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Abstract
Many industrial applications require time-consuming and resource-intensive evaluations of suitable solutions within very
limited time frames. Therefore, many surrogate-assisted evaluation algorithms (SAEAs) have been widely used to optimize
expensive problems. However, due to the curse of dimensionality and its implications, scaling SAEAs to high-dimensional
expensive problems is still challenging. This paper proposes a variable surrogate model-based particle swarm optimization
(called VSMPSO) to meet this challenge and extends it to solve 200-dimensional problems. Specifically, a single surrogate
model constructed by simple random sampling is taken to explore different promising areas in different iterations. Moreover,
a variable model management strategy is used to better utilize the current global model and accelerate the convergence rate
of the optimizer. In addition, the strategy can be applied to any SAEA irrespective of the surrogate model used. To control the
trade-off between optimization results and optimization time consumption of SAEAs, we consider fitness value and running
time as a bi-objective problem. Applying the proposed approach to a benchmark test suite of dimensions ranging from 30 to
200 and comparisons with four state-of-the-art algorithms show that the proposed VSMPSO achieves high-quality solutions
and computational efficiency for high-dimensional problems.
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Introduction

Compared to conventional optimization algorithms, evolu-
tionary algorithms (EAs) are more apt at handling a number
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of complex problems in real-world applications [1,2]. EAs
have, therefore, been widely applied in many real-world
applications, including drug design [3], control engineering
applications [4], andwing configuration design [5].However,
EAs generally require thousands of fitness evaluations to
achieve a satisfactory candidate solution. In many engineer-
ing optimization computations, a single numerical simulation
can take several minutes, hours, or even days to com-
plete. Examples of this include computational fluid dynamics
(CFD) simulation, inwhich performing a single simulation to
evaluate a candidate design generally requires several hours.
Furthermore, the number of required additional fitness evalu-
ations rises with the dimension of the optimization problem,
resulting in high computational costs to run hundreds or
thousands of fitness evaluations. To solve such expensive
optimizationproblems, surrogatemodel-basedEAs, inwhich
a surrogate model (also called a meta-model) is applied
instead of the expensive original function, are often used.
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Over the last few decades, a variety of surrogate-assisted
evolutionary algorithms (SAEAs) have been identified.
Existing strategies for SAEAs to employ surrogate models
can generally be divided into the single-surrogate and multi-
surrogate model-based strategies, depending on the number
of surrogate models that SAEAs have used. Although many
generic machine learning methods have been used to build
surrogatemodels, no specific rule has been proposed to deter-
mine the type of model most suitable for use as a surrogate
[6]. In general, single-surrogate model-based EAs employ
the Gaussian process (GP) model, most likely because this
model can predict a candidate solution while providing an
estimate of the error of the predicted value. There are several
infill sampling criteria that applyGP-provided prediction and
error estimation approaches, including the expected improve-
ment infill criterion [7,8] and lower confidence bound infill
criterion [9,10], have been proposed as guides for achieving
promising solutions. Most non-GP models, including poly-
nomial repression surface models [11,12], artificial neural
networks [13,14], radial basis functions (RBFs) [15–17] and
many others [18], can only provide predictions and cannot
provide error estimates for their predictions. Because of these
limitations, multiple model-based EAs involving the produc-
tion ofmultiple predictions frommultiplemodels are applied
to avoid cases in which the algorithms run into local optima.

For SAEAs, the core problem is how to use surrogatemod-
els to guide the optimization process reasonably. When an
expensive problem has a high-dimensional decision space,
it becomes more challenging for SAEAs to employ surro-
gate models to guide the optimization process effectively.
Firstly, the number of training samples required by the sur-
rogatemodel grows exponentially as the problemdimensions
increase [19]. This impliesmore experimental evaluations are
required, often expensive and infeasible in real applications.
Due to the lack of samples on high-dimensional expensive
problems, it is difficult to construct a single surrogate model
with high accuracy [20]. It is commonly known that the use of
inaccurate surrogates might cause an optimization process to
be misleading. Second, it needs more time to create a surro-
gatemodel as the problemdimensions increase. For example,
in the Gaussian process (GP) model, global optimization
for high-dimensional acquisition functions is intrinsically a
hard problem and can be prohibitively expensive to be feasi-
ble [21]. Generally speaking, existing research on extending
the SAEAs to high-dimensional expensive problems can be
roughly classified into three categories:

The first strategy is to deal with the lack of sam-
ples through data processing and data generation methods.
DDEA-PES [22] used data perturbation to generate diverse
datasets. SAEO [23] trained and activated the surrogate
model only after enough data samples were collected. ESAO
[24] randomly projected training samples into a set of low-

dimensional sub-spaces rather than training in the original
high-dimensional space.

The second strategy is to improve the performance of sur-
rogate models. In [25], a GP model was combined with the
partial least squares method to solve high-dimensional prob-
lemswith up to 50 design variables. In our previous work, we
proposed a multi-objective infill criterion [26] for GP model
management. TR-SADEA [27] employs a self-adaptive GP
model for antenna design. The RBF-assisted approach based
on granulationwas proposed in [28,29]. In [30], a radial basis
function network (RBFN) with a trust-region approach was
considered a local model for solving 20-dimensional prob-
lems. Wang and Jin [31] employed three widely used models
(i.e., PR, RBF, and GP ) to construct both one global ensem-
ble model and a local ensemble model respectively. Li et al.
[32] employed two criteria to balance exploitation and con-
vergence to solvemedium-scaled computationally expensive
problems. MS-RV [33] transferred the knowledge from the
coarse surrogate to the fine surrogate in off-line data-driven
optimization.

The third strategy is to improve optimization efficiency by
multiple swarms. Multiple swarms were used in SA-COSO
[34] for solving high-dimensional problems ranging from
30 to 200 dimensions. Pan et al. [35] proposed an efficient
surrogate-assisted hybrid optimization (SAHO) algorithm
that combines two EAs (TLBO and DE) as the basic opti-
mizer for 100-dimensional problems.

This paper proposes a variable surrogate model-based
particle swarm optimization (VSMPSO) algorithm for high-
dimensional expensive problems. To the best of our knowl-
edge, VSMPSO is the first attempt to extend a single
surrogate-assisted EA to solve the 200 dimension problems.
The main contributions of this paper are as follows:

– The proposed VSMPSO, does not focus on improving
the accuracy of surrogate models, but rather relies on
the blessing of uncertainty [36], which only employs one
RBF model as a single surrogate in combination with the
proposed variable surrogate model strategy to explore
different promising area in different generation to avoid
model misdirection throughout the whole optimization
process.

– The prediction ability of the surrogate model is not only
used to predict the current population. For deep mining
of the surrogate model prediction information, the most
promising point of the surrogate model would be found
and transferred into the optimizer population to acceler-
ate the optimization.

– The proposed algorithm framework of VSMPSO can be
applied in any surrogate-assisted evolutionary algorithm
irrespective of the surrogate model used.
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The remainder of this paper is organized as follows: the next
section introduces a brief overview of the related techniques
used in this paper. The main framework of the proposed
algorithm is then presented in the subsequent section. The
penultimate section compares a few state-of-the-art algo-
rithms with widely used benchmark problems with 30, 50,
100, and 200 dimensions. The final section provides the con-
clusion.

Related techniques in VSMPSO

Particle swarm optimization (PSO)

The canonical PSO, developed by Eberhart and Kennedy
in 1995, is a population- or swarm-based intelligent opti-
misation algorithm inspired by the social behaviours of
populations of organisms such as birds (flocking) or fish
(schooling) [37]. Eq. (1) and Eq. (2) describe the evolution
of x j (the position of the j th individual at generation (t +1))
along the dth dimension in the canonical PSO:

xdj (t + 1) = xdj (t) + Δxdj (t + 1) (1)

Δxdj (t + 1) = ωΔxdj (t) + c1r1 ·
(
Pbestdj (t) − xdj (t)

)

+c2r2 ·
(
Gbestd(t) − xdj (t)

)
. (2)

The feature distinguishing the canonical PSO fromother EAs
such as the genetic algorithm (GA) or differential evolu-
tion (DE) is that it converges rapidly but easily falls into
local optima. To prevent premature convergence, a variety of
modified PSOs have been proposed, including the compre-
hensive learning PSO [38], distance-based locally informed
PSO [39], social learning PSO [40], and competitive swarm
optimiser (CSO) [41]. Based on the effective performance
of social learning particle swarm optimization (SLPSO), we
propose a simplified SLPSO to generate candidate solutions
whose primary structure is similar to the SLPSO algorithm
proposed by Cheng and Jin. In this simplified SLPSO, indi-
vidual x j are updated using the following formulas:

xdj (t + 1) =
{
xdj (t) + Δxdj (t + 1) if p j (t) ≤ PL

j
xdj (t) otherwise

(3)

Δxdj (t + 1) = r1 · Δxdj (t) + r2 ·
(
xdk (t) − xdj (t)

)

+r3 · ε ·
(
xd(t) − xdj (t)

)
, (4)

where 1 ≤ j < N , N is the population size, 1 ≤ d ≤ D,
and D is the dimension of the search space. In each genera-
tion, the population is sorted according to fitness value from
bad to good, with x1 and xN representing the worst and best

solutions, respectively, at the current generation. xk is a ran-
domly chosen demonstrator for x j , j < k ≤ N , and xdk (t)
represents the dth element of xk . We note that a demonstrator
should be chosen for each element of x j . PL

j is the learning
probability, which is inversely proportional to the fitness of
x j , p j (t) is a randomly generated probability for x j , r1, r2,
and r3 are random numbers in the range [0, 1], and ε is the
social influence factor that controls the influence of x̄d (t).
In Eq. (4), x̄d (t) is the mean position along the dth dimen-
sion of the population at generation t . If a uniform sampling
method such as Latin hypercube sampling (LHS) is used
in the initialisation process, x̄d (t) can be quite close to the
1 × D zero vector o = [0, . . . 0]. The function of the global
optimum at the zero vector o can easily lead the population
toward a promising region, and to avoid this coincidence, we
set the parameter r3 to zero to remove the effect of x̄d(t).
This simplifies Eq. (4) to

Δxdj (t + 1) = r1 · Δxdj (t) + r2 ·
(
xdk (t) − xdj (t)

)
(5)

In this study, we generated new swarms using Eq. (3) and
Eq. (5), and in the following sections, the variant SLPSO is
referred to as ‘PSO’ for brevity.

RBF network

The functionality of an RBF network as a type of neural
networkwas described in detail in [42] and canbe represented
by the following form:

f̂ (x) =
M∑
i=1

ωiφ (‖x − xi‖) , (6)

where x ∈ R
D is an input vector,φ is the basic function of the

RBF network, ‖·‖ is the 2-norm (also called the Euclidean
norm),ωi is the weight vector,M represents both the number
of input units in the RBF input layer and the number of sam-
ples for building the RBF model. Because the basic function
ωi is one of the key factors affecting the performance of the
model, many forms of ωi have been developed, including
multi-quadric, thin plate spline, Gaussian, and cubic forms.
A comparison of different choices of ωi in [43] revealed
that the thin plate spline and linear and cubic RBFs the-
oretically perform better than either the multi-quadric or
Gaussian RBF. Additionally, numerical investigation results
have demonstrated that the cubic RBF can improve the per-
formance of the thin plate spline and multi-quadric RBFs
[44]. Furthermore, cubic RBF-assisted EAs have been suc-
cessfully used in local function approximation. Based on
these previous studies, the proposed method employs cubic
basic function to construct RBF network, which is a common
machine learning technique for fitness approximation [2,8].
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The basic function of the cubic RBF employed in this study
is φ (‖x − xi‖) = (‖x − xi‖)3.

Proposed VSMPSO algorithm

VSMPSO framework

The main framework shown in Fig. 1 presents the overall
algorithm for VSMPSO. The solid black arrow lines repre-
sent the flow direction of the algorithm, and the green dot
arrow dotted line to mark the data flow direction. At the
beginning of VSMPSO, the initial individuals are generated,
which are all evaluated and then taken into the database DB.
In each generation, the variable model management strategy
was proposed to decide how to construct the surrogate model
for fitness estimation and select promising solutions for fit-
ness evaluation. In the variable model management strategy
(Part I) of Fig. 1, the simple random sampling method is
used to select samples from the database DB for building an
RBFmodel. Subsequently, the RBFmodel will be carried out
to find the most promising point in the global search space.
This is followed by the knowledge transferred from the RBF
model to the current population. Then, in the variable model
management strategy (Part II) of Fig. 1, the infill criterion
used in VSMPSO considers potential optimum points to be
evaluated and put into DB.

The details for the main components in VSMPSO have
been explained in Algorithm 1. The optimizer used in
VSMPSO is a variant of that used in SLPSO. Steps 2–4 of
Algorithm 1 describe the steps for generating the initial pop-
ulation (called P(1)) by Latin Hypercube Sampling (LHS)
and then creating the database DB by all the initial individ-
uals in P(1) with their real fitness values. As shown in steps
6–11, the main optimization loop contains two main com-
ponents of the proposed algorithm that will be described in
detail in Algorithms 2 and 3. In steps 8 and 10, the variable
modelmanagement strategy is proposed to designmodel con-
struction and the infill criterion, which will be described in
“Variable model management strategy” section. In step 9, the
knowledge from the RBF model will be transferred to P(t)
(the population in generation t). Finally, the program outputs
the most satisfying solution with its real fitness value and
end. Overall speaking, VSMPSO contains two-layer loops.
The outer loop uses the variant SLPSO as the optimizer in
Algorithm 1, and the inner loop uses the canonical PSO as the
optimizer in Algorithm 3. In Algorithm 3, the current RBF
model is used as the objective function to drive the canonical
PSO iterations, and then, the global best solution found by
canonical PSO is transferred to variant SLPSO. In the follow-
ing subsections, we will detail the two main components of
the proposed algorithm, i.e., the variable model management

strategy and the knowledge transfer from model to popula-
tion.

Algorithm 1: The pseudo-code of VSMPSO
Output : the global best solution with its real fitness

1 begin
2 t = 1;
3 Use LHS to initialize the population P(1) and evaluate the

swarm by the original expensive function;
4 Save P(1) with their real fitness in DB;
5 while computational budget is not reaching the upper limit do
6 t = t + 1;
7 Update the individuals of P(t) according to Eq.(3) and

Eq.(5);
8 Building RBF model and Fitness estimation by steps 2–4

of Algorithm 2;
9 Transfer the knowledge from the RBF model to the

current population P(t) by Algorithm 3;
10 Select two potential optimum points to be evaluated and

update DB by steps 5–7 of Algorithm 2;
11 Update the global best solution;
12 end while
13 end

Variable model management strategy

The key issues influencing the performance of surrogates are
mainly model selection and model management. First, for
model selection, according to the previous work, on high-
dimensional problems, constructing GP models becomes
time-consuming, but RBF has been proven to perform bet-
ter with small samples than other common surrogate models
[45], so we determine RBF as a surrogate model. Addition-
ally, for model management, as mentioned in the “Introduc-
tion” section, due to the lack of samples on high-dimensional
expensive problems, it is not easy to construct a single
surrogate model with high accuracy. Since the blessing of
uncertainty and the multiple local optima of original expen-
sive problems, an accurate surrogate model is not always
necessarily in optimization. So in this work, unlike the pre-
vious work focusing on improving the accuracy of models,
only one global surrogate model is trained. Furthermore, due
to different samples that may construct models toward dif-
ferent promising areas, a global model management strategy
inspired by simple random sampling is proposed to enhance
the diversity of the single model between each generation
and thus avoid persistent misleading in a wrong direction
throughout the whole optimization process.

As observed from the pseudo-code of Algorithm 1, the
RBF model is updated during each generation, in step 2 of
Algorithm 2, λ = [M × 80%] samples are selected using
simple random sampling, with the number of selected sam-
ples λ accounting for 80% of the total sample size based on a

123



Complex & Intelligent Systems (2023) 9:3887–3935 3891

Fig. 1 VSMPSO flow diagram

Algorithm 2: The pseudo-code of Variable Model Man-
agement Strategy
Require: DB(Database with all solutions evaluated by the exact

original function),P(t),MGbest
Output : PGbest and MGbest with their real fitness,PGworst ,

Current RBF model
1 begin
2 Select random λ solutions from DB using a simple random

sampling strategy;
3 Train the RBF model ;
4 Estimate P(t) using RBF model;
5 Sort P(t) and obtain PGbest and PGworst ;
6 Reevaluate PGbest and MGbest by the original expensive

function;
7 Place the two solutions (PGbest and MGbest) along with

their real fitness value into DB;
8 end

commonempirical value used in K -fold cross-validation [46]
with K = 5. Furthermore, the effectiveness of this strategy
and sample size will be further verified in “Effects of vari-
ablemodelmanagement strategy” and “Parameter sensitivity
analysis”. After estimating the fitness value of P(t) by the
current RBF model in step 4, the current population P(t) is
sorted according to the estimated fitness value from bad to
good in step 5, with x1 and xN representing theworst solution
PGworst and the best solution PGbest , respectively. As
shown in steps 6–7, two potential optimum points are con-
sidered to be evaluated by the original expensive function.
The first is PGbest , (the global optimum individual of the

current population), and the second is MGbest , (the most
promising point of the current surrogate model, obtained
from Algorithm 3).

Knowledge transfer strategy

As mentioned in Algorithm 2, in each iteration of the opti-
mization loop, a simple random sampling method selects
different samples to construct the RBFmodel, and those RBF
models may contribute toward different promising areas in
different generations. So in Step 3 of Algorithm 3, for further
data mining of the RBF model, the RBF model is considered
as an objective function, which is defined as follows:

min FRBF (x)

s. t. xl ≤ x ≤ xu, (7)

where x ∈ R
D is the feasible solution set, denotes the same

search space as original expensive problem, FRBF (x) is the
objective function, xl and xu are the lower and upper bounds
of the decision variables. In steps 4–9, a canonical PSO is
employed to find the global optimum of the current RBF
model. In step 6, the canonical PSOupdates individuals using
Eq. (1) and (2). In step 8, Pbest (the personal best of the par-
ticle) and Gbest (the global best of the swarm) are updated
in each generation. After the iteration is completed, in step
11, Gbest , the final best solution of the RBF model obtained
through the canonical PSO, is assigned MGbest , which is
considered the most promising point of the RBF model. In
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the following steps, by substitutingMGbest for PGworst in
P (t), the knowledge transferred from the RBF model to the
population is expected to be able to enhance the search per-
formance of VSMPSO by reducing the likelihood of getting
stuck in a local optimum. Furthermore, the effectiveness of
the knowledge transfer strategy is further verified in “Effects
of variable model management strategy” section by compar-
ing VSMPSO with SMPSO.

Algorithm 3: The pseudo-code of Knowledge Transfer
Require: PGworst , P(t) (the current population in generation

t); Current RBF model
Output : P (t), MGbest with its estimated fitness value

1 begin
2 /*Data mining from the current RBF model in each

generation of Algorithm 1 */
3 Consider Eq.(7) as the objective function for data mining of

RBF model;
4 Initialize the population and evaluate them using the RBF

model;
5 while computational budget is not reaching the upper limit do
6 Update the population using Eq. (1) and (2).
7 Evaluate the fitness of all individuals using the RBF

model;
8 Update Pbest and Gbest ;
9 end while

10 MGbest = Gbest ;
11 P (t).remove(PGworst);
12 P (t).add(MGbest);
13 end

Experimental studies

A series of empirical studies on eleven commonly-used
benchmark functions (for details, see attached Table 1) are
designed to verify the effectiveness and optimality of the
proposed VSMPSO. These eleven functions have different
characteristics, including unimodal, multimodal, and very
complex multimodal functions. Most of them are very dif-
ficult to optimize. F1–F7 functions are commonly used by
other SAEAs [26,31]. F8–F11 functions are adopted from
test suite CEC 2017 [48], which have been recently pro-
posed and are comparatively complex. The dimensions of
these eleven functions are tested from 10 to 200. The CEC
2017 functions are only tested with dimension 100 because
the highest dimension of the functions in this test suite is
100. The statistical results of the compared algorithms are
given on 30-D, 50-D, 100-D, and 200-D problems, respec-
tively. Furthermore, the best results are highlighted in bold.
The proposed VSMPSO is compared with several popular
and recently proposed SAEAs, SAHO [35], SACOSO [34],
CAL-SAPSO [31] and MGP-SLPSO [26] under different
dimensions. Moreover, we consider the best fitness value

and the running time as the bi-objective problem to verify
the performance of VSMPSO.

Experimental setup in details

All experiments are implemented on a high computing capa-
bility server with an Intel XEON E5-2620v4 processor with
64GB in RAM. Each algorithm was run 30 times in Mat-
lab 2020B to eliminate the effect of statistical variation. We
applied Friedman’s test to determine if there are any sig-
nificant differences in the best fitness values obtained by
the algorithms. The runs were performed using MATLAB’s
Statistics Toolbox. The p values were obtained using Fried-
man’s test on pairwise comparisons between VSMPSO and
other comparison algorithms. Normally, the p value thresh-
old for statistical significance is 0.05 [49], and p ≥ 0.05
showed no significant difference; whereas p < 0.05 showed
significant difference. “+” indicates the labeled algorithm
with the mean best value significantly outperformed other
algorithms. The RBF model used in VSMPSO and other
algorithms was implemented using the MATSuMoTo Tool-
box [50]. The parameters of the optimizer SLPSO were set
as recommended in [40]. For all the compared algorithms in
this paper, the termination condition depended on the number
of consumed function evaluations (FEs). The computational
budget was less than 11 · D number of function evaluations
(NFEs) [31,32], which means the limited number of fitness
evaluations was 11 times the dimension of the problem.

We describe the algorithm performance through two chart
types to show convergence profiles and distribution of solu-
tions, such as Figs. 2 and 3. It is noted that the original
author provides the source code of SA-COSO and SAHO
and the source codes of MGP-SLPSO and CAL-SAPSO are
available on the internet. In [31], CAL-SLPSO is examined
on problems less or equal to 30-D. So we compare statis-
tical results with MGP-SLPSO, CAL-SAPSO, SAHO, and
SACOSO on 30-D problems and then compare statistical
results with MGP-SLPSO, SAHO, and SACOSO on 50-
and 100-D problems. Considering the time consumption, we
compare statistical results with MGP-SLPSO and SACOSO
on 200-D problems.

Numerical results on 30- and 50-D F1–F7 functions

The proposed VSMPSO can be applied in any surrogate-
assisted evolutionary algorithm irrespective of the surrogate
model used. In this paper, we used two widely adopted
models, GP and RBF, to predict fitness values, referred to
as VSMPSO(GP) and VSMPSO(RBF). VSMPSO(GP) used
GP as a surrogate model, while VSMPSO(RBF) used RBF.
Both VSMPSO(GP) and VSMPSO(RBF) are all based on
the VSMPSO framework in Algorithms 1, 2 and 3; their only
difference was the different surrogate models used.
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Table 1 Description of
benchmark functions

Function No. of variables Global optimum

F1: Ellipsoid 30/50/100/200 0

F2: Rosenbrock 0

F3: Ackley 0

F4: Griewank 0

F5: Rastrigin 0

F6: Shifted rotated Rastrigin function (F10 in [47]) − 300

F7: Rotated hybrid composition function (F19 in [47]) 10

F8: Shifted rotated Rastrigin function (F25 in [48]) 50/100 2500

F9: Rotated hybrid composition function (F26 in [48]) 2600

F10: Rotated hybrid composition function (F27 in [48]) 2700

F11: Rotated hybrid composition function (F28 in [48]) 2800

FromTable 2,MGP-SLPSOwas the best on F1,VSMPSO
(GP) the best on F4, VSMPSO(GP) on F7, CAL-SAPSO
on F5. SAHO was the best on F2, F3, and F6. So SAHO
had better optimization results than other SAEAs; however,
from Table 3, SAHO and CAL-SAPSO took hundreds of
times longer than other SAEAs. We considered optimization
results and the running time as the bi-objective problem. In
the first row of Table 3, “Best fitness” means the average
value of the best fitness values obtained by 30 independent
operations performed by each algorithm, and “Time” means
the mean time obtained by 30 independent operations per-
formed by each algorithm. We consider “Best fitness” and
“Time” as two objectives, referred to as the non-dominated
solution (NDS) and dominated solution (DS). We sorted the
comparison algorithm results and marked all non-dominated
solutions (NDSs) on the Pareto frontwith a black hollow pen-
tagram in Fig. 3. From Table 3, we can see that VSMPSO
(RBF) achieved NDS on F1, F4, F5, F6 and F7, similar to
MGP-SLPSO. From Fig. 3, on F1 and F3, the dominant solu-
tion (DS) achieved byVSMPSO (RBF) is the closest toNDS.
In Fig. 2, the convergence rate of VSMPSO (RBF) is second
only to SAHO on F3 and has the fastest convergence curve
on F7. MGP-SLPSO had the shortest running time because
Matérn32 function was used as the kernel function. In our
previous work [51], when the commonly used squared expo-
nential (SE) kernel function is used, compared with using
Matérn32, the running time of GP model-assisted SLPSO
even increases over ten times. SE is the most commonly
adopted covariance function in GP-assisted optimization
algorithms, for example, in [9,15,52,53].

We compared VSMPSO with MGP-SLPSO, SAHO, and
SACOSO on 50D functions. In Table 5, we can observe that
MGP-SLPSO achieved the best mean value on F1 and F4,
and SAHO achieved the best mean value on F2, F3, F5, F6,
andF7.VSMPSO(RBF) achieved a similar performancewith
SAHO on F7. From Table 3 and Fig. 5, VSMPSO(RBF)
derived NDS on F3, F5, F6, and F7, which is one less than

MGP-SLPSO and SAHO. From Fig. 4, the convergence
curve of VSMPSO(RBF) is very close to the SAHO one on
F6 and F7. From Fig. 5, the dominant solution(DS) achieved
by VSMPSO(RBF) is the closest to NDS on F1, F2, and F4.
InTable 4, the running time spent byVSMPSO(GP) is dozens
or even hundreds of times that of VSMPSO(RBF); the run-
ning time spent by VSMPSO(GP) is dozens of times higher
than that of VSMPSO(RBF) on F1, F4, and F6 functions,
and more than 100 times higher on F2, F3, F5, and F7. The
slow computational efficiency makes VSMPSO(GP) unable
to run on higher dimensions. Furthermore, from Table 4 and
Fig. 5,VSMPSO(GP) has noNDSon50D functions,whereas
VSMPSO(RBF) has 4 NDSs. The overall performance of
VSMPSO(RBF) is better than VSMPSO(GP). Hence, in the
next comparative test, we used VSMPSO(RBF) algorithm to
compare with other algorithms; it is abbreviated as VSMPSO
in the following algorithm comparison.

Numerical results and analysis on 50D F1–F7
functions with 2000 FEs

To further observe the optimization ability of VSMPSO,
we extended the computational budget to 2000 FEs. From
the aforementioned analysis, VSMPSO (GP) was time-
consuming, and its optimal performance was inferior to
VSMPSO(RBF). Therefore, in the following algorithm com-
parison, we only used VSMPSO (RBF), referred to as
VSMPSO. Although VSMPSO did not achieve good opti-
mization performance on the 50D with 1000 FEs, it has
better performance with 2000 FEs. In Table 6, MGP-SLPSO
achieved the best mean value on F1; SAHO achieved the best
mean value on F2, F3, F4, and F7. VSMPSO achieved the
best mean value on F5 and F6, and has similar performance
and no significant difference with SAHO on F7. Further-
more,VSMPSOachieved the second-bestmean value behind
SAHO on F2 and F3, and the running time of VSMPSO
was smaller than SAHO. MGP-SLPSO algorithm took the
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Table 2 Statistical results of MGP-SLPSO, CAL-SAPSO, SAHO, SACOSO and VSMPSO on 30D F1–F7 with 330 FEs

Function Algorithm Best Worst Mean (Friedman test) SD

F1: Ellipsoid VSMPSO(GP) 7.88E−06 1.68E−05 1.34E−05 2.17E−06

VSMPSO(RBF) 2.67E−01 9.20E+00 2.33E+00 1.81E+00

MGP-SLPSO 2.31E−11 1.41E−10 7.22E−11(+) 3.05E−11

CAL-SAPSO 2.64E−01 1.14E+01 2.69E+00 2.68E+00

SAHO 1.33E−02 4.15E−01 1.39E−01 1.03E−01

SACOSO 1.59E+02 4.98E+02 2.98E+02 8.36E+01

F2: Rosenbrock VSMPSO(GP) 5.53E+01 7.62E+01 7.40E+01 6.59E+00

VSMPSO(RBF) 1.03E+02 2.13E+02 1.52E+02 2.80E+01

MGP-SLPSO 7.28E+01 2.87E+02 1.20E+02 3.91E+01

CAL-SAPSO 3.51E+01 9.64E+01 5.34E+01 1.29E+01

SAHO 2.93E+01 9.58E+01 3.30E+01(+) 2.09E+01

SACOSO 2.71E+02 1.09E+03 5.80E+02 2.00E+02

F3: Ackley VSMPSO(GP) 4.16E+00 1.34E+01 1.19E+01 3.36E+00

VSMPSO(RBF) 3.43E+00 5.15E+00 4.03E+00 4.68E−01

MGP-SLPSO 5.53E+00 1.77E+01 1.02E+01 3.10E+00

CAL-SAPSO 8.00E+00 1.96E+01 1.44E+01 3.31E+00

SAHO 6.54E−02 2.54E+00 1.92E+00(+) 5.83E−01

SACOSO 1.09E+01 1.65E+01 1.30E+01 1.36E+00

F4: Griewank VSMPSO(GP) 2.15E−03 3.35E−03 2.39E−03(+) 4.99E−04

VSMPSO(RBF) 6.50E−01 1.00E+00 8.54E−01 8.07E−02

MGP-SLPSO 6.70E−03 3.44E−02 1.43E−02 6.20E−03

CAL-SAPSO 1.22E+00 1.88E+00 1.49E+00 1.49E−01

SAHO 1.01E−02 4.55E−01 1.40E−01 1.12E−01

SACOSO 3.74E+01 8.99E+01 5.83E+01 1.37E+01

F5: Rastrigin VSMPSO(GP) 2.12E+02 2.64E+02 2.36E+02 2.02E+01

VSMPSO(RBF) 2.01E+02 2.94E+02 2.51E+02 2.42E+01

MGP-SLPSO 2.90E+01 1.46E+02 8.02E+01 2.82E+01

CAL-SAPSO 1.97E+01 5.84E+01 3.58E+01(+) 1.20E+01

SAHO 5.04E+00 1.12E+02 4.66E+01 2.70E+01

SACOSO 2.35E+02 3.34E+02 2.90E+02 2.21E+01

F6 (F10 in CEC05) VSMPSO(GP) −8.58E+01 −5.25E+01 −7.43E+01 1.27E+01

VSMPSO(RBF) −8.90E+01 1.26E+01 −4.76E+01 2.54E+01

MGP-SLPSO −2.12E+02 −5.39E+01 −1.46E+02 3.41E+01

CAL-SAPSO 2.49E−01 2.20E+00 1.32E+00 5.83E−01

SAHO −2.68E+02 −1.21E+02 −2.11E+02(+) 3.34E+01

SACOSO −4.51E+00 1.45E+02 8.67E+01 3.77E+01

F7 (F19 in CEC05) VSMPSO(GP) 9.40E+02 9.56E+02 9.48E+02(≈) 6.13E+00

VSMPSO(RBF) 9.26E+02 9.97E+02 9.43E+02(+) 1.51E+01

MGP-SLPSO 1.01E+03 1.18E+03 1.10E+03 3.65E+01

CAL-SAPSO 1.06E+03 1.34E+03 1.18E+03 5.54E+01

SAHO 9.29E+02 1.10E+03 9.67E+02 3.60E+01

SACOSO 1.07E+03 1.28E+03 1.17E+03 5.07E+01
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shortest running time. In Table 7, MGP-SLPSO achieved 7
NDSs owing to the shortest running time.VSMPSOachieved
5 NDSs same as SACOSO, and SAHO achieved 4 NDSs.
VSMPSO did not achieve NDS on F1 and F2, but the DS
achieved by VSMPSO is closest to the NDS in Fig. 7. The
solutions achieved by VSMPSO, MGP-SLPSO and SAHO
are very close to the abscissa value (i.e., the minimum fit-
ness value) in Fig. 7. In Fig. 6, the performance of VSMPSO
is stable on different functions, and the convergence curves
achieved good results on F5, F6, and F7.

Numerical results on higher dimensional problems

Next, we compared the algorithm performance on higher-
dimensional problems.The convergenceprofiles ofVSMPSO,
SACOSO, MGP-SLPSO and SAHO on F1–F7 with 100D
and 200D are shown in Figs. 8 and 10. VSMPSO is compared
with MGP-SLPSO, CAL-SAPSO, SAHO and SACOSO on
100D. In Table 8, MGP-SLPSO obtains the best mean value
on F1 and F4. SAHO obtains the best mean value on F2, F3,
F5 and F7. VSMPSO performs the best only on F6. However,
on F7, the results of VSMPSO are not significantly different
from that of SAHO, and the standard deviation is smaller
than SAHO. In Table 9, VSMPSO obtains 5 NDSs, which
is the highest NDSs, SAHO achieves 4 NDSs, MGP-SLPSO
achieves 3 NDSs, and SACOSO achieves 1 NDS. On F1 and
F4, VSMPSO did not achieve NDS, but the DS achieved by
VSMPSO is closest to the NDS achieved by MGP-SLPSO
in Fig. 9.

Because it takes more than a week for SAHO to obtain the
optimization results of one function on 200D problems, it is
too expensive to compare VSMPSO with SAHO on 200D
problems. So VSMPSO is compared with MGP-SLPSO and
SACOSO on 200D problems. In Table 10, VSMPSO obtains
the best mean value on F2, F3, and F5, and has a similar
performancewith SACOSOonF7. SACOSOobtains the best
mean values F6 and F7. MGP-SLPSO obtains the best mean
value on F1 and F4, and VSMPSO obtains the best mean
value secondonly toMGP-SLPSOonF1andF4.The running
time is no order of magnitude difference between VSMPSO
and the MGP-SLPSO, and even the time spent by VSMPSO
on F5 is less thanMGP-SLPSO. Thus, VSMPSO can achieve
a better balance between the optimization effect and the time-
consuming and obtains better optimization results on higher
dimensional problems (Table 11 and Fig. 11).

Effects of variable model management strategy

To test and verify the effectiveness of sample selection strat-
egy in VSMPSO, four different sample selection strategies
are compared in empirical studies. Therefore, we design
a framework of surrogate model-based PSO (SMPSO), in
which the RBFmodel is used as a single surrogate model and

SLPSO as the optimizer. The detailed explanation of SMPSO
is located in Algorithm 3. The difference between SMPSO
and VSMPSO is the model management strategy. SMPSO
only searches for the most promising solution from the cur-
rent population to evaluate, but VSMPSO takes advantage of
the proposed variable model management strategy to search
for the most promising solutions from the current popula-
tion and the current RBF model. SMPSO-RS, SMPSO-AS,
SMPSO-FS1 and SMPSO-FS2 are all based on the SMPSO
framework; their only difference is in step 7 of the sample
selection strategy. The details of different sample selection
strategies are as follows:

1. SMPSO-RS: The sample selection strategy is the same as
in VSMPSO; simple random sampling (RS) is used for
selecting random λ samples in DB.

2. ASMPSO-AS: All samples (AS) in DB are chosen for
training model, the same as in [32].

3. SMPSO-FS1: Fixed selection of the newest λ samples in
DB, the same as in [9].

4. SMPSO-FS2: Fixed selection of the top λ samples inDB,
same as CAL-SAPSO used for training local model.

Algorithm 4: The pseudocode of SMPSO
Output : the global best solution with its real fitness

1 begin
2 t = 1;
3 Use LHS to initialize the population and evaluate the swarm

by the real computationally expensive function;
4 Save all exact evaluations in the Date base DB;
5 while computational budget is not reached the upper limit do
6 Update the particles according to Eqs. (3) and (5);
7 Select λ samples from DB;
8 Train RBF model by the selected samples;
9 Utilize the RBF model to estimate the fitness value of the

population in generation t ;
10 EvaluatePGbest by real computationally expensive

function;
11 Put PGbest with its real fitness into DB;
12 Update the global best solution;
13 t = t + 1;
14 end while
15 end

SMPSO-FS1 and SMPSO-FS2 chose fixed sampling (FS)
as the sample selection strategy, and the fixed sample num-
ber was λ, the same as the sample number in VMPSO
and SMPSO-RS. As noted in “Proposed VSMPSO algo-
rithm” section, the crucial element affecting VSMPSO is
the variable model management strategy. The variable model
management strategy has two steps: Step 1, a simple random
sampling (RS) strategy is used for selecting random λ sam-
ples in DB to construct the RBF model in each generation.
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Table 5 Statistical results of MGP-SLPSO, SAHO, SACOSO, VSMPSO(GP) and VSMPSO(RBF)on 50D F1–F7 with 550 FEs

Function Algorithm Best Worst Mean (Friedman test) SD

F1: Ellipsoid VSMPSO(GP) 7.09E+00 1.10E+01 9.80E+00 1.40E+00

VSMPSO(RBF) 3.79E+00 2.53E+01 1.19E+01 6.13E+00

MGP-SLPSO 9.31E−06 1.80E−03 8.53E−05(+) 3.23E−04

SAHO 1.38E−02 6.59E−01 1.22E−01 1.51E−01

SACOSO 2.38E+01 8.38E+01 4.93E+01 1.60E+01

F2: Rosenbrock VSMPSO(GP) 4.07E+02 7.36E+02 2.50E+02 1.33E+02

VSMPSO(RBF) 1.14E+02 2.75E+02 1.88E+02 3.04E+01

MGP-SLPSO 1.37E+02 2.48E+02 1.83E+02 2.79E+01

SAHO 4.82E+01 4.87E+01 4.85E+01(+) 1.22E−01

SACOSO 1.54E+02 3.64E+02 2.49E+02 5.43E+01

F3: Ackley VSMPSO(GP) 6.52E+00 7.38E+00 6.90E+00 4.21E−01

VSMPSO(RBF) 4.09E+00 2.00E+01 8.68E+00 6.36E+00

MGP-SLPSO 1.15E+01 1.57E+01 1.43E+01 1.31E+00

SAHO 2.38E−02 1.64E−01 5.39E−02(+) 2.97E−02

SACOSO 1.06E+01 1.46E+01 1.30E+01 1.00E+00

F4: Griewank VSMPSO(GP) 2.37E+00 3.15E+00 2.63E+00 3.09E−01

VSMPSO(RBF) 6.42E−01 9.84E−01 8.34E−01 7.38E−02

MGP-SLPSO 9.51E−04 4.20E−03 1.80E−03(+) 6.79E−04

SAHO 2.80E−01 9.02E−01 6.21E−01 1.37E−01

SACOSO 3.69E+00 7.61E+00 5.54E+00 1.04E+00

F5: Rastrigin VSMPSO(GP) 4.14E+02 4.34E+02 4.18E+02 6.86E+00

VSMPSO(RBF) 2.50E+02 4.81E+02 4.04E+02 5.97E+01

MGP-SLPSO 2.05E+02 4.29E+02 2.95E+02 5.78E+01

SAHO 5.31E+01 4.05E+02 1.52E+02(+) 8.04E+01

SACOSO 3.58E+02 4.74E+02 4.24E+02 2.99E+01

F6 (F10 in CEC05) VSMPSO(GP) 7.80E+01 1.21E+02 9.08E+01 1.21E+01

VSMPSO(RBF) −1.15E+01 1.87E+02 1.05E+02 5.72E+01

MGP-SLPSO 3.35E+01 1.75E+02 1.18E+02 3.74E+01

SAHO −1.19E+02 3.51E+02 8.19E+01(+) 1.13E+02

SACOSO 1.48E+02 2.95E+02 2.14E+02 3.33E+01

F7 (F19 in CEC05) VSMPSO(GP) 1.02E+03 1.10E+03 1.06E+03 3.46E+01

VSMPSO(RBF) 9.49E+02 1.04E+03 9.81E+02 (≈) 2.49E+01

MGP-SLPSO 1.02E+03 1.17E+03 1.10E+03 4.15E+01

SAHO 9.53E+02 1.03E+03 9.73E+02(+) 1.91E+01

SACOSO 1.00E+03 1.16E+03 1.08E+03 3.66E+01

Step 2, the current RBF model information is deeply mined
by finding the minimum of the surrogate model. Two poten-
tial optimum points( PGbest and MGbest ) are considered
in the variable model management strategy. PGworst , the
individual with the worst predicted fitness value in the cur-
rent population, is then replaced by MGbest .The following
experiment results further demonstrate that this is an effec-
tive method to improve the diversity of the model and avoid
local optimum without using multiple models.

The contribution of the simple random sampling strat-
egy in VSMPSO is inferred by comparing the results of

SMPSO-RS with SMPSO-AS, SMPSO-FS1, and SMPSO-
FS2. FromTable 12, on 30D functions, SMPSO-RS achieved
better optimization results on F3 and F7 than SMPSO-AS,
SMPSO-FS1, and SMPSO-FS2, and the optimization results
of SMPSO-RS on F2, F4, F5, and F6 were second only to
SMPSO-AS. From Fig. 12, the trend of convergence curves
is consistent, except that the F1 and F3 convergence curves
are slightly dispersed. From Table 12, on 50D functions,
SMPSO-RS achieved better optimization results on F2, F4,
F6, and F7 than SMPSO-AS, SMPSO-FS1, and SMPSO-
FS2, and the optimization results of SMPSO-RS on F1, F3,
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Table 6 Statistical results of MGP-SLPSO, SAHO, SACOSO and VSMPSO on 50D F1–F7 with 2000 FEs

Function Algorithm Best Worst Mean (Friedman test) SD

F1: Ellipsoid VSMPSO 4.01E−02 7.60E−02 5.05E−02 1.05E−02

MGP-SLPSO 4.72E−26 1.90E−24 2.47E−25(+) 5.82E−25

SAHO 6.75E−16 4.41E−07 3.49E−10 9.94E−08

SACOSO 1.36E+00 6.90E+00 3.98E+00 1.45E+00

F2: Rosenbrock VSMPSO 5.92E+01 1.18E+02 8.30E+01 2.47E+01

MGP-SLPSO 1.78E+02 2.19E+02 1.95E+02 1.40E+01

SAHO 4.56E+01 4.63E+01 4.61E+01(+) 1.42E−01

SACOSO 5.41E+01 1.85E+02 9.01E+01 3.24E+01

F3: Ackley VSMPSO 3.18E+00 5.38E+00 4.09E+00 7.89E−01

MGP-SLPSO 9.44E+02 9.86E+02 9.60E+02 1.18E+01

SAHO 1.29E−12 2.14E−11 4.49E−12(+) 4.72E−12

SACOSO 1.06E+01 1.46E+01 1.30E+01 1.00E+00

F4: Griewank VSMPSO 2.71E−04 1.80E−03 7.50E−04 7.00E−04

MGP-SLPSO 5.57E−09 8.65E−05 2.19E−05 3.61E−05

SAHO 1.30E−11 1.24E−02 3.73E−10(+) 2.84E−03

SACOSO 3.69E+00 7.61E+00 5.54E+00 1.04E+00

F5: Rastrigin VSMPSO 8.76E+01 1.45E+02 1.04E+02(+) 1.60E+01

MGP-SLPSO 1.91E+02 4.15E+02 2.72E+02 7.33E+01

SAHO 4.88E+01 1.63E+02 1.06E+02 2.80E+01

SACOSO 9.11E+01 2.72E+02 1.73E+02 3.81E+01

F6 (F10 in CEC05) VSMPSO −2.28E+02 −1.79E+02 −1.94E+02(+) 1.39E+01

MGP-SLPSO 5.80E+01 1.37E+02 1.05E+02 2.85E+01

SAHO −2.25E+02 −1.84E+01 −1.29E+02 4.95E+01

SACOSO −2.58E+01 2.51E+02 1.54E+02 4.97E+01

F7 (F19 in CEC05) VSMPSO 9.44E+02 9.86E+02 9.60E+02(≈) 1.18E+01

MGP-SLPSO 1.08E+03 1.19E+03 1.14E+03 3.38E+01

SAHO 9.39E+02 1.03E+03 9.51E+02(+) 2.12E+01

SACOSO 9.81E+02 1.12E+03 1.03E+03 3.22E+01

Table 7 Statistical results (best fitness and cost time) obtained by MGP-SLPSO, SAHO, SACOSO and VSMPSO on 50D F1–F7 With 2000 FEs

Mean/time VSMPSO MGP-SLPSO SAHO SACOSO

F1: Ellipsoid 5.05E−02/3.14E+03 2.47E−25/1.82E+02 3.49E−10/1.13E+04 3.98E+00/1.25E+03

F2: Rosenbrock 8.30E+01/3.14E+03 1.95E+02/6.34E+02 4.61E+01/1.16E+04 9.01E+01/1.24E+03

F3: Ackley 4.09E+00/3.15E+03 9.60E+02/3.44E+02 4.49E−12/1.06E+04 1.30E+01/2.05E+02

F4: Griewank 7.50E−04/3.14E+03 2.19E−05/2.03E+02 3.73E−10/1.14E+04 5.54E+00/1.36E+03

F5: Rastrigin 1.04E+02/3.15E+03 1.04E+02/6.02E+02 1.06E+02/2.37E+04 1.73E+02/1.29E+03

F6 (F10 in CEC05) −1.94E+02/3.98E+03 1.05E+02/2.45E+03 1.29E+02/1.86E+04 1.54E+02/1.25E+03

F7 (F19 in CEC05) 9.60E+02/4.01E+03 1.14E+03/1.19E+03 9.51E+02/2.77E+04 1.03E+03/1.31E+03

All/NDS/DS 7/5/2 7/7/0 7/4/3 7/5/2
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Table 8 Statistical results of MGP-SLPSO, SAHO, SACOSO and VSMPSO on 100D F1–F7 with 1000 FEs

Function Algorithm Best Worst Mean (Friedman test) SD

F1: Ellipsoid VSMPSO 2.17E+01 6.20E+01 3.60E+01 9.31E+00

MGP-SLPSO 4.37E−17 3.17E−02 1.10E−03(+) 5.80E−03

SAHO 2.80E−02 1.99E+00 5.02E−02 3.55E−01

SACOSO 5.94E+02 1.39E+03 9.29E+02 2.36E+02

F2: Rosenbrock VSMPSO 1.53E+02 2.40E+02 1.88E+02 2.07E+01

MGP-SLPSO 4.58E+02 8.59E+02 6.28E+02 1.05E+02

SAHO 9.78E+01 9.82E+01 9.80E+01(+) 7.37E−02

SACOSO 1.46E+03 4.64E+03 2.41E+03 7.99E+02

F3: Ackley VSMPSO 8.24E+00 1.25E+01 1.06E+01 8.99E−01

MGP-SLPSO 1.71E+01 1.85E+01 1.80E+01 3.47E−01

SAHO 9.60E−03 2.94E−02 1.48E−02(+) 4.84E−03

SACOSO 1.42E+01 1.72E+01 1.59E+01 7.44E−01

F4: Griewank VSMPSO 6.58E−01 1.01E+00 8.17E−01 8.24E−02

MGP-SLPSO 3.10E−02 1.31E−01 7.37E−02(+) 2.51E−02

SAHO 1.02E−01 6.52E−01 2.51E−01 1.54E−01

SACOSO 4.14E+01 1.06E+02 6.90E+01 1.50E+01

F5: Rastrigin VSMPSO 3.09E+02 7.32E+02 4.79E+02 8.71E+01

MGP-SLPSO 1.09E+03 1.24E+03 1.18E+03 3.52E+01

SAHO 1.23E+02 3.85E+02 2.54E+02(+) 6.01E+01

SACOSO 7.84E+02 9.63E+02 8.65E+02 4.87E+01

F6 (F10 in CEC05) VSMPSO 5.86E+02 8.36E+02 7.28E+02(+) 6.55E+01

MGP-SLPSO 7.79E+02 1.38E+03 9.77E+02 1.09E+02

SAHO 7.39E+02 1.17E+03 9.44E+02 9.05E+01

SACOSO 1.10E+03 1.60E+03 1.34E+03 1.13E+02

F7 (F19 in CEC05) VSMPSO 1.33E+03 1.46E+03 1.40E+03 (≈) 4.05E+01

MGP-SLPSO 1.35E+03 1.54E+03 1.41E+03 (≈) 4.12E+01

SAHO 9.10E+02 1.42E+03 1.38E+03(+) 1.22E+02

SACOSO 1.35E+03 1.52E+03 1.41E+03 (≈) 3.80E+01

Table 9 Statistical results (best fitness and cost time) obtained by MGP-SLPSO, SAHO, SACOSO and VSMPSO on 100D F1–F7 with 1000 FEs

Mean/time VSMPSO MGP-SLPSO SAHO SACOSO

Ellipsoid 3.60E+01/8.71E+02 1.10E−03/5.17E+02 5.02E−02/1.48E+04 1.10E−03/5.17E+02

Rosenbrock 1.88E+02/6.07E+02 6.28E+02/2.62E+03 9.80E+01/1.49E+04 6.28E+02/2.62E+03

Ackley 1.06E+01/8.33E+02 1.80E+01/2.20E+03 1.48E−02/1.44E+04 1.80E+01/2.20E+03

Griewank 8.17E−01/8.49E+02 7.37E−02/5.21E+02 2.51E−01/1.47E+04 7.37E−02/5.21E+02

Rastrigin 4.79E+02/8.80E+02 1.18E+03/4.01E−02 2.54E+02/5.16E+04 8.65E+02/7.76E+02

F6 (F10 in CEC05) 7.28E+02/9.45E+02 9.77E+02/2.93E+03 9.44E+02/2.59E+04 9.77E+02/2.93E+03

F7 (F19 in CEC05) 1.40E+03/1.11E+03 1.41E+03/8.30E+03 1.38E+03/3.87E+04 1.41E+03/8.30E+03

All/NDS/DS 7/5/2 7/3/4 7/4/3 7/1/6
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Table 10 Statistical results of
MGP-SLPSO, SACOSO and
VSMPSO on 200D F1–F7 with
2000 FEs

Function Algorithm Best Worst Mean SD

F1: Ellipsoid VSMPSO 1.63E+02 2.99E+02 2.25E+02 3.48E+01

MGP-SLPSO 2.51E−04 1.21E−02 6.80E−03(+) 3.10E−03

SACOSO 6.07E+03 1.47E+04 9.27E+03 2.12E+03

F2: Rosenbrock VSMPSO 2.68E+02 3.20E+02 2.94E+02(+) 1.45E+01

MGP-SLPSO 7.96E+03 1.20E+04 1.06E+04 1.62E+03

SACOSO 4.22E+03 1.76E+04 9.52E+03 3.06E+03

F3: Ackley VSMPSO 1.21E+01 1.42E+01 1.33E+01(+) 5.48E−01

MGP-SLPSO 1.47E+03 1.52E+03 1.49E+03 1.28E+01

SACOSO 2.05E+01 2.09E+01 2.07E+01 1.01E−01

F4: Griewank VSMPSO 1.01E+00 1.18E+00 1.09E+00 3.96E−02

MGP-SLPSO 4.91E−05 1.09E+00 1.57E−01(+) 3.30E−01

SACOSO 2.19E+02 5.01E+02 3.33E+02 7.54E+01

F5: Rastrigin VSMPSO 8.64E+02 1.35E+03 1.07E+03(+) 1.35E+02

MGP-SLPSO 2.15E+03 2.37E+03 2.23E+03 8.41E+01

SACOSO 1.68E+03 2.12E+03 1.87E+03 7.42E+01

F6 (F10 in CEC05) VSMPSO 5.10E+03 5.92E+03 5.65E+03 1.98E+02

MGP-SLPSO 5.06E+03 5.76E+03 5.49E+03 1.93E+02

SACOSO 5.12E+03 5.65E+03 5.45E+03(+) 1.30E+02

F7 (F19 in CEC05) VSMPSO 1.47E+03 1.52E+03 1.49E+03 1.28E+01

MGP-SLPSO 1.44E+03 1.46E+03 1.45E+03(+) 1.17E+01

SACOSO 1.41E+03 1.49E+03 1.46E+03(≈) 1.67E+01

Table 11 Statistical results
(best fitness and cost time)
obtained by MGP-SLPSO,
SACOSO and VSMPSO on
200-D F1–F7 with 2000 FEs

Function VSMPSO MGP-SLPSO SACOSO

F1: Ellipsoid 2.25E+02/9.73E+03 6.80E−03/1.34E+03 9.27E+03/9.29E+03

F2: Rosenbrock 2.94E+02/9.62E+03 1.06E+04/1.57E+03 9.52E+03/9.48E+03

F3: Ackley 1.33E+01/9.69E+03 1.49E+03/3.12E+03 2.07E+01/7.14E+03

F4: Griewank 1.09E+00/9.72E+03 1.57E−01/1.62E+03 3.33E+02/9.88E+03

F5: Rastrigin 1.07E+03/9.90E+03 2.23E+03/1.85E+03 1.87E+03/3.82E+03

F6 (F10 in CEC05) 5.65E+03/5.70E+03 5.49E+03/9.25E+03 5.45E+03/1.07E+04

F7 (F19 in CEC05) 1.49E+03/7.31E+03 1.45E+03/5.94E+03 1.46E+03/1.11E+04

All/NDS/DS 7/4/3 7/7/0 7/3/4

and F5 were slightly less than SMPSO-AS but better than
SMPSO-FS1 and SMPSO-FS2. In addition, from Fig. 14, the
trend of convergence curves for SMPSO-RS are very similar
to that of SMPSO-AS on most functions.

From Table 15, SMPSO-RS achieved better optimization
results on F3, F6, and F7 than SMPSO-AS, SMPSO-FS1, and
SMPSO-FS2, and the optimization results of SMPSO-RS on
F1, F2, F4, and F5 were slightly lower than SMPSO-AS
but better than SMPSO-FS1 and SMPSO-FS2. Moreover,
from Figs. 13, 15 and Table 14, SMPSO-RS achieved non-
dominant solutions for both 30D and 50D problems. From
Fig. 17, the dominant solution obtained by SMPSO-RS is
closest to the non-dominant solution in abscissa value (that
is the minimum fitness value) on F1, F2, F4, and F5. Con-
versely, SMPSO-FS1 and SMPSO-FS2 have similar results

on Tables 12, 13 and 15, and show similar convergence
curve on Figs. 12, 14 and 16. Moreover, both SMPSO-FS1
and SMPSO-FS2 have worse results than SMPSO-RS and
SMPSO-AS; hence, the performance of fixed samplingmeth-
ods is inferior to all samplingmethods and the simple random
sampling method. The performance of simple random sam-
pling (RS) is significantly better than that of fixed sampling
(FS) and SMPSO-RS performs better on complex problems.
Conversely, SMPSO-AS takes more time than SMPSO-RS
on 30D and 50D functions. When all samples are used for
modeling in SMPSO-AS, it is time-consuming.

By comparing VSMPSO with SMPSO-RS, SMPSO-AS,
SMPSO-FS1 and SMPSO-FS2, we can see the contribu-
tion of Step 2. In Step2, VSMPSO takes advantage of the
variable model management strategy to search for the most
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Table 12 Statistical results of VSMPSO-RS, VSMPSO-AS, VSMPSO-FS1, VSMPSO-FS2, VSMPSO on 30-D with 330 FEs

Function Algorithm Best Worst Mean (Friedman test) SD

F1: Ellipsoid SMPSO-RS 1.67E+00 3.42E+01 8.84E+00 7.73E+00

SMPSO-AS 3.54E−01 1.55E+01 4.21E+00 3.53E+00

SMPSO-FS1 8.51E+00 1.22E+02 4.77E+01 3.16E+01

SMPSO-FS2 1.14E+01 9.31E+01 3.68E+01 2.17E+01

VSMPSO 2.67E−01 9.20E+00 2.33E+00(+) 1.81E+00

F2: Rosenbrock SMPSO-RS 1.03E+02 2.13E+02 1.52E+02 2.80E+01

SMPSO-AS 8.35E+01 1.92E+02 1.38E+02 3.05E+01

SMPSO-FS1 1.54E+02 9.40E+02 3.01E+02 1.79E+02

SMPSO-FS2 1.53E+02 5.69E+02 2.62E+02 9.14E+01

VSMPSO 5.99E+01 2.03E+02 1.12E+02(+) 3.01E+01

F3: Ackley SMPSO-RS 3.21E+00 1.52E+01 5.43E+00 2.45E+00

SMPSO-AS 3.40E+00 1.16E+01 6.07E+00 2.13E+00

SMPSO-FS1 9.57E+00 1.90E+01 1.49E+01 2.77E+00

SMPSO-FS2 8.30E+00 2.00E+01 1.51E+01 2.77E+00

VSMPSO 3.43E+00 5.15E+00 4.03E+00(+) 4.68E−01

F4: Griewank SMPSO-RS 4.77E−01 1.06E+00 7.98E−01 1.68E−01

SMPSO-AS 1.59E−01 8.17E−01 4.98E−01(+) 1.87E−01

SMPSO-FS1 1.36E+00 6.22E+00 3.26E+00 1.14E+00

SMPSO-FS2 1.71E+00 5.56E+00 3.33E+00 9.85E−01

VSMPSO 6.50E−01 1.00E+00 8.54E−01 8.07E−02

F5: Rastrigin SMPSO-RS 3.72E+01 1.62E+02 9.92E+01 2.80E+01

SMPSO-AS 5.01E+01 1.23E+02 8.80E+01(+) 1.69E+01

SMPSO-FS1 1.96E+02 3.22E+02 2.64E+02 2.96E+01

SMPSO-FS2 2.22E+02 3.50E+02 2.95E+02 3.38E+01

VSMPSO 2.01E+02 2.94E+02 2.51E+02 2.42E+01

F6 (F10 in CEC05) SMPSO-RS −2.70E+02 −8.34E+01 −2.09E+02 3.68E+01

SMPSO-AS −2.71E+02 −1.69E+02 −2.18E+02(+) 2.90E+01

SMPSO-FS1 −1.23E+01 1.24E+02 6.03E+01 3.61E+01

SMPSO-FS2 −6.45E+01 1.37E+02 4.99E+01 4.97E+01

VSMPSO −8.90E+01 1.26E+01 −4.76E+01 2.54E+01

F7 (F19 in CEC05) SMPSO-RS 9.55E+02 1.09E+03 1.01E+03 3.67E+01

SMPSO-AS 9.68E+02 1.10E+03 1.03E+03 3.81E+01

SMPSO-FS1 1.00E+03 1.23E+03 1.11E+03 5.95E+01

SMPSO-FS2 1.01E+03 1.22E+03 1.13E+03 5.04E+01

VSMPSO 9.26E+02 9.97E+02 9.43E+02(+) 1.51E+01

promising solutions from the current population and the cur-
rent RBF model to evaluation. This differs from the strategy
of all SMPSO algorithms that only searches to evaluate the
most promising solution from the current population. From
Tables 12, 13 and 15, the results of VSMPSO are signif-
icantly different from those of other algorithms. On 30D
functions, VSMPSO obtained the best results on F1, F2, F3
andF7, besides obtaining slightly lower resultswithSMPSO-
RS on 30-D F4, F5 and F6. However, on 50D functions,
VSMPSO achieved better optimization results on F1, F2,
F3, F4 and F7, slightly less than SMPSO-RS on F4 and

F5. Furthermore, on 100D functions, VSMPSO achieved
the best optimization results on F1, F2, F3, F4, F5 and F7,
besides obtaining slightly lower results with SMPSO-AS on
F6. VSMPSO has clear advantages on 100D than 50D and
30D, the improvement becomes more remarkable when the
dimension of decision space D increases.

From the results mentioned above, we concluded that
combining the twomain innovations of theproposedVSMPSO
in “Proposed VSMPSO algorithm” contributed to improving
the performance of the proposed algorithm. First, from the
results of comparing SMPSO-RS and three other algorithms
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Table 13 Statistical results of VSMPSO-RS, VSMPSO-AS, VSMPSO-FS1, VSMPSO-FS2 and VSMPSO on 50-D F1–F7 with 550 FEs

Function Algorithm Best Worst Mean (Friedman test) SD

F1: Ellipsoid SMPSO-RS 2.29E+01 3.46E+02 1.13E+02 7.43E+01

SMPSO-AS 1.24E+01 2.98E+02 8.49E+01 6.20E+01

SMPSO-FS1 1.49E+02 9.16E+02 3.34E+02 1.74E+02

SMPSO-FS2 1.50E+02 1.01E+03 3.37E+02 1.79E+02

VSMPSO 3.79E+00 2.53E+01 1.19E+01(+) 6.13E+00

F2: Rosenbrock SMPSO-RS 2.17E+02 4.82E+02 3.25E+02 5.69E+01

SMPSO-AS 2.27E+02 4.45E+02 3.31E+02 4.94E+01

SMPSO-FS1 3.43E+02 1.82E+03 9.13E+02 3.84E+02

SMPSO-FS2 3.34E+02 2.81E+03 1.05E+03 6.04E+02

VSMPSO 1.14E+02 2.75E+02 1.88E+02(+) 3.04E+01

F3: Ackley SMPSO-RS 9.13E+00 1.64E+01 1.35E+01 1.79E+00

SMPSO-AS 5.63E+00 1.73E+01 1.29E+01 2.77E+00

SMPSO-FS1 1.72E+01 2.04E+01 1.91E+01 6.51E−01

SMPSO-FS2 1.71E+01 2.04E+01 1.89E+01 7.75E−01

VSMPSO 4.09E+00 2.00E+01 8.68E+00(+) 6.36E+00

F4: Griewank SMPSO-RS 1.07E+00 3.87E+01 4.00E+00 7.08E+00

SMPSO-AS 1.14E+00 1.93E+01 4.25E+00 4.52E+00

SMPSO-FS1 8.17E+00 1.15E+02 2.48E+01 2.28E+01

SMPSO-FS2 8.25E+00 5.26E+01 2.22E+01 1.14E+01

VSMPSO 6.42E−01 9.84E−01 8.34E−01(+) 7.38E−02

F5: Rastrigin SMPSO-RS 1.32E+02 2.75E+02 2.09E+02 3.57E+01

SMPSO-AS 1.20E+02 2.76E+02 1.92E+02(+) 3.92E+01

SMPSO-FS1 4.28E+02 6.32E+02 5.32E+02 4.54E+01

SMPSO-FS2 4.79E+02 6.22E+02 5.41E+02 3.94E+01

VSMPSO 2.50E+02 4.81E+02 4.04E+02 5.97E+01

F6 (F10 in CEC05) SMPSO-RS −1.96E+02 −3.90E+01 −1.23E+02(+) 4.42E+01

SMPSO-AS −2.11E+02 −4.39E+00 −1.10E+02 5.26E+01

SMPSO-FS1 1.89E+02 3.68E+02 2.80E+02 4.28E+01

SMPSO-FS2 1.90E+02 3.63E+02 2.67E+02 4.82E+01

VSMPSO −1.15E+01 1.87E+02 1.05E+02 5.72E+01

F7 (F19 in CEC05) SMPSO-RS 1.02E+03 1.15E+03 1.08E+03 3.69E+01

SMPSO-AS 1.05E+03 1.23E+03 1.10E+03 3.97E+01

SMPSO-FS1 1.09E+03 1.34E+03 1.19E+03 6.13E+01

SMPSO-FS2 1.07E+03 1.25E+03 1.17E+03 4.07E+01

VSMPSO 9.49E+02 1.04E+03 9.81E+02(+) 2.49E+01

(SMPSO-AS, SMPSO-FS1, and SMPSO-FS2), the random
sample selection method is the same as the one we used in
VSMPSO, eliminates the weaknesses of the fixed samples.
Second, comparing the results of SMPSO-RS andVSMPSO,
looking for the most promising solution from two different
angles, especially the most promising solution from the cur-
rent RBF model, quickening the optimal speed.

Parameter sensitivity analysis

The parameters in VSMPSO, like the parameters of the
optimizer SLPSO and the number of consumed function
evaluations (FEs), may significantly influence the proposed
algorithm’s performance. For a fair comparison, the param-
eters of the optimizer SLPSO are set the same as the
recommended parameters in [40]. For all the algorithms com-
pared in this paper, the termination condition depends on
the number of consumed function evaluations (FEs). The
computational budget is less than 11 · D number of func-
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Table 15 Statistical results of
SMPSO-RS, SMPSO-AS,
SMPSO-FS1, SMPSO-FS2,
VSMPSO on 100-D with 1100
FEs

Function Algorithm Best Worst Mean SD

F1: Ellipsoid SMPSO-RS 3.04E+01 1.33E+02 7.69E+01 2.70E+01

SMPSO-AS 2.65E+01 1.37E+02 7.31E+01 2.59E+01

SMPSO-FS1 1.68E+02 9.51E+02 4.13E+02 2.04E+02

SMPSO-FS2 1.75E+02 6.29E+02 3.52E+02 9.56E+01

VSMPSO 2.17E+01 6.20E+01 3.60E+01(+) 9.31E+00

F2: Rosenbrock SMPSO-RS 1.53E+02 2.40E+02 1.88E+02 2.07E+01

SMPSO-AS 1.30E+02 2.19E+02 1.60E+02 1.71E+01

SMPSO-FS1 2.62E+02 1.25E+03 4.69E+02 1.90E+02

SMPSO-FS2 2.67E+02 6.40E+02 4.06E+02 6.48E+01

VSMPSO 1.31E+02 2.09E+02 1.59E+02(+) 1.54E+01

F3: Ackley SMPSO-RS 1.21E+01 1.56E+01 1.41E+01 8.14E−01

SMPSO-AS 1.34E+01 1.58E+01 1.50E+01 5.31E−01

SMPSO-FS1 1.55E+01 1.77E+01 1.65E+01 6.04E−01

SMPSO-FS2 1.42E+01 1.83E+01 1.67E+01 8.70E−01

VSMPSO 8.24E+00 1.25E+01 1.06E+01(+) 8.99E−01

F4: Griewank SMPSO-RS 1.24E+00 3.10E+00 1.93E+00 5.01E−01

SMPSO-AS 1.29E+00 3.65E+00 1.87E+00 5.54E−01

SMPSO-FS1 3.45E+00 9.26E+00 5.74E+00 1.62E+00

SMPSO-FS2 3.34E+00 1.07E+01 6.11E+00 1.80E+00

VSMPSO 6.58E−01 1.01E+00 8.17E−01(+) 8.24E−02

F5: Rastrigin SMPSO-RS 2.79E+02 4.29E+02 3.43E+02 5.20E+01

SMPSO-AS 2.06E+02 3.70E+02 2.79E+02(+) 4.07E+01

SMPSO-FS1 8.29E+02 9.49E+02 8.86E+02 3.17E+01

SMPSO-FS2 8.26E+02 9.91E+02 8.91E+02 3.77E+01

VSMPSO 3.09E+02 7.32E+02 4.79E+02 8.71E+01

F6 (F10 in CEC05) SMPSO-RS 7.54E+02 1.36E+03 9.40E+02 1.24E+02

SMPSO-AS 8.47E+02 2.68E+03 1.32E+03 4.95E+02

SMPSO-FS1 8.54E+02 1.63E+03 1.21E+03 2.00E+02

SMPSO-FS2 8.05E+02 1.73E+03 1.14E+03 2.06E+02

VSMPSO 5.86E+02 8.36E+02 7.28E+02(+) 6.55E+01

F7 (F19 in CEC05) SMPSO-RS 1.35E+03 1.47E+03 1.41E+03 3.13E+01

SMPSO-AS 1.37E+03 1.54E+03 1.46E+03 4.14E+01

SMPSO-FS1 1.36E+03 1.57E+03 1.46E+03 4.80E+01

SMPSO-FS2 1.38E+03 1.53E+03 1.45E+03 4.26E+01

VSMPSO 1.33E+03 1.46E+03 1.40E+03(+) 4.05E+01

tion evaluations (NFEs) [32], which means that the limited
number of fitness evaluations is 11 times the dimension
of the problem. In VSMPSO, the value of λ is 80% of
the total sample number. Then, we only need to analyze
the parameters λ of VSMPSO, to explore the influence of
different sample sizes on optimization performance. In the
next experiment, we analyzed the performance compari-
son of VSMPSO for different sample sizes. The compari-
son algorithms VSMPSO-50, VSMPSO-60, VSMPSO-70,
VSMPSO-80, VSMPSO-90, and VSMPSO-100 represent
VSMPSO with different samples, which respectively rep-
resent the number of selected samples λ accounting for 50%,

60%, 70%, 80%, 90% and 100% of the total sample size,
and VSMPSO-100 means all samples for modeling. Fur-
thermore, all parameters in VSMPSO-80 are the same as
those in VSMPSO, meaning the results of VSMPSO-80 are
consistent with VSMPSO mentioned in the abovementioned
experiments.

From Figs. 18, 19, 20, 21, 22, 23 and Tables 16, 17, 18,
VSMPSO-80 performs best on 30D F1 and F3, 50D F3 and
has no significant difference from VMPSO-100 on 100D
functions. From Table 19 that, VSMPSO-80 obtained 3
non-dominant solutions on 30D functions, 4 non-dominant
solutions on 50D functions, 5 non-dominant solutions on
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Table 16 Statistical results of VSMPSO with different samples on 30-D F1–F7 with 330 FEs

Function Algorithm Best Worst Mean (Friedman test) SD Meantime

F1: Ellipsoid VSMPSO-50 2.20E+00 9.09E+00 5.60E+00 2.41E+00 5.61E+01

VSMPSO-60 1.60E+00 5.17E+00 4.48E+00 1.40E+00 6.30E+01

VSMPSO-70 1.71E+00 3.63E+00 3.17E+00 7.46E−01 6.99E+01

VSMPSO-80 4.45E−01 1.41E+00 7.69E−01(+) 4.65E−01 7.64E+01

VSMPSO-90 7.38E−01 2.89E+00 2.43E+00 7.21E−01 8.32E+01

VSMPSO-100 5.41E−01 3.55E+00 1.56E+00 1.37E+00 8.93E+01

F2: Rosenbrock SLPSO-50 1.16E+02 1.72E+02 1.47E+02 2.20E+01 6.24E+01

VSMPSO-60 6.69E+01 1.78E+02 9.75E+01(+) 2.90E+01 7.10E+01

VSMPSO-70 8.89E+01 1.22E+02 1.12E+02 1.35E+01 7.55E+01

VSMPSO-80 1.03E+02 1.27E+02 1.14E+02 7.61E+00 8.23E+01

VSMPSO-90 8.41E+01 1.40E+02 1.22E+02 1.63E+01 8.91E+01

VSMPSO-100 7.17E+01 1.26E+02 1.11E+02 2.26E+01 9.56E+01

F3: Ackley SLPSO-50 7.47E+00 2.00E+01 1.87E+01 3.81E+00 5.72E+01

VSMPSO-60 4.82E+00 2.00E+01 7.86E+00 6.16E+00 6.37E+01

VSMPSO-70 4.58E+00 4.85E+00 4.60E+00 6.72E−02 7.02E+01

VSMPSO-80 4.01E+00 4.09E+00 4.02E+00 1.87E−02 7.69E+01

VSMPSO-90 3.62E+00 3.82E+00 3.63E+00(+) 5.10E−02 8.37E+01

VSMPSO-100 3.93E+00 5.17E+00 4.57E+00 3.82E−01 9.03E+01

F4: Griewank SLPSO-50 9.50E−01 9.81E−01 9.59E−01 1.40E−02 5.70E+01

VSMPSO-60 8.61E−01 9.66E−01 9.20E−01 5.30E−02 6.33E+01

VSMPSO-70 8.38E−01 9.81E−01 9.21E−01 7.02E−02 7.05E+01

VSMPSO-80 8.05E−01 8.55E−01 8.21E−01 1.76E−02 7.78E+01

VSMPSO-90 7.13E−01 8.05E−01 7.99E−01 2.34E−02 8.37E+01

VSMPSO-100 4.99E−01 8.40E−01 7.19E−01(+) 1.47E−01 9.02E+01

F5: Rastrigin SLPSO-50 2.27E+02 2.69E+02 2.37E+02 1.81E+01 5.69E+01

VSMPSO-60 2.33E+02 2.62E+02 2.50E+02 1.32E+01 6.41E+01

VSMPSO-70 2.27E+02 2.84E+02 2.64E+02 1.92E+01 7.05E+01

VSMPSO-80 2.42E+02 2.80E+02 2.58E+02 1.83E+01 7.76E+01

VSMPSO-90 1.56E+02 2.52E+02 1.83E+02 4.00E+01 8.39E+01

VSMPSO-100 1.22E+02 1.58E+02 1.46E+02(+) 1.61E+01 9.04E+01

F6 (F10 in CEC05) SLPSO-50 −1.07E+02 −1.72E+01 −6.13E+01 2.08E+01 6.36E+01

VSMPSO-60 −9.76E+01 −1.90E+01 −6.07E+01 2.39E+01 7.09E+01

VSMPSO-70 −8.73E+01 −6.43E+00 −5.89E+01 2.22E+01 7.71E+01

VSMPSO-80 −9.72E+01 −1.79E+01 −5.81E+01 2.26E+01 8.61E+01

VSMPSO-90 −1.14E+02 2.63E+01 −4.48E+01 3.26E+01 9.13E+01

VSMPSO-100 −1.87E+02 −1.66E+01 −1.06E+02(+) 4.96E+01 9.74E+01

F7 (F19 in CEC05) SLPSO-50 9.32E+02 9.51E+02 9.44E+02 8.89E+00 6.11E+01

VSMPSO-60 9.23E+02 1.01E+03 9.45E+02 1.90E+01 7.26E+01

VSMPSO-70 9.23E+02 9.39E+02 9.37E+02(+) 6.17E+00 7.52E+01

VSMPSO-80 9.23E+02 9.77E+02 9.40E+02 (≈) 1.37E+01 8.04E+01

VSMPSO-90 9.31E+02 9.50E+02 9.47E+02 6.07E+00 8.90E+01

VSMPSO-100 9.38E+02 9.58E+02 9.42E+02 7.22E+00 9.30E+01
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Table 17 Statistical results of VSMPSO with different samples on 50-D F1–F7 with 550 FEs

Function Algorithm Best Worst Mean SD Meantime

F1: Ellipsoid VSMPSO-50 8.61E+00 9.35E+00 8.96E+00(+) 1.97E−01 1.63E+02

VSMPSO-60 3.67E+00 2.14E+01 1.11E+01 3.73E+00 1.87E+02

VSMPSO-70 4.56E+00 2.68E+01 1.16E+01 5.41E+00 2.10E+02

VSMPSO-80 3.26E+00 3.43E+01 1.19E+01 7.18E+00 2.33E+02

VSMPSO-90 3.41E+00 2.54E+01 1.06E+01 4.92E+00 2.56E+02

VSMPSO-100 2.36E+00 2.62E+01 1.04E+01 6.38E+00 2.83E+02

F2: Rosenbrock SLPSO-50 8.78E+01 1.74E+02 1.33E+02(+) 1.91E+01 1.71E+02

VSMPSO-60 9.78E+01 1.72E+02 1.41E+02 1.97E+01 1.94E+02

VSMPSO-70 1.33E+02 2.32E+02 1.70E+02 2.59E+01 2.16E+02

VSMPSO-80 1.51E+02 2.74E+02 2.03E+02 3.33E+01 2.40E+02

VSMPSO-90 1.24E+02 2.93E+02 1.95E+02 3.74E+01 2.66E+02

VSMPSO-100 1.26E+02 2.30E+02 1.62E+02 3.00E+01 2.86E+02

F3: Ackley SLPSO-50 1.99E+01 2.00E+01 2.00E+01 5.91E−03 1.68E+02

VSMPSO-60 1.90E+01 2.00E+01 1.99E+01 1.71E−01 1.90E+02

VSMPSO-70 4.43E+00 2.00E+01 1.59E+01 6.35E+00 2.15E+02

VSMPSO-80 4.05E+00 6.44E+00 4.58E+00(+) 6.82E−01 2.34E+02

VSMPSO-90 3.84E+00 6.10E+00 4.96E+00 7.12E−01 2.63E+02

VSMPSO-100 3.74E+00 6.82E+00 5.31E+00 7.60E−01 2.86E+02

F4: Griewank SLPSO-50 8.04E−01 1.02E+00 9.02E−01 4.69E−02 1.66E+02

VSMPSO-60 8.00E−01 9.91E−01 9.02E−01 4.96E−02 1.90E+02

VSMPSO-70 7.39E−01 1.01E+00 8.64E−01 6.02E−02 2.13E+02

VSMPSO-80 6.42E−01 1.02E+00 8.24E−01 9.82E−02 2.35E+02

VSMPSO-90 6.05E−01 9.19E−01 7.41E−01 6.39E−02 2.62E+02

VSMPSO-100 5.32E−01 9.73E−01 6.90E−01(+) 1.21E−01 2.87E+02

F5: Rastrigin SLPSO-50 3.86E+02 5.07E+02 4.54E+02 3.25E+01 1.73E+02

VSMPSO-60 3.89E+02 5.05E+02 4.50E+02 2.94E+01 1.96E+02

VSMPSO-70 3.60E+02 4.91E+02 4.28E+02 3.59E+01 2.21E+02

VSMPSO-80 2.80E+02 5.31E+02 3.88E+02 7.04E+01 2.42E+02

VSMPSO-90 1.87E+02 4.33E+02 3.12E+02 6.34E+01 2.65E+02

VSMPSO-100 1.04E+02 3.01E+02 1.77E+02(+) 4.41E+01 2.92E+02

F6 (F10 in CEC05) SLPSO-50 8.72E+01 2.01E+02 1.36E+02 2.88E+01 1.74E+02

VSMPSO-60 9.48E+01 2.16E+02 1.50E+02 2.73E+01 2.00E+02

VSMPSO-70 8.00E+01 1.94E+02 1.37E+02 2.74E+01 2.20E+02

VSMPSO-80 7.28E+01 2.29E+02 1.57E+02 4.41E+01 2.40E+02

VSMPSO-90 −6.06E+01 1.99E+02 1.10E+02 5.68E+01 2.66E+02

SLPSO-100 −9.42E+01 7.01E+01 −4.33E+01(+) 4.72E+01 2.89E+02

F7 (F19 in CEC05) SLPSO-50 9.71E+02 9.94E+02 9.82E+02 1.15E+01 1.73E+02

VSMPSO-60 9.56E+02 1.04E+03 9.84E+02 2.22E+01 1.96E+02

VSMPSO-70 9.58E+02 1.03E+03 9.89E+02 2.06E+01 2.19E+02

VSMPSO-80 9.73E+02 9.93E+02 9.75E+02 3.52E+00 2.39E+02

VSMPSO-90 9.54E+02 9.79E+02 9.66E+02(+) 9.52E+00 2.64E+02

VSMPSO-100 9.53E+02 1.05E+03 9.75E+02 2.73E+01 2.88E+02
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Table 18 Statistical results of VSMPSO with different samples on 100-D F1–F7 with 1100 FEs

Function Algorithm Best Worst Mean SD Meantime

F1: Ellipsoid VSMPSO-50 4.02E+01 6.96E+01 5.60E+01 7.63E+00 7.30E+02

VSMPSO-60 2.86E+01 8.16E+01 4.53E+01 9.55E+00 8.50E+02

VSMPSO-70 2.95E+01 4.32E+01 4.18E+01 2.43E+00 9.76E+02

VSMPSO-80 2.03E+01 5.68E+01 3.43E+01 1.00E+01 1.10E+03

VSMPSO-90 2.19E+01 4.58E+01 3.40E+01 6.86E+00 1.23E+03

VSMPSO-100 1.87E+01 3.91E+01 2.14E+01(+) 3.79E+00 1.37E+03

F2: Rosenbrock VSMPSO-50 1.60E+02 2.22E+02 1.89E+02 1.81E+01 7.39E+02

VSMPSO-60 1.56E+02 1.99E+02 1.80E+02 1.18E+01 8.59E+02

VSMPSO-70 1.64E+02 2.01E+02 1.79E+02 6.45E+00 9.88E+02

VSMPSO-80 1.48E+02 1.86E+02 1.67E+02 1.41E+01 1.11E+03

VSMPSO-90 1.28E+02 1.70E+02 1.47E+02 1.24E+01 1.24E+03

VSMPSO-100 1.15E+02 1.44E+02 1.31E+02(+) 8.27E+00 1.38E+03

F3: Ackley VSMPSO-50 1.40E+01 1.74E+01 1.61E+01 6.52E−01 7.40E+02

VSMPSO-60 1.10E+01 1.39E+01 1.27E+01 9.35E−01 8.53E+02

VSMPSO-70 1.23E+01 1.37E+01 1.25E+01 4.28E−01 9.86E+02

VSMPSO-80 8.77E+00 1.24E+01 1.02E+01(≈) 7.13E−01 1.11E+03

VSMPSO-90 8.83E+00 1.06E+01 1.04E+01 4.81E−01 1.24E+03

VSMPSO-100 8.27E+00 1.09E+01 9.77E+00(+) 6.56E−01 1.37E+03

F4: Griewank VSMPSO-50 9.39E−01 1.08E+00 1.01E+00 4.30E−02 7.40E+02

VSMPSO-60 8.82E−01 1.04E+00 9.62E−01 5.17E−02 8.60E+02

VSMPSO-70 8.41E−01 1.02E+00 9.46E−01 3.60E−02 9.87E+02

VSMPSO-80 6.58E−01 1.01E+00 8.38E−01 8.18E−02 1.11E+03

VSMPSO-90 5.67E−01 9.52E−01 7.57E−01 1.00E−01 1.24E+03

VSMPSO-100 4.22E−01 9.81E−01 6.56E−01(+) 1.17E−01 1.38E+03

F5: Rastrigin VSMPSO-50 7.50E+02 9.83E+02 8.71E+02 7.05E+01 7.35E+02

VSMPSO-60 7.10E+02 8.40E+02 7.82E+02 5.27E+01 8.52E+02

VSMPSO-70 5.67E+02 6.30E+02 5.83E+02 2.39E+01 9.83E+02

VSMPSO-80 3.98E+02 7.18E+02 5.31E+02 7.42E+01 1.11E+03

VSMPSO-90 2.98E+02 4.91E+02 4.05E+02 5.08E+01 1.23E+03

VSMPSO-100 1.75E+02 4.32E+02 2.32E+02(+) 5.21E+01 1.36E+03

F6 (F10 in CEC05) VSMPSO-50 6.32E+02 7.26E+02 6.87E+02 3.40E+01 9.01E+02

VSMPSO-60 6.21E+02 7.38E+02 6.69E+02(+) 3.97E+01 8.99E+02

VSMPSO-70 6.35E+02 7.63E+02 6.96E+02 3.60E+01 1.03E+03

VSMPSO-80 6.03E+02 7.72E+02 7.00E+02 4.31E+01 1.14E+03

VSMPSO-90 6.67E+02 8.44E+02 7.44E+02 6.43E+01 1.28E+03

VSMPSO-100 6.34E+02 2.50E+03 8.49E+02 3.52E+02 1.40E+03

F7 (F19 in CEC05) VSMPSO-50 1.34E+03 1.38E+03 1.36E+03(+) 1.16E+01 1.22E+03

VSMPSO-60 1.36E+03 1.41E+03 1.37E+03 (≈) 8.52E+00 1.21E+03

VSMPSO-70 1.35E+03 1.36E+03 1.36E+03 (≈) 2.54E+00 1.33E+03

VSMPSO-80 1.32E+03 1.46E+03 1.39E+03(≈) 3.58E+01 1.45E+03

VSMPSO-90 1.33E+03 1.46E+03 1.37E+03 (≈) 4.69E+01 1.58E+03

VSMPSO-100 1.33E+03 1.43E+03 1.39E+03 (≈) 1.66E+01 1.71E+03
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Table 20 Obtained solutions for
VSMPSO and SAHO on 100-D
F8–F11 with 1100 FEs

Mean/time Dimension VSMPSO-CEC17 SAHO-CEC17

F8 50D 4.01E+03/2.38E+02 3.25E+03/2.47E+04

100D 5.43E+03/1.10E+03 3.89E+03/2.67E+04

F9 50D 9.53E+03/2.38E+02 7.01E+03/6.55E+03

100D 1.76E+04/1.11E+03 1.28E+04/3.01E+04

F10 50D 3.94E+03/2.39E+02 3.69E+03/6.02E+03

100D 3.99E+03/1.11E+03 3.84E+03/3.37E+04

F11 50D 5.76E+03/2.39E+02 4.06E+03/5.34E+03

100D 7.54E+03/1.11E+03 5.03E+03/2.39E+04

All/NDS/DS 50D 7/7/0 7/7/0

100D functions. From Figs. 19, 21 and 23, most non-
dominant solutions ofVSMPSO-80are basically kneepoints.
Based on the aforementioned results, in general, the larger
the sample size taken by VSMPSO, the better is the algo-
rithm performance except F6. However, in terms of the time
spent by the VSMPSO in different sample sizes, the larger
the sample size, the longer is the running time of VSMPSO.
Bymaking a compromise between optimization performance
and time-consumption, we select 80% of the total sample
number as the number of training samples for modelling in
VSMPSO.

Numerical results on complex problems

To further compare algorithm performance, we compared
VSMPSO with SAHO, which has the best optimization
results from the previous comparison experiment, for test
suite CEC 2017 [48], which has been recently proposed and
is relatively complex. As can be seen from Fig. 24 curve con-
vergence diagram, the performance of VSMPSO on F9 and
F11 with 50D was slightly worse than SAHO; however, on
other functions, especially on all 100D functions, VSMPSO
obtained similar convergence curves to SAHO. However,
from Fig. 25 and Table 20, the average time spent by SAHO
is dozens or even hundreds of times that of VSMPSO.
However, there is minimal difference between the optimal
solutions obtained by VSMPSO and SAHO. It follows that,
even on CEC 2017, the more complex benchmark functions,
VSMPSO can achieve a better balance between the opti-
mization effect and the time consumption, and obtains better
optimization results on 200D dimensional problems.

Conclusions

In this paper, a single surrogate-assisted evolutionary algo-
rithm, calledVSMPSO,has beenproposed for high-dimensional
expensive optimization problems. We have considered both
optimization results and optimization time consumption as

bi-objectives when comparing algorithm performance. The
proposed VSMPSO has shown promising performance on
high-dimensional test problems with dimensions up to 200.
It overcomes the shortcoming of using a single model in
SAEAs, trapping in local optimum easily, and saves on
trainingmodel timewhile improving on performance. Exper-
imental results show that VSMPSO performed well on
high-dimensional problems. In the future, we are interested
in improving the performance of the proposed algorithm by
considering the relationship between the candidate solutions
and surrogate-management strategies and then extending it
to higher-dimensional or multi-objective optimization prob-
lems.
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