regularization parameter. SVMs (Vapnik, 1998) usually useΩ(w) = 1

2‖w‖22 and
L=∑m

i=1max(1−yi(w⊤xi−b),0). It is easy to see that this formulation corresponds to employing a
kernel which is essentially the sum of all the given kernels. Hence-forth, we denote this formulation
by SVM and use it as a baseline for comparison in the experiments.

The regularization term can be an extremely useful tool for modelling various different kinds
of data. The choice ofΩ should be such that this is tractable and yet flexible enough to enforce
different relationships between groups dictated by modelling requirements.Recently (Szafranski
et al., 2008) employed a regularization of the form

1
2
‖w‖2r,s 0≤ r < 2,0≤ s< 2,

where

‖w‖(r,s) =







n

∑
j=1

{
n j

∑
k=1

‖w jk‖r2

} s
r







1
s

.

3. The gram-matrices are unit-trace normalized.
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Since the primary goal of Szafranski et al. (2008) is to achieve sparsity, the focus was only on the
cases 0≤ r < 2,0≤ s< 2 making most of the individual norms‖w jk‖ zero at optimality. Hence-
forth, this formulation is denoted byCKL r,s wherer,s represent the within and across group norms
respectively.

However as discussed above in case of multi-modal tasks like object categorization, it is often
desirable that there is sparsity within the group but all the groups need be active. In view of this we
begin by defining

Ω(p,q)(w) =
1
2







n

∑
j=1

{
n j

∑
k=1

‖w jk‖2p
2

} q
p







1
q

.

This can be interpreted as a mixed norm operating on‖w jk‖2 and the following relationship holds

Ω(p,q)(w) =
1
2
‖w‖2r,s, r = 2p,s= 2q.

In this paper we analyze the casep= 1
2 andq≥ 1 which is equivalent to considering anl1 (sparse)

norm regularization within kernels of each group andls(s≥ 2) (non-sparse) norm across groups. In
other words, we consider the following regularization:

Ω(w) =
1
2







n

∑
j=1

{
n j

∑
k=1

‖w jk‖2
}2q






1
q

,

whereq≥ 1. By varying the groupings of kernels various levels of sparsity can beachieved: no.
of groups is unity corresponds to extreme sparse selection of kernels and no. groups equal to no.
kernels corresponds to non-sparse combinations of kernels. The flexibility in choice of q offers
different modelling perspectives and correspond to various ways forachieving non-sparse combi-
nations across groups. Since this formulation allows for flexibility from sparsity to non-sparsity,
it is called as the Variable Sparsity Kernel Learning (VSKL) formulation anddenoted byVSKL q,
whereq≥ 1:

min
w jk,b,ξi

1
2

[

∑ j

(

∑n j

k=1‖w jk‖2
)2q
] 1

q
+C∑i ξi

s.t. yi

(

∑n
j=1 ∑n j

k=1w⊤jkφ jk(xi)−b
)

≥ 1−ξi , ξi ≥ 0 ∀ i. (1)

In the extreme caseq→ ∞, the regularization term is to be written as1
2 maxj

(

∑n j

k=1‖w jk‖2
)2

. Note
that the traditional MKL formulation using the blockl1 norm regularization (Rakotomamonjy et al.,
2008) is a special case of VSKL when the number of groups is unity. We denote this special case by
MKL and as mentioned earlier, state-of-the-art object categorization performance is achieved using
this methodology.

Existing wrapper approaches (Szafranski et al., 2008; Rakotomamonjyet al., 2008) are useful in
solving (1) only for the casesq< 1. For 1≤ q<∞, the wrapper approaches solve a non-convex vari-
ant of the convex formulation and hence are not well-suited. Moreover these wrapper approaches
cannot be easily extended to handle the important caseq→ ∞. In this paper we describe a first
order method based on mirror descent procedure which efficiently solves the VSKL formulation for
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all values ofq≥ 1 (includingq→ ∞) and provably converges to the global optimum. The mirror
descent procedure solves a specific dual of the VSKL formulation—details of which are presented
in the following.

2.1 Dual of VSKL

This section presents a dual ofVSKL which admits efficient MD solving techniques. In the rest of
the paperq∗= q

q−1, q≥ 1 (if q= 1 thenq∗=∞ and ifq=∞ thenq∗= 1). If 1≤ r <∞, the following

sets∆d,r =
{

γ≡ [γ1 . . .γd]
⊤ | ∑d

i=1 γr
i ≤ 1,γi ≥ 0, i = 1, . . . ,d

}
are convex. Asr → ∞ one obtains a

d-dimensional box∆d,∞ = Bd = {γ | 0≤ γi ≤ 1 i = 1, . . . ,d}. If r = 1 we get back ad-dimensional
simplex, and to lighten notation we will denote∆d,1 = ∆d. At this point it would be useful to recall
the following lemma (see Boyd and Vandenberghe, 2004, Section A.1.6):

Lemma 2.1 Let a be a d-dimensional vector with non-negative components, that is, ai ≥ 0 i =
1, . . . ,d. Then

‖a‖r = supγ∈∆d,r∗ γ
⊤a,

where r≥ 1 and r∗ verifies1
r +

1
r∗ = 1.

A specialization of this lemma forr → ∞ is:

max
i
{ai}= supγ∈∆dγ⊤a.

We also note the following result which will be used in later derivations (see Micchelli and Pontil,
2005):

Lemma 2.2 Let ai ≥ 0, i = 1, . . . ,d and1≤ r < ∞. Then, for∆d,r defined as before,

min
η∈∆d,r

∑
i

ai

ηi
=

(
d

∑
i=1

a
r

r+1
i

)1+ 1
r

,

and the minimum is attained at

ηi =
a

1
r+1
i

(

∑d
i=1a

r
r+1
i

) 1
r

.

Here, by convention, a/0 is 0 if a= 0 and is∞ otherwise. In the limit r→ ∞ the following holds

min
η∈Bd

∑
i

ai

ηi
=

d

∑
i=1

ai ,

where Bd is defined as before and equality is is attained atηi = 1∀ ai > 0.

Proof The proof follows by employing the Karush-Kuhn-Tucker conditions, which are here neces-
sary and sufficient for optimality.

Using Lemma 2.1, the objective in (1), for anyq≥ 1, becomes:

1
2

max
γ∈∆n,q∗

n

∑
j=1

γ j

(
n j

∑
k=1

‖w jk‖
)2

+C∑
i

ξi . (2)
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For the caseq→∞ the set∆n,q∗ reduces to a simplex,∆n. Further, by Lemma 2.2 (withd= n, r = 1):
(

n

∑
i=1

√
ai

)2

= min
λ∈∆n

n

∑
i=1

ai

λi
,

so (2) can be written equivalently as:

max
γ∈∆n,q∗

min
λ j∈∆nj









1
2

n

∑
j=1

n j

∑
k=1

γ j
‖w jk‖2

λ jk
+C∑

i

ξi

︸ ︷︷ ︸

f (w,λ,γ,ξ)









.

The equivalent primal formulation we arrive at is finally

Problem (P)

min
ξi ,b,w jk

[

max
γ∈∆n,q∗

min
λ j∈∆nj

f (w,λ,γ,ξ)

]

s.t. yi

(
n

∑
j=1

n j

∑
k=1

wT
jkφ jk(xi)−b

)

> 1−ξi , ∀ i, (3)

ξi > 0 , ∀ i. (4)

Note that at optimality, the following relations hold

λ jk = 0 ⇒ w jk = 0,

if q 6= ∞, thenγ j = 0 ⇔ w jk = 0 ∀ k.

In caseq= ∞, w jk = 0 ∀ k⇒ γ j = 0 unlessw jk = 0 ∀ j,k, which is an un-interesting case. Let us
fix the variablesξ,b andw in problem (P) and consider the maxγ minλ part in the square brackets:

max
γ

min
λ

{

f (w,λ,γ,ξ) | λ ∈
⊗

j

∆n j , γ ∈ ∆n,q∗

}

.

The objective function is concave (linear) inγ and convex inλ, and the feasible sets
⊗

j ∆n j , ∆n,q∗

are convex and compact. Hence, by the Sion-Kakutani minmax theorem (Sion, 1958), the maxmin
can be interchanged, and when this is done, problem (P) becomes

min
ξi ,b,w jk

min
λ∈⊗ j ∆nj

max
γ∈∆n,q∗

f (w,λ,γ,ξ) , s.t. (3), (4),

or similarly

min
λ∈⊗ j ∆nj

[

min
ξi ,b,w jk

max
γ∈∆n,q∗

f (w,λ,γ,ξ) , s.t. (3), (4)

]

. (5)

Now, f is convex in(ξ,b,w) and concave (linear) inγ. The set for feasible(ξ,b,w), expressed in (3),
(4) is closed and convex, and

⊗
j ∆n j is convex compact. Hence, by a minmax theorem (Rockafellar,

1964), the minmax in the square brackets in (5) can be interchanged and wearrive at

min
λ∈⊗ j ∆nj

max
γ∈∆n,q∗

{

min
ξi ,b,w jk

f (w,λ,γ,ξ) | s.t. (3), (4)

}

. (6)
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Replacing the convex problem in the curly brackets in (6) by its dual the following theorem is
immediate:

Theorem 2.3 LetQ jk be the m×m matrix

(
Q jk
)

ih = yhyiφ jk(xi)
⊤φ jk(xh) i,h= 1, . . . ,m.

The dual problem of (P) w.r.t. the variables(w,b,ξ) is the following:4

Problem (D)







min
λ∈⊗ j ∆nj

max
α∈Sm,γ∈∆n,q∗

{

∑αi−
1
2

αT

(
n

∑
j=1

n j

∑
k=1

λ jkQ jk

γ j

)

α

}

,

where Sm =

{

α ∈ R
m |

m

∑
i=1

αiyi = 0, 06 αi 6C, i = 1, . . . ,m

}

.

The relation between the primal and dual variables is given by:γ j
w jk

λ jk
= ∑m

i=1 αiyiφ jk(xi). Note that

(D) is only a partial dual (wrt. variablesw,b,ξ) of (P) and is not the joint dual. Interestingly the
partial dual can be efficiently solved using a non-Euclidean gradient-descent based approach (see
Section 3) and hence is explored here. In the following, we generalize thisdiscussion using the
functional framework and remove the restriction that the induced feature maps are finite dimen-
sional.

2.1.1 THE FUNCTIONAL FRAMEWORK

We first consider the case 1≤ q<∞. LetK jk be positive kernel functions defined over the same input
spaceX . EachK jk defines a Reproducing Kernel Hilbert Space (RKHS)H jk with the inner product

〈., .〉H jk
. An elementh ∈ H jk has the norm‖h‖H jk

=
√

〈h,h〉H jk
. Now for anyλ jk non-negative,

define a new Hilbert space

H
′
jk = {h|h∈ H jk,

‖h‖H jk

λ jk
< ∞}

with inner product as〈., .〉
H
′
jk
= 1

λ jk
〈., .〉H jk

. We use the convention that ifλ jk = 0 then the only

member ofH
′
jk is h = 0. It is easy to see thatH

′
jk is an RKHS with kernel asλ jkK jk (see Rako-

tomamonjy et al., 2008). A direct sum of such RKHS,H j =
⊕

kH
′
jk is also an RKHS with the

kernel asK j = ∑k λ jkK jk. Now again, for a givenγ j non-negative, consider Hilbert spacesH
′
j

derived fromH j as follows: a) ifγ j = 0 thenH
′
j contains only the zero element and ifγ j > 0

then elements inH
′
j as same as those inH j however〈., .〉

H
′
j
= γ j〈., .〉H j

. Again H
′
j are RKHS

with kernels as1
γ j

K j =
1
γ j

∑k λ jkK jk and their direct sum is in-turn an RKHSH with kernel as

K = ∑n
j=1

1
γ j

∑n j

k=1 λ jkK jk. With this functional framework in mind we now letw jk be an element of

H jk with the norm‖w jk‖H jk
=
√
〈w jk,w jk〉H jk

and letw ∈ H whereH is as defined above. The
primal (P) in this case reads as follows:

4. Only for the caseq= ∞, we make an additional assumption that all the base kernels are strictly positive in order to
write the dual in the form of problem (D) above.
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min
ξi ,b,w jk∈H jk

{

max
γ j∈∆n,q∗

min
λ j∈∆nj

f (w,λ,γ,ξ)

}

s.t. yi (〈w,xi〉H −b)> 1−ξi ,ξi > 0,

(7)

where f (w,λ,γ,ξ) = 1
2 ∑n

j=1 ∑n j

k=1 γ j

‖w jk‖2H jk

λ jk
+C∑i ξi .

Following the usual procedure for generalizing linear SVMs to RKHS via Representer theorem
one obtains the following generalization of Theorem 2.3:

Theorem 2.4 LetQ jk be the m×m matrix
(
Q jk
)

ih = yhyiK jk(xi ,xh) i,h= 1, . . . ,m.

The dual problem of (7) with respect to{w,b,ξ} is the following optimization problem:

min
λ j∈∆nj

max
α∈Sm,γ∈∆n,q∗

fλ(α,γ)
︷ ︸︸ ︷

1Tα− 1
2

αT

(
n

∑
j=1

n j

∑
k=1

λ jkQ jk

γ j

)

α

︸ ︷︷ ︸

G(λ)

, (D)

where Sm =
{

α ∈ R
m|06 α 6C,yTα = 0

}
.

We omit the proof as it is straightforward. To be noted thatγ j

λ jk
w jk(.) = ∑i αiyiK jk(.,xi) and all other

conditions remain same.5

We will refer (D) as the dual problem. The dual (D) problem provides more insight into the
formulation: λ jk can be viewed as a weight given to the kernelK jk and 1

γ j
can be thought of as

an additional weight factor for the entirej th group/descriptor. Sinceλ j ∈ ∆n j (that is,λ js arel1
regularized), most of theλ js will be zero at optimality and sinceγ ∈ ∆n,q∗ , it amounts to combining
kernels across descriptors in a non-trivial (and in caseq∗≥ 2 in a non-sparse) fashion. Indeed, this is
in-sync with findings of Nilsback and Zisserman (2006): kernels from different feature descriptors
(components) are combined using non-trivial weights (that is,1

γ j
); moreover, only the “best” kernels

from each feature descriptor (component) are employed by the model. Thissparsity feature leads to
better interpretability as well as computational benefits during the prediction stage. Note that in the
case optimal weights (λ,γ) are known/fixed, then the problem is equivalent to solving an SVM with

an effective kernel:Ke f f ≡ ∑n
j=1

(

∑
nj
k=1 λ jkK jk

γ j

)

. This observation leads to an efficient algorithm for

solving the dual which is described in the subsequent section.

3. Algorithm for Solving the Dual Problem

This section presents the mirror descent based algorithm for efficiently solving the dual (D). A
detailed proof of convergence of the algorithm is also presented. We begin by re-writing problem
(D) as a minimization problem, rather than a minimax problem:

min{G(λ1,λ2, . . . ,λn) | λ j ∈ ∆n j , j = 1, . . . ,n}, (8)

5. Again, for the caseq= ∞, we make the assumption that all base kernels are strictly positive in orderthat Theorem 2.4
is true.
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where the objective functionG is the optimal value function of the following problem:

G(λ1,λ2, . . . ,λn) = max
γ∈∆n,q∗ ,α∈Sm

{

1Tα− 1
2

αT
n

∑
j=1

(
∑k λ jkQ jk

γ j

)

α

}

︸ ︷︷ ︸

fλ(α,γ)

. (9)

The functionG is convexin λ ∈ IRn since it is the point-wise maximize of functions which are
linear in λ. The minimization problem (8) is then that of minimizing a convex (possibly non-
differentiable) function over a product of simplices. Problems with these features, even large-scale
ones, can be solved efficiently by a Mirror Descent (MD) type algorithm (Ben-Tal et al., 2001; Beck
and Teboulle, 2003) which is reviewed in the next subsection. An MD algorithm needs as input
in each iteration a sub-gradientG′(λ) belonging to the sub-gradient set∂G(λ). Using Danskin’s
theorem (see Bertsekas, 1999, prop. B.25), these elements are readilyavailable from the solution
of theconcave maximization problem(in vector variables,γ andα) in (9).6 A procedure for solving
this maximization problem efficiently is presented in Section 3.3. Note that the maximumproblem
is solved numerically and hence the approximate sub-gradient is only obtained. Though we provide
convergence analysis, it does not deal with the issue of approximate sub-gradient. Analysis of such
situations is more involved and we postpone it to future work (see D’Aspermont, 2008).

3.1 Introduction to Mirror Descent

Consider the following problem.
min f (x) x∈ X, (10)

where:

1. X ⊂ R
n is convex and closed with nonempty interior.

2. The objective functionf : X→ R is a convex Lipschitz continuous function, with respect to
a fixed given norm‖ · ‖, that is:

∃L, | f (x)− f (y)|6 L‖x−y‖ ∀x,y∈ intX.

3. There exists anoraclewhich givenx∈ X computesf (x) and f ′(x) ∈ ∂ f (x).

For such problems a classical algorithm is the Sub-gradient Projection Algorithm (SPA), which
generates iteratively the sequence{xt} via:

xt+1 = πX(x
t −st f ′(xt)),

wherest is a step-size, andπX(y) = argmin
x∈X

{‖x−y‖2} is the projection ofy onX. The SPA can be

rewritten equivalently as

xt+1 = argmin
x∈X

{

〈x,st f ′(xt)〉+ ‖x−xt‖22
2

}

.

6. If α∗,γ∗ represent the variables maximizingf for given λ, then the jkth component of the sub-gradientG′(λ) is

− 1
2

α∗⊤Q jkα∗
γ∗j

.
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The main idea of Mirror Descent Algorithm(MDA) is to replace the distance function 1
2‖x−xt‖22

based on the Euclidean norm by a general distance-like functionD(x,xt) (also referred to as prox-
function). The basic iteration step then becomes

xt+1 = argmin
x∈X

{
〈x,st f ′(xt)〉+D(x,xt)

}
. (11)

With the freedom to chooseD one can adapt it to the specific constraint setX. The minimal require-
ments on the “distance function” are

1. D is nonnegative,

2. D(u,v) = 0 if and only ifu= v.

A possible way to construct such a distance-like function is as follows: LetΦ : X→ R be strongly
convex with parameterσ > 0 with respect to a norm‖ ‖, that is:

〈∇Φ(x)−∇Φ(y),x−y〉 ≥ σ‖x−y‖2, ∀x,y∈ X .

Then
BΦ(x,y) = Φ(x)−Φ(y)−〈x−y,∇Φ(y)〉

is a distance-like function (often called Bregman Divergences). With this choice, the iteration
scheme (11) is equivalent (see Beck and Teboulle, 2003) to the followingthree step procedure

1. xt ← ∇Φ∗(yt),

2. yt+1← ∇Φ(xt)−st f ′(xt), (12)

3. xt+1← ∇Φ∗(yt+1) = ∇Φ∗(∇Φ(xt)−st f ′(xt)).

HereΦ∗(y) = max
x∈X
{〈x,y〉−Φ(x)} is theconjugatefunction ofΦ.

This procedure yields efficient convergent algorithms for solving (10). More formally we state
the following theorem proved in Beck and Teboulle (2003)

Theorem 3.1 Let{xt} be the sequence generated from a starting point x1 ∈ intX by the MD proce-
dure outlined in (12) with the D being the Bregman Divergence Bφ(·, ·). Let f∗ = minx∈X f (x), and
let x∗ ∈ X be a point where the minimum is attained. Then for every t> 1

1.

min
16t̃6t

f (xt̃)− f ∗ 6
BΦ(x∗,x1)+2σ−1 ∑t

t̃=1s2
t̃ ‖ f ′(xt̃)‖2∗

∑t
t̃=1 s̃t

,

whereσ is the strong-convexity parameter ofΦ.

2. In particular if the step size sequence{st} satisfies

t

∑̃
t=1

s̃t → ∞,st → 0, t→ ∞,

then the method converges, that is:

t→ ∞⇒ min
1≤t̃≤t

f (xt̃)− f ∗→ 0,
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3. Moreover if the step-sizes st are chosen as

st =

√

2σΓ(x1)

L2
f t

,

then the following efficiency estimate holds

min
16t̃6t

f (xt̃)− f ∗ 6 L f

√

2Γ(x1)

σt
,

whereΓ(x1) = maxx∈X BΦ(x,x1) measures the “width” of the feasible set X. �

The above theorem shows that MD procedures requireO(
L2

f Γ(x1)

σε2 ) iterations for attaining anε
accurate solution where each iteration is very cheap, requiring just a gradient computation.

3.2 Minimizing G by Mirror Descent Procedures

In the following we discuss the suitability of MD procedures outlined in (12) for minimizing G
given in (9).

For an MD procedure to apply we first need to demonstrate thatG is convex and Lipschitz
continuous. We also need to devise a Distance generating function which is suitable for a feasible
set comprised of a product of simplices. We begin with the proposition

Proposition 3.1 If there exists scalars0< τ < 1, µ> 0 such that all eigenvalues of eachQ jk matrix
lie within an interval(τµ,µ), then the function G given by

G(λ1, · · · ,λn) = max
α∈Sm,γ∈∆n,q∗

1Tα− 1
2

αT

[
n

∑
j=1

(

∑n j

k=1 λ jkQ jk

γ j

)]

α

is convex and Lipschitz continuous w.r.t. in the l1 norm for any q≥ 1.

Proof See Appendix for a proof.

A suitable Distance generating function of the formBΦ over product of simplices is given in the
following

Proposition 3.2 Let

Φ j(λ j) =
n j

∑
k=1

λ jk ln(λ jk), λ j ∈ ∆ j ∀ j = 1, . . . ,n.

The functionΦ(λ) = ∑n
j=1 Φ j(λ j) = ∑n

j=1 ∑n j

k=1 λ jk ln(λ jk) is strongly convex with parameter1
n with

respect to the l1 norm. The corresponding distance generating function is given by

BΦ(λ∗,λ1) =
n

∑
j=1

n j

∑
k=1

λ∗jk ln

(

λ∗jk
λ1

jk

)

.
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Proof The functionΦ j is convex inλ j as its Hessian is positive definite over the interior of its
domain. SinceΦ is a sum of such functions it is also convex.

Recall that a necessary and sufficient condition (Rockafellar, 1970)for a convex functionΦ to
be strongly convex with respect to a norm,‖.‖, and parameterσ, is

〈∇Φ(λ)−∇Φ(λ∗),λ−λ∗〉 ≥ σ‖λ−λ∗‖2,
where∇Φ(λ) is an element in the sub-gradient set ofΦ evaluated atλ.

The proof can now be constructed as follows

〈∇Φ(λ)−∇Φ(λ∗),λ−λ∗〉=
n

∑
j=1

KL(λ j ,λ∗j )

≥
n

∑
j=1

‖λ j −λ∗j‖21

≥ 1
n
‖λ−λ∗‖21,

wherein the first equalityKL(p,q) = ∑i pi log pi
qi

. The first inequality is obtained by noting that

KL(p,q) ≥ ‖p−q‖21 (see Cover and Thomas, 2006). The second inequality is valid since for any
nonnegativea j one has by Cauchy-Schwartz inequality,1

n(∑
n
j=1a j)

2≤ ∑n
j=1a2

j . This proves thatΦ
is strongly convex with parameter1

n in the l1 norm.
Finally, the functionBΦ can be written as

BΦ(λ∗,λ) = Φ(λ∗)−Φ(λ)−〈∇Φ(λ),λ∗−λ〉.
Hence, it is indeed a Bregman-type distance generating function

3.2.1 THE CHOICE OFSTEP-SIZE

By Theorem 3.1 the choice of step-size is guided by the termΓ(λ1), whereλ1 is in the interior
of the product of simplices. If one choosesλ1

jk = 1
n j

then one can obtain an estimate ofΓ(λ1) as
follows:

BΦ(λ∗,λ1)≤
n

∑
j=1

logn j ≤ nlognmax where nmax= max
j

n j .

The first inequality follows from the fact that∑k λ jk logλ jk≤ 0,∀λ∈⊗
j ∆n j and the second inequal-

ity follows from the definition ofnmax. This upper bound immediately yieldsΓ(λ1) 6 nlognmax.
The candidate step-size (refer Theorem 3.1 ) now writes as

st =

√

21
nnlognmax

LG

1√
t
=

√
2lognmax

LG

1√
t
,

whereLG is the Lipschitz constant ofG. However this step-size estimate is impractical asLG will
not be known a priori. A more pragmatic choice could be

st = A
√

Γ(λ1)σ
1

‖∇λG(λt)‖∞

1√
t
= A

√

lognmax
1

‖∇λG(λt)‖∞

1√
t
,

whereA is a constant. It can be shown (Ben-Tal et al., 2001) that even for this step-size an efficiency
estimate, similar to the one given in Theorem 3.1, is valid.
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3.2.2 A SKETCH OF MD-BASED ALGORITHM

We are now ready to state an MD procedure for computingG. Given a sub-gradient by the oracle,
and a suitably chosen step-size, one needs to compute a projection (step 3 in(12)) to complete one
iteration of MD. Owing to the clever choice of prox-function, the projection step in our case is very
easy to calculate and has an analytical expression given by:

∇Φ(λ) jk =
(
ln(λ jk)+1

)
,

∇Φ∗(λ̃) jk =








eλ̃ jk

n j

∑
l=1

eλ̃ jl







.

The final MD procedure for minimizingG now reads:

Algorithm 1 :

Require: λ1 ∈
{

⊗

16 j6n

∆n j

}

repeat
(α∗,γ∗)← argmaxα∈Sm,γ∈∆n,q∗ fλt (α,γ) (Oracle computation)

λ̃t+1
jk ← (∇Φ(λt)−stG′(λ)) jk =

(

ln(λt
jk)+1

)

+stα∗T
Q jk

γ∗j
α∗ (Descent Direction)

λt+1
jk ← ∇Φ∗

(

λ̃t+1
)

=

(

eλ̃t+1
jk /

n j

∑
k=1

eλ̃t+1
jk

)

(Projection step)

until convergence

By virtue of Theorem 3.1 (and using bound on Lipschitz constant derived in Appendix) this

algorithm obtains anε accurate minimizer ofG in O(n2+ 2
q∗ lognmax/ε2) steps. Note that in practice

the number of groupsn (intuitively, the number of feature descriptors) is never high (typically< 10)
and infact one can assume it to beO(1); in which case the number of iterations will be nearly-
independent of the number of kernels! The cost of each iteration depends on how efficiently one
can maximizefλ(α,γ) as a function ofα,γ for a fixedλ. Note that gradient computation (that is,
maximizing f ) is the predominant computation in the mirror-descent based algorithm as the projec-
tion and step-size can be computed very easily from the analytical expressions presented above. On
passing, we also note that there exist efficient projection algorithms forl1-l∞ regularization (Quat-
toni et al., 2009). In the next section we show that maximizingf can be achieved by solving a series
of SVMs.

Again note that in the special casen = 1, whereVSKL q (for any q) is equivalent toMKL ,
maximizing f is nothing but solving an SVM problem (with effective kernel computed with cur-
rent weights). Since the per-step computation, in this special case, is predominantly that of solving
an SVM (the projection and step-size computations are negligible) and the number of iterations is
nearly-independent of the number of kernels, the proposed MD basedalgorithm is expected to per-
form far better than traditional reduced (projected) gradient based MKL solvers likesimpleMKL .
Also, in this case, the no. iterations isO

(
lognmax/ε2

)
andnmax= ntot wherentot is the total num-

ber of kernels. Cost of computing the effective kernel at each step depends on the sparsity ofλ j
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however a conservative estimate givesO(m2ntot) and projection, step size computations areO(ntot)
(negligible). Assuming the SVM problem can be solved inO(m2) time, we have the following com-
plexity bound in casen= 1: O

(
m2ntot logntot/ε2

)
. Also, in the caseq= 1, the optimal value ofγ j

is 1 for all j and hence maximizingf again corresponding to solving an SVM with effective kernel
as canonical (equal-weight) sum of all the active kernels in each group. Again, in this case, the
overall complexity isO

(
m2ntot lognmax/ε2

)
. The next section presents an efficient iterative scheme

for maximizing f in a general case (that is,n> 1,q> 1).

3.3 Computing the Oracle

The joint maximization in(α,γ) of fλ in the caseq= ∞ can be posed as a Quadratically Constrained
Quadratic Program (QCQP):

max
α∈Sm,γ∈∆n

fλ(γ,α) = 1Tα− 1
2

αT

[
n

∑
j=1

(

∑n j

k=1 λ jkQ jk

γ j

)]

α

= max
α∈Sm,γ∈∆n,v

1Tα−
n

∑
j=1

v j

s.t. 2γ jv j > αT

[
n j

∑
k=1

λ jkQ jk

]

α ∀ j







. (13)

Using the identity

2γ jv j =
1
2
(γ j +v j)

2− 1
2
(γ j −v j)

2,

the constraint in problem (13) becomes

αT

[

∑
k

λ jkQ jk

]

α+
1
2
(γ j −v j)

2≤ 1
2
(γ j +v j)

2,

and consequently problem (13) is aconic quadratic(CQ) problem.
A CQ problem can be solved with efficient solvers likeTMMosek. However for an arbitrary

norm,q> 1, such a formulation may not be possible and, even forq= ∞, very large-scale problems
may require a more efficient algorithm. To this end we consider leveraging SVM solvers. Note that
for each fixed value ofγ one needs to solve an SVM problem inα. Moreover there existclosed form
solutionswhen f is maximized overγ for fixed α. Such a Block Coordinate Ascent (BCA) (Tseng,
2001) procedure in general may not lead to convergence, but for theproblem at hand we will show
that the algorithm does indeed converge to a global maximum.

3.3.1 BLOCK COORDINATE ASCENT

In this section we describe a convergent and efficient algorithm based on the Block Coordinate
Ascent (BCA) method. As a consequence of Lemma 2.2 the following is true

Proposition 3.3 For a fixedλ,α the problem

maxγ∈∆n,q∗ fλ(α,γ)
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is optimized at

γi =
D

1
q∗+1
i

(

∑n
j=1D

q∗
q∗+1
j

) 1
q∗

i = 1, . . . ,n.

If q = 1 (that is, q∗ = ∞), optimality is achieved atγi = 1 iff D i > 0 where Dj = ∑n j

k=1 λ jkα⊤Q jkα.

Proof Recall that

max
α∈Sm,γ∈∆n,q∗

fλ(α,γ) = max
α∈Sm

α⊤e− 1
2

min
γ∈∆n,q∗

n

∑
j=1

D j

γ j
,

whereD j = ∑n j

k=1 λ jkα⊤Q jkα. For a fixedα, the optimalγ is obtained by

min
γ∈∆n,q∗

n

∑
j=1

D j

γ j
.

The claim follows from Lemma 2.2.

This Proposition shows that one can use analytical expressions forγ when maximizingfλ for a fixed
α. Alternatively for a fixedγ, maximizing fλ is equivalent to solving an SVM. These observations
motivate the following algorithm for Oracle computation:

Algorithm 2 :

Require: γ1 ∈ ∆n,q∗

repeat
Computeαk+1 = argmax

α∈Sm

{ fλ(α,γk)} using SVM solver

Computeγk+1 = argmax
γ∈∆n,q∗

{ fλ(αk+1,γ)} by Proposition 3.3

until convergence

In the following subsection we establish the convergence of this algorithm.

3.3.2 CONVERGENCE OFBCA ALGORITHM

We begin by introducing some propositions.

Definition 3.1 We say that z= (α,γ) is a strict coordinate-wise maximum point of f over A×Γ if
z∈ A×Γ and

f (α′,γ)< f (z) ∀α′ ∈ A,
f (α,γ′)< f (z) ∀γ′ ∈ Γ.

Lemma 3.2 Assume that A andΓ are convex sets, and f is a continuously differentiable function
over A×Γ. If z is a strict coordinate-wise maximum point of f over A×Γ, then z is a local maximum
point of f over A×Γ.

Proof Let α′ ∈ A, then∀u∈ [0,1],uα+(1−u)α′ ∈ A since A is convex. Let us considerg(u) =
f ((1−u)α+uα′,γ). g is differentiable and, sincez is a strict coordinate-wise maximum point off
overA×Γ, then∀u∈ (0,1],g(0)> g(u), and this implies thatg′(0)< 0, that is:

g′(0) = (α′−α)T∇α f (α,γ)< 0 ∀α′ ∈ A, α′ 6= α.
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Following the same reasoning forγ, the following statement holds

∇α f (α,γ)T(α′−α)< 0 ∀α′ ∈ A, α′ 6= α,
∇γ f (α,γ)T(γ′− γ)< 0 ∀γ′ ∈ Γ, γ′ 6= γ.

(14)

Now, by Taylor expansion,

f (α′,γ′) = f (α,γ)+∇α f (α,γ)T(α′−α)+∇γ f (α,γ)T(γ′− γ)+O
(
‖α−α′‖+‖γ− γ′‖

)
.

Using (14) we see that if(α′,γ′) is close enough to(α,γ), then f (α′,γ′)< f (α,γ).

Proposition 3.4 The BCA procedure (alg. 2) when applied to fλ(α,γ) with respect to the blocksα
andγ converge to a coordinate-wise maximum point of fλ.

Proof We begin by arguing thatfλ is bounded whenQ jk are p.d in the interior of simplex defined
by γ, that is,γ j > 0. Recall that at optimality,γ always lie in the interior for anyq> 1. Hence for
q> 1 we can as well restrict our search space to the interior of the simplex. Forall suchγ we have

fλ(α,γ)≤
m

∑
i=1

(αi−
µ̃
2

α2
i ),

whereµ̃= µ(∑n
j=1 γ−1

j ) andµ> 0 is the greatest lower bound over all minimal eigenvalues ofQ j,k

matrices. Forq = 1 case one can apply the above upper bound withγi = 1. Next, consider the
following result.

Lemma 3.3 fλ is hemivariate over Sm×∆n.

Proof Recall that a functionfλ is called hemivariate if it is not constant on any line segment
of Sm×∆n. We proceed by contradiction. Let us assume that there exist(α̃1, γ̃1) ∈ Sm×∆n and
(α̃2, γ̃2) ∈ Sm×∆n such that∀t ∈ [0,1], the following hold

g(t) = fλ(tα̃1+(1− t)α̃2, t γ̃1+(1− t)γ̃2) = a constant.

Then,∀ t ∈ (0,1)

ġ(t)≡ dg
dt

= B0+∑
j

B j

(t +
γ̃1

j

γ̃2
j−γ̃1

j
)2

= 0, (15)

where

B j =
1

γ̃2
j − γ̃1

j
3

[
γ̃2

j α̃
1− γ̃1

j α̃
2]T Q j

[
γ̃2

j α̃
1− γ̃1

j α̃
2] ,

Q j =
n j

∑
k=1

λ jkQ jk,

and

B0 = e⊤(α̃2− α̃1)− 1
2
(α̃1− α̃2)⊤

n

∑
j=1

Q j

γ̃2
j − γ̃1

j

(α̃1− α̃2).
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ġ(t) is a rational function oft and is 0 on(0,1). This is possible if and only ifB0 = 0 and

∑ j
B j

(t+
γ̃1

j

γ̃2
j−γ̃1

j
)2
= 0. To establish this recall that the higher order derivatives ofg are also 0. This

leads in particular to:

∑
j

B j

(t +
γ̃1

j

γ̃2
j−γ̃1

j
)3

= 0.

Let us now consider the setsΘ =

{

s∈ R

∣
∣
∣
∣
∃ j,

γ̃1
j

γ̃2
j−γ̃1

j
= s

}

andΩs =

{

j ∈ N

∣
∣
∣
∣

γ̃1
j

γ̃2
j−γ̃1

j
= s

}

. We have

∑
j

B j

(t +
γ̃1

j

γ̃2
j−γ̃1

j
)3

= ∑
s∈Θ

∑
j∈Ωs

B j

(t +s)3 .

The family of{(t +s)3},s∈ R is linearly independent, then,∀s∈ Θ,∑ j∈Ωs

B j

(t+s)2 = 0 by (15), and

sinces=
γ̃1

j

γ̃2
j−γ̃1

j
and∀ j, γ̃1

j > 0, then, sign(γ̃2
j − γ̃1

j ) is constant over{ j ∈ Ωs}. We know thatQ j

is positive definite, thus, signB j is constant over{ j ∈ Ωs}. This implies that∀ j,B j = 0. The
positiveness ofQ j implies that this is possible only if∀ j, γ̃2

j α̃1− γ̃1
j α̃2 = 0, which is equivalent to

∀( j, i),(γ̃2
j α̃1

i )
q∗ = (γ̃1

j α̃2
i )

q∗ and summing overj, γ̃2 and γ̃2 belonging to∆n,q∗ , we obtainα̃1 = α̃2

and theñγ1 = γ̃2. Hence,fλ is hemivariate and, this proves as well thatfλ is strictly concave.

We continue now the proof of Proposition 3.4. Let us consider a sequence zp such thatz2p =
(αp+1,γp) andz2p+1 = (αp+1,γp+1). Since, by definition of our algorithm,fλ(z

p+1) > fλ(z
p), and

fλ is bounded overSm×∆n, then fλ(z
p) converges. Moreover,Sm×∆n is compact inRm+n, so by

passing to a subsequence if necessary, we can assume thatz2φ(p)+1 converges to somez1. Next we
show thatz2p+1 has a unique cluster point.

First we show that ifz2φ(p) converges to a cluster pointz1 of zp, so doesz2φ(p)+1. Indeed, if
not, thenz2φ(p)+1 has another cluster point than sayz2 6= z1).Therefore, we can assume that∃φ̃, a
subsequence ofφ(p) such thatz2φ̃(p)+1 converges toz2. Since fλ(z

p) converges, we have

lim
p→∞

fλ(z
2φ̃(p)) = lim

p→∞
fλ(z

2φ̃(p)).

Fix any u ∈ [0,1] and denote ˜zp = z2φ̃(p)+u(z2φ̃(p)+1− z2φ̃(p)). We notice that ˜zp ∈ Sm×∆n. It is
obvious that ˜zp converges to(1−u)z1+uz2. Since, fλ is jointly concave with regard to(α,γ), we
have

fλ(z̃
p)> (1−u) fλ(z

2φ̃(p))+u fλ(z
2φ̃(p)+1),

and by passing to the limit,
fλ(z̃)> (1−u) fλ(z1)+u fλ(z2).

We cannot have∀λ ∈ [0,1], fλ(z̃) = (1−u) fλ(z1)+u fλ(z2) becausefλ is hemivariate. Hence,

∃λ | fλ(z̃)> (1−u) fλ(z1)+u fλ(z2). (16)

Since: f (z2φ̃(p)+1) = maxγ∈∆n,q{ f (αφ̃(p)+1,γ,λ)}, the following statement holds:

∀γ ∈ ∆n, fλ(z
2φ̃(p)+1)> fλ(αφ̃(p)+1,γ),
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and sincez2φ̃(p),z̃p andz2φ̃(p)+1 differ only in their second coordinate blockγ, we havefλ(z̃
p) 6

(1−u) fλ(z
2φ̃(p))+u fλ(z

2φ̃(p)+1), and by passing to the limit,fλ(z̃)6 (1−u) fλ(z1)+u fλ(z2) which
contradicts (16). Hence,z1 = z2. We showed thatz2φ(p)+1 has a unique cluster pointz1, hence it
converges toz1. We next prove thatz1 is a coordinate-wise maximum point offλ. Recall that

∀γ ∈ ∆n, fλ(x
2φ̃(p)+1)> fλ(αφ̃(p)+1,γ).

Passing to the limit, we have:
∀γ ∈ ∆n, fλ(z1)> fλ(α(z1),γ), (17)

whereα(z1) = αφ̃(∞)+1. The same reasoning with regard toα shows that

∀α ∈ Sm, fλ(x1)> fλ(α,γ(x1)), (18)

whereγ(z1) = γφ̃(∞)+1. This shows thatz1 is a coordinate-wise maximum point offλ and, according
to (3.2), z1 is a local maximum offλ over Sm× ∆n and sincefλ is strictly concave outside the
line whereα1γ2 = α2γ1, and sincefλ is not constant on any of these lines,z1 is the unique global
maximum of fλl; hence strict inequalities hold in (17) and (18).

Now that the mirror-descent as well as the block coordinate ascent procedures are presented and the
respective convergences are proved, we now proceed to presentthe overall algorithm for solving the
dual (D).

3.4 ThemirrorVSKL Procedure

This section presents themirrorVSKL algorithm for solving the dual (D):

Algorithm 3 : mirrorVSKL

Require: λ1 ∈
{

⊗

16 j6n

∆n j

}

repeat
(α∗,γ∗)← argmax

α∈Sm,γ∈∆n

f (α,γ,λt) (Use BCA in Alg. 2)

λ̃t+1
jk ← (∇Φ(λt)−stG′(λ)) jk =

(

ln(λt
jk)+1

)

+stα∗T
Q jk

γ∗j
α∗ (Descent Direction)

λt+1
jk ← ∇Φ∗

(

λ̃t+1
)

=

(

eλ̃t+1
jk /

n j

∑
k=1

eλ̃t+1
jk

)

(Projection step)

until convergence

The algorithm converges to the optimal of (D) for arbitraryq≥ 1. The per-step complexity
in the mirror-descent iterations now depends on the number of iterations of the BCA algorithm.
However it was observed in practice (see Section 4) that for the values of n encountered, the BCA
converges in 2-4 iterations and hence can be assumed to be a constant. Withthis assumption,
even in the general case (n > 1,q > 1), the computational complexity ofmirrorVSKL remains to
be O

(
m2ntot lognmax/ε2

)
. We conclude this section with the following note: convergence of the

mirror descent algorithm is based on the fact that sub-gradients are exactly computable. However in
mirrorVSKL , the sub-gradients are computed using an oracle numerically and hence is approximate.
Convergence analysis with such approximate sub-gradients is non-trivial and a research problem in
itself. The work by D’Aspermont (2008) is a good starting point for this.

583



AFLALO , BEN-TAL , BHATTACHARYYA , NATH AND RAMAN

4. Numerical Experiments

This section presents results of simulations which prove the suitability of employing the proposed
VSKL formulations for multi-modal tasks like object categorization. Experimental results which
demonstrate the scalability of themirrorVSKL algorithm in solving the traditional blockl1 regular-
ization based MKL formulation are also presented.

4.1 Performance on Object Categorization Data Sets

The experimental results summarized in this section aim at proving the suitability ofemploying the
proposed VSKL formulations for tasks like object categorization. The following benchmark data
sets were used in our experiments:

Caltech-101 (Fei-Fei et al., 2004)Collection of 9144 images7 from 102 categories of objects like
faces, watches, ants etc. The minimum, average and maximum number of images per category
are 31, 90, 800 respectively.

Caltech-256 (Griffin et al., 2007) Collection of 30607 images8 from 257 categories of objects.
The minimum, average and maximum number of images per category are 80, 119,827 re-
spectively.

Oxford flowers (Nilsback and Zisserman, 2006)Collection of images of 17 varieties of flowers.9

The number of images per category is 80.

Following the strategy of Vedaldi et al. (2009), the following four featuredescriptors10 were em-
ployed in the case of the Caltech data sets:

1. Geometric blur (Zhang et al., 2006; Berg et al., 2005). These descriptors are initially com-
puted at representative points of the image. Later, the distance between twoimages is obtained
as the average distance of nearest descriptor pairs.

2. PHOW gray/color (Lazebnik et al., 2006). SIFT features are computed densely on a regular
grid and quantized in 300 visual words. Spatial histogram with 4×4 subdivisions are then
formed. The color variant concatenates SIFT descriptors computed on the HSV channels.

3. Self-similarity (Shechtman and Irani, 2007). Similar to the PHOW features, descriptors are
quantized in 300 visual words, and a spatial histogram of size 4×4.

In case of the Oxford flowers data set, the seven feature descriptors employed in Nilsback and
Zisserman (2006, 2008) are used here.11

Each feature descriptor mentioned above, describes the image in terms of few feature values.
As mentioned previously, it was observed in the literature (see Nilsback andZisserman, 2006) that
employing feature values obtained from various descriptors simultaneouslyis beneficial for object

7. Available athttp://www.vision.caltech.edu/Image_Datasets/Caltec h101 .
8. Available athttp://www.vision.caltech.edu/Image_Datasets/Caltec h256 .
9. Available athttp://www.robots.ox.ac.uk/ ˜ vgg/data/flowers/17/17flowers.tgz .

10. Software available athttp://www.robots.ox.ac.uk/ ˜ vgg/software/MKL/v1.0/index.html .
11. Corresponding distance matrices are available athttp://www.robots.ox.ac.uk/ ˜ vgg/data/flowers/17/

index.html .
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categorization; however not all of the features obtained using a featuredescriptor may be useful.
The state-of-the-art performance on these data sets is achieved by a methodology which gener-
ates kernels using each of the feature descriptors and then chooses thebest among them using the
framework of MKL (Varma and Ray, 2007; Nilsback and Zisserman, 2008). The MKL formulation
employed in Varma and Ray (2007) Nilsback and Zisserman (2008) is equivalent to the traditional
block l1 regularization based MKL formulation12 (henceforth denoted byMKL ). Hence here we
compare the performance of VSKL formulations with that ofMKL . As a baseline we also compare
performance with an SVM classifier built using the kernel as sum of all the given kernels (henceforth
denoted bySVM).

From each feature descriptor, five kernels were generated by varying the width-parameter of the
Gaussian kernel (from 10−4 to 1 on a log-scale). Since the resulting kernels are naturally grouped
according to the descriptor they were generated from and also it is true that each feature descriptor
is critical (may not be equally critical) for good categorization, it is obvious to employ the proposed
VSKL formulations by assuming kernels are grouped according to descriptors generating them.
Thus, in case of the Caltech data sets,n= 4 andn j = 5 ∀ j and in case of Oxford flowers data set,
n= 7 andn j = 5 ∀ j. Note thatSVM andVSKL 1 differ exactly in the way the kernels are grouped:
for VSKL 1 the kernels are grouped by their generating feature descriptors whereas forSVM each
group is characterized by a single kernel (that is, forSVM n= 20,n j = 1 ∀ j in case of Caltech data
set andn= 35,n j = 1 ∀ j in case of Oxford flowers data set).

In order that the experimental results are comparable to others in literature,we followed the
usual practice of generating training and test sets, in case of each data set, using a fixed number of
images from each object category and repeating the experiments with different random selections
of images. For the Caltech-101, Caltech-256 and Oxford flowers data sets we have used 15, 25, 60
images per object category as training images and 15, 15, 20 images per object category as testing
images respectively. The hyper-parameters of the various formulations were tuned using suitable
cross-validation procedures. In case of the Caltech-101 data set, the accuracies reported are the test-
set accuracies with the tuned set of hyper-parameters, averaged over 10 randomly sampled training
and test splits. Since the Caltech-256 data set has large number of classesand the experiments are
computationally intensive, the results are reported only for a single split. In case of Oxford flow-
ers data set, the accuracies are averaged over the 3 standard data splitsprovided with the source
images.13 Also, we employ the 1-vs-rest methodology in order to handle the multi-class problems
arising in these data sets. Table 1 reports the average testset accuraciesachieved with the various
kernel learning techniques. The numbers in brackets appearing below each accuracy indicate the
total number of SVM calls made for solving the corresponding formulation14 and throw light on
the trade-off between accuracy and computation. In addition to comparisonwith SVM andMKL ,
we also report results of comparison with the CKL formulations (Szafranski et al., 2008), which
also assume kernels are grouped. Note that the CKL formulations were notpreviously applied to
object categorization and we wish to compare them here with VSKL in order to stress on the need
for solving (1) for the casesq≥ 1. Recall that ifq < 1 then (1) can be solved using the wrapper

12. The formulation employed by Varma and Ray (2007) and Nilsback and Zisserman (2008) also has additional con-
straints for including prior information regarding weights of kernels. Since such constraints lead to independent
improvements with all MKL formulations, the experiments here compare MKL formulations without the additional
constraints.

13. Available athttp://www.robots.ox.ac.uk/ ˜ vgg/data/flowers/17/datasplits.mat .
14. Stopping criterion was choosen same across different methods.
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VSKL q MKL SVM CKL 1,2q

q= 1 q= 2 q= 3 q= ∞ q= 0.75 q= 0.85 q= 0.99

Caltech-101
66.44 67.03 67.06 67.07 54.05 64.61 65.74 64.35 63.21

(50) (79) (70) (65) (24) (1) (36) (34) (36)

Caltech-256
32.06 34.71 35.39 36.69 21.07 34.04 34.43 34.40 34.43

(100) (201) (188) (151) (21) (1) (33) (32) (34)

Oxford
85.59 85.69 85.69 85.29 85.49 85.98 86.08 86.08 86.08

(41) (70) (68) (64) (121) (1) (54) (50) (51)

Table 1: Comparison of average testset accuracies achieved by the various formulations

approaches of Szafranski et al. (2008). Also recall the notation thatformulation in (1) forq≥ 1
corresponds toVSKL q and forq< 1 corresponds toCKL 1,2q. The results clearly indicate that the
proposed methodology is suitable for object categorization tasks and its performance better than
state-of-the-art in case of the Caltech data sets; whereas in case of Oxford data set, the performance
is comparable to state-of-the-art. Also, in case of oxford flowers data set, the performance of all
the methods is more or less the same. Another important observation, which is especially evident
in case of the Caltech-256 data set, is that the performance of VSKL depends on the parameterq
and hence it is important to solve the VSKL formulation efficiently for various values ofq. This
demonstrates the usefulness of the proposedmirrorVSKL algorithm, which efficiently solves the
formulation at various values ofq≥ 1. Automatic tuning ofq is indeed an open question and calls
for further research. Lastly, we note that the accuracies withSVM andVSKL 1, which differ in the
way the kernels are grouped, are noticeably different—which is expected.

4.2 Scalability Experiments

This section presents results comparing scalability ofmirrorVSKL ,15 SimpleMKL 16 and Hessian-
MKL 17 in solving theMKL formulation. Note that all these algorithms solve an SVM problem
at each step and hence are comparable. For fairness in comparison, theSVM problem arising at
each step was solved using the same solver in case of all the three algorithms.The stopping cri-
teria employed in all cases was relative difference in objective value beingless than 10−4 (that
is, ( fold− fnew)/ fold < 10−4. The evaluation was made on four data sets from the UCI reposi-
tory (Blake and Merz, 1998): Liver, Wpbc, Ionosphere and Sonar. Following the experimental
set-up of Rakotomamonjy et al. (2008), each data set was split into training and test sets using 70%
and 30% data points respectively. For each data set, kernels were generated based on individual
features using different width parameters for the Gaussian kernel. Figure 1 compares the average
time18 taken for solving the formulation (this excludes time taken for building kernels)over 20
different random training-test splits as a function of the number of kernels. The value of regulariza-

15. Code available athttp://mllab.csa.iisc.ernet.in/vskl.html .
16. Code available athttp://asi.insa-rouen.fr/enseignants/ ˜ arakotom/code/mklindex.html .
17. Code available athttp://www.chapelle.cc/olivier/ams/ .
18. The standard deviation in the time taken is also shown using vertical barsat each point in the plot.
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Figure 1: Plots of average time (in secs) taken by various solvers

tion parameterC was fixed at 1000 in all cases. The figure clearly shows thatmirrorVSKL scales
better thansimpleMKL andHessianMKL . When large number of candidate kernels are available,
mirrorVSKL outperforms them in terms of computational performance. In some cases, thesolving
time with the proposed method is as low as around 1/8 of that withsimpleMKL and around 1/6 of
that withHessianMKL !
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The proposed algorithm scales better thansimpleMKL primarily because of two reasons: firstly,
the per-step auxiliary problem in case of the proposed algorithm has an analytical solution and
the step-size also can be chosen very easily. Hence the predominant computation at every step is
only that of computing the gradient (that is, solving the SVM). However, in case ofsimpleMKL , the
reduced gradient needs to be computed and moreover the step-size needs to be computed using a 1-d
line search (which may further involve solving few SVMs). Also, in case ofHessianMKL , the per-
step cost is high mainly due to the second order computations. Secondly, the number of iterations
in solving the formulation is nearly-independent of the number of kernels in case of the proposed
MD based algorithm. However no such statement can be made in case of eithersimpleMKL or
HessianMKL .

In order to get a better insight, the number of SVM calls made bysimpleMKL andmirrorVSKL
(both of which are first order methods and hence comparable wrt. numberof iterations/SVM calls)
are compared in Figure 2. It is interesting to see that the number of SVM calls more or less remains
a low value in case ofmirrorVSKL ; whereas it shoots up steeply in case ofsimpleMKL . The fact
that the number of SVMs calls is low also implies thatmirrorVSKL scales better thansimpleMKL
even wrt. no. of examples and hence is ideal for applications with large datasets as well as large
number of candidate kernels.

Also, it was observed that the number of iterations required by the BCA algorithm to converge
(with various values ofq) was typically very small. In case of all data sets, the maximum number
of iterations for convergence of BCA was 4 iterations. Hence the number of iterations required
by the BCA algorithm can be assumed to be a constant and the computational complexity bound
O
(
m2ntot lognmax/ε2

)
indeed is valid.

5. Conclusions

This paper makes two important contributions to the MKL literature: a) a specificmixed-norm
regularization based MKL formulation which is well-suited for object categorization and other
multi-modal tasks is studied. b) An efficient mirror-descent based algorithmfor solving the new
formulation is proposed. Since the traditional MKL formulation can be realizedas a special of the
proposed formulation, the efficient algorithm is also of independent interest to the MKL community.
A detailed proof of convergence of the algorithm was also presented. Empirical results show that the
new formulation achieves far better generalization than state-of-the-art object categorization tech-
niques. Scaling experiments show that the mirror-descent based algorithmoutperforms traditional
gradient descent based approaches. In some cases the proposed MD based algorithm achieved a 8
times speed-up oversimpleMKL !
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Figure 2: Plots of average number of SVM calls withsimpleMKL andmirrorVSKL

Appendix A.

In this section we prove proposition 3.1, which says thatG is convex and Lipschitz continuous under
a mild regularity condition—all the eigenvalues of the given gram-matrices are finite and non-zero:
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Proof The convexity ofG follows from the fact that it is point-wise maximum over functions of the
form

f (α,γ,λ) = 1Tα− 1
2

αT

[
n

∑
j=1

(

∑n j

k=1 λ jkQ jk

γ j

)]

α,

which are linear w.r.tλ. A sufficient condition forG to be Lipschitz continuous is the sub-gradient
should be norm bounded. DefineD jk = α∗⊤Q jkα∗ whereα∗ and γ∗ denote optimal values, that
maximize fλ(α,γ), for a givenλ. From the definition ofτ andµ we immediately have the following
bound

τµ‖α∗‖22≤ D jk ≤ µ‖α∗‖22.
The sub-gradient vector, evaluated at anyλ, can be obtained by differentiatingG at α∗ andγ∗. The
strategy would be to exploit the above limits onD jk to bound the norm of the sub-gradient. To this
end we eliminateγ in G (using proposition 3.3) and then examine the sub-gradient:

Case q> 1

∂G
∂λ jk

=







−1
2D jk







∑
j
′
(

∑
k
′ λ

j
′
k
′D

j
′
k
′
) q∗

q∗+1

∑
k
′ λ

jk
′D

jk
′







1
q∗

if ∑k′ λ jk′D jk′ > 0,

0 otherwise.

Case q= 1
∂G

∂λ jk
=

{
−1

2D jk if ∑k′ λ jk′D jk′ > 0,

0 otherwise.

From these equations, it is easy to see that:
∣
∣
∣
∣

∂G
∂λ jk

∣
∣
∣
∣
≤ 1

2

(n
τ

) 1
q∗ (

µ‖α∗‖22
) q∗(q∗+1)−1

q∗(q∗+1) .

In caseq = 1, we have
∣
∣
∣

∂G
∂λ jk

∣
∣
∣ ≤ 1

2µ‖α∗‖22. Now, we know thatα ∈ Sm⇒ αi < C ∀ i ⇒ ‖α∗‖∞ ≤
C⇒ ‖α∗‖2 ≤

√
msvC wheremsv is the number of support vectors. These relationships shows that

‖∇λG‖∞ ≤ LG where

LG =

{

1
2

(
n
τ
) 1

q∗
(
µmsvC2

) q∗(q∗+1)−1
q∗(q∗+1) if q> 1,

1
2µmsvC2 if q= 1.

Now, since‖∇λG‖∞ is bounded, we have thatG is Lipschitz continuous with respect tol1 norm
with Lipschitz constantLG.
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