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b) Assume (9) and ( 1 1 )  and define Q as in (A.3). Then Q 
satisfies (8). By (8) and (9) Q is an optimum test channel. On the 
other hand, (A3) and (11) yield (lo), which shows the optimality of 
P. 

Discussion: By (8), the transition probabilities Qmi,(k I j )  of an 
optimum test channel for a source given by pmax are not defined for 
~ E Q  with pmaX(j) = 0. The reason is that for such ~ E Q  the 
transition probabilities do not affect JJp,,,, Q,J. On the other 
hand, the transition probabilities of a saddle point are not freely 
selectable for j E Q with p,,,( j )  = 0 due to their optimum prop- 
erty (7a). If the saddle point is uniquely determined, these probabili- 
ties are specified by (A.3). 

ACKNOWLEDGMENT 

The late Prof. H. Brehm of the Technical University of Erlangen- 
Nurnberg, who died in 1990, was the author’s mentor at the time 
the work on this correspondence was carried out. This correspon- 
dence is dedicated to his memory. 

REFERENCES 
T. Berger, “The source coding game,” IEEE Trans. Inform. 
Theory, vol. IT-17, pp. 71-76, Jan. 1971. 
D. J. Sakrison, “The rate distortion function for a class of sources,” 
Inform. Contr., vol. 15, pp. 165-195, 1969. 
T. Berger, Rate Distortion Theory: A Mathematical Basis for  
Data Compression. 
W. G. Bath and V. D. Vandelinde, “Robust memoryless quantization 
for minimum signal distortion,” IEEE Trans. Inform. Theory, vol. 
IT-28, pp. 296-306, Mar. 1982. 
D. Kazakos, “Robust noiseless source coding through a game theo- 
retic approach,” IEEE Trans. Inform. Theory, vol. IT-29, pp. 
576-583, July 1983. 
R. G .  Gallager, Information Theory and Reliable Communica- 
fion. New York: Wiley, 1968. 
G .  Owen, Spieltheorie. New York: Springer Verlag, 1971. 
R. E. Blahut, “Computation of channel capacity and rate-distortion 
functions,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 460-473, 
July 1972. 
A. Papoulis, Probability, Random Variables, and Stochastic Pro- 
cesses. Singapore: McCraw-Hill, 1987. 
K. Trottler, “Informationstheoretische Untersuchungen zur Vek- 
torquantisierung von spharisch invarianten Sprachmodellprozessen,” 
Dr.Ing. Dissert., Univ. Erlangen-Nurnberg, 1987. 

Englewood Cliffs, NJ: Prentice-Hall, 197 1. 

Variable-to-Fixed Length Codes Provide Better 
Large Deviations Performance than 

Fixed-to-Variable Length Codes 

Neri Merhav, Member, IEEE, and David L. Neuhoff, 
Senior Member, IEEE 

Abstract-It is proved that for finite-alphabet, finite-state unifilar 
sources, variable-to-fixed length codes provide better large deviations 
performance of the empirical compression ratio, than fixed-to-variable 

Manuscript received March 21, 1990; revised March 6, 1991. 
N. Merhav was with AT&T Bell Laboratories, Murray Hill, NJ. He is 

now with the Department of Electrical Engineering, Technion-Israel Insti- 
tute of Technology, Haifa 32000, Israel. 

D. L. Neuhoff was with AT&T Bell Laboratories, Murray Hill, NJ. He is 
now with the Department of Electrical Engineering and Computer Science, 
University of Michigan, Ann Arbor, MI 48109. 

I ‘ .  
1 

IEEE Log Number 9102762. 

length codes. It is shown how to construct a universal variable-to-fixed 
length code that achieves the optimal performance. 

Index Terms-Universal data compression, variable-rate coding, vari- 
able-to-fixed length codes, fixed-to-variable length codes, large devia- 
tions, unifilar sources, finite-state sources. 

I. INTRODUCTION 

Lossless fixed-to-variable (F-V) length codes have been compared 
to variable-to-fixed (V-F) length codes under various performance 
criteria. Krichevsky and Trofimov [ l ]  showed that optimal F-V and 
V-F length codes are equivalent in terms of tradeoff between the 
redundancy r and the delay d .  Specifically, it was shown in [1 ]  that 
for both types of coding schemes the minimum redundancy decays 
as fast as l / d  in the case of a known source with limited memory, 
and at the rate of d-’logd when the source statistics are unknown. 
In [ 2 ]  and [3] Jelinek et a/. demonstrated that the best F-V and V-F 
length codes for memoryless sources provide the same exponential 
decay rate of the buffer overflow probability as the buffer size grows 
indefinitely. In [4] this result was generalized to unifilar (state 
calculable) Markov sources. Ziv [5]  has shown that for Markovian 
sources with long memory there exists a V-F length code that 
provides a better compression ratio than any F-V length code with 
the same number of codewords. Recently, a result in the same spirit 
has been proved [6] for universal coding of binary memoryless 
sources. V-F length coding is also advantageous in the sense of 
avoiding error propagation and hence, easy to integrate with error 
correcting codes [I] .  

In this correspondence, we show that the best V-F length code 
provides a better large deviations performance than any F-V length 
encoder with the same number of codewords. Specifically, we 
introduce a random variable, referred to as the empirical compres- 
sion ratio (ECR), which is defined as the length (in bits) of the 
encoder output word divided by the length (in bits) of the input 
word. As a measure of performance, we are interested in the 
exponential decay rate of the probability that the ECR exceeds a 
given threshold R in the range H < R < 1 ,  where H is the 
entropy of the (binary) source. This is different from the commonly 
used performance measure of compression ratio, defined as the ratio 
between the expected output word length and the expected input 
word length (see e.g., [ 5 ] - [ 8 ] ) ,  as it quantifies the rate of conver- 
gence of the ECR and provides insight on its tail behavior. It is 
shown that for any unifilar finite-state (FS) source, the exponential 
decay rate of the probability that the ECR exceeds R ,  for the best 
V-F length code, is 1/R times faster than that of the best F-V 
length code with the same number of codewords, i.e., essentially 
the same amount of storage. Thus, the results here are more general 
than in [5]  and [6] in the sense that memoryless sources as well as 
Markov sources are special cases of unifilar FS sources. Further- 
more, the best performance in both F-V and V-F length code classes 
are attained by universal codes that depend neither on the source nor 
on the value of R .  

11. PRELIMINARIES AND PROBLEM FORMULATION 

A unifilar finite-alphabet, FS source is characterized by an alpha- 
bet X, a state set S, a conditional probability matrix p ( .  I . ), and 
a next-state function f: X X S + S. At each time instant t ,  the 
source emits a letter X ,  E X  and moves to a new state S , ,  E S. For 
a fixed initial state So,  the probability of a given source sequence 
X[ = (X, , X, , . . . , X,) is given by 
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where S,  is uniquely determined by the previous source letter X I - ,  
and the previous state S, - ,  using the recursion, S ,  = f( X,-  I ,  
S f - l ) .  This property enables one to reconstruct the state sequence 
S;  = (SI, S,  , 

For the sake of simplicity, we shall assume throughout that the 
source is binary ( X  = {0, l}). Clearly, this does not affect the 
generality, as every 1x1-ary unifilar FS source with IS1 states can 
be easily transformed into a binary unifilar FS source having the 
same entropy, at the expense of adding states. This can be done by 
representing each source letter by log, 1x1 bits and adding substates 
associated with transitions between bits within each original source 
letter. It will be assumed also that the source is ergodic and that the 
initial state So is fixed and known to both the encoder and decoder. 

A code is characterized by a super-alphabet C, of N = 2" 
binary strings (words) XI,  * . , X,, where X i  is of length I (  X i )  
bits, and by a one-to-one mapping from vectors Xi E C,, into binary 
strings (codewords) of length L ( X i )  bits. It is assumed that the 
code is proper and complete [3], i.e., every infinite binary string 
X = ( X I ,  X,, . . . ) has one and only one prefix X i  E C,. For the 
sake of simplicity, we shall adopt throughout the sequel the abbrevi- 
ated notations / ( X )  and L ( X )  for infinitely long sequences X ,  
where I( X )  I( X i ) ,  and L ( X )  4 L( X i ) ,  X i  being the prefix of 
X in C,,. 

* , S,) from X," and the initial state So. 

The compression ratio of a code is defined as 

A p = -  
E / ( X )  ' 

where E ( . )  denotes expectation with respect to the source P. The 
empirical compression ratio (ECR), associated with a code C,, and 
an infinite source string X is defined as 

A F-V length code is a code for which C, = (0, 1)" and [ ( X i )  = 
l o g N  = n ,  1 5 i 5 N.  A V-F length code is one for which L ( X , )  
= n, 1 5 i 5 N. Hence, the ECR of a V-F and F-V length codes 
with 2 " codewords are given, respectively, by 

(2.4a) 

(2.4b) 

It is well known [9] that the compression ratio p of any lossless 
code is lower bounded by the source entropy H ,  which for a 
stationary source P is given by 

1 

n-m n xpExn 
HA - lim - P ( X ; ) l o g  P ( X p ) .  (2.5) 

Our objective is to compare the best achievable performance of 
sequences of V-F length codes to that of sequences of F-V length 
codes, in the sense of maximizing 

> R }  , (2.6) 1 
for every H < R < 1. 

Note that for the commonly used compression ratio (2.2) the 

expectations in the numerator and the denominator are taken inde- 
pendently, hence, it does not necessarily provide a faithful statisti- 
cal characterization for the behavior of the random variable p ( X ) .  
Unfortunately, investigating E [  p( X ) ]  as an alternative to (2.2) 
seems to be much more difficult in the general case. Instead, the 
proposed performance measure (2.6) is associated with the cumula- 
tive probability distribution function F,( R) of p( X ) ,  which for the 
range R E ( H ,  1) (corresponding to the distribution tail), can be 
evaluated by large deviations techniques or combinatorial techniques 
UOI, [111. 

111. MAIN RESULTS 

Define the empirical distribution, 

1 n  

where 6 ( X ,  = x, S ,  = s) is the indicator function for X ,  = x 
jointly with SI = s. Also, let q x ( s )  = xxcxqx(x, s) and 

Let Qx e { q( x, s), x E X, s E S} and define the empirical entropy 
as 

The Kullback-Leibler divergence is defined as 

where P = { p ( x ,  s ) ,  x E X, s E S}, p( x, s) Pr{ X I  = x, SI = 
s}, and p ( x I ~ ) ~ P r { X , = x l S , = s } .  It is easy to show by 
(2.1), (3.3) and (3.4) that for unifilar sources considered here, 

A. F- V Length Codes 

We first present an upper bound on I 9 (  R ) ,  as defined in (2.6), for 
F-V length codes with 2" codewords. Then, a simple universal F-V 
length code that attains this bound is demonstrated. The results 
stated in this subsection summarize Section I11 of [ 121. 

Theorem I :  For every sequence { C,}, ~, of uniquely decipher- 
able F-V length codes, C, with 2" codewords, any finite-state 
unifilar binary source P ,  and every H < R < 1, 

logPr { p F V ( X )  > R ]  I 19Fv(R), (3.6) 
n - m  1 

where 

(3.7) 

The proof appears in [12, (18)-(20)]. 
Note that the event p F V ( X )  > R ,  or equivalently, L ( X )  > nR 

can be interpreted as an error event associated with a rate R 
fixed-to-fixed (F-F) encoder, which consists of a F-V encoder 
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followed by truncation to nR bits. Theorem 1 tells us that the error 
exponent is overbounded by e*,,( R). It should be pointed out that 
for a general rate R ,  F-F length encoder, which assigns nR bits to 
each one the 2"R most likely source n-tuples and makes an error for 
all the rest, the error exponent is again tightly overbounded by 
O*,,(R) [lo], [13], [14]. This means that there is no loss of 
optimality, in that sense, when using a F-V length encoder followed 
by truncation. 

To achieve the asymptotic exponential rate e*,,( R ) ,  assume first 
that the next-state function f is known and consider the well-known 
simple universal code that consists of I SI log ( n  + 1) bits (neglect- 
ing roundoff terms) allocated to encode the estimated source param- 
eters Q,, followed by - log Q,( X;) bits assigned to Huffman 
coding of X;l with respect to Qx. This results in a length function, 

L ( X )  = -log Q,(X;) + ISllog ( n  + 1 ) .  

= nH(Q,) + ISllog ( n  + 1 ) .  (3.8) 

It is also shown in [12, Theorem 11 that the Lempel-Ziv algo- 
rithm [15] attains S*,,(R) when used as a F-V length code for 
n-tuples. If f is unknown, then 2 . (SI log (SI extra bits are needed 
to encode the index of the best f in the sense of minimizing 
H(Q,), among all ISI2 I s '  possible functions. 

B. V-F Length Codes 

For a V-F length code with 2"  codewords, the event pvF( X )  > R 
is equivalent to the event I (  X) < n / R .  The next theorem estab- 
lishes an upper bound on O(R),  as defined in (2.6), for V-F length 
codes. 

Theorem 2: For every sequence { Cn}" ~ , of complete and proper 
V-F length codes, C, with 2" codewords, any finite-state unifilar 
binary source P ,  and every H < R < 1, 

1 

R 
5 O*,,(R) -O*, , (R) .  (3.9) 

Proof: Let C,, be a given V-F length code with 2"  codewords 
and a length function I (  X ) .  As C, is assumed proper and complete, 
it can be represented by a complete binary tree with 2" leaves, 
where each internal node has two children. All words of length 
I( X )  greater than n / R  can be shortened to n / R  bits, with no loss 
in performance, by pruning all subtrees with roots at depth n / R ,  at 
the benefit of growing words which were originally shorter than 
n / R .  This is possible because there are as many as 2 " l R  possible 
words of length n / R ,  while only 2" words are needed. We now 
have a modified tree CL with all codewords no longer than n / R ,  
and with probability Pr{ I( X) < n / R} not greater than that of the 
original code C,,. Consider next a transformation of CL into an F-V 
length encoder with 2"lR codewords in the following manner: 
Every word with length I (  X) < n / R ,  is extended to n l R  bits by 
all exp, [ n / R  - I (  X)]  possible suffixes, and accordingly, the n-bit 
codeword for this word is also extended by all possible ( n / R  - 
I(X))-bit suffixes. We now have a F-V length code Ci  with 2"lR 
codewords and with length function denoted by L"( X). Note that 
the event /( X) < n / R for C,, is equivalent to the event L"( X) > 
n for C:. Hence, by applying Theorem 1 to F-V length codes for 

blocks of size n / R ,  we arrive at 

limsup [ - ; l o g P r { p v F ( X )  1 > R } ]  

n+m 

= limsup [ -; 1 IogPr {/(X) < %,I 
n+m 

1 L"( x) 
n+m n /R 

= limsup [ -; logPr { - > R ) ]  

1 

R 
5 -O*,,(R) = O*, , (R) .  (3.10) 

This completes the proof of Theorem 2. 0 

We now demonstrate a simple universal V-F length code with no 
more than 2" codewords, which asymptotically attains e*,,( R )  
uniformly for every P and every R .  

Let H(Q:) 6 H(Q,;) be the empirical entropy associated with 
X: for some positive integer 1. We would like each word in the 
code to be essentially n/H(Q:) bits long. Let C,* be the set of all 
source strings X,', where I is the smallest integer such that 

I .  [H(Q:) + E , , ]  > n ,  (3.11) 

and E ,  is chosen such that the total number of codewords produced 
does not exceed 2". 

We first show that t, = O(n-llog n) is large enough for this 
purpose. To do this, we need to overbound the number N,,, of 
words in C,* whose length is / + 1. Let T i  4 T,, C X '  denote the 
type of an /-vector X:. By construction, every X:+' E C,* satisfies 
I[ H(Q:) + E,] I n. Hence, for every Y /  E T i ,  at least one of the 
one-bit extensions is a member of C,*. In other words, either ( Y / ,  
"0") or Y;, "1") or both belong to C,*. Thus, since I T i  I I 
2nH(Qk) (which can be easily seen from (3.5) and the fact that 
Pr{TL} 5 l ) ,  we find that 

N',, 5 2 .  c I T i  I 
T i :  / f f ( Q $ ) s n - / e n  

2 /H(Qk) 5 2 .  c 
5 2 .  c 

T k :  / H ( Q $ ) s n - l t ,  

2n-/cn 
T i :  / f f ( Q i ) s n -  l e n  

5 2 ( / +  1)IS12,-"n, (3.12) 

where the last inequality follows from the fact that the number of 
types of /-vectors does not exceed ( I  + 1)Is1 in the binary case. 
Now, by (3.11), the shortest word in C, is essentially n / ( l  + E " )  

bits long. Hence, for any 6 > 0 and n sufficiently large, the 
cardinality of C,* is overbounded as follows. 

IC,*[ I c N',, 5 2" 
/ : / + l z n / ( l + c , J  

. [ 2 .  ( I +  1)'"2-' 'n]. (3.13) 

It is now easy to verify that in order to keep the right-hand side of 
(3.13) less than 2" ,  t ,  should be O(n-llog n). 

Before we show that the V-F length code defined in (3.11) attains 
O*,,(R), we first establish the fact that { lH(Q&)}[> I is a monotoni- 
cally increasing sequence for any string X. Let X [ E X '  be the 

/?"(I  - 6 )  
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prefix of X:+' E X / + ' .  Clearly, for any source P in the class Ps 
of binary unifilar Markov sources with I SI states, P ( X { )  2 

P ( X : + ' )  and hence, by (3.5) and by the fact that D(Q,(I P )  2 0 ,  

2-[H(Qk) = max P (  x:) 2 max P (  x /+')  

of the ith phrase. We are interested in the asymptotic behavior of 

(4.1) 
i =  1 

PEP, PEPS 

in the memoryless case. Using the Chernoff bound we obtain, 
- - 2-( /+l)HiQY'I  , (3.14) 

or equivalently, IH( Q:) 5 ( I  + 1) H (  Q: I). 

I (  X )  5 n / R is equivalent to the event 
To prove the asymptotic optimality of C,*, we note that the event 

(4.2) 
- - min 2"":R [ E2 -U/( X I ]  , lk, 

CY20 

[ H (  Q > I R )  + E , ]  > n ,  (3.15) 
R 

We now focus on the term E2-e / ix ' .  To overbound this term, we 

by the monotonicity of the left hand side of (3.11) as a function of 1. 
Finally, 

use the facts that I ( X )  
O(k- l  log k ) ,  I T i  I 5 exp, [ IH(Q>)] ,  and that the number of 
types of binary I-vectors is ( I  + 1). 

k / [ H ( Q L )  -k tk13 where ' k  = 

= Pr { H ( Q Y R )  > R - e , } .  (3.16) . {  - I [ H ( Q L )  + D ( Q ! x l l P ) ] }  

By a technique similar to [12, (19), (20)] but with n replaced by 
n /R, it is easy to verify that (3.16) decays with the exponential rate 

IV. CONCATENATING SHORT CODEWORDS 

The exponential growth of the storage needed for both V-F and 
F-V length codes is certainly the main practical difficulty in their 
implementation. Consider a codebook of 2 " codewords (henceforth, 
a 2 "-codebook) defined by n / k successive usages of a subcodebook 
of 2 k  codewords, where k divides n and assumed fixed. It is 
interesting to find the best achievable exponent (in n)  for sequences 
of F-V and V-F length codes of this structure. It turns out, as we 
show in this section, that for memoryless sources it is possible to 
attain an exponential rate e( R), which is smaller than the optimal 
rate for 2"-codebooks, but only by a term that decays as fast as 
k-llog k.  In other words, for k reasonably large but fixed, it is 
possible to attain performance arbitrarily close to the optimum, just 
by repeatedly using a 2k-subcodebook. We demonstrate this fact for 
V-F length codes, however, the same technique can be used for the 
F-V case as well. 

Consider the 2"-codebook of a V-F length code generated by all 

V-F length subcode. Since each word from the subcodebook is 
assigned to a k-bit subcodeword, a total of k . n / k = n bits are 
needed for the full codeword. To encode a given string X ,  we first 

subcodebook, and then encode each one of them separately using the 
subcode. As the V-F length subcode, we use the one described in 
Section 111-B, (3.1 l ) ,  with n replaced by k.  Let I (  X I )  be the length 

possible combinations of n / k  words from the 2k-codebook of a 1 

O s r s l + e k  r 
= exp, { - k [  min - ( a  + e;,(r - e k ) )  

parse it into n / k phrases X , ,  X , ,  . . . , X ,  ; k  with respect to the 
- d k ] ]  

(4.3) 

where 6, = k - '  log ( k / e k  + 2)2 = O(k-  I log k ) .  Combining 
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(4.2) and (4.3), we arrive at 

i =  1 

1 
5 minexp, { a i  - n [  min - 

U 2 0  o s r s i + e ,  r 

. ( a  + e*,,(r - ek)) - - 
k 

1 
= exp, { -n[max ( min - 

o s r s i + f ,  r 

where 

We now show that P(R) = e*,,(R). It was shown in [16] (see 
also [3], [12]) that for memoryless sources considered here, 

e;, ( r )  = max A( r - HA), 
h20 

where HA is the R h y i  entropy of the source, 

I 
X +  1 - 

H , =  -log p(X)l+h 
X€X 

Hence, by (4.5) and (4.6), 

2 max max min 
a20 h r O  re[O,l+ck] 

.{+h(H,+€,)] + x - -  R “ 1  
2 max max h ( a ,  A), 

U 2 0  h r O  

where 

Since R < 1 < 1 + t k r  we have 

(4.10) 

and thus, the value of a that maximizes h(a ,  A) is cyA = A(H, + 

E ~ ) .  Hence, 

p( R )  2 max h( a,, h) 
A Z O  

= - 1 max X(R - e k  - HA) 

R A Z O  

= --8;,(R 1 - e k )  

R 

= O*,,(R) - O(kW log k ) ,  (4.11) 

where we used the differentiability of O*,,(R) and the fact that 
t k  = O(k-l  log k ) .  Clearly, the term O(k-’ log k )  dominates 
k-’6,  in (4.4), and we conclude that 

1 “ l k  
- - I o g P r  l ( X i )  < n / R  

2 O*,,(R) - O( 7). log k (4.12) 

Finally, it should be pointed out that the redundancy term 
O(k-’log k )  in (4.9) can be decreased to O ( l / k )  if one uses a 
subcode matched to the source rather than a universal subcode. 

V. CONCLUSION 

We have seen that the best V-F length code provides an exponen- 
tial rate of Pr { p( X) > R }  , which is 1 / R times faster than the best 
F-V length code with the same number of codewords 2”.  An 
interesting question for future research is whether or not O*,,(R) is 
the best achievable exponential rate for Pr { p ( X )  > R }  among all 
variable-to-variable codes with 2 codewords, as well. 
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A Universal Model Based on Minimax Average 
Divergence 

Cheng-Chang Lu and James George Dunham, Member, IEEE 

Abstract-Given a set of training samples, the commonly used ap- 
proach to determine a universal model is accomplished by averaging the 
statistics over all training samples. It is suggested to use average diver- 
gence as a measurement for the effectiveness of a universal model and 
propose a minimax universal model that minimizes the maximum aver- 
age divergence among all training samples. Efficient searching algo- 
rithms are developed and experimental results are also presented. 

Index terms-Source coding, minimax methods. 

I. INTRODUCTION 

For a data compression system, it is reasonable to split the task 
into two considerations: source modeling and string encoding [ I ] .  
Several efficient source coding techniques have been proposed and 
widely applied [ 2 ] .  Given the availability of these source coding 
techniques, finding the best way to determine the source model 
becomes a crucial problem in data compression. 

Source modeling is intended to capture the structure and statistics 
of the entire information string. For a nonadaptive data compression 
system, the source model required by the encoding unit has to be 
determined from the input sequence before the corresponding codes 
can be generated. This requires each individual input sequencc to 
pass the source modeling part of the system first and then go 
through the coding part. Such implementation may not be acceptable 
in terms of extra memory and time required to describe and 
calculate the source model for each individual input sequence. One 
alternative to eliminate this overhead is to seek a universal model 
for a class of sequences that can be utilized to model similar data 
sets. Given a set of training samples, the commonly used approach 
to determine this universal model is accomplished by averaging the 
statistics over all training samples. In this correspondence, we 
suggest to use average divergence as a measurement for the effec- 
tiveness of a universal model and also propose a minimax universal 
model that minimizes the maximum average divergence among all 
training samples. 

Manuscript received April 23, 1990; revised March 11, 1991, This work 
was presented in part at the IEEE International Symposium on Information 
Theory. San Diego, CA, January 14- 19, 1990. 

C.-C. Lu is with the Department of Mathematical Sciences, Kent State 
University, Kent, OH 44242. 

J. D. Dunham is with the Department of Electrical Engineering, Southern 
Methodist University, Dallas, TX 75275. 

IEEE Log Number 9102760. 

This correspondence is organized as follows. In Section 11, we 
first analyze the conditioning-tree source model and its performance 
bounds. In Section 111, we present a universal model based on 
minimax average divergence. In Section IV, efficient searching 
algorithms are developed and experimental results are also pre- 
sented. 

11. CONDITIONING-TREE SOURCE MODEL 

The conditioning-tree source model was proposed in [ 2 ] ,  [3] and 
has been utilized as a source structure to determine the context for 
each input symbol. Consider the binary conditioning tree with 3 
terminal nodes as shown in Fig. 1 .  This tree can be used to parse 
sequence U as follow. When the input U, is received, if the 
previous input U,-, is 0, then the terminal node t ,  is reached and 
the context of U is set to be t , ;  otherwise, the context of U is set to 
be t ,  if U,-* is equal to 0 or the context of U is set to be t ,  if 
u,-~ is equal to 1. 

The T-conditioning entropy of the conditioning tree T for a given 
input sequence i is defined by 

IER 

where R is a set of terminal nodes of the conditioning tree T ,  q,( t )  
is the probability of the terminal node t appeared in the sequence i ,  
and 

Hi (a I  t )  = C - qj(aI  t )  . log qi(aI t ) ,  ( 2 )  
ass 

where q i (a  I t )  is the conditional probability for symbol “a” given 
terminal node t in the input sequence i ,  S is a set of source 
alphabets and Q, is the stochastic matrix based on qj(al t ) .  It is 
known that H (  Q, I T )  is the lower bound for the code rate that can 
be achieved in compressing the given input sequence i if the 
conditioning tree T is employed as the source structure and the 
empirical distribution Q, estimated from the input sequence i is 
used for probability distributions. As mentioned previously, we 
need to seek a universal model for a class of sequences to eliminate 
storage and computation overhead. Assume that the same condition- 
ing tree T is used and the stochastic matrix P is chosen as the 
universal probability distribution, then T-conditioning inaccuracy 
for a given input sequence i with stochastic matrix Qi 

(3) 

is the lower bound for the code rate [3]. The average divergence [4] 
between the stochastic matrix Q, of the ith training sequence and 
the universal model P is defined by 

The average divergence is the redundancy introduced by using P to 
design a code for the input sequence i .  

111. MINIMAX UNIVERSAL MODEL 

Given a set of training samples, a universal model for a class of 
sequences needs to be found to eliminate storage and computation 
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