
Text Box
(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
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LCL-Filtered Inverters using a Reduced

Converter Model
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Abstract—This paper presents a new concept in active
damping techniques using a reduced model of a LCL-
filtered grid connected inverter. The presence of the LCL
filter complicates the design of the inverter control scheme,
particularly when uncertainties in the system parameters,
especially in the grid inductance, are considered. The pro-
posed control algorithm is addressed to overcome such
difficulties using a reduced model of the inverter in a state
observer. In this proposal, two of the three state variables
of the system are obviated from the physical inverter model
and only the inverter side current is considered. Therefore,
the inverter side current can be estimated emulating the
case of an inverter with only one inductor, thus eliminating
the resonance problem produced by the LCL filter. Be-
sides, in the case of a distorted grid, the method allows
to estimate the voltages at the point of common coupling
free of noise and distortion without using any PLL-based
synchronization algorithm. This proposal provides the fol-
lowing features to the closed-loop system: 1) robust and
simple active damping control under system parameters
deviation, 2) robustness against grid voltage unbalance and
distortion, and 3) an important reduction in the computa-
tional load of the control algorithm which allows to increase
the switching frequency. To complete the control scheme,
a theoretical stability analysis is developed considering
the effect of the observer, the system discretization and
the system parameters deviation. Experimental and com-
parative evaluation results are presented to validate the
effectiveness of the proposed control scheme.

Index Terms—Sliding mode control (SMC), LCL filter,
Kalman filter (KF), Reduced model

I. INTRODUCTION

NOWADAYS the energy sector is moving to the sector

of smart grids (SGs) with aim of maximizing the pen-

etration of distributed generation (DG) [1], [2]. The main

objective is to improve the overall grid stability, reliability and

efficiency. For this reason, the design of robust controllers for

DG units is the main concern of the researchers. Usually, most

of these DG units are interfaced to the utility grid by means

of a voltage source inverter (VSI) [3] which main function is

to extract the maximum power from the energy source and

inject it to the utility grid as active power. Some amount of

reactive power can also be injected according to some specific

requirements [4]. Conventionally, the VSIs are connected to

the utility grid through a LCL filter since this option yields to

a better attenuation of the switching harmonics. However, this

approach leads to an inherent resonance problem which can

be overcome using an active or passive damping solution.

Several damping solutions have been established to damp

the resonance of the LCL filter. In fact, there are two differ-

ent techniques. The passive damping methods are based on

introducing additional passive elements on the filter. Usually

resistors are employed, causing power losses and reducing

the overall system efficiency [5], [6]. Here, it is important

to remark that these losses may be unacceptable in some

applications, for instance in wind turbines, since they operate

typically at 30% of the converter nominal power [7]. Alter-

natively, active damping can be applied. The active damping

methods are aimed to improve the system efficiency and they

are based on modifying the closed loop dynamics by adding a

digital filter in the control loop. This filter is generally a notch

filter which is tuned according to the value of the LCL filter

resonance frequency [8].

In some cases, the distance between DG units is unknown,

and consequently a large set of grid impedance should be

considered [6]. Under this condition, the uncertainty of the grid

impedance at the point of common coupling (PCC), and also

deviations in the system parameters, are important concerns

to be addressed. These issues directly affect the resonance

frequency value of the LCL filter and might lead the current

controller to an unstable dynamics due to a detuning of the

digital filter.

Then, auto-tuning procedures can be adopted in order to

solve this problem, as for instance the solution proposed in

[9]. However, in order to avoid these self-tuning procedures,

different solutions can be found in the literature using feedback

controllers [10], [11]. These controllers are usually based on

a state observer where an accurate power converter model is

used to estimate the state variables. An interesting solution

with a high robustness against grid inductance variations is

presented in [12]. Here, a virtual resistor is introduced in the

converter model in order to emulate a damping resistor.The

main advantage of this work is the use of sliding mode control

(SMC), which provides a high robustness against system

parameters deviations and external disturbances. Besides, a

fast dynamic response is achieved [13]. However, the main

drawback of this method is the high computational load which

limits the value of maximum switching frequency.

Unlike these control methods, the sliding-mode observer-

based control presented in this paper uses a reduced state-

space model which does not rely on the grid inductance value.

Besides, the proposed solution does not need any self-tuning

procedure or adaptive techniques to provide robustness against



Vdc/2

Vdc/2
ua ub uc
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Fig. 1. Circuit diagram of three-phase grid-connedcted inverter with
LCL-filter

parameters deviations, even in the case of severe changes in

the grid impedance. Compared with [12] or other complex

strategies based on SMC, the computational load of the control

algorithm is clearly reduced. This fact allows to increase the

switching frequency in the SMC operation.

In order to analyze and design the proposed robust controller

the following steps will be performed:

1) A reduced state-space model of the VSI is proposed to

design three independent current controllers in natural

reference frame. In this model only the inverter side

current is considered.

2) Three simple switching surfaces will be proposed using

estimated variables obtained from a state observer, in this

case, a Kalman filter (KF).

3) A complete stability analysis will be performed taking

into account the effect of the KF, the system discretization

and the deviation in the system parameters. This analysis

will prove the system robustness.

4) Finally, experimental results will be reported to prove

the aforementioned properties, including the controller

response against a distorted grid and voltage sags.

The properties of the proposed control method are: 1) high

robustness against system parameters deviation, specially for

grid inductance changes, 2) a tuningless control method which

ensures robustness when the system parameters or the grid

impedance vary, and 3) a fast dynamic response against sudden

changes in the current references.

As a comparison with other previous SMC methods [12],

[14], [15], the use of a reduced model allows to stabilize the

system. The main advantage is that the computational time

used by the algorithm is clearly reduced and as a consequence

the maximum switching frequency can be increased. Besides,

this technique is not only useful in this approach, but also can

be applied to other power converters in order to reduce the

complexity of the control algorithm.

The paper is organized as follows. In Section II a bilinear

model of the VSI with LCL filter is presented. Section III

presents the proposed control system. A stability analysis is

presented in section IV. Simulation and experimental results

are presented in section V. A comparative analysis regarding

the computational time is presented in section VI. Finally,

section VII concludes the paper.
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II. PHYSICAL MODEL EQUATIONS FOR A THREE-PHASE

GRID-CONNECTED VSI WITH LCL FILTER

Fig.1 shows a three-phase grid-connected VSI with LCL

filter, where the grid impedance is considered pure inductive.

The VSI equations can be obtained from the circuit as follows:

L1

di1
dt

=
Vdc

2
u− vc − vn1 (1)

C
dvc

dt
= i1 − i2 (2)

(L2 + Lg)
di2
dt

= vc − vg. (3)

where i1 = [i1a i1b i1c]
T is the inverter-side current

vector, i2 = [i2a i2b i2c]
T is the grid-side current vector,

vc = [vca vcb vcc]
T is the capacitor voltage vector, vg =

[vga vgb vgc]
T is the grid voltage vector, u = [ua ub uc]

T

is the control signals vector, vn is the voltage at the neutral

point which is expressed as:

vn =
Vdc

6
(ua + ub + uc) (4)

and 1 is a column vector defined as [1 1 1]T .

The above differential equations can be rewritten as a

discrete state-space model where the process and measurement

discrete equations for each phase-leg i, where i ∈ {a, b, c}, are

expressed as follows:

xi(k + 1) = Axi(k)+Bui(k) +Dvgi(k) +Evn(k) (5)

yi(k) = Hxi(k) (6)

being xi(k) = (i1i vci i2i) the space-state vector, H the

output matrix defined as

H = ( 1 0 0 ) (7)

and A, B, D and E the system discrete matrices which are

computed using the first order approximation as follows:

A ∼= I+AcTs =





1 −Ts/L1 0
Ts/C 1 −Ts/C
0 Ts/(L2 + Lg) 1



 (8)

B ∼= BcTs =
(

VdcTs/2L1 0 0
)T

(9)

D ∼= DcTs =
(

0 0 −Ts/(L2 + Lg)
)T

(10)

E ∼= EcTs =
(

−Ts/L1 0 0
)T

(11)



L1

C

L2 + Lg

ZLCL

L1 + L2 + Lg

ZL

Fig. 3. Input impedances of the LCL filter, ZLCL and for the L filter
model, ZL

with Ts the sampling time and Ac, Bc, Dc and Ec the

continuous system matrices.

The above system discrete equations will be used in the

stability analysis section in order to validate our control

proposal.

III. PROPOSED CONTROL SYSTEM

The proposed control scheme is oriented to achieve a robust

active damping algorithm using a sliding-mode control with

a reduced model. Fig.2 depicts the proposed control scheme

for phase-leg a, which has the same structure for the phases b
and c. The proposed controller is based on a state observer, a

KF, which uses a reduced VSI model in order to estimate the

inverter-side current, the PCC voltage and its quadrature. As

shown in the figure, the reference current is obtained according

to the desired active power, and also using the estimated PCC

voltages.

Once the reference is computed, the reference current and

the estimated inverter-side current are used in a sliding surface,

and a switching algorithm obtains the control signal ua. This

algorithm is presented in [14], [15] and leads to obtain a

quasi-fixed switching frequency. Finally, the generated control

signal, is applied to control the phase-leg a of the VSI,

generating a current without oscillations. In order to validate

this control proposal, a complete stability analysis will be

performed including the KF effect, which uses the reduced

space-state model presented in the next section.

A. Reduced state-space model of the converter

Fig.3 shows the filter equivalent circuits of a L and LCL

structures from the point of view of its input impedance. By

appling the Laplace transform to equations (1)-(3), the input

impedance of the LCL filter presented in Fig.3 can be obtained

as follows:

ZLCL =
L1C(L2 + Lg)s

3 + (L1 + L2 + Lg)s

C(L2 + Lg)s2 + 1
(12)

while the input impedance for the L filter topology in Fig.3 is

expressed as:

ZL = (L1 + L2 + Lg)s (13)

It can be easily found that ZLCL
∼= ZL when ωo << ωres,

being ωo the grid frequency. Note that when a SMC is used,

the resonance frequency can be obtained according to [12]:

ωres = 1/
√

(L2 + Lg)C. (14)
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Fig. 4. Bode plot of the input impedance in the case of the physical
model and in the case of the reduced model: a) magnitude, and b)
phase.

TABLE I
SYSTEM PARAMETERS

Description Symbol Value

Grid voltage Vgrid 110 V
Nominal dc-link voltage Vdco 450 V
Nominal filter input inductance L1o 5 mH
Nominal filter capacitor Co 6.8 uF
Nominal filter output inductance L2o 2 mH
Grid inductance Lg 0.5 mH
Sampling frequency fs 60 kHz
Grid frequency fo 60 Hz
Switching frequency fsw 6 kHz
Active power P ∗ 1.5 kW
Reactive power Q∗ 0 kVAr

Single phase system noise power Ri(k) 0.26V 2

According the the aforementioned approximations, the ef-

fect of the capacitor can be neglected in the input impedance

computation which leads to accomplish that i1 ∼= i2. For a

better understanding, an impedance Bode plot is represented

in Fig.4 using the system parameters listed in Table I. It can

be seen that the behavior of both impedances are similar at

the frequency ωo.

Using the aforementioned approximations, and from equa-

tion (3), the capacitor voltage vector can be rewritten as

follows:

vc = (L1 + Lg)
di1
dt

+ vg. (15)

Now, by replacing (15) in (1), the following differential

equation can be found:

(L1 + L2 + Lg)
di1
dt

=
Vdc

2
u− vg − vn1. (16)

Equation (16) describes the current dynamics of a VSI with

only one inductor. According to the Bode plots showed before,
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Fig. 5. Bode plot of the input impedance magnitude in the case of the
physical model for two different values of the grid inductance, and in the
case of the proposed reduced model.

the impedance of both filters is similar at the grid frequency.

Therefore, at the frequency of ωo the dynamics of i1 is ap-

proximated to the dynamics of i2. This idea will be applied to

derive the proposed reduced model according to the following

premises:

1) Since the sliding-mode controller is designed in natural

frame, the three current controllers are cross-coupled

through the neutral point voltage (see eq.(4)). For this

reason, and in order to eliminate these interferences

between controllers, the neutral point voltage expression

is not considered in the reduced model [12].

2) In order to achieve active damping dynamics, the model

only consideres the inverter-side current state variable.

The capacitor voltage and the grid-side current are obvi-

ated in this model. With this consideration the inverter-

side current is estimated as in the case of a VSI with only

one inductor where the resonance does not exist.

3) The voltage at the PCC and its quadrature are estimated,

instead of using the measured grid voltage. This fact

leads to a version of the PCC voltage free of noise and

distortion even in the case of a distorted grid. Besides,

the proposed model is independent of the grid inductance

[14], [16].

According to the aforementioned conditions, the proposed

reduced model can be represented as follows:

(L1o + L2o)
di1
dt

=
Vdco

2
u− v (17)

dv

dt
= ωov

⊥ (18)

dv⊥

dt
= −ωov (19)

where L1o and L2o are the inductors nominal values, ωo

the grid angular frequency, Vdco the nominal dc-link voltage,

and v and v⊥ the voltage at the PCC and its quadrature

respectively.

In order to validate the reduced model, Fig.5 shows the

input impedance magnitude of the physical LCL filter for

two different values of Lg, 0.5 mH and 5mH respectively.

The input impedance magnitude in the case of the reduced

model regarding to the nominal values L1o and L2o is also

depicted. The Figure shows that the impedance magnitude

of proposed model matches with good accuracy with the

magnitude impedance of the physical model for both values

of the grid impedance. Note that for the proposed reduced

model it is not necessary to know the value of the grid

inductance, which makes the system robust against changes

in this parameter.

B. Proposed Model discretization and Kalman filter adap-
tive equation

For the digital implementation of the control algorithm, this

model is discretized in order to be used in a KF algorithm.

The reduced discrete space-state model, where the symbol ˆ
denotes estimated variables, is represented as follows:

x̂i(k + 1) = Âx̂i(k) + B̂ui(k) + ηi(k) (20)

yi(k) = Hxi(k) +wi(k) (21)

being

Â =





1 −Ts/(L1o + L2o) 0
0 1 Tsωo

0 −Tsωo 1



 (22)

B̂ = (VdcoTs/2(L1o + L2o) 0 0)T (23)

x̂i(k) = (̂i1i v̂i v̂⊥i )T (24)

and ηi(k) and wi(k) the process and the measurement noise

vectors respectively, which defines the following noise and

process covariance matrices:

Ri(k) =E{wi(k)w
T
i (k)} (25)

Qi(k) =E{ηi(k)η
T
i (k)} (26)

To design the observer-based sliding-mode control a KF is

proposed. According to the KF features, a KF-based observer

is optimum in presence of noise [14] and improves the

dynamics of the closed-loop system in noisy environments.

For this reason, the proposed method is focused on the state-

space model defined by (20)-(21) used in a KF algorithm. This

model forces the estimated inverter-side currents to get similar

dynamics as in the case of a VSI with only one inductor. This

fact leads to a damped dynamics of the estimated currents.

Finally, the sliding-mode control uses these estimated currents

in three decoupled sliding mode controllers which allows to

fix the switching frequency [14].The main properties and the

implementation of the KF are well explained in [17] so only

the adaptive equation used for the estimation is given in this

section.

The equation for the estate estimation is expressed as

follows:

x̂i(k + 1) = Âx̂i(k) + B̂ui(k) + Li(k)(i1i(k)− î1i(k))
(27)

where the measured inverter side current is used to compute

the estimation error, and the Kalman gain is computed using

the following expression:

Li(k) = Pi(k)H
T (HPi(k)H

T +Ri(k))
−1 (28)

where Pi the error covariance matrix. Note that Kalman gain

is computed in order to minimize the noise in the estimation

which algorithm is explained in [14], [17].



C. Sliding surfaces with active damping capability

As it was explained, in order to achieve a damped dynamics

the estimated inverter-side current can be used in a sliding-

mode controller. Then, the following sliding surface for each

phase-leg i is proposed:

Si = î1i − î∗i (29)

where î∗i is the reference current, which can be computed

according to the active and reactive powers references:

î∗i =
P ∗

|v̂|2 v̂i +
Q∗

√
3|v̂|2

v̂⊥i . (30)

From (29) and (30), the expression of the sliding surface can

be rewritten as follows:

Si = CT x̂i (31)

where

CT = (1 − P ∗

|v̂|2 − Q∗

√
3|v̂|2

) (32)

It must be noticed the use of the estimated PCC voltages in the

the reference currents computation. This fact allows to reduce

the current distortion even in the case of a highly distorted

grid [15], [16].

On the other hand, the existence condition of a sliding mode

controller is given by the following inequality:

ṠiSi < 0 (33)

Now, defining the control variable ui as

ui =

{

u+

i if Si > 0
u−
i if Si < 0

(34)

where ui ∈ {1,−1}, and taking into account (17), (29) and

(33) we can obtain :

vdc
2L1

(u−
i − u+

i ) < 0 (35)

which allows us to determine the switching action:

ui =

{

u+

i = 1 if Si > 0
u−
i = −1 if Si < 0

(36)

IV. STABILITY ANALYSIS

To conclude with the robust controller design, a stability

analysis is performed in this section in order to validate the

proposed control method. The stability of the system will be

also analyzed accounting for the system parameters deviation.

The system stability is ensured if the eigenvalues of the closed

loop system are inside the unity circle in the z-plane.

The three-phase system has nine poles, each one related to

one state variable. Due to the decoupling introduced by the KF

with the proposed model, a decoupling between controllers is

achieved and the three-phase system can be considered as three

independent single-phase systems from the control viewpoint

[14]. Therefore, only the stability of a single-phase system is

analyzed, and as a consequence, only three poles due to the

LCL filter are considered. However, the state observer will

add three additional poles. Then, the system together with the

observer will have a total of six poles (see Fig.6(b)).

While the system is in sliding regime, it is found that there

is one pole fixed at the origin (z = 0) [18]. The position of

the remaining poles will depend on the model parameters and

the Kalman filter gain. The next subsections are dedicated to

find the closed-loop equations.

A. Discrete time equivalent control deduction

The first step is to find the so-called ”equivalent control”,

ûieq . The equivalent control expression will be used in the next

subsection in order to obtain the closed-loop system equations

to analyze the system stability.

Then, assuming that the system is in sliding regime, the

control signal ui can be substituted by ûieq [19]. With this

assumption the reduced state-space model for the estimated

variables can be written as follows:

x̂i(k + 1) = Âx̂i(k) + B̂ûieq(k) + Li(k)(Hxi(k)−Hx̂i(k)).
(37)

In order to obtain the equivalent control expression, the

previous equation is used in the sliding surface equation (31)

at time k + 1:

Si(k + 1) = CT x̂i(k + 1) = CT (Âx̂i(k) + B̂ûieq(k)

+ Li(k)(Hxi(k)−Hx̂i(k))
(38)

then, solving for the equivalent control, ûieq , yields:

ûieq(k) = (CT B̂)−1(Si(k + 1)−CT Âx̂i(k)

−CTLi(k)ei(k))
(39)

where ei(k) the error between the measured inverter-side

current and the estimated one, defined as

ei(k) = Hxi(k)−Hx̂i(k). (40)

In sliding regime it is accomplished that Si(k+1) = Si(k)=0.

Then, the equivalent control can be rewritten as follows

ûieq(k) = K1x̂i(k) +K2ei(k) (41)

where

K1 = −(CT B̂)−1CT Â (42)

K2 = −(CT B̂)−1CTLi(k). (43)

B. Closed-loop system equations

The closed-loop system equations can be defined by the

vector [xi(k) x̂i(k)]. In order to find these equations, the

grid voltages will be considered as disturbances. Thus, these

voltages can be removed from the VSI system equations since

they have no effect in the stability analysis. The discrete state-

space equations for each phase-leg i, when estimated variables

are used in the controller, can be defined as follows:

xi(k + 1) = Axi(k) +Bûieq(k). (44)

Replacing (41) in (44) and in (37), and taking into account

(40), the following state-space equations for the real system

variables and for the estimated ones can be obtained:

xi(k + 1) = (A+BK2H)xi(k) +B(K1 −K2H)x̂i(k)
(45)



x̂i(k + 1) = (Li + B̂K2)Hxi(k) + (Â+ B̂(K1 −K2H)

− LH)x̂i(k).
(46)

Equations (45) and (46) define the closed-loop system which

can be written in matrix form:
[

xi(k + 1)
x̂i(k + 1)

]

= G

[

xi(k)
x̂i(k)

]

(47)

where the matrix G contains the closed-loop eigenvalues, and

is defined as:

G =

(

A+BK2H B(K1 −K2H)

(B̂K2 + Li)H Â+ B̂(K1 −K2H)− LiH

)

.

(48)

Note that the parameters uncertainties are considered in the

system matrices A and B, while the matrices of the proposed

model, Â and B̂, contains the nominal values.

The stability for the closed loop system will be given by

the eigenvalues of (48), which is the solution of the following

equation with respect to λ:

(A+BK2H− λI)(Â + B̂(K1 −K2H)− LiH− λI)

−B(K1 −K2H)((B̂K2 + Li)H) = 0.
(49)

Fig.6 compares the position of the closed-loop poles in two

different scenarios when the nominal LCL filter parameters

shown in Table I are considered. In the first case, the VSI is

controlled using the conventional SMC without any damping

strategy. The position of the poles in this case in represented

in Fig.6(a). The figure shows one pole at the origin forced by

the sliding-mode and two poles more provided by the LCL

filter. However, when the proposed model is used in a KF the

LCL poles are attracted inside the unity circle in the z-plane,

as shown Fig.6(b). Note that three more poles are added due

to the presence of the observer.

C. Test of robustness against system parameters uncer-

tainties

Although the system can be stable for the nominal values of

the system parameters, deviations in the LCL filter and in the

grid inductance should be studied. In this analysis, deviations

of ±30% in L1, C and L2 and 900% in the grid inductance Lg

are considered. Figs.7(a)-7(d) depict the root locus obtained

in each case. As it can be seen the stability is ensured for large

variations of these parameters. Small variations in the position

of the poles can be observed when the system parameters vary,

even for a large variation of the grid inductance. This fact

proves the high robustness of the control algorithm even in

the case of system parameters deviations.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section simulation and experimental results are

reported in order to validate the proposed control algorithm.

Fig.8 show the three-phase currents and the active and reactive

powers when a sudden power reference change is done. The

active power changes from 750 W to 1500 W, while the
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Fig. 6. Pole map for the nominal values of the LCL filter: a) using
conventional SMC without observer, and b) using the proposed control
method.

reactive power changes from 0 to 500 VAr and from 500 VAr

to 0. The amplitude of the three-phase currents is obtained

according to the generated current reference (30). As it can be

seen, when the proposed control algorithm is used the active

and reactive powers have a fast transient dynamics. Besides,

a small ripple is achieved.

Fig.9 shows the current behaviour when a the grid voltage

contains one harmonic which amplitude is 30 V near the

resonance frequency. As shown in the figure the currents are

slightly oscillating due to the harmonic but the system is

maintained stable.

For the experimental results, a three-phase three-wire in-

verter prototype has been built using a 4.5-kVA SEMIKRON

full-bridge as the power converter. The TMS320F28M36

floating-point digital signal processor (DSP) has been chosen

as the control platform with a sampling frequency of 60 kHz.

The grid and the DC-link voltages have been generated using

a PACIFIC 360-AMX and an AMREL SPS1000-10-K0E3

sources respectively. The system parameters are listed in Table

I. A photograph of the experimental setup is shown in Fig.15.



(a) (b)

(c) (d)

Fig. 7. Root locus when the system parameters vary: a) L1 varies ±30%, b) C varies ±30%, c) L2 varies ±30% and d) Lg varies 900%.
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Fig. 8. A sudden step change when the proposed control method is
used: a) three-phase currents and b) active and reactive powers.

0 0.05 0.1 0.15 0.2
−10

−5

0

5

10

time (s)

cu
rr

en
ts

 (
A

)

Fig. 9. Three-phase currents with a grid harmonic near the resonance
frequency

A. Test of robustness against grid inductance variations

Fig.10 shows the PCC voltages and the grid currents for

three different values of the grid inductance Lg: 0.5 mH, 2

mH and 5 mH, respectively. The controller performances has

been tested for these three different values which represents a

900% of variation in the grid inductance nominal value. In this

test, the active damping is enabled when the proposed control

method is used. Otherwise, the conventional SMC is applied

without using any observer. The results obtained in this test

are discussed as follows:

1) Fig.10(a) shows the PCC voltages and the grid-side

currents for a nominal grid inductance of Lg=0.5 mH. As it



(a)

(b)

(c)

Fig. 10. Top: PCC voltages (50 V/div) and bottom: grid currents (2A/div,
5ms/div) for three different values of Lg : a) Lg=0.5 mH, b) Lg=2 mH, c)
Lg=5 mH.

Fig. 11. Grid-side current of phase-leg a (2 A/div, 5 ms/div) when a
sudden step change is done in the active power reference from 750 W
to 1500 W.
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Fig. 12. Power step change from 750 W to 1500 W.

Fig. 13. Top: distorted PCC voltages (50 V/div) with THD = 14%, and
bottom: grid-side currents (2 A/div).

Fig. 14. Top: PCC voltages (50 V/div), and bottom: grid-side currents
(2A/div) under voltage sag.

Fig. 15. Photograph of the experimental setup

can be seen, when the conventional SMC is used the system

is oscillating since the controller (29) is working without a

damping resistor. According to (14), the resonance frequency

is in this case around fres=1220 Hz. Conversely, when the

active damping is enabled the oscillation disappears and all

the roots are attracted inside the unity circle in the z-plane, as

shown in Fig.6.

2) Fig.10(b) shows the result of the same test but when

the grid inductance is incremented to a value of Lg=2mH.

Now, the resonance frequency is reduced around 21% which

corresponds to a value of fres=965 Hz. However, the control

algorithm works as expected, and the oscillation also disap-

pears.

3) Finally, in Fig.10(c) the grid inductance is changed to

Lg=5mH. This variation represents a reduction of 40% of the

nominal resonance frequency, being now fres=729Hz. Once

again, satisfactory results are obtained.

We can conclude that the effectiveness of the control

algorithm is practically independent of the grid inductance

variations. This is a superior feature of the proposed control in

comparison with other filter-based active damping techniques

which needs auto-tuning procedures, where if the grid induc-

tance exceeds from a critical value the system may become

unstable [9], [20]. Note that, according to Fig.7(d), even in

a wide variation of the grid inductance, only small variations

in the system poles are observed. This fact proves the high

robustness of the control algorithm against important grid

inductance variations without the implementation of tuning

algorithms.



B. Test of the VSI against sudden changes in the refer-

ence current

In Figs.11 and 12 the transient behavior against changes in

the reference active power is represented. The figures show the

grid-side current for phase-leg a and the active and reactive

powers. A reference active power step change from 750 W

to 1500 W is applied, which represents a variation in the

reference current from 3.1 A to 6.2 A. As it can be seen, a

fast transient response is achieved due to the use of the SMC.

C. Test of the VSI under distorted grid

In Fig.13 a comparison between the conventional SMC and

the proposed control method is done. The PCC voltages with

a total harmonic distortion (THD) of 14% and the three-phase

grid currents are shown in the case of a distorted grid. As

shown in the figure, when the conventional SMC is used ,

the grid currents are distorted since the reference currents

generation method, uses distorted PCC voltages. In contrast,

when the proposed control method is used, the grid currents

only have a slightly distortion since the reference current is

generated by using only the fundamental component of the

PCC voltage, (30), obtained from the KF. Note that with this

proposal, the use of extra filters for the grid voltages are not

necessary.

D. Test of VSI under voltage sags

The proposed controller can also operate in case of voltage

sags. Fig.14 shows the VSI performance under a grid voltage

sag characterized by a positive and negative sequence of V + =

0.7 p.u. and V − = 0.3 p.u. respectively, and with a phase angle

between sequences of φ = −π/6. In this case the reference

currents are obtained using the positive sequences of the PCC

voltages as î∗a,b,c =
P∗

|v̂+|2 v̂
+

a,b,c. The positive sequences can be

obtained according the expressions presented in [12]. Due to

the fact that the grid current tracks only the positive sequence

of the PCC voltage, the current amplitude is balanced during

the voltage sag. Note that the currents amplitude is increased

in order to maintain the desired active power due to the sag.

VI. COMPARATIVE ANALYSIS

Table II compares this proposal with the algorithm presented

in [12] in terms of execution time tex of the controller,

computational load, memory usage in bytes, the maximum

switching frequency, and the THD. The computational load

can be computed according to:

Load(%) = fs × tex × 100 (50)

and the maximum switching frequency is considered as fs/10
in order to ensure enough samples for the correct operation of

the hysteresis band comparator.

In order to obtain the execution time, one timer of the DSP

is used to measure the time of the controller task. As it can be

seen, the total time employed by the algorithm is noticeably

smaller in this proposal. This fact allows to increase the

sampling frequency up to 60 kHz, which limits the maximum

switching frequency to 6 kHz, as shown in Fig.16. Besides,

TABLE II
COMPARATIVE ANALYSIS BETWEEN MODELS

Algorithm fs tex Load(%) Mem. fsw THD

[12] 40 kHz 18µs 72 11146 4 kHz 1.9%
Proposed 60 kHz 10µs 60 8149 6 kHz 1.5%
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Fig. 16. Switching spectrum using the proposed reduced model.

a low THD of the grid current in both cases is achieved.

However it is slightly reduced when the proposed algorithm is

used. This algorithm could be implemented in other processors

besides the one used in this work, such as Field Programmable

Gate Arrays (FPGAs) or other floating-point multi-core DSPS

[21].

VII. CONCLUSIONS

In this paper a new concept in active damping methods has

been presented. The proposed method uses a reduced model-

based solution in natural frame for a three-phase voltage

source inverter with LCL filter. This solution leads provides a

reduction of the computational time, allowing to increase the

switching frequency. In the proposed model, two of the three

system state-space variables are obviated and only the inverter-

side current is considered. This model is the basis of a Kalman

filter used to obtain the estimated currents which allow us to

derive three current sliding-mode controllers in natural frame

avoiding the LCL resonance. The use of estimated variables

instead of the measured ones provides active damping capa-

bility to the controllers, independent of the system parameters.

The control method has tested in different adverse situations,

harmonics in the grid, grid voltage sags and changes in the grid

inductance, obtaining very satisfactory results. The stability

analysis and the corresponding experimental results shows the

validity of this proposal. In a future work, this method will

be applied to other converters with LCL filter as rectifiers or

active power filters by finding the appropriate reduced model

for each converter.
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