
Variance algorithm for minimization

By William C. Davidon*

An algorithm is presented for minimizing real valued differentiable functions on an TV-dimensional
manifold. In each iteration, the value of the function and its gradient are computed just once,
and used to form new estimates for the location of the minimum and the variance matrix (i.e. the
inverse of the matrix of second derivatives). A proof is given for convergence within iV-iterations
to the exact minimum and variance matrix for quadratic functions. Whether or not the function
is quadratic, each iteration begins at the point where the function has the least of all past computed
values.

1. Introduction
One algorithm for minimizing functions, originally called
the "variable metric method" (Davidon, 1959), has been
found to compare favourably with all other gradient
methods (Fletcher and Powell, 1963; Box, 1966). In this
paper, a similar but simpler algorithm is presented which
possesses certain advantages, though computational
experience with it has so far been limited, f

In one common application of minimization algorithms,
the function to be minimized is the negative of the
logarithm of a probability distribution over a space, X.
In this case, every linear function, u, on the space has a
variance, or mean square deviation, which is a quad-
ratic function of u, and equals u.Vu, where V is the
variance matrix. For a normal distribution over X, the
variance matrix is also the inverse of the matrix of
second derivatives of the function <f>, where e~* is the
probability. It is convenient to generalize the use of the
term "variance" to mean the inverse of the matrix of
second derivatives of any function, whether or not it is
the negative of the logarithm of a normal distribution.
A particular property of this variance is the only one
used in subsequent proofs, and we choose it for our
formal

DEFINITION: The variance, V, of a function at a point
is a tensor (whose components form a matrix) with the
property that for all v, Vg'= v, where g' is the rate of
change in the gradient of the function for a motion with
velocity, v.

This variance can be formed by explicitly evaluating
the second derivatives and inverting their matrix; this
is the basis of the Newton-Raphson minimization al-
gorithm. When the matrix of second derivatives is sin-
gular, a generalized inverse can then be defined. In one
modification of the Newton-Raphson algorithm, this
generalized inverse is computed directly (Ben-Israel,
1965).

The essential feature of both the earlier "variable
metric" algorithm and this new one is that instead of

t Note added in proof: Some situations have been found in
which the algorithm as presented here becomes trapped in a loop.
This can be avoided by suitable changes in step three of the
algorithm, and these will be discussed in a subsequent paper.

computing a variance directly, successive estimates are
made for it using only evaluations of the function and its
gradient.

It has perhaps not been sufficiently emphasized that,
in the variable metric algorithm, two evaluations of the
function and its gradient are made in each iteration, so
that when minimizing a quadratic function on an
Af-dimensional space, 2N + 1 evaluations are usually
made, although in principle, only N + 1 should be
needed.

The variance algorithm presented here requires an
initial evaluation of the function and its gradient, and
then only one in each iteration, and still converges within
N iterations once in a quadratic region, regardless of its
past. Because it makes one final evaluation at the exact
minimum, which is not strictly necessary, a total of
N + 2 gradient evaluations are made in the quadratic
case, approximately half the number made in the earlier
variable metric algorithm.

One reason why the variable metric algorithm con-
verges in situations for which many others do so more
slowly, if at all, is that under suitable conditions, each
iteration begins at that point in the manifold where the
least value of the function has been obtained. This need
not be the case, however, if the one-dimensional inter-
polation made within each iteration gives too poor an
approximation to the true behaviour of the function, and
no further function and gradient evaluations are made
before starting the next iteration. In the new algorithm,
each iteration always begins where the least value of the
function has been obtained, yet only one function and
gradient evaluation is made each time.

2. The algorithm
Computationally, all quantities relevant here are of

three types: real numbers, denoted by lower-case Greek
letters; N-tuples of real numbers, denoted by lower-case
Latin letters; and N X iVreal matrices, denoted by upper-
case letters.

The following input information is required:
x(0), an arbitrary point, representing an estimate for

the location of a minimum.

* Physics Institute, University of Arhus, Arhus, Denmark. On leave from Haverford College, Haverford, Pa., 19041, U.S.A.
This work was partly supported by a Fulbright-Hays grant.

406

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/406/464060 by guest on 21 August 2022



Minimization
Vm, a symmetric, non-negative matrix, representing

an initial estimate for the variance matrix.
Situations in which a singular Vm is used will
be discussed in Section 5 on constraints,

a and /?, real numbers, satisfying 0 < a < 1 < /?, speci-
fying bounds on the allowable change that may
be made in the variance estimate within one
iteration.

e, a positive real number, used in a convergence
criterion, giving twice the estimated excess of
the function above its minimum value which is
required for continuing the computation.

Before entering the first iteration, the function, <£(0),
and its gradient, gm, at the point, x(0), are computed by
a separate algorithm. Each iteration begins with the
quantities, xM, <£(n), g w , and VM, as well as the con-
stants, a, /?, and c It is convenient to leave the enumera-
tion of the iterations implicit, so that henceforth, x and
x+ are equivalent to :c(n) and x(n+l).

The steps of the algorithm are:

(1) Define x* = x — Vg and compute the function
and its gradient, </>* and g* at x*, by a separate
algorithm.

(2) Define r = Vg* and p = g* . r.
If p < e, stop. The final estimate for the location
of the minimum is x*.

(3) Define y = - g . r / p.

I f -

I f -

I f -

+a

0 + 1

0 - 1

< y <
1 - a

+ a

0 + 1

, define A = a.

, define A = — Y

, define A =

If none of these three, define A = ——r.

Define V+ = V + (A - l)r r / p
(i.e., K+ = K,7 + ( A - l ) r / 0 / p ) .

(4) If <f> < <£*, define x+ = x, <f>+ = <£, g+
If <£* < <f>, define x+ = x*, </>+ = <£*,
Begin the next iteration.

= g.
+ = g*.

The matrix multiplication in step 1 forming Vg can be
avoided on all but the first iteration by using suitable
linear combinations of vectors already formed. When
this is done, the number of multiplications in each
iteration (exclusive of the function and gradient evalua-
tion) is approximately 3N2/2, for N > 1.

3. Analysis of the algorithm
STEP (1) proceeds to the estimated location of the

minimum and evaluates the function and its gradient at
this point.

THEOREM 1. If the true variance, VT, were constant
on the line from x to the minimum, and if Vg = VTg,
then x* would be the true location of the minimum.

PROOF: By definition, Vjg' gives the velocity, v, which
produces a rate of change, g', for the gradient. Hence,
if VT is constant along the line from x to the minimum,
where g* = 0, then x* = x — VTg. But, if Vg — VTg,
x* = x - Vg. QED.

If VT is constant everywhere and VT == V, the premises
of Theorem 1 are fulfilled. These are unnecessarily
strong assumptions, for x* may be the true location of
the minimum even when VT is not constant everywhere,
or when VT =£ V.

STEP (2) forms a residual vector, r = Vg*, which would
vanish if the exact minimum were found, since then
g* = 0.

THEOREM 2. If the true variance, VT, were constant
on the line from x* to the minimum, and if g*. VTg*=g*.
Vg*, then p would be twice the excess of the function at
x* above its minimum value.

PROOF: Since VTg' = v, </)' = v.g, and as VT is sym-
metric, </>" = g. VTg. Hence, if VT is constant along the
line from x* to the minimum, integrating twice gives
<f>* — 4>M = \g*- VTg*, where <f>M is the minimum
value of the function.

Hence, if g*. VTg* = g*. Vg*, <f>* - j>M = \g*. Vg*
= \ P • QED.

If V is the best available estimate for VT, and if the
objective is to find a point at which the function is within
e/2 of its minimum value, then p < e is an appropriate
condition for stopping the computation. There may
well be additional useful criteria for convergence, but
this one should be among them, not only because of
these considerations, but also because we are about to
divide by p.

STEP (3) forms a new variance estimate, V+, fulfilling
three conditions:
(A) If the true variance Krwere constant, and VTu = Vu
for some u, then we require that VTu = V+u. In other
words, if there are directions for which the true variance
and the present estimate agree, we want to pass this good
information on to the new estimate.

THEOREM 3. If VT is constant and VTu = Vu, and if
V+ — V is any multiple of rr (where r = Vg* and
(V+ — V)ij is a multiple of /y,), then VTu = V+u.

PROOF: By definition, Vj{g* — g) = x* — x, and
since x* = x — Vg, we have VT(g* — g) = — Vg.
Since r = Vg*, we have r = (V — VT) (g* — g).

Hence, if VTu = Vu, then r.u = {{V - VT\g*-g')).u
= (g* -g)-(y- VT)U = 0. If V+ - V is a multiple
of rr, then (V+ — V)u is proportional to /r.w = 0.
Hence VTu = F+w for all such u . QED.
(B) A second condition on the change in the variance
estimate is that we want to make only "reasonable"
changes within one iteration. If the function were known
to be quadratic and had a unique minimum, this would
not be necessary and only slows down the convergence
in some cases. However, when a minimum of an
arbitrary function is sought, this, and often other con-
ditions, can accelerate convergence by preventing
unwarranted extrapolations about the nature of the
function.
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Specifically, we require that, for all u,

<x.u.Vu< u. V+u < p u. Vu.

THEOREM 4: If V+ — V is a multiple of rr, then the
ratio, (u.V+u)/u.Vu, lies between 1 and A, where
V+ — V=(\ — l)rr/p.

PROOF: This follows by standard matrix methods.
To make the ratio furthest from one, u must be a mul-
tiple of g*, so that Vu is proportional to r. But for such
a u, (u. V+u)/u. Vu = X, if V + - V = (A - 1) rr/p.
QED.

Hence, we satisfy conditions (A) and (B) on V+ with
V + = V + (\—l)rr/p, for any A in the interval,
a < A < p.
(C), The third and last condition determining V + is
that, in a sense we will make precise, we want V+{g* — g)
to be as close to x* — x as possible, consistent with the
other conditions.

By the definition of the variance, the true variance,
VT, satisfies VT(g* — g) = x* — x, and so we are trying
to make V+ share this property. Now,

V+{g* -g)- (x* - JC) = V(g* - g)

+ (\-l)rr.(g*-g)/P-(-Vg)

= r(l + (A - 1)0, - r.g)lP)

y) - y).

Hence, V+(g* — g) = x* — x exactly if and only if
A(l + y) = y, and since this A is used when
a < yl(.Y + 1) < ft we have proved

THEOREM 5: If a < yj{y + 1) < ft then F+(#* — g)
= x* — x.

The precise form we choose of condition (C) is that A
is to minimize (A(l + y) — y)2/A, subject to <x < A < p.
This expression clearly vanishes if and only if
A(l + y) — y = 0, for which case, V+(g* — g) — x* — x.
We choose to minimize this particular function of A
because the resulting value of A as a function of y is
continuous and simple to evaluate. It is readily verified
that the piecewise rational function of y specified in
Step 3 of the algorithm has just this property. A more
elegant justification for minimizing (A(l + y) — y)2/A
is that it is the square length of the difference,
V+(g* — 8) — O* — x), using the metric (V+)~l.

After forming the new variance estimate, it remains
only to choose the initial x for the next iteration. In
the quadratic case, this can be completely arbitrary
without interfering with convergence within N iterations.
However, when the function is not quadratic, or when
rounding errors are significant, it is better to begin each
iteration at that point where the function has the least
of all values computed so far. In this way, the sequence
of function values at the beginning of each iteration
decreases monotonically. While this alone does not
insure convergence for all functions, it does avoid many
of the difficulties associated with other minimization
algorithms, such as the Newton-Raphson algorithm.

4. Convergence
For the proof that, under appropriate conditions, the

algorithm will terminate within N iterations in a quad-
ratic region, we need:

THEOREM 6: If F(0) is non-negative, then F(n) is non-
negative for all n. If K(0) is positive definite, then VM

is positive definite for all n.
The null space of Vm (i.e. the set of all u for which

V^u = 0) is equal to the null space of VM.
PROOF : The first two parts of the theorem are imme-

diate consequences of Theorem 4, and the restriction on
A, 0 < a < A. For the last part, if Vu = 0, then

so that V+u = Vu + (A — l)rr.u/p = 0, hence Vu = 0
implies V+u — 0. By induction, V-n)u — 0. Conversely,
if F+M = 0, Vu + (A— l)rr.u/p = 0, so that either
Vu = 0 and r.u = 0, or KM is a non-zero multiple of r,
in which case A = 0. But 0 < a < A implies A # 0,
hence V+u = 0 implies Vu = 0, and by induction,
V^u = 0 implies K<°>w = 0. QED.

The proof of Theorem 6 makes no reference to the
nature of the function being minimized, and so the non-
negative or positive definite properties of V will always
be preserved, except for the effects of rounding errors.
Because of these, when large numbers of iterations are
being made, occasional tests should be made to insure
that V remains non-negative or positive definite, as
required.

Our main result concerning quadratic convergence is:
THEOREM 7: If the true variance is constant, if a unique

minimum exists, if F(0) is positive definite, and if
a < y(n)/(y(B) + i) < ft m e a c n iteration—then for all
positive e, the algorithm will terminate within N itera-
tions. For sufficiently small e, it will terminate at the
exact minimum. If N iterations have been made, the
final variance estimate is exact.

PROOF : Let UM be the space of all vectors, u, such
that VTu = V(ti)u, where VT\% the true variance. Usually,
C/(0) is zero-dimensional (i.e. it consists only of the null
vector).

By Theorem 3, VTu = VMu implies VTu = V^+^u,
so that [/l"'c(/(«+|). If e < p, then r ̂  0, and since
{V•- VT){g* - g) = r, (g*-g)cW\ But, by
Theorem 5, when a < yW/(yW + 1) < p,

K<"+»(£* -g) = x*-x= VT(g* - g),
so (g* -g)e£/<"+".

Hence, the dimensionality of UM increases by one
during each iteration under the stated conditions, so
the dimensionality of UM is n greater than that of Um.
Since it cannot exceed N, p(n) < e for some n < N.

As the sequence of non-zero p(n) is finite, there is an
e less than all of them, and with this e, termination only
occurs with />(n) = 0, and hence g* = 0. Now, if a
unique minimum exists, the gradient vanishes only at
this minimum, and so x*(n) is the exact minimum.

If N iterations have been made, U(N) is N dimensional,
so VT and F(/v) agree on all vectors, hence F(Ar) = VT.
QED.
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We note that once a quadratic region is entered,
regardless of the nature of previous iterations, if
a < y<nY(y(n) + 1) < P, so that the required changes
in the variance estimate are not excessive, then exact
convergence still takes place within the next N iterations.

There are some algorithms, such as the conjugate
gradient algorithm (Hestenes and Stiefel, 1952), which
can never fully recover from the effects of a non-quadratic
region. While these algorithms can find the exact mini-
mum of a function which is quadratic everywhere (in the
absence of rounding errors), they may fail to do so once
there has been even a single non-quadratic iteration.

Under some conditions, we can insure that
a < y<")/(yC») 4- 1) < p on every iteration by an appro-
priate choice for the initial variance estimate, Vi0\
Essentially, if K(0) is overestimated in every direction by
a ratio not exceeding I/a, or if it is underestimated in
every direction by a ratio not less than 1/jS, then the
successive estimates converge to the true value mono-
tonically, and a < y<">/(y<"> + 1) < p for each iteration.

THEOREM 8: If the true variance, VT, is constant, if
p ¥=0, and if 0 < a.u. Vu < u. VTu < u. Vu for all u,
then a < y/(y + 1) < 1 and 0 < <xu. V+u < u. VTu
< u.V+u for all u.

PROOF : We simplify the proof by choosing a basis for
which V is a unit matrix. This involves no loss of
generality since the entire algorithm is invariant under
arbitrary non-singular linear transformations.

We can define eigenvectors, uh and eigenvalues, A,-
of VT by g* — g-=Syi/(- and x* — x= VT(g* — g)=S(-u,w,.
Then, since V is the unit matrix, r = 2,(1 — A,)M,- and
p = 2,(1 - A,)2«2. Defining c, = (1 - A,)«2 gives
p = 2,c,(l — A,), and since

y = — g.r/p, y = 2c,A,/2c,(l — A,),
and finally, y/(y + 1) = 2c,A,/2c,. Now from
0 < <xu. Vu < M. VTu < u.Vu for all u, it follows that
a < A,- < 1, and hence 0 < c,. Since p ^ 0, and
p = 2c,(l — A,), not all the c, can vanish, so that
2,c, < 0 and

2c,a Sc,A: v Sc;

He, 2c, y + 1 Lc,

The second part of the theorem follows immediately
from Theorem 4. QED.

COROLLARY: If the true variance is constant, if p =£ 0,
and if 0 < u. Vu < u. VTu < /3M. VU,
then 1 < y/(y + 1) < p,
and 0 < M. V+u < u. VTu < pu. V+u for all u.

The proof is the same as for the theorem, replacing
a < A, < 1 by 1 < A, < p.

By induction from the theorem or its corollary, if
V(0) satisfies the stated conditions, so will K<">.

Since it is generally better to interpolate than to
extrapolate, and interpolation takes place when the
variance estimate is too large, it is advisable deliberately
to overestimate the variance, and then choose a small a
to allow large reductions in the estimate within each
iteration. The closer a and /3 are to 1, the more cautious

is the search, and while this will slow down convergence
in some quadratic cases, it will help in some non-
quadratic situations. Computational experience with
functions of the type to be minimized is necessary to
make a wise choice for a and fl, though values of
a = 10~3 and p = 10 seem reasonable.

5. Variance estimates and constraints

Some users of the variable metric algorithm have
simply chosen the unit matrix for an initial variance
estimate. In the quadratic case, if there are no rounding
errors and no restrictions on the change in the estimate
allowed within each iteration, termination will still take
place within N iterations, although in most cases a
better choice than the unit matrix can be made.

When the function to be minimized is the negative of
a probability distribution, usually some estimate of the
variance can be made from an intuitive knowledge of
the empirical situation. Choosing an initial variance
estimate which is diagonal, and whose diagonal elements
are generous overestimates of the variance of the indi-
vidual parameters, can give much more rapid conver-
gence than choosing the unit matrix as an initial estimate.

In most cases, reducing the number of dimensions
considerably accelerates convergence, so that it is some-
times advantageous to make an initial minimization
with some of the less sensitive parameters held constant,
and then to remove the constraints on these only after a
rough minimum has been obtained. When constraints
on the parameters are desired for this or other reasons,
they can be readily imposed by choosing a singular non-
negative variance estimate. Theorem 6 establishes that
the null space of the variance estimate is unchanged in
successive iterations. If we wish to impose the con-
straints, u,.v = 0, on the velocities in each iteration, we
require only that Vu, = 0 initially for all /. For any F
and My, there is a V* whose null space is spanned by the
null space of V and the M,-. It can be constructed by the
algorithm

Vo= V.

If

If u,. ViU/ = 0, then Vi+, = V,.

V* = Vk, where M0, M,, . . . uk_{ are the given null
vectors.

Were there no rounding errors, this orthogonalization
would need to be done only once. However, because
of the effects of rounding, it is generally advisable to
repeat it after many iterations.

6. Conclusion

The algorithm presented here is in a sense minimal;
only its essential features have been presented. There
are many additions which can, and in some cases should,
be made to it. For example, if it is desired to know the
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determinant of the variance, then if the determinant,
A(0), of the initial estimate is provided, the determinant
of all successive estimates can be simply evaluated by
A+ = AA. Similarly, if the inverse, A(0), of K<0) were
provided, the inverse of successive variance estimates
can be evaluated byA+ = A + (A~' — l)g*g*/p.

A more fundamental alteration would be to change
the differential structure of the manifold on which the
function is defined. Instead of obtaining the new point,
x*, by x-Vg, a geodesic path in a manifold with a less
trivial connection could be used. A wise choice for this
connection, instead of automatically choosing a vector
space structure for the manifold, often can vastly
accelerate convergence. In some cases, it can reduce
highly non-quadratic functions to quadratic ones. Since
this possibility exists for all gradient methods, we will
not discuss it further here, except to mention that this
algorithm can readily incorporate such changes in the
structure of the manifold, for they affect only Step (1)
of the algorithm.

Another addition is to make more use of the computed
values of the function. In the basic algorithm as it
stands, these are only used to choose the starting point
of the next iteration, so that a monotonically decreasing
sequence of function values is insured. But from the
knowledge of the function and its gradient at two points,
a cubic rather than a quadratic interpolation for the
function can be made, as has been described elsewhere
(Davidon, 1959; Fletcher and Powell, 1963). When this
is done, the residual vector, r, should no longer be

defined as Vg*, but rather as (Vg')-v, where g' is the
rate of change of the gradient along the line from x to
x* and v is the velocity along this line. In the quadratic
case these are equal, Vg' — v = V (g* — g) — (x* — x)
= V(g*-g)-(-Vg)=Vg*.

Although theoretical analysis suggests that this
variance algorithm has unique desirable features, many
open questions remain on which more analysis and
computational experience are needed. Some of these
questions concern:

1. Comparison of its speed of convergence with that
of other algorithms for different types of functions.

2. The effects of the bounds, a and fi, on the speed of
convergence.

3. The usefulness of additional convergence criteria.
4. The effects of rounding errors when minimizing

quadratic functions, for example to invert an ill-
conditioned matrix, A, by minimizing \x. Ax.
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Book Review
Computer and Information Sciences—II, edited by Julius T.

Tou, 1967; 368 pages. (New York: Academic Press, 128s.)
This book is an extended, and edited, version of the papers
presented at a conference held at the Battelle Memorial
Institute, Columbus, Ohio, in August 1966; this was the
second of a planned series of meetings. Faced with the title
of "Computer and Information Sciences" one might expect
a very wide range of topics to be covered. In fact, the centre
of interest is very much confined to artificial intelligence and
self-adaptive automatic control. Participation was inter-
national, with speakers coming from six countries.

Papers on self-adaptive behaviour and machine learning
preponderate, and there is a smaller group on pattern recog-

nition. An experienced worker in the field will find little
that is new here, although the proposal of Gross and Nivat
for a computer language to control the human-like movements
of a robot is certainly novel. On the other hand the standard
of presentation, and editing, of papers is unusually high;
several papers have very useful survey material, for instance
the papers of Tou and Heydorn, and of Watanabe and his
colleagues cover a great deal of the theory of pattern recog-
nition. There is a lot to be said in favour of the full style of
presentation found in this book, and the newcomer, or
interested onlooker, may find it a useful reference.

J. J. FLORENTTN (London)
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