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Abstract—This paper presents a variable structure con-

trol in natural frame for a three-phase gird-connected

voltage source inverter with LCL filter. The proposed

control method is based on modifying the converter

model in natural reference frame, preserving the low

frequency state space variables dynamics. Using this model

in a Kalman filter, the system state-space variables are

estimated allowing to design three independent current

sliding-mode controllers. The main closed-loop features

of the proposed method are: 1) robustness against grid

inductance variations because the proposed model is in-

dependent of the grid inductance, 2) the power losses

are reduced since physical damping resistors are avoided,

3) the control bandwidth can be increased due to the

combination of a variable hysteresis comparator with the

Kalman filter, and 4) the grid-side current is directly

controlled providing high robustness against harmonics in

the grid. To complete the control scheme, a theoretical sta-

bility analysis is developed. Finally, selected experimental

results validate the proposed control strategy and permit

illustrating all its appealing features.

Index Terms—Grid current control, LCL filter, Sliding

mode control, Kalman filter, Voltage sensorless.
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POWER converters are commonly used in many

power applications such as uninterruptible power

supplies, unity power factor rectifiers and voltage source

inverters (VSI’s). The controller design is a difficult

task when the converter is equipped with an LCL filter

due to its inherent resonance problem, specially in grid

connected inverters used in distributed generation where

a large set of grid impedance values may affect the

system stability [1].

Kalman filter (KF) based-control has been widely

used in power electronics [2], where accurate power

converter models are considered to estimate the state

variables. Unlike these control methods, the model-based

control presented in this paper uses a modified state-

space model which preserves the low frequency state-

space variables dynamics, and allows to design a robust

sliding mode control (SMC) in natural reference frame.

The use of the SMC technique improves the tracking

behaviour and dynamic performances, providing fast

dynamic response with high robustness against system

parameters variations [3], [4].

The SMC technique was also introduced in a single-

phase grid-connected LCL-filtered VSI with interesting

properties as fast dynamic response, robustness, and si-

nusoidal grid currents with low total harmonic distortion

[5], [6]. Besides, the use of SMC has been applied to

three-phase active power filters in stationary and rotating

reference frames [7]. Other relevant works regarding the

SMC technique can be found in [8]–[13].

Traditionally, VSIs with LCL filter have been con-

trolled by means of the inverter-side current. Recent

references can be found regarding to the control of

the grid-side current for single-phase systems [14], [15]

or for three-phase systems [16]–[18]. In most of these

proposals the use of digital filters is needed in other to

implement the control algorithm, and as a consequence

the robustness against system parameters variations may

be compromised.

Conversely, and as per authors knowledge, there are

no references in the literature about the use of the SMC



in abc frame applied to control the grid-side current.

Besides, with a direct control of the grid-side current

high robustness against a distorted grid is achieved, and

as a consequence, a reduction of the total harmonic

distortion (THD) of the currents injected to the grid.

Then, with this method, digital filters in the closed loop

system are not required.

This paper proposes a sliding-mode controller based

on a KF in order to perform a direct control of the current

injected to the grid by imposing a desired dynamics.

The proposed controller scheme estimates the state-space

variables including the voltages at the point of common

coupling (PCC). The SMC parameters are obtained by

analyzing the system stability taking into account the

influence of the KF. The estimated PCC voltages are

used in a hysteresis current control (HCC) reducing the

switching noise and improving the switching spectrum.

The main advantage of this method is that it is not

necessary to compensate the grid harmonics in order

to achieve sinusoidal grid currents with a low THD

[19]. Besides, since the control method is based on

controlling the grid-side current instead of the inverter-

side current some problems are avoided such as: 1) the

sensitivity to parameter uncertainties specifically with

the grid inductance variations, and 2) the phase-shift

between the current injected to the grid and its reference,

which is more important for low values of active power.

Another interesting property is that the averaged neu-

tral point voltage can be changed by modifying the

space-state model of the converter used in the KF

algorithm. As an example a third harmonic voltage can

be injected in the neutral point in order to increase the

control dynamic range. This property is useful in PV

applications.

A methodology to analyze and design a robust con-

troller of the grid current in natural reference frame is

presented. This method is based on following steps:

1) A modified state-space model of the VSI is pro-

posed to design three independent current con-

trollers in natural reference frame.

2) The switching surfaces are designed in order to

obtain a closed loop dynamics independent of

the system parameters, using estimated variables

obtained from a KF.

3) A complete stability analysis is performed taking

into account the effect of the KF, the system dis-

cretization and the deviation in the system param-

eters. This analysis proves the system robustness.

4) Finally, experimental results are reported to prove

the aforementioned properties, including the con-

troller response against a distorted grid and voltage

sags.

The paper is organized as follows. In Section II a

linear model of the VSI with LCL filter is presented.

Section III introduces the conventional SMC using the

inverter-side current. Section IV presents the proposed

control system. A stability analysis is presented in sec-

tion VI. Experimental results are reported in section VI.

Finally, section VII concludes the paper.

II. MODELING OF VSI WITH LCL FILTER

A circuit scheme of a grid-connected inverter with

LCL filter is depicted in Fig.1. The three-phase system

equations can be written as follows:

L1

di1
dt

=
Vdc

2
u− vc − vnI1 (1)

C
dvc

dt
= i1 − i2 (2)

L2

di2
dt

= vc − v + (vn − v′n)I1 (3)

where i1 = [i1a i1b i1c]
T are the inverter-side cur-

rents, i2 = [i2a i2b i2c]
T are the grid-side currents,

vc = [vca vcb vcc]
T are the capacitor voltages,

v = [va vb vc]
T are the voltages at the PCC,

u = [ua ub uc]
T are the control variables, vn and v

′

n

are the voltages at the neutral points and I1 is a column

vector defined as [1 1 1]T .

Assuming that the grid voltages are balanced (i.e.,

vga + vgb + vgc = 0 and vca + vcb + vcc = 0), the

expressions for the neutral point voltages can be reduced

as follows:

vn = v′n =
Vdc

6
(ua + ub + uc). (4)

The equations for the VSI model can be rewritten as

a discrete space-state model. The discrete equations will

be used in the stability analysis section in order to find

the control parameters. The process and measurement

discrete equations for each phase-leg i are expressed as

follows:

xi(k+1) = Axi(k)+Bui(k)+Dvi(k)−
Ts

L1

vn(k) (5)

yi(k) = Cxi(k) (6)

where

xi(k) = [i1i(k) vci(k) i2i(k)]
T (7)

is the state space vector. The remaining matrices are

defined as:

A =




1 − Ts

L1

0
Ts

C
1 −Ts

C

0 Ts

L2

1


 (8)



Vdc/2

Vdc/2
ua ub uc
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Fig. 1. Circuit diagram of three-phase grid-connedcted inverter with LCL-filter

B = [
VdcTs

2L1

0 0]T (9)

C = [0 0 1] (10)

D = [0 0 − Ts

L2

]T (11)

being Ts the sampling time.

III. CONVENTIONAL SMC USING THE

INVERTER-SIDE CURRENT

As a first approach, a sliding surface vector used

to control the inverter-side currents can be defined as

follows:

S = i
∗ − i1 (12)

where the reference current vector i
∗ = [i∗a i∗b i∗c ]

T is

given in [20], and defined as follows:

i∗a =
P ∗

|v|2 va +
Q∗

√
3|v|2

(vb − vc) (13)

i∗b =
P ∗

|v|2 vb +
Q∗

√
3|v|2

(vc − va) (14)

i∗c = −(i∗a + i∗b) (15)

being |v|2 = v2a + v2b + v2c =
3V 2

p

2
with Vp the peak

voltage value, and P ∗ and Q∗ the active and reactive

power references, respectively.

When the system is in sliding regime, the converter

dynamics is forced to evolve over the sliding surface,

and the new dynamics can be derived according to the

invariance conditions, S = 0 and Ṡ = 0 [21]. By

applying these conditions to (1)-(3), the following grid-

side current differential equation can be found:

L2C
d2i2
dt2

+ i2 = i
∗ − C

dv

dt
. (16)

The output current dynamics exhibits an oscillatory

behavior, as it can be deduced from (16) where the reso-

nance frequency is given by 1/2π
√
L2C. The straightfor-

ward solution is to apply passive damping by connecting

a resistor in series with the capacitor filter C . Then, the

ideal sliding-mode dynamics results in:

i1 = i
∗ (17)

C
dvc

dt
= i

∗ − i2 (18)

L2

di2
dt

= vc − v+Rd(i
∗ − i2) (19)

where Rd is the damping resistor. From the last equa-

tions, the closed-loop grid-side current differential equa-

tion can be derived as follows:

L2C
d2i2
dt2

+RdC
di2
dt

+ i2 = i
∗ +RdC

di∗

dt
− C

dv

dt
.

(20)

Assuming a grid-connected application, where only ac-

tive power is delivered to the grid, the reactive power

is not considered (i.e. Q∗=0). Then, by applying the

Laplace transform to 20, and using (13)-(15) with Q∗=0,

the transfer function between the grid-side current and

its reference is found:

i2(s) =
1 + (Rd − 3V 2

p

2P ∗
)Cs

L2Cs2 +RdCs+ 1
i
∗(s) = H(s)i∗(s). (21)

As it can be deduced from (21), a phase shift between

i2 and i
∗ is produced. Note that this phase shift depends

of the reference active power value, P ∗.

IV. PROPOSED CONTROL SYSTEM

The control scheme for phase-leg i is depicted in

Fig.2. The control block diagram consists of a KF,

a reference neutral point voltage calculator, and the

switching surface used together with a variable hysteresis

band combined with a switching decision algorithm [20].

This combination allows to obtain an improved switch-

ing spectrum concentrated around the desired switching

frequency.

Besides, in this section, a KF algorithm based on a

modified space-state model is presented. Finally, in order

to obtain the control parameters a complete stability

analysis is performed including the KF effect.
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Fig. 2. Proposed control system for phase-leg i of the VSI

A. Kalman Filter

1) Proposed Space-State model of the VSI: The pro-

posed state-space model is defined by the following

differential equations:

L1

di1
dt

=
Vdc

2
u− vc − v∗nI1 (22)

C
dvc

dt
= i1 − i2 (23)

L2

di2
dt

= vc − v (24)

dv

dt
= ωovq (25)

dvq

dt
= −ωov (26)

where v∗n is the reference neutral point voltage, ωo is the

angular grid frequency and v and vq are the voltages

vector at the PCC and its quadrature, respectively. Note

that, using v∗n in (22) instead of vn as in (1), a perfect

decoupling between phases is obtained in the proposed

model. This simple change allows the dynamics of the

inverter-side current of each phase relying only on its

corresponding control input. This fact can be clearly

observed by considering the expression of vn written in

(4).

By using this model, the KF is also applied to extract

the fundamental component and its quadrature of the

PCC voltages. This fact allows to generate sinusoidal

reference currents even in case of a highly distorted grid

[22].

In order to use the aforementioned model in a KF,

a discrete model is necessary. The augmented discrete

space-state model including the PCC voltages is written

as follows:

x̂augi(k + 1) = Âaugx̂augi(k) +Baugui(k)

− Ts

L1

v∗n(k) + ηi(k)
(27)

yi(k) = Caugxaugi(k) +wi(k) (28)

where wi(k) and ηi(k) are the process and the measure-

ment noise vectors respectively, and

x̂augi = [̂i1i(k) v̂ci(k) î2i(k) v̂i(k) v̂iq(k)]
T (29)

Aaug =




1 − Ts

L1

0 0 0
Ts

C
1 −Ts

C
0 0

0 Ts

L2

1 − Ts

L2

0

0 0 0 1 Tsωo

0 0 0 −Tsωo 1




(30)

Baug = [
VdcTs

2L1

0 0 0 0]T (31)

Caug = [0 0 1 0 0]T . (32)

Note that the circumflex symbol denotes estimated vari-

ables.

We can take advantage of the reference neutral point

voltage, v∗n, shown in 22 to impose a desired voltage. For

instance, a third harmonic can be imposed at the neutral

point, which can be obtained following the steps in [20],

and it is expressed as:

v∗n =
Vp

6
[(L1 + L2)

P ∗ωo

|v̂|2 cos(3ωot)

+ (1 + (L1 + L2)
Q∗ωo

|v̂|2 ) sin(3ωot)].

(33)

where |v̂| = [v̂a v̂b v̂c] is the vector of estimated

voltages at the PCC.

The last expression does not have any dependence

with the control signals ua,b,c. For this reason, this solu-

tion not only increases the controllers dynamic range, but

also achieves a perfect decoupling between controllers.

On the other hand, the system is controlled using only

one sensor in the grid-side current, as it is shown in

Fig.2. Then, the system observability and controllability

should be ensured. The observability matrix can be

obtained from (30) and (32) which yields to

O = [Caug CaugAaug CaugA
2
aug CaugA

3
aug

CaugA
4
aug]

T
(34)

and using (30) and (31) the controllability matrix Γ is

given by

Γ = [Baug AaugBaug A
2
augBaug A

3
augBaug

A
4
augBaug]

(35)

Matrix O is of full-rank, (i.e. rank{O} = 5), and

as a consequence the system is observable using only

the measured current i2i. However, the controllability

matrix is of rank 3 and only a controllable subspace

can be considered. Note that in this particular case

the controllable subspace is given by matrix (8) which

contains the control variable i2i. Besides, the states vi
and viq are stable states with bounded limits, therefore

the controllability is ensured.



2) KF Algorithm: The KF algorithm is widely ex-

plained in the literature [23] so only a brief summary of

its equations will be given in this section. The recursive

Kalman algorithm computation is divided in two parts:

1) time updating and 2) measurement updating. From the

well-known equations of the KF [24], the equation for

the estate estimation can be expressed as follows:

x̂augi(k + 1) = x̂augi(k) + Li(k)(i2i(k)− î2i(k))
(36)

where the Kalman gain is computed as:

Li(k) = Pi(k)C
T (CPi(k)H

T +Ri(k))
−1 (37)

being Pi the error covariance matrix for phase-leg i
and Ri the measurement noise covariance matrix. The

algorithm and some interesting steps to reduce the com-

putational time are explained in [24].

B. Derivation of the SMC by dynamic imposition

In this paper, the sliding surfaces are designed by

imposing a desired dynamics behaviour with active

damping capability. The sliding surfaces will be used as

grid-current controllers in order to achieve high current

tracking accuracy with stable dynamics. In the switching

surfaces implementation only estimated variables are

used.

The first step in a switching surface design is to

calculate the relative degree associated with the output

variable. The desired closed-loop output-current dynam-

ics can be then specified according to the relative degree

of î2. The relative degree of a state variable is the

smallest number of differentiations with regards to time,

so that the control input u appears explicity [21]. From

(22)-(24) it can be easily found that

∂

∂u

(
dj î2
dtj

)
= 0 j = 1, 2 (38)

∂

∂u

(
dj î2
dtj

)
6= 0 j = 3 (39)

then, the relative degree of î2 is three. From (1)-(3) the

open-loop output-current dynamics can be expressed as

follows:

L2C
d3̂i2
dt3

+
d̂i2
dt

− d̂i1
dt

+ C
d2v̂

dt2
= 0. (40)

Note that in the previous expression, the control action

u is in the time derivative term of î1.

The choice of the sliding surface vector S constitutes

the second step. Here, we introduce the use of invari-

ance conditions to synthesize proper sliding surfaces to

guarantee perfect tracking dynamics, i2 = i
∗.

The desired closed-loop linear dynamics which guar-

antees a perfect tracking performance until the third

derivative term of the output-current error is

3∑

n=0

λn

dn(̂i2 − i
∗)

dtn
= 0. (41)

It is worth to mention that, this ideal dynamics does

not rely on the system parameters, and only depends

of the controller parameters, λ. This fact provides a

hight robustness against system parameters deviations.

However, since a KF is used, the effect of the KF and the

system discretization should be analyzed. For this reason,

in section V, a complete analysis of system stability and

robustness against system parameters deviation will be

performed.

Here, it is important to remark that the order of the

specified dynamics coincides with the relative degree

of the output-current; otherwise, the desired dynamics

cannot be ensured by the control action u [25], [26].

In sliding regime, the converter dynamics are forced

to evolve over the sliding surface S, according to the

invariance condition S = Ṡ = 0 [25]. Such property

can be used to design a controller that guarantees the

desired dynamics (41). In fact, a similar approach was

previously employed in [27] in a different application,

with good static and dynamic properties.

Now, by subtracting (40) from (41) and equalizing the

result to the invariance condition Ṡ = 0 [25] yields

dS

dt
=

d̂i1
dt

− d̂i2
dt

− C
d2v̂

dt2
− L2C

d3̂i2
dt3

+
3∑

n=0

λn

dn(̂i2 − i
∗)

dtn

(42)

and consequently

S = î1 − î2 − C
dv̂

dt
− L2C

d2̂i2
dt2

+
3∑

n=1

λn

dn−1(̂i2 − i
∗)

dtn−1

+ λ0

∫
(̂i2 − i

∗)dt.

(43)

The aforementioned expression can be simplified by

taking λ3 = L2C and considering that λ3
d2i∗

dt2
<< λ1i

∗,

as:

S = î1 − î2 − C
dv̂

dt
+ λ2

d(̂i2 − i
∗)

dt
+ λ1(̂i2 − i

∗)

+ λ0

∫
(̂i2 − i

∗)dt.

(44)

The last requirement in the design of SMC is to satisfy

the reaching conditions. The most often-used reaching

conditions for each phase-leg i are given by

SiṠi < 0 (45)



which allows us to determine the control law

ui =

{
1 if Si < 0
−1 if Si > 0

(46)

In section V, an analysis of the closed-loop system

stability is performed in order to obtain the control

parameters.

V. STABILITY ANALYSIS

In this section the stability of the proposed control

system is analyzed. This analysis takes into account

the effect of the KF because it modifies the system

dynamics behaviour. According to section IV-A, the

controllers are decoupled, and each phase-leg can be

treated independently in order to perform the stability

analysis.

A. Discrete equivalent control deduction

For this analysis, only the state variables i1i, vci and

i2i are used, and the voltages at the PCC are considered

as disturbances. In this case the state-space system

equations for each phase-leg i can be defined as follows:

xi(k + 1) = Axi(k) +Bu(k) + f(k) (47)

yi(k) = Cxi(k) (48)

where matrix A, and vectors B and C are defined in

(8) , (9) and (10) respectively, and f(k) is a disturbance

vector.

The discrete sliding surface equation can be obtained

from (43) yielding:

Si(k) = î1i(k)− î2i(k) + λ2

î2i(k)− î2i(k − 1)

Ts

+ λ1 î2i(k) + λ0ξi(k) + g(v̂, i∗i ).

(49)

where the integral term is defined as

ξi(k) = ξi(k − 1) + TsCxi(k) (50)

and g(v̂, i∗i ) is a function with bounded limits depending

of the disturbances. The last expression can be rewritten

as follows:

Si(k) = ax̂i(k) + bx̂i(k − 1) + λ0ξi(k) + g(v̂, i∗i ).
(51)

where

a = [H+C(
λ2

Ts

+ λ1 − 1)] (52)

b = −λ2

Ts

C (53)

H = [1 0 0]. (54)

and

x̂i = [̂i1i v̂ci î2i]
T . (55)

Vector x̂i(k+1) is the estimated state vector which can

be obtained using the KF estimation as

x̂i(k + 1) = Âx̂i(k) +Bûieq + LiCe(k) (56)

where Â is the system matrix obtained from the pro-

posed model which contains the LCL nominal values,

A is the real system matrix defined in (8), ei(k) =
xi(k) − x̂i(k) is the estimation error and uieq(k) is the

equivalent control of phase-leg i, which is the solution

of ∆Si = Si(k + 1)− Si(k)=0, [28].

Taking into account the aforementioned expression,

the discrete equivalent control can be found by using

(56) in (51) evaluated at time k + 1, yielding

ûieq(k) = −(GB)−1(Si(k) + a(GÂ+ b)x̂i(k)

+GLiCe(k) + λoξi(k) + g(v̂, i∗i ))
(57)

where the gain matrix G is expressed as:

G = a+ λ0TsC. (58)

B. Closed-loop equations

In the ideal sliding regime, one has Si(k + 1) =
Si(k)=0. Then, (57) can be reduced to:

ûieq(k) = K1x̂i(k) +K2e(k) +K3ξi(k) (59)

where the gains K1, K2 and K3 are defined as follows:

K1 = −(GB)−1(GÂ+ b) (60)

K2 = −(GB)−1
GLiC (61)

K3 = −(GB)−1λ0. (62)

Note that the disturbances function g(v̂, i∗i ) has been

removed for simplicity, since it has no effect in the

stability analysis.

In order to find the closed-loop equations, (59) is

replaced in (47) and in (56). Assuming f(k) in (47)
has bounded limits, these function can also be removed

for the stability analysis procedure, leading to

xi(k + 1) = (A+BK1)xi(k) +B(K2 −K1)ei(k)

+BK3ξi(k)
(63)

x̂i(k + 1) = (Â+BK1)xi(k) + (B(K2 −K1) + LiC

− Â)ei(k) +BK3ξi(k).
(64)



Now, by subtracting (64) from (63), the equation for the

estimation error at time k + 1 is obtained

e(k + 1) = (A− Â)xi(k) + (Â− LiC)e(k) (65)

The closed-loop equations are defined by (63) and

(65). Then by taking into account that

ξi(k + 1) = ξi(k) + TsCx̂i(k + 1) (66)

and using (56) in (66), the closed-loop equations in

matrix form can be found:



xi(k + 1)
ei(k + 1)
ξi(k + 1)


 = G




xi(k)
ei(k)
ξi(k)


 (67)

where matrix G can defined as follows

G =




A+BK1 B(K2 −K1) BK3

(A− Â) Â− LiC 0

TsC(A+BK1) J TsBK3 + 1




(68)

being

J = TsCB((K2 −K1)− Â+ LiC) (69)

C. Closed-loop poles

The closed-loop dynamic behaviour will be given by

the eigenvalues of matrix G, which are the solution

of det(zI − G) = 0. In order to ensure the system

stability, the eigenvalues should lie inside the unity circle

in the z-plane. In a first stage, we assume that the

system parameters deviations are zero. In this case it

is accomplished that A = Â in the matrix G.

The converter open-loop poles in each phase-leg i are

three (5), but the observer introduces three more poles

(56). When the system is in closed-loop operation, one

more pole is added due to the presence of the integrator

in the sliding surface, being seven the total number of

poles.

However, it is found that while the system is in sliding-

regime, one pole is fixed at the origin (z=0) due to the

sliding equation, which forces the grid-side current to

track its reference (i.e. i2 = i
∗), and as a consequence,

the system order is reduced in one unit. The position of

the remaining poles can be adjusted by tuning the control

parameters.

The pole maps for two different cases are presented

in Fig.3. As it can be seen, the three poles provided by

the KF lie in the same position in both figures since the

Kalman gain is fixed. The position of the other three

poles can be adjusted by changing λ parameters. In

Fig.3(a) the control parameters are selected for an os-

cillating behaviour and these poles are outside the unity
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Fig. 3. System poles (a) in an oscillation case (λ3 = 34 · 10
−9,

λ2=λ0=0 and λ1=1), (b) used in the proposed controller (λ3 = 34 ·

10
−9, λ2 = 136 · 10

−6, λ1=1.136 and λ0=1000.

circle in the complex z plane. In Fig.3(b) the control

parameters are changed, and the poles are attracted inside

the unity circle providing stable dynamics.

D. System parameters robustness analysis

In the previous section the stability of the system has

been analyzed. However, the deviations of the LCL filter

parameters should be studied. Here, we assume that A 6=
Â, which means that the reactive components do not

coincide with their nominal values. Note that according

to the matrix G, the overall system stability does not rely

on the grid inductance variations. This is an important

feature of the proposed control algorithm that will be

shown in the experimental results section.

Figs.4(b)-4(c) show the roots locus of the closed

loop system in the case of parameter deviations in the

LCL filter. According to [29], deviations of ±30% on

the rated values have been taken to verify the system



TABLE I

SYSTEM PARAMETERS

Symbol Description Value

L1 Filter input inductance 7 mH

C Filter Capacitor 6.8 uF

L2 Filter output inductance 5 mH

Lg Grid inductance 0.8 mH-5 mH

Vdc DC-link Voltage 450 V

fs Sampling frequency 40 kHz

fgrid Grid frequency 60 Hz

fsw Switching frequency 6 kHz

Vgrid Grid Voltage 110 V

P ∗ Active Power 1.5 kW

Q∗ Reactive Power 0 VAr

robustness. In each case, variations of only one parameter

in the system matrix A are applied, while the rest of

the parameters remains unchanged. It must be noticed

that, for this analysis the matrix Â should contain the

LCL nominal values. From the figures, it can be seen

that the eigenvalues have small variation for a large

variations of the LCL parameters. This fact verifies the

high robustness of the proposed control method against

deviations in the system parameters. In order to conclude

the robustness analysis, different tests with harmonics

in the grid and voltage sags will be shown in the

experimental results section.

VI. EXPERIMENTAL VALIDATION

An experimental three-phase three-wire inverter proto-

type was built using a 4.5-kVA SEMIKRON full-bridge

as the power converter and a TMS320F28M35 floating-

point digital signal processor (DSP) as the control plat-

form with a sampling frequency of 40 kHz. The grid

and the DC-Link voltages have been generated using a

PACIFIC 360-AMX and an AMREL SPS1000-10-K0E3

sources respectively. A photograph of the experimental

setup is shown in Fig.5. Table I lists the system param-

eters used in the experimental prototype. Some results

are imported to Matlab by means of a script which

communicates the computer with the DSP.

Fig.6 shows the equivalent control for phase-leg a,

obtained by low-pass filtering the control signal ua. The

equivalent control is affected by the reference neutral

point voltage which injects a third harmonic in the

control signal as desired. As a consequence, the dynamic

control range is extended by simply including the suit-

able reference neutral point voltage in the KF algorithm.

Fig.7 compares the tracking performances of the pro-

posed control method with the conventional SMC when

only active power is injected to the grid. In Fig7(a)

and Fig.7(b) conventional SMC expressed in (12) with a

physical damping resistor of 68Ω is used. The damping
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Fig. 4. Root locus diagrams when the filter parameters vary. a) L1

varies ±30%, b) L2 varies ±30%, and c) C varies ±30%.



Fig. 5. Photograph of the experimental setup
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Fig. 6. Equivalent control with a common-mode third harmonic

injected.

resistor is selected in accordance with guidelines re-

ported [30]. Fig.7(a) shows a phase-shift around 7◦ when

the reference active power is 750 W. This phase-shift is

reduced when the reference active power is increased

up to 1500 W as shows Fig.7(b). It can be seen from

both figures that using the conventional SMC the phase

shift has a dependence on the power injected to the grid

according to (21).

If the proposed controller (43) is used the grid-side

current tracks its reference without error regardless of

P ∗, as it is shown in Fig.7(c) and Fig.7(d).

A. Test of the VSI against sudden changes in the active
power reference

Fig.8(a) and Fig.8(b) show the grid-side currents and

the active and reactive power, respectively. Three cases

are considered: oscillation behavior, stable behaviour and

a power step change, as described as follows:

1) In the oscillation case, the control parameters

λ0=λ2=0 and λ1=1 are chosen and the system is os-

cillating, as predicted in Fig.3(a). In this case the SMC

is used to control the inverter-side current as in section

III (see eq.(12)).

2) In the stable case, the control parameters λ0 and

λ2 are selected 1000 and 136·10−6 respectively. In this

case, grid currents and powers track their respective

references.

3) Finally, in the case of an active power step change,

from 750 W to 1500 W, a stable operation with fast

transient response is achieved due to the use of the SMC,

as shown in Fig.8(b).

B. Test of robustness against grid inductance variations

Fig.9(a) shows the grid-side current of phase-leg a for

three different values of the grid inductance, 0.8mH ,

2mH and 5mH , when the conventional SMC is used.

An oscillatory behaviour in the grid-side currents appears

when the grid inductance is more than 3mH . When the

proposed control is used this oscillation disappears, as it

can be seen in Fig.9(b), which makes the system robust

against grid inductance variations.

C. Test of VSI under a distorted grid

Fig.10 compares the three-phase grid currents using

the conventional SMC (12) and using the proposed

control method in the case of a distorted grid. This

figure shows the distorted PCC voltages, which THD is

around 16%, and the grid-side currents. From the figure,

when the conventional SMC is used, a distortion in the

grid currents appears. The reason is that the method

for generating the reference currents uses distorted PCC

voltages. In contrast, when the proposed control method

is used, the grid currents are sinusoidal since the refer-

ence current is generated by using only the fundamental

component of the PCC voltage, which is obtained from

the KF. Note that with this proposal, the use of extra

filters for the grid voltages is not necessary.

D. Test of the VSI under voltage SAGS

The proposed controller can also operate in case of

voltage sags. Fig.11 shows the VSI performance under

grid voltage sags. For this test, a voltage sag character-

ized by a positive and negative sequence of V + = 0.7 p.u.

and V − = 0.3 p.u. respectively, and with a phase angle

between sequences of φ = −π/6 has been provoked.

The reference currents are obtained using the positive

sequence of the PCC voltage, using î∗a,b,c = P ∗

|v̂|2 v̂
+

a,b,c.

The positive sequence is computed from the estimated

PCC voltages and their quadratures obtained from the

KF, following similar steps as shown in [31]. Note that

the use of a specific PLL algorithm for extracting the
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Fig. 7. Grid-side current (red line) tracking its reference (blue line) in phase-leg a (2A/div) using: a) conventional SMC with P ∗=750 W,

b) conventional SMC with P ∗=1500 W, c) proposed controller with P ∗=750 W, and d) proposed controller with P ∗=1500 W.
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Fig. 8. a) Grid-side currents (2 A/div) and b) active and reactive

power, in an oscillation case, stable case and with a sudden step

change in the active power reference.

positive and negative sequence grid voltage components

is not necessary in this case. Note that the currents

amplitude is increased in order to maintain the desired

active power due to the sag.
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Fig. 9. Grid-side current of phase-leg a for different grid inductance

values (a) using conventional SMC, and (b) using the proposed

controller.

Fig. 10. Distorted PCC voltages (25V/div) with THD = 16%, and

grid-side currents (5 A/div)



Fig. 11. PCC voltages (50 V/div) and grid-side currents (2A/div)

under voltage sag.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency(kHz)

N
or
m
al
iz
ed

A
m
pl
it
u
de

Fig. 12. Switching signal spectrum

E. Switching spectrum

In Fig.12 the control signal spectrum is shown. Note

that the spectrum is concentrated around 6 kHz, as de-

sired by using the switching decision algorithm presented

in [24].

VII. CONCLUSIONS

In this paper a sliding-mode observer-based control

for grid-connected LCL-filtered three-phase inverter is

proposed. The control algorithm is based on SMC in

combination with a KF. This proposal allows to obtain

three decoupled controllers which, provides a desired

dynamics to the grid-side current. The proposed control

technique also improves the tracking performance of the

reference and also increases the robustness against grid

inductance variation. Theoretical and experimental re-

sults show that with this controller no physical damping

resistors are needed reducing the control losses. In addi-

tion a sinusoidal third harmonic voltage can be injected

at the neutral point increasing the control dynamic range.

The system stability analysis has been also performed

allowing to find the main control parameters.
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