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Variable structure refers to the ability of a system to dynamically change its structure according to dif-
ferent situations. It provides component-based modeling and simulation environments with powerful
modeling capability and the flexibility to design and analyze complex systems. In this article, the au-
thors discuss variable structure—specifically, the structure change and interface change capability—
in DEVS-based modeling and simulation environments.The operations of structure change and inter-
face change are discussed, and their respective operation boundaries are defined. Three examples
are given to illustrate the role of variable structure and how it can be used to model and design
adaptive complex systems. Principles for the implementation of variable structure are also presented
and illustrated in the DEVSJAVA modeling and simulation environment.

Keywords: Variable structure, component-based modeling and simulation, DEVS, adaptive complex
systems

1. Introduction

With the rapid advance of component-based technology
in software engineering, component-based software has
been widely used to develop highly modular simula-
tion environments. The integration of component-based
technology with modeling and simulation environments
gives the latter powerful capability and greatly supports
reusability of components and interoperability of simula-
tion environments. The reuse of components, together
with visual programming technology, makes it possi-
ble to drag and drop existing components during the
modeling process, thus easing system modeling and sig-
nificantly reducing development time. With component-
based technologies such as the federate concept intro-
duced by the High Level Architecture (HLA) [1-3],
different simulation environments can interact through
standard interfaces and work together. Thus, interoper-
ability is achieved, and more powerful simulations can
be conducted. Component-based technology also makes
the modeling of a complex system easier to manage be-
cause a complex system can be divided into several man-
ageable pieces, each referring to a component. It also
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promotes distributed simulation as component-based tech-
nology has a natural fit to distributed environments.

Motivated by these advantages, various component-
based modeling and simulation environments have been
developed. Furthermore, HLA was developed to enhance
the interoperability of models and simulation environ-
ments. In HLA, component models are referred to as fed-
erates. Each federate provides an interface through which
messages can be passed and received. Because these inter-
faces comply with the same HLA interface specification,
federates developed by different developers can communi-
cate with each other via the runtime infrastructure. Other
works such as JSIM [4], SIMKIT [5], Silk [6], and VSE [7]
focus on the implementation of component-based model-
ing and simulation environments. For example, the JSIM
simulation environment uses Java and Java beans technol-
ogy to support component-based modeling and simulation.
A visual design interface is provided for users to develop
and assemble components.

The Discrete Event System Specification (DEVS) [8]
supports component-based modeling and simulation by
emphasizing the theory of hierarchical modular modeling.
In a DEVS-based environment such as DEVSJAVA [9], a
component is a model with clear-defined interfaces called
input and output ports. A model could be an atomic model
or coupled model, which is composed from other DEVS
models. By adding couplings between output/input ports
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of different components, messages can be passed from one
component to another. Under the property of closure un-
der coupling, a coupled model itself can be treated as a
subcomponent of other models. This kind of hierarchi-
cal modular construction makes each DEVS model a self-
contained component that can be easily reused. Because of
this, the DEVS component-based modeling and simulation
environment does not rely on the underlining implemen-
tation language. In fact, various DEVS environments such
as DEVSC++, DEVSJAVA, DEVSCorba, and so forth [9-
11] have been developed. The DEVS/HLA [12] was also
developed to allow DEVS to work with HLA.

A component system is built by composition of indi-
vidual components. Thus, in a component-based modeling
and simulation environment, the modeling process is to
build components and to assemble them to capture a sys-
tem’s structure and behavior. For some complex systems,
the structures and behaviors could be very complex as the
systems may continuously reconfigure themselves to adapt
to different situations. For example, a distributed comput-
ing system may dynamically add or remove computing
nodes according to the load of the system. Other examples
include the ecological systems that typically evolve over
time to adjust to the new environment. To model these
complex systems, a variable structure modeling capabil-
ity is needed. As variable structure greatly enhances the
modeling capability, it also raises special design issues for
component-based modeling and simulation environments.

In this article, we discuss the variable structure mod-
eling capability in DEVS component-based modeling and
simulation. While previous work [13-17] has established a
theoretical background for the variable structure of DEVS,
this article discusses it in the context of component-based
technology and covers more aspects of it. The article first
elaborates on the conceptual development of variable struc-
ture in component-based modeling and simulation. Then
it discusses three examples to illustrate the role of it. After
that, the implementation of variable structure in a DEVS
modeling and simulation environment is presented. Fi-
nally, conclusions are drawn, and some open issues are
discussed.

2. Conceptual Development forVariable Structure
in DEVS

A component is “a nontrivial, nearly independent, and re-
placeable part of a system that fulfills a clear function in the
context of a well-defined architecture. It conforms to and
provides the physical realization of a set of interfaces” [18].
A component system is built by composition of individ-
ual components and by establishing relationships among
them.As each component holds a high degree of autonomy
and has well-defined interfaces, variable structure of com-
ponents can be achieved during runtime. For component-
based modeling and simulation, variable structure provides
several advantages: (1) it provides a natural and effective
way to model those complex systems that exhibit struc-
ture and behavior changes to adapt to different situations.

Examples of these systems include distributed comput-
ing systems, reconfiguration computer architectures [19,
20], fault-tolerance computers [21], and ecological sys-
tems [15]. Structure changing and component upgrading
is an essential part of these systems. Without the variable
structure capability, it is very hard, if not impossible, to
model and simulate them. (2) From the design point of
view, variable structure provides the additional flexibility
to design and analyze a system under development. For ex-
ample, as will be illustrated later, variable structure gives us
the flexibility to design and simulate a distributed robotic
system in which robots form relationships dynamically. (3)
Variable structure makes it possible to load only a subset of
a system’s components for simulation. This is very useful
to simulate very large systems with a tremendous number
of components, as only the active components need to be
loaded dynamically to conduct the simulation. Otherwise,
the entire system has to be loaded before the simulation
begins.

In general, there are six forms of reconfiguration of
component-based systems [22]: addition of a component,
removal of a component, addition of a connection between
components, removal of a connection between compo-
nents, update of a component, and migration of a compo-
nent. The first four operations result in a structure change
of the component-based system. In DEVS, they are usu-
ally referred to as variable structure modeling. The update
of a component means a component is updated by a new
version that might have a totally different behavior or in-
terface from the old one. This can be accomplished either
by replacing the old version with a new one or by directly
upgrading a component to a new version. Replacing a com-
ponent involves the process of adding the new component
and removing the old one, as can be realized by the ad-
dition and removal operations. In this article, we are also
interested in the upgrade of a component. Specifically, we
discuss how a DEVS model (component) may change its
interface by adding or removing its input and output ports
in different stages. The migration of a component actually
implies two involved entities: a component and the location
(physical or soft) of the component. Since this is usually
researched in mobile agent systems, it is not discussed in
this article.

Figure 1 gives an example that shows a simple process
of structure change. In this example, the initial system has
two components, A and B. Then, component C and the
connection from C to B are added. After that, component
A is removed, resulting in a final system with two compo-
nents, C and B. Note that removal of a component will au-
tomatically remove all the connections related to that com-
ponent. In a modular DEVS environment, DEVS models
are the components, and DEVS couplings are the connec-
tions. Thus, variable structure in DEVS means that DEVS
models and couplings can be added or removed dynam-
ically. Corresponding to the four operations of structure
change, four methods are provided in a DEVS environ-
ment. They are addModel()/removeModel()to add/remove

92 SIMULATION Volume 81, Number 2

 © 2005 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at Ebsco Electronic Journals Service (EJS) on April 10, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


VARIABLE STRUCTURE IN DEVS COMPONENT-BASED MODELING AND SIMULATION

A BA B

A B

C

A B

C

A B

C

A B

C

B

C

B

C

Figure 1. A variable structure process

DEVS models and addCoupling()/removeCoupling()to
add/remove DEVS couplings. Note that the addCoupling()
and removeCoupling()methods take four parameters: the
source model, source model’s output port, the destination
model, and the destination model’s input port. With these
methods, the structure change process shown in Figure 1
can be realized as follows:

1. addModel(C);

2. addCoupling(C, COutputPort, B, BInputPort);

3. removeModel(A);

Natural questions for variable structure systems arise
concerning the authorization and timing of the structure
changes. Generally speaking, there is no specific restric-
tion on which component cannot initiate a structure change.
However, because a DEVS coupled model does not have its
own behavior, an atomic model is needed to initiate a struc-
ture change. The initiation typically happens in the atomic
model’s internal or external transition functions. This is
reasonable because a structure change is usually triggered
by situation changes, which are captured as events in DEVS
and are handled by the external or internal transition func-
tions. In this sense, the atomic model acts as a supervisor
to monitor the conditions of interest. For the system shown
in Figure 1, component B could be the one to monitor the
system’s situations and initiate the structure change. For
example, it may monitor the input from A. If this input
is less than a predefined value, it adds component C and
the coupling from C to B. Then it monitors the input from
C, and if this input is greater than a predefined value, it
removes A.

2.1 Operation Boundary

Another important question for variable structure systems
is how to determine the particular components that can be
affected by a structure change operation. To answer this
question, we introduce the operation boundaryconcept
and define it as the safe scope to conduct a meaningful op-
eration. For example, in a distributed environment, a com-
ponent can remove components on its local computer, but

it is not allowed to remove components on remote com-
puters. The latter violates the operation boundary of the
remove operation in a distributed environment. To support
the operations boundary in DEVS, models can maintain
information on their locations in relation to the hierarchi-
cal structure of the overall coupled model. Components of
the same coupled model, therefore belonging to the same
parent, are called brothers. This approach is based on the
structure knowledge maintenance concepts in Zeigler [23].

Thus, the structure change operations also need to work
within this hierarchical structure and to maintain this struc-
ture. On the basis of this, we define the operation bound-
aries of the four structure change operations as follows:

• addModel( . . . ): a model can only add components to its
parent coupled model.

• removeModel( . . . ): a model can only remove itself and
its brothers.

• addCoupling( . . . ): a model can only add couplings in-
volving itself, its parent, and its brothers.

• removeCoupling( . . . ): a model can only remove cou-
plings involving itself, its parent, and its brothers.

These clearly defined operation boundaries make it eas-
ier for a user to check if an operation is legal or illegal. For
example, it can easily be seen that a model can remove
itself, but it cannot remove its parent. Our approach differs
from that formalized by Barros [24], who uses a central net-
work executive to initiate structure changes. We find that
much greater flexibility, at minimal cost, is achieved by
allowing any component in a coupled model (or network)
to initiate changes within the operations boundary.

We note that operations boundaries are defined in terms
of the model hierarchical structure independently of any
distribution considerations. In distributed simulation, com-
ponents reside on different computers, and it is up to the
distributed environment to ensure that the correct structure
changes are carried out as prescribed by the structure modi-
fication commands. The distributed coupling change capa-
bility is supported by the DEVSJAVA environment. That is,
couplings can be added or removed between models on dif-
ferent computers. It is up to the DEVS simulators to deter-
mine whether the coupling change is local or involves other
computers. However, remotely adding/removing models in
DEVSJAVA is currently not supported.

2.2 Changing Port Interfaces

Besides structure change, another reconfiguration fea-
ture is provided in DEVS to allow an atomic model to
add/remove input or output ports dynamically. For this
purpose, the addInport() and addOutport()are provided
for an atomic model to add new input and output ports,
respectively; the removeInport()and removeOutport()are

1. Although it can be accomplished by sending a message to a remote
simulator, which then conducts the adding/removing operation locally, we
have not completed the design details.
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provided for an atomic model to remove existing input and
output ports, respectively. As input and output ports are
the interfaces of DEVS models, changing ports of a model
usually requires that the model’s behavior also change
accordingly. Thus, special attention has to be paid when
adding/removing ports dynamically. The modeler has to
ensure that if a model receives a new input (or output)
port, the model has, or obtains, a corresponding way to
handle the possible input received (or generated) on this
port.We define the operation boundary of adding/removing
ports as a model can only add/remove ports of itself and
its brothers. Thus, atomic models inside a coupled model
have the capability to modify the interfaces of their broth-
ers, although the functionality to handle messages at those
interfaces should be there or should be provided in the mod-
ified models. Particular ways of accommodating new ports
are known. For example, one can make ports adhere to a
labeling scheme such as name+ index, which can be an-
alyzed and interpreted. Detailed explanation will be given
in section 3.3. As a new feature of DEVS variable struc-
ture, more research is needed to answer questions such as
how to provide a general mechanism to update a model’s
external transition and output functions accordingly af-
ter the model’s input and output ports are added/removed
dynamically.

3. Examples of Variable Structure

To illustrate the role of variable structure in component-
based modeling and simulation, we describe three exam-
ples in this section. The first example shows how a complex
distributed robotic system can be designed and simulated
using the variable structure capability. The second exam-
ple illustrates the ability to employ variable structure to dy-
namically emulate the system entity structure (SES). The
last one describes an advanced workflow model that dy-
namically reconfigures itself by adding/removing models
and changing the interface of models.

3.1 Dynamic Team Formation of a Distributed
Robotic System

Distributed robotic systems have been a very active re-
search topic recently. In Zhang et al. [25] and Butler, Fitch,
and Rus [26], a group of robots that can change their
shape has been reported. As those robots change hardware
components of their own, in this section, we describe a
distributed multirobotic system that changes its software
components. This system exhibits dynamic team forma-
tion in which independent robots form teams dynamically
and then conduct a Leader-Followermarch. We first de-
scribe a system that has been realized by two real mobile
robots [27]. Then we discuss a more scalable system with
an indefinite number of robots. The robot we use in the
example is a car-type mobile robot with wireless commu-
nication capability [28].

For the system with two robots, the team formation pro-
cess starts with both robots moving around and trying to
find each other. Initially, there is no connection between
these two robots, although they are connected to a software
process, called a Manager, on a wireless laptop. When two
robots find each other, the Managerestablishes direct con-
nections between them and asks them to organize into a
Leader-Followerteam. Then they begin to march: one fol-
lows the other with the same movement. During the march,
if two robots lose each other, they will inform the Manager
and then go back to the initial state to search for each other.

From the above description, we can recognize three ba-
sic components in this system: the Manager, which resides
on a laptop (computer), and robot1and robot2, which re-
side on mobile robots. Figure 2a shows the model of this
system, where the Manageris an atomic model, and each
robot is a coupled model (Fig. 2b). A complete description
of the robot model can be found in Hu and Zeigler [27].
The coupling of the system is as follows (R1 stands for
robot1, R2 stands for robot2, manstands for Manager, and
distanceData, report, check, etc. refer to the port names):

addCoupling(R1, “distanceData,” man, “Robot1_
distanceData”);
addCoupling(R1, “report,” man, “Robot1_report”);
addCoupling(man, “Robot1_check,” R1, “check”);
addCoupling(R2, “distanceData,” man, “Robot2_
distanceData”);
addCoupling(R2, “report,” man, “Robot2_report”);
addCoupling(man, “Robot2_check,” R2, “check”);

As we can see, there is no coupling between robot1
and robot2. Each robot has output ports distanceDataand
report. These ports are coupled to the Manager’s corre-
sponding input ports. Meanwhile, the Managerhas output
ports coupled to each robot’s input port check, so that Man-
ager can ask them to check if they are within the line of
sight. The robots return the check result using the report
port. Once the report messages returned from the robots
are both positive, it means two robots are close and they
see each other. In this case, the Managerwill change the
couplings of the system dynamically to establish a direct
connection between the two robots. Specifically, in this
example, the manager executes the following DEVSJAVA
code:

removeCoupling(R1, “distanceData,” man, “Robot1_
distanceData”);
removeCoupling (man, “Robot1_check,” R1, “check”);
removeCoupling (R2, “distanceData,” man, “Robot2_
distanceData”);
removeCoupling (man, “Robot2_check,” R2, “check”);
addCoupling(R1, “readyOut,” R2, “readyIn”);
addCoupling(R2, “readyOut,” R1, “readyIn”);

Note that the addCouplingmethod is overloaded so it
accepts strings to specify components in addition to object
references. This feature makes it convenient for the mod-
eler to keep track of models that have been added using
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Figure 2. Model of dynamic team formation system

string names. Explicit references can also be obtained from
the parent coupled model by supplying the string names.
This requires that all models be given unique names. After
executing the DEVSJAVA code, a bidirectional connection
is established by coupling two robots’ Readyport to each
other, so they can communicate directly. The distanceData
and checkcouplings between robots and Managerare re-
moved because they are no longer needed during the pro-
cess of the robot march. The report coupling remains so
robots can still inform the Managerin case they lose each
other. During the march, if two robots lose each other, they
send the “Lost Partner” message to the Managerusing the
report port. This will trigger the Managerto add and re-
move couplings among the components. As a result, the
system goes back to the initial situation, where two robots
move independently and try to find each other.

As the above system only includes two robots, more
scalable systems with an indefinite number of robots can
be developed based on the same variable structure idea.
Figure 3 shows an example with 10 independent robots
searching for each other, forming groups dynamically, and
finally organizing into one large Leader-Followerteam.
During this process, couplings between models are added
and removed, resulting in a variable structure system.

3.2 Dynamically Emulate the System Entity
Structure (SES)

The system entity structure (SES) provides a way for speci-
fying system composition [29] with information about de-
composition, coupling, and taxonomy. It also provides a
formal framework for representing the family of possi-
ble structures. From the design point of view, SES rep-
resents the design space with various possible design con-
figurations. Thus, the process of design/analysis is to prune

Figure 3. A scalable dynamic team formation example

SES—in other words, to search the best design configura-
tion. For complex systems, the number of the combination
of different configurations is very large. Thus, it is desir-
able to be able to emulate SES and automatically search
the best design configuration. In this section, we show an
example that demonstrates how this can be achieved by
employing the variable structure capabilities.

This example system is efpSES, as shown in Figure 4a. It
has two components: an experimental frame model ef and
a processor model that has three specializations represent-
ing three design choices of the system. The specializations
of the processor model include a single processor, proc;
a divide-and-conquer processor, DandC3; and a pipeline
processor, pipeLine. To automatically simulate all these
alternatives of the processor model, efpSESemploys an
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Figure 4. Dynamically emulate the system entity structure (SES)

instance of class specEntityto control the successive sub-
stitution of alternatives. specEntityis a specialized entity
developed to emulate the SES of a system. In this example,
the user defines procSpec, a subclass of specEntity, and
provides it with the first and subsequent specializations:
proc, DandC3, and pipeLine. Then, as shown in Figure 4b,
the user adds procSpecto the coupled model and tells it
which component to control (the dashed lines in Figure 4b
show that procSpecis linked to the processor model’s spe-
cializations). Based on this information, during simulation,
the procSpecautomatically replaces the processor model
with different specializations until all of them are tested.
Since the addition of local control components preserves
the hierarchical, modular structure, the hierarchical prop-
erties of the SES are automatically obtained. Moreover,
this variable structure capability provides a general way
to emulate the SES and automatically test all the alterna-
tives of a system’s design space, as described in Couretas,
Zeigler, and Patel [30].

While the SES involves only replacement of compo-
nents by alternatives, the approach can be further extended
to allow a restructuring executive to observe the simula-
tion and make decisions regarding the alternatives to em-
ploy based on prevailing conditions. Such restructuring is
discussed in the following example.

3.3 A Reconfigurable Workflow System

A simple workflow prototype is referred to as GPT. This is
a coupled model that is composed of a Generator, a Pro-
cessor, and a Transducer. It is the simplest self-contained
model that simulates three basic components of any work-
flow system. The Generatorgenerates jobs, the Processor
processes them, and the Transducerkeeps track of the sys-
tem state as a whole computing performance indexes such
as system throughput (jobs processed per second) and av-

2. See gpt.java in the SimpArc package of DEVSJAVA.

erage job turnaround time. In this section, we describe a
reconfigurable GPT system where the Processor(s) can
be dynamically added or removed and the Generatorand
Transducercan change their interfaces accordingly.

As shown in Figure 5a, this system starts with the ba-
sic GPT components: Generator, Proc1, and Transducer.
Generatorgenerates jobs and sends them out through the
out1port coupled to the Proc1’s in port. Proc1executes
the job and sends the solved job to the Transducerat the
solved1 port. Note that the Generator has input ports
add and addBank, and the Transducer has output ports
addModeland addProcBankcoupled to the two Genera-
tor ports, respectively. This suggests that the system has
the capability to add a processor and a processor bank.

In this example, the Transducermakes decisions of
when to add or remove processor(s). The Generatorex-
ecutes the addition or removal operations. Thus, if the
Transducernotices that Proc1cannot handle all the gener-
ated jobs, it sends out a message to the Generator, which
then adds another processor, Proc3. As shown in Figure
5b, Proc3 is in a similar position as Proc1 in the system.
Note that the interfaces of Generatorand Transduceralso
change accordingly. Besides the Generator’s earlier output
port out1, a new output port, out3, has been added explic-
itly for Proc3. Similarly, the Transducerhas added input
port Solved3to collect jobs processed by Proc3. Also, the
Generatorand Transducerare now outfitted with ports for
removing the processor (removeand removeModelports).
This is a new functionality that has been added in this
stage. The interface change of Generatorand Transducer
is a reflection of the system’s structure change. Initially,
there was no functionality to remove models, as there was
no need of it. As new processors are added, so is the cor-
responding functionality to remove them. A typical set of
commands that were executed by the Generatorafter re-
ceiving the addition message from the Transduceris as
follows:
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    (a)          (b)

Figure 5. Stages of the reconfigurable GPT system

mg = new modelProc(“Proc” + index); // in this
example, the value of index is 3
addModel(mg);
addOutport(“Transducer,” “removeModel”);
addInport(“Generator,” “remove”);
addOutport(“Generator,” “out” + index);
addInport(“Transducer,” “solved” + index);
addCoupling(“Transducer,” “removeModel,”
“Generator,” “remove”);
addCoupling(getName(), “out” + index, (“Proc”
+ index,” “in”);
addCoupling((“Proc” + index, “out,” “Transducer,”
“solved” + index);

Notice that a labeling scheme is used as the Generator
model adds output port out + index for the new proces-
sor. Similarly, the Transducerhandles the jobs solved by
the processor using input ports with name solved+ in-
dex. This allows expressing the Transducer’s processing
by parsing port names to obtain their role and index parts,
independently of the number of processors. The Trans-
ducer retains its basic behavior independent of the struc-
ture change by providing the code in advance to handle the
messages coming on new ports. More flexible approaches
may be obtained by providing schemas that can be ac-
cessed at runtime to support desired interfaces, a subject
for further research.

In this example, after Proc3 is added, it can also be re-
moved when the Transducerthinks Proc1alone is enough
to process all the generated jobs. To achieve this, the Trans-
ducersends out a removalmessage using the removeModel
port to the Generator. The Generatorthen removes Proc3,
and the system goes back to the initial stage. Similarly, a
processor bank (a coupled model) that contains multiple
processors can also be added and removed.

From the above description, we can see that the system
is able to expand itself, modify the interfaces of its com-
ponents according to the structure change, and then shrink
back to the original system. It displays a complete cycle

of growth, from a basic functional level to an expanded
system capable of high throughput and coming back to the
initial state when its job (maximizing throughput) is done.

4. Implementation of Variable Structure in DEVS

The implementation of variable structure is based on the
earlier development of the DEVSJAVA modeling and sim-
ulation environment. So our discussion starts from a re-
view of this environment, with emphasis on the hierarchi-
cal structure of DEVS models and simulators. Although a
particular implementation environment is employed as a
basis, the design is generic and can be employed in any
hierarchical, modular DEVS environment.

4.1 Hierarchical Structure of DEVS Models and Their
Simulators

In a DEVS modeling and simulation environment, there
is a clear separation between models and their simulators.
DEVS models are defined by the users to model the sys-
tem under development. DEVS simulators are provided by
the DEVS simulation environment to simulate or execute
DEVS models. Corresponding to the hierarchical structure
of a DEVS model, its simulators also form a hierarchi-
cal structure. Figure 6 gives an example that shows the
relationship of a hierarchical coupled model and its corre-
sponding simulators (the dashed lines show the hierarchi-
cal relationship between simulators). This model has three
components: Atomic3, Atomic4, and Coupled1, which has
two subcomponents: Atomic1and Atomic2. The simula-
tors manage the information of the hierarchical coupled
model in a hierarchical way. On the very top level, there is
a coordinatorassigned to the coupled model. This coordi-
nator is the parent of all its subsimulators, which have a
one-to-one relationship to the components of the coupled
model. Following the hierarchical structure of the coupled
model, there is a coupledSimulatorassigned to each atomic
model and a coupledCoordinatorassigned to each coupled
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Figure 6. Relationship between models and their simulators (fast-mode simulation case)

model. A coupledCoordinatoracts as both a coordinator
and a coupledSimulator. This is because it needs to com-
municate not only with its children (like a coordinator) but
also with its parent and brothers (like a coupledSimulator).

This hierarchical structure of models and simulators re-
quires several data structures to keep information so that the
system can be efficiently implemented. Figure 7 shows the
related data structures managed by simulators and models.
This figure also shows that the atomic class implements
variableStructureInterface, which defines the methods for
adding/removing DEVS models, couplings, and ports. For
simplicity, Figure 7 only shows the information related to
the implementation of variable structure.

First, let us see the data structures managed by DEVS
coupled models, as shown by the digraphclass in Figure 7
(atomic models do not need them). This is straightforward
because coupled models need to keep track of their sub-
components and the couplings among them. Thus, each
coupled model has two variables as defined as follows:

• ComponentsInterface components;
• couprel cp;

The data structure for simulators can be categorized into
three categories to store three different types of information
as shown as follows:

• Children simulator info: ensembleSet simulators;
• Model’s coupling info: couprel coupInfo, extCoupInfo;
• Model-simulator mapping info: Function modelToSim, in-

ternalModelTosim;

The first variable, simulators, is used by a coupled-
Coordinator (coupledSimulatordoes not use it) to store
its children simulators. For example, in Figure 6, the

simulatorsvariable for coordinator has three instances:
coupledCoordinator1, coupledSimulator3, and coupled-
Simulator4. The simulatorsvariable for coupledCoordi-
nator1 has two instances: coupledSimulator1and cou-
pledSimulator2. The second group of variables, coupInfo
and extCoupInfo, is used by simulators to store the mod-
els’ coupling information. Specifically, coupInfo stores
the couplings that start from a model and end with the
model’s brothers or parent. extCoupInfois used by cou-
pledCoordinator (coupedSimulatordoes not use it) to
store the couplings that start from a model and end with
the model’s children models. Using coupledCoordinator1
in Figure 6 as an example, the coupInfo has one cou-
pling instance that starts from Coupled1and ends with
Atomic3. The extCoupInfohas two coupling instances;
both of them start from Coupled1and end with Atomic1.
The third group of variables, modelToSim and inter-
nalModelTosim, is used by simulators to store the model-
simulator mapping information. Again, using coupledCo-
ordinator1 in Figure 6 as an example, the modelToSim
has three instances: (Coupled1,coupledCoordinator1),
(Atomic3,coupledSimulator3), and (Atomic4,coupledSim-
ulator4). The internalModelToSimhas two instances:
(Atomic1,coupledSimulator1)and (Atomic2, coupledSim-
ulator2).

Note that in this implementation, each model and simu-
lator manages its own copy of information. This approach
relieves the central coordinator’s involvement in its child
simulators’local activities. For example, by keeping a local
copy of the coupling information, a simulator can send its
model’s output messages directly to the destination sim-
ulators. More information about the advantages of this
approach can be found in Cho, Hu, and Zeigler [31] and
Cho [32].

98 SIMULATION Volume 81, Number 2

 © 2005 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at Ebsco Electronic Journals Service (EJS) on April 10, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


VARIABLE STRUCTURE IN DEVS COMPONENT-BASED MODELING AND SIMULATION

devs simulator

coupledSimulator
couprel coupInfo
Function modelToSim

atomic

coupledCoordinator
ensembleSet simulators
couprel coupInfo
couprel extCoupInfo
Function modelToSim
Function internalModelTosim

digraph
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<<Interface>>

Figure 7. Methods and data structures used in variable structure implementation

4.2 Add/Remove Coupling Dynamically

Because DEVS models and simulators use coupling data
structures to keep all the coupling information, the basic
idea to implement this feature is to update those data struc-
tures. Below, we use addCoupling()to show how it works.

public voidaddCoupling(String src, String p1, String
dest, String p2){

digraph P = (digraph)getParent();
P.addPair(new Pair(src,p1),new Pair(dest,p2)); //
update its parent model’s coupling info
coordinator PCoord = P.getCoordinator();
PCoord.addCoupling(src,p1,dest,p2); // update the
corresponding simulator’s coupling info

}

The method first gets its parent, which is a coupled
model. Then it calls its parent’s addPair()method to update
the parent’s coupling information, the cp variable, as de-
scribed in section 4.1. To update the coupling information
of the affected simulators, the atomic model then calls the
coordinator’s addCoupling()method. This method uses
the source model’s name to find the corresponding simu-
lator and then updates that simulator’s coupling informa-
tion, which is kept in the coupInfoor extCoupInfovari-
ables. Note that for implementation convenience, the get-
Parent()method is used. This method returns the parent
model’s reference that was established during the simula-
tion’s construction stage. As this method is not accessible
to the modelers, it does not violate the hierarchical modular
property of DEVS models.

4.3 Add/Remove Model Dynamically

Adding a model dynamically means not only that a new
model is added but also that a new simulator needs to be

created and added into the system. Furthermore, the new
simulator needs to be initialized and synchronized with
the ongoing simulation system. The addModel()method is
shown as follows:

public voidaddModel(IODevs iod){
digraph P = (digraph)getParent();
P.add(iod);
coordinator PCoord = P.getCoordinator();
PCoord.setNewSimulator((IOBasicDevs)iod);

}

This method first adds the model as a new component
to its parent by calling the add()method (update parent’s
componentsvariable). Then it calls the coordinator’s set-
NewSimulator()method. This method creates a new sim-
ulator for the added model and initializes that simulator. It
is shown as follows:

public voidsetNewSimulator(IOBasicDevs iod){
if(iod instanceof atomic){ //do a check on what model
it is

coupledSimulator s = newcoupledSimu-
lator(iod);
. . . . . . . . . //update the corresponding data
structures;
s.initialize(getCurrentTime());

}
else if(iod instanceof digraph){

coupledCoordinator s = newcoupledCoordin-
ator((Coupled) iod);
. . . . . . . . . // same as when the model is atomic

}
}

As can be seen, the method creates a new simulator
based on the model type (atomic model or coupled model).

Volume 81, Number 2 SIMULATION 99

 © 2005 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at Ebsco Electronic Journals Service (EJS) on April 10, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Hu, Zeigler, and Mittal

Then it updates the corresponding data structures such
as simulators, internalModelToSim, and modelToSim. Fi-
nally, it initializes the created simulator. To synchronize
with the current simulation time, the initialize() method
takes the parameter of getCurrentTime(), which returns the
current simulation time. After all these data structures are
updated, the added model becomes eligible to participate
in the subsequent simulation cycle, contributing to the de-
termination of the global time of the next event and being
able to receive inputs and generate outputs in the normal
manner. Further details on the modification of the DEVS
protocol needed for a well-defined variable structure are
given in Zeigler [33].

Reverse to what adding a model means, removing
a model dynamically means removing a model and its
corresponding simulator(s) from the system. It also im-
plies removing all the couplings related to that model
from the system. Below is the removeModel()method.
The method is basically the reverse of what addModel()
does. It first removes the model from the parent model,
and then it calls the coordinator/coupledCoordinator’s
removeModel()method to remove the simulator of that
model. One extra step here is the removeModelCoupling()
method, which removes all the couplings related to the
model.

public voidremoveModel(String modelName){
digraph P = (digraph)getParent();
coordinator PCoord = P.getCoordinator();
PCoord.removeModelCoupling(modelName); //
remove the couplings of that model
IODevs iod = P.withName(modelName);
P.remove(iod); // remove the model
PCoord.removeModel(iod); // remove the simulator

}

4.4 Add/Remove Coupling in Distributed
Environment

Before we proceed to discuss how to implement the dis-
tributed coupling change capability, let’s see how dis-
tributed simulation is implemented in DEVSJAVA. Fig-
ure 8 shows a distributed example with the same model
as in Figure 6. In this example, the three components of
the coupled model—Coupled1, Atomic3, and Atomic4—
are distributed on three different computers.As can be seen,
for each distributed component on a computer, there is a
client simulator assigned to it (CoupledSimulatorClientfor
an atomic model; CoordinatorClientfor a coupled model).
These clients connect to a CoordinatorServer, which may
reside on another computer (the dashed circles mean differ-
ent parts of the system reside on different computers). Dur-
ing initialization, the CoordinatorServerwaits for connec-
tions from clients. For each client, the CoordinatorServer
creates a SimulatorProxyto communicate with it. After all
the connections are received, the CoordinatorServerestab-
lishes the modelToSimand coupInfoand downloads them

to SimulatorProxies.As modelToSimand coupInfoare kept
in SimulatorProxies(not in the client simulators), all mes-
sages sent between clients will be first passed to Simu-
latorProxies. For example, in Figure 8, if Atomic4sends
a message to Coupled1, the message will first be sent to
SimulatorProxy3. Based on the coupInfoand modelToSim,
SimulatorProxy3passes the message to SimulatorProxy1,
which then sends the message to CoordinatorClient1
(Coupled1).

As the coupling information of distributed models is
kept in SimulatorProxies, the basic idea of implement-
ing distributed coupling change is to update those Sim-
ulatorProxies’coupling information. To implement this,
whenever an atomic model wants to add or remove a
distributed coupling, the CoupledSimulatorClientfor that
atomic model generates a distributed coupling change re-
quest and sends it to the SimulatorProxyas shown as
follows:

public voidaddDistributedCoupling(String src, String
p1, String dest, String p2){

String dcc = Constants.addCouplingSymbol+“:”
+src+“:”+p1+“:”+dest+“:”+p2;
client.sendMessageToServer(dcc);

}

On the SimulatorProxy’s side, the waitForMessage-
FromClient()method is modified so that it can handle the
distributed coupling change request. This method is shown
as follows:

protected voidwaitForMessageFromClient() {
String string = readMessageFromClient();
//check to see if the message is a dynamic coupling
change message
if(string.startsWith(Constants.addCouplingSymbol)||

string.startsWith(Constants.removeCoupling-
Symbol))

DynamicCouplingStrReceived(string);
else{ // this is a regular DEVS message

. . . . . . . . . . . . // process the message
}

}

The method checks to see if the received string starts
with addCouplingSymbolor removeCouplingSymbol. If
that is true, the received string is a distributed coupling
change request, so the DynamicCouplingStrReceived()is
called. Otherwise, the received string is a regular DEVS
message, so the method processes it as usual. The Dy-
namicCouplingStrReceived()method processes the string
to get the source, the source’s port, destination, and the des-
tination’s port of the coupling. Then it calls the Coordina-
torServer’s addCoupling()or removeCoupling()methods
to update the coupling information of SimulatorProxies.

4.5 Add/Remove Ports

The operation of adding and removing ports dynamically
is done by
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Figure 8. Models and their simulators in distributed simulation

• addInport(String modelName, String portName)
• addOutport(String modelName, String port)
• removeInport(String modelName, String port)
• removeOutport(String modelName, String port)

The functionality of modifying interfaces exists just at
one horizontal level and is not present a level above (par-
ent level) and a level below (brother’s children). This re-
stricts the ability of a model to alter the dynamics of the
system to within its operations boundary. As mentioned
above, the four forms of adding/removing inports/outports
take the modeNameas a parameter referring to the destina-
tion model to which the change is desired. The functioning
of these methods can be seen in the reconfigurableGPT
model. Internally, they are implemented as

public void addInport(String modelName, String port){
digraph P = (digraph)getParent();
IODevs iod = (IODevs)P.withName(modelName);
if (P != null){
if (iod instanceof atomic)

iod.addInport(port);
else

((digraph)iod).addInport(iod.getName(),port);
}

}

The above function adds an input port to the model spec-
ified by the modelName. Inside the function, the model is
accessed through the common parent (as they are brothers),
and if it is an instance of an atomic model, then the port is
added here directly; otherwise, the corresponding function

in the digraph model is called, which adds the port to this
brother digraph.

The mechanics of addOutport()is the same as that of
addInport(). For the removal of ports, internally they are
implemented in the same manner as the code described
above, except that the line iod.addInport(port)is replaced
by the line iod.removeInport(port), where the variables
have their usual meaning. The same situation happens in
the case of removeOutport(), which is implemented on the
same lines, with the change in the line mentioned above
(iod.removeOutport(port)).

5. Conclusion

Variable structure capability provides a natural and effec-
tive way to model and simulate complex systems that ex-
hibit structure, behavior, and interface changes to adapt to
different situations. They also provide the additional flexi-
bility to design and analyze a complex hierarchical system
under development, as supported by the dynamic SES ca-
pability. In addition to the previously well-known structure
operations, we introduced port (interface) alteration possi-
bilities that greatly increase structure change flexibility. To
maintain the hierarchical modular property of models, spe-
cial attention has to be paid to the control of structure and
interface changes. We introduced operation boundary con-
straints on structure change operations for this purpose. In
general, as variable structure changes a component-based
system during runtime, safety and security are a very im-
portant issue. More research on distributed reconfigura-
tion and port-based structure transformation is needed to
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conduct safe and efficient dynamic change of component-
based systems.
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