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VARIABLE STRUCTURE NEURAL NETWORKS
FOR ADAPTIVE ROBUST CONTROL USING

EVOLUTIONARY ARTIFICIAL POTENTIAL FIELDS

Hassen Mekki
∗ ∗∗

— Mohamed Chtourou
∗

A novel neural network architecture, is proposed and shown to be useful in approximating the unknown nonlinearities
of dynamical systems. In the variable structure neural network, the number of basis functions can be either increased or
decreased with time according to specified design strategies so that the network will not overfit or underfit the data set. Based
on the Gaussian radial basis function (GRBF) variable neural network, an adaptive state feedback controller is presented.
The location of the centers of the GRBFs is analyzed using a new method inspired from evolutionary artificial potential
fields method combined with a pruning algorithm. Using this method we can guarantee a minimal number of neuron. It
is in noted, that both the recruitment and the pruning is made by a single neuron. Consequently, the recruitment phase
does not perturb the network and the pruning does not provoke an oscillation of the output response. The weights of neural
network are adapted using a Lyapunov approach. Moreover, the stability of the system can be analyzed and guaranteed by
introducing the supervisory controller and modified adaptation law with projection.

K e y w o r d s: variable structure neural network; radial basis functions, evolutionary artificial fields, robust adaptive
control

1 INTRODUCTION

Neural network research has gained increasing atten-
tion in recent years. In fact, artificial neural networks are
capable of learning and reconstructing complex nonlin-
ear mappings and they have been widely studied by con-
trol researchers in identification analysis and the design
of control systems [10, 13–15, 17]. The network size, of-
ten measured by number of hidden units in a single hid-
den layer network, reflects the capacity of the neural net-
work to approximate an arbitrary function. A fundamen-
tal question is what size of the neural network is required
to solve a specific problem. If the training starts with a
small network, it is possible that the learning process can-
not be achieved. On the other hand, if a large network is
used, the learning process can be very slow and/or over-
fitting may occur. The approaches, which assume a priori
the number of RBFs, usually lead to the problem of poor
generalization. In addition, these approaches usually work
offline, so they are not suitable for practical real-time ap-
plications where the online learning is required for the
neural-network-based controller design. To remedy the
aforementioned shortcomings, several growing RBF net-
works have been proposed in [8, 11, 12, 18, 21].

In using RBF networks, the basis function are placed
on regular points of a square mesh, for example, covering
a relevant region of space where the state is known to
be contained [3, 4]. This region therefore is the network
approximation region, which is in general known for a
given system. The distance between the points affects the
number of basis functions required to cover the region and
hence determines the size of the neural network.

It seems well that if the size of the neural network
input vector increases, it will have an excessive increases
of the neural network size which will provoke oscillation
in the output responses.

To remedy theses problems, a novel neural network
architecture is proposed, where the location of the centers
of the GRBFs is analyzed using a new method inspired
from evolutionary artificial potential field’s method.

Output tracking and stabilization of nonlinear systems
has received considerable attention during last decades
[4, 5, 24]. Feedback linearizing method has been widely
used in this area. Although, linearizing feedback con-
trollers are efficient in theory, they can not always be
implemented in practice since they need complete knowl-
edge about the dynamical model as well, as all its param-
eters. As solution, adaptive neural network controller is
suggested.

In this paper, a method which concerns the fully-state
linearizable or minimum phase nonlinear systems is pro-
posed. The idea consists in designing a feedback controller
constructed by a neural network. The weights of the neu-
ral network are updated such that the proposed control
can track a predetermined input-output linearizing con-
troller. Eventually, using the Lyapunov approach, it can
be proved that the desired trajectory is asymptotically
tracked by the output signal. As another contribution,
we will show that under some structural assumptions the
system drift is not necessary to construct the controller.

This paper is organized as follows. Section 2 provides
a brief preliminary on fully-state linearizing control for
trajectory tracking is given. In Section 3, the proposed
adaptation law and the implementation of the controller
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Fig. 1. Structure of the neural network

are then presented. This is done by the use of multilay-
ered neural networks for the identification of uncertain
nonlinear functions. In Section 4, we describe a novel self-
organizing RBF network that can dynamically vary its
structure in real time. The proposed self-organizing RBF
network is capable of adding or removing RBFs to en-
sure the desired approximation accuracy and at the same
time to keep the appropriate network complexity. The lo-
cation of the centers of the GRBFs is analyzed using a
new method inspired from evolutionary artificial poten-
tial fields method. To show the obtained performances of
the proposed algorithm, Section 5 presents two simulation
examples. The first one deals with a based variable struc-
ture network on-line identification of a nonlinear function.
The second example treats the robust adaptive control of
nonlinear dynamical system.

2 LINEARIZING CONTROL

In this study, we consider an nth-order nonlinear sys-
tem, with the input u ∈ ℜ and the output y ∈ ℜ de-
scribed as

x(n) = f
(

x, ẋ, . . . , x(n−1)
)

+g
(

x, ẋ, . . . x(n−1)
)

u ,

y = x
(1)

where f, g : ℜ(n) → ℜ are unknown nonlinear function. It
will be assumed that there exist two constants fmax > 0
and gmin > 0 such that |f | 6 fmax and |g| > gmin .

Let X = [x, ẋ, . . . , x(n−1)]⊤ = [x1, x2, . . . , xn]
⊤ ∈ ℜn

be the state vector of the system. As is well known, if
f(X) and g(X) of the system (1) are known, then the
feedback linearization technique can be employed to de-
sign a desired controller. Let e = yd − y be the error
between the desired and the actual outputs. Define Yd =

[yd, ẏd, . . . , y
(n−1)
d ]⊤ and assume that yd, ẏd, . . . , y

(n−1)
d

are all bounded. Then the error vector of the sys-

tem becomes E = Yd − X = [e, ė, . . . , e(n−1)]⊤ =

[e1, e2, . . . , en]
⊤ . Suppose we choose a gain vector K =

[k0, . . . , kn−1]
⊤ such that all roots of sn + kn−1s

n−1 +

. . .+ k1s+ k0 = 0 are in the left-half complex plane. Let
the feedback control law given by

u∗(t) =
1

g(X)
[−f(X) + y

(n)
d +K⊤E] . (2)

Substituting (2) into (1), we have

e(n) + kn−1e
(n−1) + · · ·+ k1ė + k0e = 0 . (3)

Consequently, from (3), we have e(t) → 0 as t → ∞ , so,
y → yd asymptotically. However, it is noted that f(X)
and g(X) of the system (1) are assumed to be unknown
in this study.

3 PROPOSED ADAPTIVE CONTROLLER

One of the main drawbacks of the linearizing state
feedback law is the difficulty to construct the nonlinear
part, in addition to a necessary exact knowledge of the
system model (f(X) and g(X)).

To solve this problem, we suggest using an adaptive
neural network controller and a control law given by

u = uN (E,W ) + us , (4)

where uN is the output of a direct adaptive neural con-
troller (5) and us is a supervisory control action which is
achieved only when the error of the system exceeds some
bound.

uN =

N
∑

i=1

wiϕi(e) (5)

(5) where the activation function ϕ(·) : ℜ → ℜ is a Gaus-
sian function and N . is the number of neurons in the
hidden layer and wi are the weights between the hidden
and the output layer (see Fig. 1)

Throughout the paper, the following assumption is
made.

Assumption 1. Let define the constraint sets Ωx and
ΩW for the state X and the adjustable parameter vector
W as

Ωx =
{

X ∈ ℜn : ‖X‖ ≤ Mx

}

,

ΩW =
{

W ∈ ℜN : ‖W‖ ≤ MW

}

,

where Mx and MW are pre-specified parameters. Intu-
itively, Ωx is the feasible set of the state X .

From equations (1) and (4), we have

ẋn = f(X) + g(X)[uN(E,W ) + us] =

f(X) + g(X)[uN(E,W ) + us] + g(X)u∗ − g(X)u∗ =

f(X)+g(X)[uN(E,W )+us]−f(X)+y
(n)
d +K⊤E−g(X)u∗

= y
(n)
d +K⊤E − g(X)[u∗ − uN(E,W )− us] . (6)
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This implies that

e(n) = −K⊤E + g(X)[u∗ − uN(E,W )− us] . (7)

Let Bc =









0
...
0

g(X)









, Ac =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

...
...

...
. . . 1

−k0 −k2 −k3 . . . −kn−1















.

We have

Ė = AcE +Bc

[

u∗ − uN(E,W )− us

]

. (8)

Theorem. Consider the class of nonlinear dynamical
systems described by (1) with assumption 1. Assume that
the state vector X is measurable and yd is a smooth ref-
erence trajectory to be tracked. If the control input u is
designed such that in (4) with (5), and us is given by

us=I
∗ sig(E⊤

PBc)
[

|uN (E,W )|+g
−1
min(fmax+|y

(n)
d

|+|K⊤
E|)

]

.

The weight vector are adjusted using the adaptive mech-
anism given by

Ẇ = γE⊤Pngmin
∂uN(E,W )

∂W
if ‖W‖ < MW or

‖W‖ = MW and E⊤PngminW
⊤
∂uN(E,W )

∂W
≥ 0 , (9)

Ẇ = Pr
{

γE⊤Pngmin
∂uN(E,W )

∂W

}

otherwise. (10)

where the projection operator Pr{·} is defined as [24]

Pr
{

γE⊤Pngmin
∂uN(E,W )

∂W

}

= γE⊤Pngmin
∂uN (E,W )

∂W

− γE⊤Pngmin
W

‖W‖2
W⊤

∂uN(E,W )

∂W

and Pn the nth column of P (P is positive definite
symmetric matrix described afterward). Then the output
tracking error asymptotically converges to zero.

P r o o f . Consider the Lyapunov function candidate

Ve =
1

2
E⊤PE , (11)

where P is a positive-definite symmetric matrix satisfy-
ing the Lyapunov equation

A⊤

c P + PA⊤

c = −Q (12)

and Q is a given positive-definite symmetric matrix. In
the following, we will choose Q such that λmin(Q) > 1,
where λmin(Q) denotes the minimum eigenvalue of Q .

Define

VM =
1

2
λmin(P )(Mx − ‖Yd‖∞)2. (13)

Note that if ‖X‖ ≥ Mx , then, from (11), we have

Ve ≥
1

2
λmin(P )‖E‖2 ≥

1

2
λmin(P )(‖X‖ − ‖Yd‖)

2

≥
1

2
λmin(P )(Mx − ‖Yd‖∞)2 = VM .

Hence if Ve < VM , then ‖X‖ < Mx . The time deriva-
tive of Ve along the trajectories of the closed-loop system
(8) satisfies

V̇e =
1

2
E⊤(A⊤

c P +PAc)E+E⊤PBc[u
∗−uN(E,W )−us]

= −
1

2
E⊤QE + E⊤PBc[u

∗ − uN (E,W )− us]

≤ −
1

2
E⊤QE+ |E⊤PBc|(|u

∗|+ |uN(E,W )|−E⊤PBcus .

Let Pn be the nth column of P . We have

E⊤PBc = E⊤Png . (14)

From (2) and the hypothesis |f | ≤ fmax and |g| ≥ gmin

we have

u∗ ≤ g−1
min(fmax + |y

(n)
d |+ |K⊤E|) .

Define the indicator function I∗ by I∗ = 1 if Ve ≥
VM and I∗ = 0 if Ve < VM . Hence, if the supervisory
controller is chosen as

us = I∗ sig(E⊤PBc)
[

|uN (E,W )|

+ g−1
min(fmax + |y

(n)
d |+ |K⊤E|)

]

(15)

where sig represent the sign function. Then, from (13)

and (15), we can guarantee that V̇e < 0 if Ve ≥ VM .

On the other hand, in order to derive a proper adap-
tation law for the parameter vector W ∈ R

N , let W ∗ be
the optimal parameter vector such that the approxima-
tion error

δ = uN(E,W ∗)− u∗ (16)

is minimized. Notice that from (2) the u∗ is a function of
time, hence so is W ∗ .

For simplicity of analysis, we may choose ΩW large
enough such that W ∗(t) ∈ ΩW for all t . By incorporating
(16), (8), we can write

Ė = AcE+Bc

[

uN (E,W ∗)−uN(E,W )−us

]

−Bcδ . (17)

Let consider another Lyapunov function candidate, con-
taining the error of the system and the error between the
optimal parameter W ∗ and the actual parameter W

V =
1

2
E⊤PE + (2γ)−1(W ∗ −W )⊤(W ∗ −W ) (18)
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where γ is a positive constant determining the conver-
gence speed. Using (17), we have

V̇ =
1

2
E⊤(A⊤

c P + PAc)E + E⊤PBc

[

uN(E,W ∗)−

uN(E,W )− us − δ
]

+ γ−1(W ∗ −W )(Ẇ ∗ − Ẇ ) =

−
1

2
E⊤QE +E⊤PBc

[

uN (E,W ∗)− uN (E,W )− us − δ
]

+ γ−1(W ∗ −W )(Ẇ ∗ − Ẇ ) . (19)

The Taylor expansion of uN(E,W ) around W ∗ :

uN(E,W ∗)− uN (E,W ) =

(W ∗ −W )⊤
∂uN (E,W )

∂W
+ O(W ∗ −W )2 , (20)

where O(W ∗ −W )2 is a high-order term.

The equation (19) can be written as follows

V̇ = −
1

2
E⊤QE + E⊤PBc

[

(W ∗ −W )⊤
∂uN(E,W )

∂W
+

O(W ∗ −W )2 − us − δ
]

+ γ−1(W ∗ −W )⊤(Ẇ ∗ − Ẇ )

V̇ = −
1

2
E⊤QE − γ−1(W ∗ −W )⊤

[

Ẇ−

γE⊤PBc

∂uN(E,W )

∂W

]

− E⊤PBc

[

δ −O(W ∗ −W )2
]

− E⊤PBcus + γ−1(W ∗ −W )⊤Ẇ ∗ . (21)

Or E⊤PBcus ≥ 0 and from (14) we obtain

V̇ ≤ −
1

2
E⊤QE − γ−1(W ∗ −W )⊤

[

Ẇ

−γE⊤Pngmin
∂uN(E,W )

∂W

]

−E⊤Pngmin

[

δ−O(W ∗−W )2
]

+ γ−1(W ∗ −W )⊤Ẇ ∗ .

In order to get a proper adaptation law and simultane-
ously guarantee W ∈ ΩW , a modified adaptation law
with projection is proposed as

Ẇ = γE⊤Pngmin
∂uN(E,W )

∂W
if ‖W‖ < MW or

‖W‖ = MW and E⊤PngminW
⊤
∂uN(E,W )

∂W
≥ 0 , (22)

Ẇ = Pr
{

γE⊤Pngmin
∂uN(E,W )

∂W

}

otherwise. (23)

where the projection operator Pr{·} is defined as in [24]
by

Pr
{

γE⊤Pngmin
∂uN(E,W )

∂W

}

= γE⊤Pngmin
∂uN (E,W )

∂W

− γE⊤Pngmin
W

‖W‖2
W⊤

∂uN(E,W )

∂W
.

4 VARIABLE STRUCTURE

NEURAL NETWORK

There are five parameters characterizing the RBF net-
work approximation to be determined:

– The number of RBFs N ,

– The type of the RBF,

– The location of the center C(j) ,

– The radius in each coordinate σi(j) ,

– The weight vector for each output neuron ωk .

In this section, we present a novel RBF network struc-
ture that is capable of determining the number of RBFs

N , the location of the center C(j) and the weight vector

for each output neuron ωk by itself. The determination of
ωk is already seen in the section 2. We first show how to
determine the location of the center C(j) . The strategy

of determination of the number of RBFs needed in the
proposed online identification problem will be discussed

in section 3. The proposed self-organizing RBF network
is capable of adding or removing RBFs to ensure the de-
sired approximation accuracy and at the same time to

keep the appropriate network complexity.

4.1 Determination of the RBFs location center

In using RBF networks, the basis function are placed
on regular points of a square mesh, for example, covering

a relevant region of space where the state is known to
be contained [3, 4]. This region therefore is the network
approximation region, which is in general known for a

given system. The distance between the points affects the
number of basis functions required to cover the region and

hence determines the size of the neural network.

It seems well that if the size of the neural network
input vector increases, it will have an excessive increases

of the neural network size which will provokes oscillation
in output responses.

To remedy theses problems, a novel neural network ar-

chitecture, is proposed, where the location of the centers
of the GRBFs, is analyzed using a new method inspired
from evolutionary artificial potential field method.

4.2 The Artificial Potential Field

This method is especially used in the real-time robot

path planning. In the artificial potential field methods, a
robot is considered as a particle under the influence of an
artificial potential field U whose local variations reflect

e.g. the positions of obstacles and of the goal that the
robot is supposed to reach [16, 20, 23]. The potential field

function is defined as the sum of an attraction field that
pulls the robot towards the goal and a repulsive field that
repels it forms the obstacles. The movement is executed

in an iterative way, in which an artificial force is induced
by

~F (q) = −~∇U(q) . (24)
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That forces the robot to move to the direction that the
potential field decrees, where ~∇ the gradient with respect
to q and represents the coordinates of the robot position.
The complete potential field is a superposition of contri-
butions from obstacles, waypoint (if applicable), and the
goal

U(q) =

n0
∑

j=1

U0
j (q) +

nw
∑

j=1

Uw
j (q) + Ug(q) (25)

where n0 and nw denote the number of obstacles and
waypoints, respectively, and U0

j and Uw
j are their poten-

tial. Ug is the potential generated by the goal (navigation
target).

In our approach, a neuron plays the role of the robot,
the other neurons play the roles of the obstacles and the
current true state of the system, is the goal point.

Different potential functions have been proposed in
literature. The most commonly used attractive potential
take the form [19, 22]:

Uatt(q) =
1

2
βρm

(

q, qgoal
)

(26)

where β is a positive scaling factor, ρ(q, qgoal)− q is the
distance between the neuron q and the goal qgoal , and
m = 1 or 2, the attractive potential is conic in shape
and the resulting attractive force has constant amplitude
except at the goal, where Uatt is singular. For m = 2,
the attractive potential is parabolic in shape. The cor-
responding attractive force is then given by the negative
gradient of the attractive potential

Fatt(q) = −∇Uatt(q) = β
(qgoal − q)

‖qgoal − q‖
(27)

which is a constant force on the space: it does not tend
to infinity with increasing distance from qgoal However,
it is not zero at qgoal .

One commonly used repulsive potential function takes
the following form [1]

Urep(q) =

{

1
2η

(

1
ρ(q,qneu)

− 1
ρ0

if ρ(q, qneu) ≤ ρ0 ,

0 if ρ(q, qneu) > ρ0
(28)

where η is a positive scaling factor, ρ(q, qneu) denotes
the minimal distance from the center of neuron q and
the center of other neuron, qneu denotes the center of the
nearest neuron, and ρ0 is a positive constant denoting the
distance of influence of the neuron. The corresponding
repulsive force is given by

Frep(q) = −∇Urep(q) =
{

η
(

1
ρ(q,qneu

− 1
ρ0

)

1
ρ(q,qneu)2

∇ρ(q, qneu) if ρ(q, qneu) ≤ ρ0,

0 if ρ(q, qneu) > ρ0 . (29)

The total force applied to the neuron is the sum of the
attractive force and the sum of the repulsive force

Ftotal = Fatt +
∑

Frep . (30)

This determines the motion of the neuron.

The attractive and the repulsive phenomena are given
by Fig. 2.

The parameters β , η and ρ0 are chosen so that we
obtain a scenario similar to the Fig. 3. We obtain con-
centrations of neurons in a balls of dimension (n + m)
centered in the desired point. By construction we obtain
several layers (or orbit) of radius ri ≈ iσ were i is the
rank of the orbit and σ is the width of the GRBF.

4.3 Determination of the number N

The proposed self-organizing RBF network is capable
of adding or removing RBFs to ensure the desired ap-
proximation accuracy and at the same time to keep the
appropriate network complexity.

4.3.1 Adding RBFs

As the system trajectory evolves in time, the approx-
imation error e is measured. We first check if the Eu-
clidean norm of the approximation error e exceeds a pre-
determined threshold emax , and the period between the
two adding operations is greater than the minimum re-
sponse time Tr . emax and Tr are design parameters. If
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Fig. 4. Evolution of: (a) – x1 and, (b) – x2 respectively; (c) – the desired function and, (d) – its approximation respectively, (e) – the
RBFs number, (f) – location of RBF center (o) and state (-)

these two conditions are satisfied, we recruit a new neu-
ron which will be placed on a neighborhood of the last
orbit. Its noted, that the recruitment is made by a single
neuron. By consequence, the recruitment phase does not
perturb the network.

4.3.2 Removing RBFs

The RBF removing operation is also implemented se-
quentially for all N coordinates. We first measure the ap-
proximation error e . If the Euclidean norm of the approx-
imation error e is smaller than τemax , where τ ∈ (0, 1)
is a design parameter, we remove a neuron from the last
orbit. It is in noted, that the pruning is also made by a
single neuron, which aims at not provoking an oscillation
of the output response.

4.4 Neural network adaptive control Algorithm

Choose the design parameters Ac , Q , fmax , gmin ,
emax , Mx , Mw τ Tr . Initialize some GRBFs in a neigh-
borhood of the initial condition and the weight matrix
W of the initial RBF network. In each sampling period,
repeat the following steps.

1) Compare the current and the desired output of the
system to obtain the approximation error e = y − yd .

2) If e > emax and the period between two adding oper-
ation is greater than Tr , go to 3); otherwise, go to 4).

3) Add a new neuron wich will be placed on a neighbor-
hood of the last orbit. The radius of this orbit is given
by: rilast

= (ilast + 1).σ ; where ilast is the rank of the
last layer.

4) If e ≤ τ.emax , go to 5); otherwise go to 6).

5) Remove a neuron from the last orbit

6) Update the weight matrix W using (9) and (10).

7) Calculate output of a direct adaptive neural controller
using (5)

8) Determination of the motion of the GRBF in the space
using (30).

5 SIMULATION RESULTS

In this section, we test our proposed real-time self-
organizing RBF network approximator on two examples:
the first one deal with the on-line identification of a non-
linear function using the gradient method. The second
example treats the real-time approximation of nonlinear
dynamical system using the proposed direct adaptive ro-
bust control given in Section 3.
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Fig. 5. (a)– output tracking of the angular position, (b) – control input signal, (c) – neural controller, (d)– supervisory controller, (e)–
evolution of the RBF number

5.1 On-line identification of a nonlinear function

For this problem, the considered nonlinear function is
described by the following equation

y(x1, x2) = x2 cos(x1) + 2sin(x1) . (31)

The aim is to seek an optimal number of RBF using
the proposed algorithm, to approximate adaptively the
function with small error.

Based on simulation studies, the parameters of the
proposed algorithm are chosen as follows

emax = 0.1 , τ = 0.5 , σ = 0.5 , ρ0 = 2σ , η = 1.5 .

The initial number of the hidden units is chosen as N = 4.

Figure 4 shows the simulation results of the process us-
ing the proposed algorithm. Figures 4(a) and 4(b) show
respectively, the evolution of x1(t) and x2(t). The evo-
lutions of the desired function and its estimate are given
by figs. 4(c) and 4(d) respectively. It is clear that the ap-
proximation error is so acceptable. Figure 4(e) represents
the evolution of the hidden units number. It is noted that
we used a minimal number of neuron on this simulation.
Figure 4(f) represents the localization of the centers of
the used RBFs. It is obvious that the centers are joined
together all around the state (x1, x2) to be estimated.

5.2 Neural network Adaptive control

This example illustrates a one-link rigid robotic ma-
nipulator. The dynamic equation of the one-link rigid
robotic manipulator is given by [4]

ml2q̈ + dq̇ +mlg cos(q) = u , (32)

where the link is of length l and masse m , and q is
the angular position with initial value q(0) = 0.1 and
q̇(0) = 0.

The parameters m , l , d and g are

m = 1kg, l = 1m, d = 0.1 and g = 10m/s2.

The above dynamical equation can be written as the
following state equation

ẋ1 = x2 ,

ẋ2 =
1

ml2

[

−dx2 −m lg cos(x1)
]

+
1

ml2
u ,

y = x1 .

(33)

The output of the closed-loop system has to track a de-
sired output yd by using the proposed control scheme.
From (30), we choose fmax = 1 and gmin = 0.8, K =
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Fig. 6. (a) – output tracking of the angular position, (b) – control input signal, (c) – neural controller, (d) – supervisory controller, (e)
– Evolution of the RBF number

[ 1 2 ] , Q =

[

3 0
0 3

]

, Ac =

[

0 1
−1 −2

]

, and P =
[

4.5 1.5
1.5 1.5

]

.

In the following simulations, the number of the hidden

units is chosen as N = 9, the weights w(0) are cho-

sen randomly in the interval [−0.5 , 0.5]. Moreover, we

choose Mx = 1.1 and MW = 10. Figure 5 shows the

simulation results of the process using the proposed algo-

rithm. Figures 5(a) and 5(b) show the output response of
the system and the corresponding control action control

based on the neural adaptive state feedback controller. It

is obvious that satisfactory output tracking performances

have been achieved through the proposed control scheme.

Figures 5(c) and 5(d) represent respectively the corre-

sponding neural controller and the supervisory controller

outputs. The evolution of the RBFs number is presented

in Fig. 5(e). To test the robustness of the proposed al-
gorithm, some disturbances are applied to the considered

system. We consider a variation on the mass of the link

as follows











m = 1kg if t ≤ 5s ,

m = 1.5 kg if 5s < t ≤ 14s ,

m = 1kg if t > 14s

The initial conditions are chosen as in the first simulation,
but only fmax and gmin are modified as

fmax = 2 and gmin = 0.6 .

Figures 6(a) and 6(b) show the output response of the
system and the corresponding control based on the neural
adaptive state feedback controller. It is well seems that
the perturbations are well rejected using the proposed
control scheme. Figures 6(c) and 6(d) represent respec-
tively the corresponding neural controller and the super-
visor controller outputs. Figure 6(e) represents the evolu-
tion of the hidden units number. It is clear that we used
a minimal number of neuron on this simulation.

Comparing with other works [3, 4, 6, 7], it is so clear
that we used a minimal number of neuron while respect-
ing the imposed performances. We can notice too, that
the recruitment is made by a single neuron. By conse-
quence, the recruitment phase does not perturb the net-
work.

6 CONCLUSION

A direct adaptive neural control for a class of non-
linear system is presented. an important contribution in
our proposed scheme is that the exact knowledge of the
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system model (f(X)) is not necessary. The adaptation
law to adjust these parameters is proposed based on the
Lyapunov approach. Moreover, the stability of the system
can be also analyzed and guarantied by introducing the
supervisory controller and the modified adaptation law
with projection. Moreover, a novel neural network archi-
tecture, is proposed and shown to be useful in approxi-
mating the unknown nonlinearities of dynamical systems.
In the variable structure neural network, the number of
basis functions can be either increased or decreased with
time according specified design strategies so that the net-
work will not overfit or underfit the data set. Based on
the Gaussian radial basis function (GRBF) variable neu-
ral network. The location of the centers of the GRBFs is
analyzed using a new method inspired from evolutionary
artificial potential fields method combined with a pruning
algorithm.
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