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Materials with controllable stiffness are of great interest to many fields, including medicine and robotics. In this paper we develop

a new type of variable stiffness material based on the combination of a rigid low-melting-point-alloy (LMPA) microstructure

embedded in soft poly(dimethylsiloxane) (PDMS). This material can transition between rigid and soft states by controlling the

phase of the LMPA through efficient, direct Joule-heating of the LMPA microstructure. The devices tested demonstrate a relative

stiffness change of > 25× (elastic modulus is 40 MPa when LMPA is solid and 1.5 MPa when LMPA is liquid) and a fast

transition from rigid to soft states (< 1 s) at low power (< 500 mW). Additionally, the material possesses inherent state (soft and

rigid) and strain sensing (GF = 0.8) based on resistance changes.

1 Introduction

Materials that can controllably change their stiffness are use-

ful in a wide range of fields. Some examples include automo-

tive design, where variable stiffness materials are being cre-

ated to improve both comfort and safety;1 in medicine, vari-

able stiffness materials allow catheters and endoscopes to per-

form non-invasive diagnostics with greater efficiency and less

tissue damage;2 in aeronautics, new adaptive wing designs for

improving flight performance are possible thanks to variable

stiffness materials;3,4 in civil engineering, materials that can

actively change their stiffness are being applied for lowering

the damage caused by wind and earthquakes;5 in robotics, vari-

able stiffness appendages are able to adapt to different grasping

and locomotion tasks.6 Examples of controllable stiffness can

also be found in nature, such as in the skin of echinoderms (sea

cucumbers),7 who use changes in dermal stiffness to defend

against predators.8

Some common engineering materials used to control stiff-

ness make use of smart fluids or shape memory materials.

Smart fluids, such as magnetorheological (MR) or electrorheo-

logical (ER) fluids, rely on stimulus-induced ordering of nano-

or micrometer-sized particles to change their viscosity. In order

to use this effect to create controllable stiffness materials, smart

fluids must be encapsulated to allow the application of mechan-

ical loads without loss of fluid. When confined, the MR- or ER-

fluids can be used to change the mechanical properties of the

supporting material. Some examples include encapsulation of

MR fluids within open-celled foam1 or structured elastomeric

cavities.9 These materials can have fast switching times (ms

range), and good relative stiffness changes of > 30×, where

the absolute stiffness depends on the structure and mechanical

properties of the encapsulation. However, these materials can

suffer from high mechanical losses, and in fact, one of their
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main applications is in tunable dampers.10 Furthermore, the

particles can settle out of solution over time and lose functional-

ity. Some of these problems can be circumvented by mixing the

MR- and ER-particles directly into solid materials, such as sil-

icone rubber. Unfortunately, this hinders the particles’ abilities

to align with the applied field, so the relative stiffness changes

are greatly reduced (∼ 0.1×).11

Shape memory materials, such as shape memory polymer

(SMP) and shape memory alloy (SMA), are able to change

stiffness through stimulus-induced changes in molecular struc-

ture. SMPs have been produced that can change states by ex-

posure to chemical or photo stimuli.12 However, the major-

ity of shape memory materials operate through temperature

changes, where the material softens as it heats up, undergoing a

large change in stiffness once a critical temperature is reached.

SMAs have a small relative stiffness change (< 4×) and a high

absolute rest stiffness (83 GPa), whereas SMPs can have a large

relative stiffness change (> 100×) and a wide range of possible

rest stiffness (0.01-3 GPa) depending on the material used.13

Heat can be applied directly in the case of SMA because it

is conductive, but for SMPs heat must be applied indirectly

through the use of external heaters. SMPs can be mixed with

electrically-conducting particles to remove the need for a sepa-

rate heater, but the addition of particles increases both the stiff-

ness in the soft and hard states.12,14 For thermally-responsive

shape memory materials, the stiffness transition speed is re-

lated to the thermal conductivity, so SMPs are much slower to

heat than SMAs because their thermal conductivity is ∼ 100×

smaller (18 W m−1 K−1 for SMAs and 0.15-0.3 W m−1 K−1

for SMPs).13

In this paper we propose a controllable stiffness material

based on the combination of a conductive, phase-change-

material (low-melting-point alloy (LMPA)), and a soft, stretch-

able encapsulation layer (poly(dimethylsiloxane) (PDMS)), as

shown in Figure 1(a). The stiffness of this hybrid material is

controlled by direct Joule heating of the LMPA microstruc-

ture, which leads to large changes in stiffness as the LMPA mi-
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crostructure melts, while the encapsulating PDMS allows the

microstructure to maintain its pre-molten shape in order to pre-

serve its intended electrical and mechanical properties. Fig-

ure 1(b,c) demonstrates the principle of operation by showing

a sample that is able to hold up a metal nut, weighting 10×

more than the sample itself, when the sample is rigid, but then

the sample easily bends under the same weight when the mi-

crostructure is melted.

Phase change materials are an interesting solution to cre-

ate variable stiffness materials because they are able to com-

bine the extreme stiffness states of the smart fluid and shape

memory material approaches discussed above. This is because

phase change materials can completely liquefy, like smart flu-

ids, and completely solidify, like shape memory materials, al-

lowing them to have high relative stiffness changes and low

and high absolute stiffness states. Phase change materials have

previously been used to create variable stiffness materials;6,15

however, the prior solutions make use of external heaters to

enable melting, whereas we take advantage of direct Joule-

heating of the phase change material (LMPA). This offers a

number of advantages such as fast, efficient, direct electrical

heating of the LMPA and self-sensing of the shape and physical

state of the device (i.e. stiffness). Having this sensory feedback

built into the material is a critical innovation for controlling

variable stiffness devices in practical applications.

The fabrication method used to create our variable stiffness

material consists of filling PDMS microchannels with molten

LMPA (see Experimental Section), and it was first developed

by Siegel et al. as a generic method for creating arbitrary alloy

microstructures in PDMS.16 This means that it is suitable for

many different types of LMPAs and encapsulating materials,

allowing a wide range of customizability in terms of thermal,

electrical and mechanical properties. Rather than exploring the

whole range of possible combinations, we choose to focus on

only one material combination in order to perform an in-depth

analysis of some of the fundamental physical principles that

govern the material behavior. These principles can then be ap-

plied to future systems to precisely engineer the performance

needed for a particular application.

The fabrication method also allows the creation of a number

of possible microstructures. The particular microstructure that

we explore in this paper (see Figure 1(a)) was chosen for its de-

sirable mechanical, electrical and thermal properties. Mechan-

ically, this design provides high bending and stretching stiff-

ness in the length direction. Electrically, the serpentine pattern,

typically found in strain gauges, is composed of a long, thin

wire that has high resistance, which facilitates the monitoring

of thermal and strain effects. Finally, this type of pattern is also

typical of resistive heaters, where the close-set, parallel lines

serve to concentrate heat, lowering the power and time neces-

sary for melting. Furthermore, the good insulating properties

of the PDMS (∼ 100× more insulating than the LMPA) limit
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Figure 1 (a) Photograph of a variable stiffness device, showing the

low-melting-point alloy (LMPA) tracks embedded in

poly(dimethylsiloxane) (PDMS). The LMPA tracks are 100 µm wide

and 54 µm thick, and the total device is 243 µm thick. (b) Side view

of a device supporting a nut, with 10× more mass than the variable

stiffness device, when the LMPA is solid, and (c) the same device

bending under the nut’s weight when the LMPA is liquid. (d)

Drawing of device showing the cross-sectional dimensions.

thermal loss when heating the LMPA wires.17,18 These proper-

ties are described in greater detail in the following Results and

Discussion Section.

2 Results and Discussion

The samples used in the following tests were fabricated to all

have the same LMPA (hm = 54 µm, see Figure 1(d)) and PDMS

thicknesses (hpt = 79 µm, hpb = 110 µm), but they have dif-

fering line widths (wm = 42,56,106 µm) and area fraction of

alloy (A = Nwm/wa = 0.27, 0.28, 0.29, 0.53, 0.80, where N

is the number of evenly-spaced parallel lines that span wa = 4

mm to give the desired A value). Because the LMPA thick-

ness is the same across samples, the increasing area fraction

corresponds to a larger volume of LMPA. The samples can be

divided into two sets: in one set, the area fraction of LMPA is

held constant in order to study the effect of changing the line

width (wm42−A0.29, wm56−A0.28, wm106−A0.27), and in

the other set the line width is kept constant so that we can see

the effect of changing the LMPA area fraction (i.e. LMPA vol-

ume) (wm106−A0.27, wm106−A0.53, wm106−A0.80).

2.1 Thermal Behavior

We first examine the thermal behavior of the LMPA, which is

central to the operation of the variable stiffness material. Be-

cause the LMPA is both the phase change material and the

electrical conductor, we can monitor changes in resistance to

determine the state of the alloy, and hence, the softness of the

material. This knowledge is critical for controlling the material
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in any practical devices, where operating conditions cannot be

known a priori. For instance, contact of the material with ran-

dom substrates of unknown thermal conductivity will affect the

amount of power necessary to melt the LMPA, so this must be

compensated for through feedback control.
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Figure 2 (a) Plot showing the change in resistance of a

wm106−A0.80 device as it is heated on a hotplate. The shaded

regions mark the state of the LMPA: I. heating, II. melting, III.

melting of impurities and IV. liquid. (b) Plot of time necessary to

melt 90% of the LMPA by Joule heating at different average

electrical powers. (c) Plot of calculated melting efficiency, assuming

that the necessary energy to melt 90% of the LMPA is the energy

needed to raise the temperature of all of the LMPA from 25 ◦C to 47
◦C plus the energy needed to melt 90% of the LMPA.

2.1.1 Resistance change with temperature

Theoretically, the resistance of the LMPA microstructure is re-

lated to the standard equation for the resistance of a wire,

R = ρL/A, (1)

where ρ is the electrical resistivity, L is the length and A is the

cross-sectional area. From this equation, we see that the resis-

tance can vary due to changes in geometry or resistivity, both

of which can result from temperature changes. Higher tem-

peratures increase electrical resistivity of the LMPA because of

increased electron scattering,19 and heating also leads to ge-

ometric changes that decreases the resistance because, as an

isotropic wire undergoes thermal expansion, the cross-sectional

area increases faster than the length.

To characterize the change in resistance with temperature

we placed a wm106−A0.80 sample on a hotplate and slowly

increased the temperature. This produced the plot shown in

Figure 2(a), where the change in resistance is measured as

∆R/R0 = (R−R0)/R0, with R = R(T ) and R0 = R(T = 25◦C).
Figure 2(a) shows that there are four distinct regions of resis-

tance change, and each region has an approximately linear in-

crease that can be expressed as,

∆R/R0 = α∆T, (2)

where α a temperature coefficient of electrical resistance that

depends on the heating region and ∆T is the change in tem-

perature. Region I. is due to heating of the solid LMPA, Re-

gion II. shows a large change in resistance that is the result of

the solid-liquid transition. In region III., the resistance con-

tinues to increase due to impurities within the alloy that have

a slightly higher melting temperature than the bulk material.

Finally, when the whole material is liquid, in region IV., the

increase in resistance becomes nearly flat. The change of resis-

tance in each region is primarily due to changes in resistivity of

the LMPA because the small temperature change causes limited

thermal expansion (∆R/R0 < −0.01 due to thermal expansion

for ∆T = 22◦C, see Supplementary Information).

The data shows that it is possible to measure the tempera-

ture of a passive device by monitoring the resistance. However,

when the material is actively powered to control the stiffness,

we can no longer assume that the change in resistance is uni-

form throughout the device because certain regions will heat up

faster than others. In this case, the resistance measured can only

be used to estimate the average state of the LMPA (i.e. percent

liquid). To estimate the average state of the LMPA we assume

that the different parts of the LMPA microstructure are either

solid or liquid and we neglect the transitional state in between.

Then, using the data from Figure 2(a) we can develop a linear

relationship between 0% LMPA liquid (R < 1.05R0) and 100%

LMPA liquid (R > 1.47R0),

%Liquid = 238(
R

R0
−1.05). (3)

Knowing the percent of the device that is liquid is important for

controlling the device stiffness, as will be shown in the Bending

Section.
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2.1.2 Electrically-controlled phase change

The solid-to-liquid phase change can be controlled through di-

rect Joule heating of the LMPA microstructure. To better un-

derstand this method of control, we are interested in knowing

the melting speed with respect to the applied electrical power at

room temperature (T = 25 ◦C). To perform this measurement,

the devices were suspended by their lead wires in still air, and

they were supplied a fixed voltage until ∼ 90% of the LMPA

was liquid (R = 1.42R0). The samples were not allowed to heat

until 100% liquid in order to avoid overheating that can lead to

device failure.

The time necessary to melt versus the average supplied

power is shown in Figure 2(b). It is possible to melt the devices

with less than 100 mW, but this takes more than 10 s, so, for

reasons of clarity, only tests of greater than 250 mW are shown.

Figure 2(b) highlights a couple trends related to heating speed.

First, having an increasing volume of alloy with a fixed line

width, represented by samples wm106−A0.27, wm106−A0.53,

wm106−A0.80, results in slower melting times for the same

power. This is not surprising because the energy needed to melt

increases with the volume of alloy. Secondly, fixing the volume

of alloy and decreasing the line width, represented by samples

wm42−A0.29, wm56−A0.28, wm106−A0.27, results in faster

melting times for the same power. This trend is an effect of

improved heating efficiency as shown in Figure 2(c).

The heating efficiency, η , is estimated by considering the

amount of energy needed to melt 90% of the alloy, UM, divided

by the electric energy supplied, UE,

η =UM/UE =
m(c∆T +0.9cL)

Pt
, (4)

where m is the mass of alloy, c = 163.176 J kg−1 K−1 is the

specific heat of the solid alloy, cL = 3.682× 104 J kg−1 is the

latent heat of fusion, T = 22 ◦C is the change in temperature,

P is the electrical power and t is the time to melt (see Figure

2(b)).17 Figure 2(c) shows that the efficiency increases as the

volume of alloy increases for a fixed line width, and as the line

width decreases for a fixed volume of alloy. In both cases, the

number of parallel lines increases and the spacing between lines

decreases. This improves heat coupling between lines by low-

ering the volume of PDMS in between lines. Furthermore, the

efficiency of all devices improves by supplying higher power

because a smaller percentage of the supplied energy is lost to

slow conductive and convective cooling through the PDMS.

Cooling of the samples is primarily due to convection to the

surrounding air from the PDMS surface. Therefore, the speed

of cooling is a function of the final sample temperature and

the surface area of the PDMS encapsulation. Since all the ex-

periments heat the samples to approximately the same tempera-

ture, and all the samples have the same surface area, the cooling

times are all similar. It takes approximately 10 s for the sam-

ples to cool back below melting, but it takes more than 60 s to

cool back to room temperature.

2.2 Bending

The bending stiffness is an important metric for defining the

forces that the material can support in the thickness direction

(x-direction in Figure 3(a)). The theoretical bending stiffness

of the device can be estimated for small deflections by consid-

ering the Euler beam bending equations.20 The stiffness of a

cantilever fixed at one end and subjected to a force F at a dis-

tance x = L is given by,

kb = 3EI/L3, (5)

where E is the elastic modulus and I is the moment of inertia.

The moment of inertia for our devices is calculated by break-

ing up the cross-section (see Figure 1(d)) into individual rect-

angles, each with their own moment of inertia, and then using

the parallel axis theorem to find the moment of inertia for the

entire beam.20 The problem can be further simplified by con-

verting the whole device to one material by re-dimensioning the

widths of the rectangles that make up the beam cross-section

(see Figure 1(d)) so that they maintain the same bending stiff-

ness when assigned a new elastic modulus. This is done by

multiplying each rectangle’s width by the ratio of the elastic

moduli, wLMPA = wPDMSEPDMS/ELMPA (EPDMS = 1.81 MPa,

ELMPA = 3.00 GPa, see Supplementary Information). The cal-

culation of the moment of inertia then proceeds in the standard

fashion by first finding the centroid of the cross-section. Be-

cause the beam is symmetric in the y-direction, the centroid

calculation is,

x̄ =
∑i Aixi

∑i Ai

, (6)

where Ai is the area of the ith rectangle and xi is the distance

to the center of the rectangle from the bottom of the cantilever.

Once the centroid is known, the parallel axis theorem gives the

moment of inertia,

I = ∑
i

(Ii +Ai(xi − x̄)2), (7)

where Ii = wih
3
i /12 is the moment of inertia for the ith rectan-

gular section.

When the alloy is liquid, we treat the volume occupied by

the alloy as empty space. This is because we assume that

the PDMS is incompressible, meaning that the volume of the

PDMS channel does not change. Therefore, the LMPA is not

subjected to any pressure changes and does not develop any

stress.

The results shown in Figure 3(b) follow the trends expected

by the model. The samples that all have the same volume of
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Figure 3 (a) The bending stiffness is measured by fixing the device vertically and applying a deflection at a length, L = 3 mm (marked by

dashed white line), while recording the resulting force F . (b) Box plot of the bending stiffness when the LMPA tracks are solid or liquid for

the different samples, denoted by their LMPA track widths, wm, and the area fraction of metal, A. Three samples of each type were tested

three times each while solid and liquid. (c) Images from a wm106−A0.80 device as the power is increased. The white areas highlight the

portion of the device that is molten. The white areas were generated by image subtraction from the zero-power case. The dashed white line

marks the edge of the glass slide. The scale bar is 4 mm. (d) Bending stiffness and change in resistance data collected from the sample shown

in (c). The shaded regions mark the state of the LMPA: I. heating, II. melting, and III. liquid past the edge of the glass slide.
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LMPA but differing line widths all show a similar stiffness

when solid because the stiffness only depends on the area frac-

tion of the alloy. Furthermore, as the area fraction is increased,

the stiffness also increases. Finally, all the samples show a sim-

ilar stiffness when the LMPA is liquid because the stiffness is

dominated by the stiffness of the PDMS encapsulation, which

does not vary much between samples because the volume of

LMPA is low (4%-13%). The model slightly underestimates

the bending stiffness of the samples. This is possibly the result

of an underestimation of the elastic modulus of the LMPA due

to defects in the samples used for modulus testing (see Supple-

mentary Information).

The main discussion so far has been about the two extreme

states of the material, but there is also a continuum of stiffness

values between the extremes. Figure 3(d) shows the bending

stiffness of one wa106−A0.80 device as a function of applied

power. This plot shows that the material starts to soften as soon

as power is supplied. The stiffness behavior can be grouped

into three stages. Stage I. is pre-melting, where the gradual

stiffness change is a result of thermal softening of the LMPA as

it heats up but does not melt, as verified by the low change in

resistance. Stage II. is characterized by a sharp drop in stiffness

due to melting of the LMPA, as confirmed by the large increase

in resistance. Finally, in Stage III., a stable stiffness value is

reached once the LMPA has melted past the edge of the glass

slide. However, the resistance continues to increase due to fur-

ther melting of the LMPA, but the increase occurs more grad-

ually because the glass acts as a heat sink. Figure 3(c) further

validates the described behavior of the device. Until close to

46 mW, there is no melting observed. After 46 mW, the melt-

ing grows radially from the central hot spot until the LMPA is

liquid past the edge of the glass support, marked by the dashed

white line in Figure 3(c). Besides the change in stiffness of

the LMPA, the stiffness of the PDMS is also likely affected by

the increase in temperature. Schneider et al. showed that in-

creasing the temperature of PDMS resulted in an increase of

the elastic modulus.21 This increase depends on the degree of

cross-linking, but for PDMS mixed at the standard 10:1 ratio,

they observed a linear increase of approximately 10% in our

range of interest (25◦C to 50◦C). This small change is negligi-

ble compared to the much more drastic change in stiffness due

to the LMPA melting.

2.3 Stretching

The stretching stiffness is a measure of the forces that can be

supported by the material in the length direction (x-direction in

Figure 4(a)). This stiffness is best characterized by an effective

modulus of elasticity. A very simple model for the effective

elastic modulus can be derived by assuming that the PDMS and

LMPA components act as a single material that undergoes the

same strain. In this case, the effective modulus is then related to
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Figure 4 (a) Drawing of stretching tests used to calculate the elastic

modulus of the samples. The samples are mounted horizontally and

the tip of the samples at length L are clamped between acrylic plates

fixed to a force sensor. The clamped region is represented by the

white rectangle overlaid on top of the sample. A displacement is

applied to the sample, and the resulting force is measured. (b) Box

plot of the measured elastic moduli when the LMPA tracks are solid

or liquid for different samples, denoted by their LMPA track widths,

wm, and the area fraction of metal, A. Three samples of each type

were each tested three times while liquid and one time while solid

because solid testing caused device failure.
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the percent of the cross-sectional area taken by each material,

Esolid = (ALMPAELMPA +APDMSEPDMS)/A. (8)

For the case where the alloy is fully liquid, we again as-

sume incompressibility of PDMS so that there is no change

in the PDMS channel volume and the liquid LMPA devel-

ops no stress. Therefore, the expression simplifies to Eliquid =
APDMSEPDMS/A.

The effective elastic modulus is measured for all the samples

by stretching the material in both solid and liquid states (see

Figure 4(b)). The experiment can be performed multiple times

when the LMPA is liquid. However, it can only be performed

once when the LMPA is solid because the stretching breaks the

samples.

The results show that the theory proposed closely predicts

the liquid phase modulus, but it greatly overestimates the solid

phase modulus. This can be explained by observations that

portions of the PDMS encapsulation detach from the LMPA

microstructure when strained. This means that the two mate-

rials do not experience the same strain, as the model assumes.

The softer PDMS portion of the material therefore lowers the

observed stiffness, and in fact obscures any trends that would

result from having a higher volume of LMPA. This is why all

the solid phase measurements have nearly the same moduli. Fi-

nite element modeling would be required to get a more accurate

prediction of the stiffness. However, this simple model is still

useful for estimating the liquid phase modulus and for quickly

establishing an upper bound on the solid phase modulus.

2.4 Strain Sensing

The controllable stiffness device can function as a strain sensor

in both liquid and solid states, which would be useful in appli-

cations where knowledge of the shape and deformation of the

device is important, such as in a robotic appendage.

In both liquid and solid states, the change in resistance with

bending is very low for this design because the alloy tracks are

near the neutral axis of bending, and therefore do not experi-

ence a significant change in geometry. The resistance change

with stretching is higher, but, for the solid case, this results in

plastic deformation or breaking of the LMPA. The plastic de-

formation can be easily fixed by re-melting the alloy, but, as

will be shown in the Failure Modes Section, complete breaks

cannot always be easily fixed. However, if the LMPA is liquid,

reliable and reversible, resistive strain sensing is possible, and

is similar to current soft strain sensors composed of eutectic

metal alloys that are liquid at room temperature.22–24

To model the sensing behavior, we consider the PDMS as

an incompressible, linear-elastic solid, and we make a small

strain assumption about the Poisson effect. We also assume that

the resistance follows the relationship given previously, R =
ρL/A, but we consider the resistivity to be constant. Then, we

can estimate the theoretical gauge factor (GF = (∆R/R0)/ε)

for this device as,

GF = (2−0.25ε)/(1−0.5ε)2, (9)

where ε is the strain. This neglects the contribution of the

curved wire ends because they represent a small portion of the

sample. Also, in the experiments described below, the ends of

the wires are clamped, so they do not experience strain.
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Figure 5 (a) Plot of average change of resistance versus strain from

stretching (see Figure 4(a)) while the LMPA was liquid. Three

samples of each type (wm106−A0.27, wm106−A0.53,

wm106−A0.80, wm56−A0.28, wm42−A0.29) were tested three

times each. The simple theory line represents a change of resistance

equal to the strain (GF = 1), and the full theory assumes a change in

resistance from both strain and the Poisson effect, Equation 9. (b)

Plot of the average change in resistance with strain for a

wm106−A0.27 sample tested three times in a row.

To test the strain sensing properties of the devices, we

recorded the change in resistance as we stretched the samples at

a fixed speed (see Figure 4(a)). There were no apparent trends
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related to line width or the area fraction of alloy, so we grouped

all the data into an average line shown in Figure 5(a).

The measured GF is smaller than the predicted value, and

it appears to follow a linear trend. Chossat et al. noticed sim-

ilar behavior in their eutectic Gallium Indium sensor.22 Their

sensor very nearly followed a relationship where the change in

resistance was equal to the strain, giving them a GF = 1. They

argued that this was possibly due to the high surface tension of

the alloys oxidized skin inhibiting the alloy’s ability to conform

to the changing shape of the channel. It is likely that our alloy

experiences a similar circumstance, leading to our lower than

expected average GF of 0.8. The fairly high standard deviation

may be due to variations in filling of the microstructure. Incom-

plete filling caused by the introduction of trapped air can have

a large affect on device performance. However, individual sen-

sors show very little change in GF between repeated stretching

trials, as shown in Figure 5 (b), where the change in resistance

with strain of a wm106−A0.27 sample is averaged over three

sequential trials. The standard deviation for these three trials is

very small. Therefore, while it may not be possible to develop

a model for the GF a priori due to the high standard deviation

between devices, calibration of individual devices should yield

very repeatable results.

2.5 Failure Modes

For practical use, it is important to know the limits of the ma-

terial before failure. Our material has two main failure mecha-

nisms, depending on the state of the structure. When the alloy

is solid, the main source of failure comes from the LMPA tracks

breaking when stretched. For all the samples tested (five differ-

ent types and three of each type), the average strain at break was

3.2%, with some samples breaking with as little as 0.2% strain

and some surviving up to 9.8% strain. There was no observed

trend related to the different geometries tested. In contrast, the

tests used to determine the elastic modulus of solid LMPA (see

Supplementary Information) had an average of 9.4% strain at

break. The reason for the lower strain limit of the LMPA in

the microstructures is likely a result of stress concentrations,

due to non-uniform stretching of the PDMS encapsulation, and

defects in the alloy tracks.

Solid breaks can occasionally be repaired when the applied

strain is removed. If the break is clean, then relaxing the mate-

rial puts the two halves of the break back in contact, restoring

the conductivity of the device. Then, Joule heating can be used

to re-melt the contact and restore continuity of the LMPA wire,

as shown in Figure 6(a).
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Figure 6 (a) Resistance versus strain for a wm106−A0.80 sample

stretched while the LMPA was solid. As the strain is increased, the

LMPA eventually breaks and the resistance goes to infinity. Then,

when the strain is released, the broken LMPA tracks come back into

contact, restoring the resistance. The inset pictures show how this

looks on a different wm106−A0.27 sample. (b) Stretched (10%

strain) and unstretched (0% strain) resistance of a wm106−A0.27

sample with liquid LMPA over hundreds of stretching cycles. The

insets highlight one possible failure mode resulting from bubble

growth as the LMPA degrades due to overheating of the defective

area. The scale bars on the insets are 100 µm.

Although the solid LMPA microstructure is susceptible to

failure in stretching, in pure bending, the solid LMPA tracks

can go through large deflections without breaking. We have

observed samples still working even after being folded 180◦

from flat. The LMPA tracks have a large resistance to bending

failures because they are thin structures located near the neutral

axis, and therefore, they do not experience high strain under

bending.

When the LMPA is liquid, we have observed the material

supporting strains near 30% without loss of resistance. How-

8



ever, repeated stretching can lead to failure stemming from bub-

ble formation. Figure 6(b) shows the resistance of a wm106−

A0.27 sample unstretched and stretched to 10% strain over hun-

dreds of cycles. The resistance gradually increases until rapid

deterioration after 600 stretches. The inset pictures show a bub-

ble before stretching and one after stretching repeatedly. The

region where the bubble is located has a narrower cross sec-

tion than the adjacent areas. This can lead to local overheating

and degradation of the material that is propagated by repeated

stretching until failure.

Failure of the LMPA does not mean the end of use for the

whole device. If conductivity is completely lost, fresh LMPA

can easily be re-flowed through the microchannels to restore

proper functioning. The devices used in this paper were re-

paired several times after breaking, and they showed only slight

variations in properties. Mainly, the difference was in the base

resistance due to non-uniform filling. Therefore, measuring the

resistance after fabrication can give an indication of the quality

of the LMPA track, where lower resistances are related to better

filling.

3 Conclusion

We have developed a new type of smart, variable stiffness ma-

terial. The devices presented here demonstrate a good relative

stiffness change of > 25× (elastic modulus of 40 MPa when

LMPA is solid and 1.5 MPa when LMPA is liquid), a fast tran-

sition from rigid to soft states (< 1 s) at low power (< 500 mW),

and inherent thermal and strain sensing (GF = 0.8). However,

the measured values are not representative of the limits of this

technology because there exists a high level of possible cus-

tomization of the materials and design. Much higher relative

stiffness changes (> 1000×) are possible simply by increas-

ing the proportion of LMPA that makes up the total volume of

the device (the tested devices only had 4-13% LMPA by vol-

ume). Furthermore, different absolute stiffness values for the

rigid and soft states can be achieved by changing the materials

and the alloy microstructure design. Even more functionality

could be added by using an encapsulation material that also

softens with temperature, such as SMP. This would result in

larger relative stiffness changes and stiffness range, as well as,

the possibility of having multiple transition regions. In terms

of strain sensing, careful LMPA microstructure design could

increase strain sensitivity and allow sensing of multiple strain

directions. Finally, the material can be scaled up to the size

of a wafer by using the current fabrication techniques, or even

larger structures are possible by using standard molding pro-

cesses. The relative stiffness will not change as a particular de-

sign is scaled, however, having higher volumes of LMPA and

PDMS will increase the power requirements and decrease the

melting speeds. Therefore, when scaling it may be important

to consider alternative designs that minimize power require-

ments and melting time while maximizing stiffness, such as

three-dimensional scaffolds that minimize metal volume.25

4 Experimental

Device fabrication: Samples were fabricated using the tech-

nique originally outlined by Siegel et al.16 Microchannel molds

were fabricated by photolithography of SU-8 (GM 1070, Ger-

steltec) on silicon. The developed molds were exposed to

chlorotrimethylsilane (Sigma-Aldrich Company Ltd.) in vac-

uum for one hour to lower adhesion. Then, spin-coating was

used to apply PDMS (Sylgard 184, Dow Corning) to the mold

wafers and to blank wafers to form the top and bottom of the

device, respectively. After curing at 80 ◦C for 2 hours, the pat-

terned PDMS was peeled from the mold. Next, inlet and outlet

holes were punched in the microchannel layer and both layers

were exposed to oxygen plasma for 30 seconds before being

bonded by pressing them together. We skipped the silaniza-

tion of the channels used by Siegel et al. because initial tests

showed no advantage in terms of filling over untreated chan-

nels. The microchannels were filled with LMPA (Cerrolow

117, HiTech Alloys; composition by weight: 45% bismuth,

23% lead, 19% indium, 8% tin, 5% cadmium; 47◦C melting

temperature). The empty PDMS encapsulation was placed on

a hotplate at 80 ◦C and a small droplet of LMPA was melted

over the inlet hole. Then, a syringe was used to apply positive

pressure to the alloy to force it through the channels. After

filling, additional LMPA was melted over the inlet and out-

let holes and copper wires were attached. Then, the whole

device was allowed to cool to room temperature. The width

of the samples was trimmed by hand with a razor blade, and

the final dimensions of the samples were wp = 5.7± 0.2 mm,

wa = 4.0± 0.05 mm, hpt = 79± 4 µm, hm = 54± 4 µm and

hpb = 110±3 µm (see Figure 1(d)) as measured by optical mi-

croscope (Olympus IX73; 20× PlanC N objective). The line

widths were wm = 42, 56, 106±1 µm, and the area fractions of

alloy for the particular line widths were wm42: A= 0.29±0.01;

wm56: A = 0.28±0.01; wm106: A = 0.27, 0.53, 0.80±0.01.

Electrical measurements: Resistance and power of the de-

vices were measured using LabVIEW (National Instruments).

To determine the resistance of the devices, we used a voltage di-

vider circuit composed of a known reference resistor (Rr = 14.8
Ω) in series with the device under test (DUT). A fixed voltage

was supplied by a DC power supply (M10-DP-305E, Shanghai

MCP Corp.). By measuring the voltage across the reference

resistor, Vr, we could determine the current through the circuit,

I. Then, dividing the voltage measured across the DUT, VDUT,

by the current gave the DUT resistance, RDUT = VDUT/I. The

electrical power was calculated as PDUT =VDUTI.

Thermal measurements: The characterization of resistance
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with temperature was performed using a wm106−A0.80 sam-

ple placed in an insulated box on a hotplate (C-MAG HS 7,

IKA). The resistance was measured using the voltage divider

already mentioned, and temperature was recorded using a tem-

perature probe (AD22103KT, Analog Devices) attached to the

surface of the sample. The temperature was increased at a rate

of approximately 0.01 ◦C s−1.

For melting speed tests, one sample of each size was sus-

pended by its lead wires in still air (25 ◦C). Then, a fixed volt-

age was suddenly applied across the device, and the resistance

and power were measured as the device heated. When the resis-

tance reached 1.42×R0, representing 90% liquid (see Thermal

Behavior Section), the voltage was switched off, and the de-

vice was allowed to cool back to room temperature. This was

repeated three times for each sample.

Bending and stretching tests: For bending and stretching

tests, the half of the device containing the inlet and outlet holes

was oxygen-plasma bonded to a glass microscope slide to pro-

vide a rigid support to hold the sample during testing (see Fig-

ures 3(a) and 4(a)). Solid and liquid tests were performed in

air at 25 ◦C. For liquid tests, the LMPA was supplied sufficient

power to melt the LMPA microstructure past the edge of the

glass slide (between 70-150 mW), and bending or stretching

was only initiated after the device had reached a stable equilib-

rium. Between solid bending tests, the LMPA was melted to

remove any effects of plastic deformation of the LMPA.

In bending tests, the samples were mounted perpendicular to

the ground (see Figure 3(a)), and their free ends were deflected

in the -x-direction by a one-axis load cell (UF1, Applied Mea-

surement Limited; 540 mN range, 79 µN) mounted to a linear

stage (T-LSR150B-KT03, Zaber; 0.496 µm microstep resolu-

tion, < 2.5 µm repeatability, 150 mm range). A 200 µm thick

strip of polyester was attached to the end of the load cell to ap-

ply the force on the sample across a line 3 mm distance from

the glass edge (see Figure 3(a)). The total deflection was 300

µm at a speed of 100 µm s−1.

In stretching tests, the samples were mounted parallel to the

ground (see Figure 4(a)), and their free ends were clamped be-

tween pieces of acrylic that were attached between a six-axis

force/torque sensor (Nano 17 SI-12-0.12, ATI Industrial Au-

tomation; only used z-axis: 17 N range, 1 mN resolution) and

the same linear stage already mentioned. Displacements repre-

senting 10-20% strain were performed at 100 µm s−1. Elastic

modulus values were extracted from the linear portion of the

stress strain data (1% strain for samples with liquid LMPA and

0.5% strain for solid LMPA).
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