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Purpose: Low-dose x-ray computed tomography (CT) is clinically desired. Accurate noise modeling

is a fundamental issue for low-dose CT image reconstruction via statistics-based sinogram restoration

or statistical iterative image reconstruction. In this paper, the authors analyzed the statistical moments

of low-dose CT data in the presence of electronic noise background.

Methods: The authors first studied the statistical moment properties of detected signals in CT trans-

mission domain, where the noise of detected signals is considered as quanta fluctuation upon elec-

tronic noise background. Then the authors derived, via the Taylor expansion, a new formula for the

mean–variance relationship of the detected signals in CT sinogram domain, wherein the image for-

mation becomes a linear operation between the sinogram data and the unknown image, rather than

a nonlinear operation in the CT transmission domain. To get insight into the derived new formula

by experiments, an anthropomorphic torso phantom was scanned repeatedly by a commercial CT

scanner at five different mAs levels from 100 down to 17.

Results: The results demonstrated that the electronic noise background is significant when low-mAs

(or low-dose) scan is performed.

Conclusions: The influence of the electronic noise background should be considered in low-dose

CT imaging. © 2012 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4722751]
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I. INTRODUCTION

Low-dose x-ray computed tomography (CT) is clinically de-

sired. It can be achieved by delivering less x-ray energy to

the patient via lowering the x-ray tube mAs or kVp val-

ues in data acquisition.1, 2 However, the quality of low-dose

CT images would be severely degraded due to excessive x-

ray quanta fluctuation and system inherent electronic noise

background in the acquired data,3, 4 if there is no adequate

noise treatment in processing the data for image reconstruc-

tion. Accurate statistical modeling of the data is a funda-

mental issue for low-dose CT imaging via either statistics-

based sinogram restoration2, 5–7 or statistical iterative image

reconstruction.8–10 For a clinical x-ray CT detection system,

the quanta noise is introduced as x-ray flux being generated

from the x-ray source and propagates along as the x-ray flux

traversing the patient, while the electronic noise is intrinsic to

the detection system.11, 12

The two principal sources of causing the CT data noise,

i.e., the photon counting statistics and the electronic noise

background, have been investigated individually.4, 11, 12 For

polychromatic x-ray generation, the signal statistics fol-

lows the compound Poisson distribution.13 While the math-

ematical formula of the compound Poisson distribution has

been explicitly derived,13 its manipulation seems numerically

intractable14 and encounters more severe challenges if the

electronic noise background is included. To consider the elec-

tronic noise background, the x-ray source is usually assumed

approximately as monochromatic and the signal statistics is

then described by the Poisson distribution.5, 6, 9 For a clin-

ical x-ray CT detection system, the electronic noise back-

ground follows a normal distribution,4, 6, 12 where the mean

and variance reflect the dark current and readout noise of

electronics, respectively. For low-dose CT imaging, the elec-

tronic noise background has been conjectured as an impor-

tant factor affecting the image quality.4, 15 This work extends

the previous study16 to consider explicitly the electronic noise

background. Because the variance of data measurements is

an important factor and determines the relative weight for

each measurement in either statistics-based sinogram restora-

tion or statistical iterative image reconstruction,5–10 this work
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focuses on the variance analysis, where a mean–variance re-

lationship with inclusion of the electronic noise background

is derived and validated and the contribution of the electronic

noise to the data variance is measured.

The remaining sections of this paper are organized as fol-

lows. In Sec. II, we first briefly describe the previously gained

knowledge on the noise properties of low-dose CT measure-

ments and then present a statistical moment analysis on the

measurements in CT transmission domain. Based on the anal-

ysis, we develop a new noise model to reflect the relation-

ship between the mean and variance of the measurements in

CT sinogram domain. Finally, to validate the presented noise

model and get insight into the associated parameters, experi-

mental design for data acquisition is outlined. In Sec. III, ex-

perimental results are reported, followed by discussion and

conclusion in Sec. IV.

II. METHOD

II.A. Statistical model of CT transmission data

Previous investigations have revealed the two principal

sources from which the CT transmission data noise arises, i.e.,

x-ray quanta noise and system electronic noise. The quanta

noise is due to the limited number of x-ray photons collected

by the detector and the electronic noise is the result from

electronic fluctuation in the detector photodiode and other

electronic components.4, 12 For polychromatic x-ray genera-

tion and ignoring the beam hardening effect, the acquired CT

transmission data by energy integrating detection can be de-

scribed by a statistically independent compound Poisson dis-

tribution plus a statistically independent Gaussian or normal

distribution. By the mathematical notations in Refs. 5–7, the

transmission data can be expressed as

I = compound Poisson(λ,�) + Normal
(

me, σ
2
e

)

, (1)

where the functional form of compound Poisson (λ, �) is

given in Ref. 13, notation � represents the x-ray energy spec-

trum, and parameter λ is the average number of x-ray pho-

tons having traversed the patient, i.e., the expectation value

of the number of photons, and is a measure of the radiation

intensity collected by the detector. Given the mAs and kVp

setting and body size, λ reflects the radiation dosage level.

Normal(me, σ
2
e ) denotes the normal distribution of the elec-

tronic noise with mean me and variance σ 2
e . In modern CT

systems, the mean me of the electronic noise, arising from the

detector dark current, can be determined immediately before

each scan by sampling the signals in unexposed detectors over

some time interval.7, 12 The variance σ 2
e of the electronic noise

can be estimated from the sample variance of a series of dark

current measurements. If a detector element is indexed by i,

then all the three parameters, (λ, me, σ 2
e ) in Eq. (1) shall have

a subscription of i, i.e., ( λi, me, i, σ 2
e,i). With the assumption

of monochromatic x-ray generation, Eq. (1) reduces to

I = Poisson(λ) + Normal
(

me, σ
2
e

)

. (2)

Equation (2) represents a noise model of the CT transmis-

sion data, ignoring the polychromatic nature of x-ray gener-

ation and other measurement errors. An analysis on the sta-

tistical moment properties of this noise model is given in

Sec. II.B.

II.B. Statistical moment analysis of CT transmission
data

In statistics, given a random variable X, the moment gen-

erating function is defined as φX(t) = E[etX], where E[.] in-

dicates the expectation operation.17 It is well-known that the

moment generating function for the sum of independent ran-

dom variables is just the product of the individual moment

generating functions.17 Thus, for the CT measurement model

of Eq. (2), let I = X + Y, where the random variables X and

Y are independent from each other and follow the Poisson

and Gaussian distributions, respectively, we have the follow-

ing moment generating functions:

(1) For the Poisson statistics, Poisson(λ), with parameter

λ > 0, the moment generating function of X is

φX(t) = exp{λ(et − 1)}. (3)

(2) For the Gaussian statistics, Normal(me, σ
2
e ), with pa-

rameters (me, σ
2
e ), the moment generating function of

Y is

φY (t) = exp

{

met +
σ 2

e t2

2

}

. (4)

(3) For the mixture distribution, Poisson(λ)

+ Normal(me, σ
2
e ), the moment generating func-

tion of I = X + Y can be calculated by

φI (t) = φX+Y (t) = E[et(X+Y )] = φX(t)φY (t)

= exp

{

λ(et − 1) + met +
σ 2

e t2

2

}

. (5)

According to the properties of the generating function, we

have the following results:

E[I ] = φ′
I (0) = λ + me, (6)

E[I 2] = φ′′
I (0) = (λ + me)2 +

(

λ + σ 2
e

)

, (7)

E[I 3] = φ′′′
I (0) = (λ + me)3 + 3(λ + me)

(

λ + σ 2
e

)

+ λ,

(8)

where the superscript notation " ′ " reflects the derivative op-

erator. Furthermore, the second and third center moments of I

can be calculated as

E[(I − EI )2] = E[I 2] − (E[I ])2 = λ + σ 2
e , (9)

E[(I − EI )3] = E[I 3] − 3(E[I 2])(E[I ]) + 2(E[I ])3 = λ.

(10)

Equations (6) and (9) indicate the mean and variance of the

measurement I, respectively. Equations (6)–(10) will be used
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TABLE I. Order analysis of different terms in Eq. (17) under conditions of different ratios λ/σ 2
e .

λ/σ 2
e = O(100) λ/σ 2

e = O(101) λ/σ 2
e = O(102) λ/σ 2

e = O(103) λ/σ 2
e = O(104) λ/σ 2

e = O(105)

T̃2/T̃1 O(100) O(10−1) O(10−2) O(10−3) O(10−4) O(10−5)

T̃3/T̃1 O(10−2) O(10−2) O(10−3) O(10−4) O(10−5) O(10−6)

T̃4/T̃1 O(10−3) O(10−3) O(10−5) O(10−7) O(10−11) O(10−13)

in Sec. II.C. For simplicity purpose, the expectation operation

E[.] will be replaced by E hereafter.

II.C. Variance analysis of the transmission data in CT
sinogram domain

According to the results of the above statistical moment

analysis, the mean and variance of I in Eq. (2) can be written

as follows:

EI = λ + me and Var(I ) = λ + σ 2
e . (11)

Based on the Lambert–Beer’ law, the measurement p of the

line integral along an attenuation path can be approximately

calculated by

p = ln
I0

I
= ln(I0) − ln(I ), (12)

where I0 represents the radiation intensity prior to arrival at

the body and can be measured by system calibration, e.g., by

air scans. Therefore, I0 is usually treated as a nonrandom fac-

tor. According to the Appendix at the end of this paper, by the

use of the relationship of Eq. (12) and the three-order Tay-

lor expansion about the functions ln (x) and ln 2(x) at the ex-

pectation point of EI, the variance of measurement p can be

expressed as follows:

Var(p) = Var(ln(I )) ≈ (ln′(EI ))2Var(I )

−
(ln′′(EI ))2Var2(I )

4
+T =

Var(I )

(EI )2
−

Var2(I )

4(EI )4
+ T ,

(13)

where

T =

(

(ln2(EI ))′′′

3!
−2

(

ln(EI )+
ln′′(EI )

2!
Var(I )

)
ln′′′(EI )

3!

−

(
ln′′′(EI )

3!

)2

E(I − EI )3

)

E(I − EI )3. (14)

According to Eq. (11), Var(p) in Eqs.(13) and (14) can be

expressed as

Var(p) =
λ + σ 2

e

(λ + me)2
+

−
(

λ + σ 2
e

)2

4(λ + me)4

+

(

−λ

(λ + me)3
+

λ
(

λ+σ 2
e

)

3(λ + me)5
−

λ2

9(λ + me)6

)

. (15)

In reality, in order to reduce the effect of detector dark current,

the mean me of the electronic noise is often calibrated to be

zero.7, 12 Thus, the variance of the line-integral measurement

in Eq. (15) with me = 0 can be written as

Var(p) =
λ + σ 2

e

λ2
︸ ︷︷ ︸

T1

+
−

(

λ + σ 2
e

)2

4λ4
︸ ︷︷ ︸

T2

+

(

−
1

λ2
+

(

λ + σ 2
e

)

3λ4
−

1

9λ4

)

︸ ︷︷ ︸

T3

. (16)

Based on the rational function expansion,18 Var(p) in the

three-order Taylor expansion (16) can be further expressed as

Var(p) =
1

λ
︸︷︷︸

T̃1

+
σ 2

e − 5
4

λ2
︸ ︷︷ ︸

T̃2

+
− 1

2
σ 2

e + 1
3

λ3
︸ ︷︷ ︸

T̃3

+
− 1

4

(

σ 2
e

)2
+ 1

3
σ 2

e − 1
9

λ4
︸ ︷︷ ︸

T̃4

. (17)

The difference between the rational function expansion

(17) and the original Taylor expansion (16) is the ordering

along the parameter λ. Since λ reflects the mean radiation

intensity of detected x-ray photons, Eq. (17) might be more

meaningful than Eq. (16) in analyzing the relative importance

of those different terms T̃i (or mean radiation intensity) for

low-dose CT imaging. The first term in Eq. (17) reflects the

variance which is mainly due to the quanta noise or Poisson

statistics. The electronic noise affects the second and higher

terms in the total variance of Eq. (17). Therefore, the signif-

icance of the electronic noise can be measured with respect

to λ. From previous reports,9, 10, 19, 20 λ is in the range of tens

for ultra low-dose scans10 up to thousands for normal-dose

scans.9, 19, 20 In this study, the minimum order of λ was as-

sumed at O(101), i.e., an extremely low count imaging. Using

the first term T̃1 = 1/λ of Eq. (17) as a reference, we per-

formed an order analysis on the other terms in Eq. (17) under

the conditions of different ratios λ/σ 2
e . The results are shown

in Table I.

In the extremely low-dose CT imaging situation, the order

of λ/σ 2
e may approach to O(100), see the second column of

Table I, i.e., the x-ray signal is at the same magnitude as the

electronic noise background. In this case, the second term is

at a similar order as the first term and so it must be consid-

ered. The third and higher terms are at a level more than two

orders lower than the first term and so they may be ignored.

At the low-dose scanning level with λ/σ 2
e at the order O(101),

see the third column of Table I, the second term is only an or-

der lower than the first term and so it shall be considered. The

other terms may be ignored. In other cases from relatively
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TABLE II. Order analysis of different terms in Eq. (16) under conditions of different ratios λ/σ 2
e .

λ/σ 2
e = O(100) λ/σ 2

e = O(101) λ/σ 2
e = O(102) λ/σ 2

e = O(103) λ/σ 2
e = O(104) λ/σ 2

e = O(105)

T1/T̃1 O(100) O(100) O(100) O(100) O(100) O(100)

T2/T̃1 O(10−1) O(10−1) O(10−1) O(10−1) O(10−1) O(10−1)

T3/T̃1 O(10−1) O(10−1) O(10−1) O(10−1) O(10−1) O(10−1)

low-dose to normal-dose imaging, i.e., the order of λ/σ 2
e is

higher than O(101), (see the fourth and higher columns in

Table I), the second and higher terms (i.e., the electronic noise

background) may be ignored.

Assuming that the ratio Ti/T1 (i = 2, 3, 4 ) is less than the

order of O(10−2) for low-dose CT imaging, we obtain a new

approximation of Var( p) in Eq. (17) with consideration of the

electronic noise background as follows:

Var(p) =
1

λ
+

σ 2
e − 1.25

λ2
. (18)

where the constant term “−1.25” may vary slightly when dif-

ferent order Taylor expansion is used.

For comparison purposes, we performed a similar ordering

analysis using the original Taylor expansion form of Eq. (16).

Since λ indicates the mean radiation intensity, then T̃1 = 1/λ

was used as the reference (i.e., the case of ignoring the elec-

tronic noise background). The results are shown in Table II.

It can be observed that both the second and third terms in Eq.

(16) may have noticeable contributions to the total variance if

assuming that the ratio Ti/T̃1 (i = 1, 2, 3 ) would be less than

the order of O(10−2) in low-dose CT imaging. In other words,

if Eq. (16) is used for CT image reconstruction, the second

and third terms in Eq. (16) shall be included for all dose level

imaging. The inclusion of these two terms can introduce sig-

nificant computing complexity for the image reconstruction

task.

Considering the different expansion properties in Eqs. (16)

and (17), we selected the rational function expansion of

Eq. (17) for the following studies. For the low-dose CT im-

age reconstruction in the ratio range Ti/T1 (i = 2, 3, 4 ) of less

than the order of O(10−2), we conjecture that the variance of

Eq. (18) shall be considered.

By the Lambert–Beer’ law, the mean λ of the transmission

datum and the mean p̄ of the line-integral measurement p can

be approximately expressed as11

λ = I0 exp(−p̄). (19)

Considering the use of Bowtie attenuating filtration on the

x-ray flux and system calibration operations among all detec-

tor elements or bins,12 the incident radiation intensity I0 will

no longer remain constant for all detector bins. For a detector

bin i, Eq. (19) then becomes

λi = I i
0 exp(−p̄i). (20)

Thus, Var( pi) of Eq. (18) for each detector bin i can be ex-

pressed as

σ 2
pi

= Var(pi) =
1

λi

+
σ 2

e,i − 1.25

λ2
i

=
1

λi

(

1 +
σ 2

e,i−1.25

λi

)

= Ŵi exp(p̄i)
(

1 + Ŵi exp(p̄i)
(

σ 2
e,i − 1.25

))

, (21)

where Ŵi = 1/I i
0 . Considering the polychromatic nature of

x-ray generation and system calibration, Ŵi may no longer be

exactly equal to 1/I i
0 , but can be measured by repeated scans.

Obviously, if ignoring the electronic noise background in

Eq. (2), the variance estimation by Eq. (21) would reduce to a

similar one as that in Ref. 2. Validation of the new mean–

variance relationship (21) with inclusion of the electronic

noise background at different mAs levels and study of its as-

sociated parameters (Ŵi, σ
2
e,i) are performed by the following

experimental design. The main goal in the experimental stud-

ies is to estimate the parameters {Ŵi, σ
2
e,i} and analyze their

roles in the data variance σ 2
pi

.

II.D. Data acquisition

Experimental phantom data were acquired using a clinical

CT scanner (Siemens SOMATOM Sensation 16 CT scanner).

An anthropomorphic torso phantom (Radiology Support De-

vices, Inc., Long Beach, CA) was used as shown in Fig. 1.

The phantom was scanned repeatedly 150 times by a cine

mode at a fixed bed position, i.e., each time the scanner ro-

tated 360o or a full circle around the phantom while the bed

position remains the same. Each of the repeated scanning of

150 times was set at a specific mAs level. A total of five dif-

ferent mAs values were used from 100 down to 17, i.e., 100,

80, 60, 40, and 17 mAs. By each mAs value, the tube voltage

was set as the same as 120 kVp. In other words, the phan-

tom was scanned at five different mAs levels; and at each

mAs level, the scanner rotated around the phantom 150 times.

The parameters of scanning geometry were as follows: (1)

Each rotation included 1160 projection views evenly spaced

on a circular orbit. (2) Each view contained 672 data ele-

ments each from one of the 672 detector bins. (3) The distance

from the detector arrays to the x-ray source was 1040 mm.

(4) The distance from the rotation center to the x-ray source

was 570 mm. (5) The space of each detector bin was

1.407 mm.

In modern CT systems, the CT transmission measurements

are usually calibrated and outputted as scaled line-integral

measurements or sinograms, {p̂i}. In order to match the

physics meaning of the line integrals {pi} in the sinogram do-

main [i.e., the Lambert–Beer’ law of Eq. (19)] and also to give

a reasonable estimation about the parameter λi in Eq. (20),

according to the calibrated output of sinograms as described

in Ref. 16, the outputted sinograms in this study were scaled

by a scaling factor 2294.5, which relates to the number of

bits stored in the computer. In other words, the stored dig-

ital number and the physical line integral are related by

p̂i = 2294.5pi . In Sec. III, we will focus on the experimental
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FIG. 1. Illustration of an anthropomorphic torso phantom (a), an acquired dataset in sinogram format from one slice of the 16 detector rows (b), and a CT image

reconstructed by a filtered back-projection (FBP) method from the sinogram dataset (b).

studies of the relationship between the mean and variance of

Eq. (21).

III. RESULTS

To estimate the two parameters (Ŵi, σ
2
e,i) in Eq. (21), we

first calculated the sample mean p̄i and variance σ 2
pi

using the

150 samples of the scaled outputted sinograms or the physical

line-integral measurements {pi} from each channel i in one of

the 16 detector rows at each mAs value. Since each rotation

contained 1160 projection views, there were a total of 1160

calculated pairs (p̄i ,σ
2
pi

) for each channel i for each mAs level.

A set {p̄i}, i = 1, 2, 3, . . . , 672, makes up a projection view for

a detector band. All the 1160 projections on this detector band

around the phantom make up a sinogram. Figure 1(b) shows

an example of such a sinogram. A presentation in sinogram

format of the variance images {σ 2
pi

} is shown in Fig. 2 for

different mAs levels.

Comparing the variance image at 100 mAs level with that

at 17 mAs level, the effect of the electronic noise background

is noticeable by the following observations. Since the elec-

tronic noise is relatively uniform across all detector bins, the

data variance image shall be less uniform at 100 mAs level

than that at 17 mAs level. This is observed in the figure. At

100 mAs level, the variance shall be smaller at less attenuated

areas and remains nearly the same at heavily attenuated areas

where the electronic noise dominates. This is also observed in

the figure. One of the heavily attenuated areas in the sinogram

representation is at the bins from 200 to 500 and views from

200 to 400 and another area is at the bins from 200 to 500 and

views from 750 to 950.

In the previous study,16 the mean–variance relationship in-

volves one parameter for each detector bin i, i.e., Ŵi, and so

this parameter at each bin i was first calculated from the cor-

responding pair (p̄i , σ 2
pi

) and then averaged over the 1160

views. In this work, there are two parameters {Ŵi, σ 2
e,i} in

the variance estimation model (21), and the previous method

is no longer applicable. Therefore, we took an alternative ap-

proach of estimating the parameters Ŵi and σ 2
e,i by fitting the

1160 paired data for each bin i. Each set {Ŵi} or {σ 2
e,i} can

be plotted as a curve along the bin index, i = 1, 2, 3,. . . ,

672, i.e., across the field-of-view (FOV). In the parameters

fitting experiments, the MATLAB function “lsqcurvefit” was

used together with the “trust-region-reflective method.” To

ensure computing accuracy, the associated optimization set-

tings were as follows: (1) the termination tolerance on the

function value was 1 × 10−6; (2) the termination tolerance

on the variable was 1 × 10−6; and (3) the maximum iteration

is 400. To perform the goodness-of-fit for evaluating the pre-

sented model (21), we used the sum of squares due to error

(SSE), the coefficient of determination (or R-square), and the

root mean squared error (RMSE).

Figure 3 shows the fitted parameter factors {Ŵi} in Eq. (21)

from the 150 repeatedly measured samples at the five dif-

ferent mAs levels. The curves in Fig. 3(a) were fitted from

the variance estimation model (21) without considering the

electronic noise background (i.e., set σ 2
e,i = 0). These curves

are similar, as expected, to those in Ref. 16. Some variations

from those curves in Ref. 16 can be seen because of the use

of different mean–variance relationship formulae and differ-

ent implementations of the calculation procedure. The sim-

ilarity at higher mAs levels (≥40) indicates the domination

of the Poisson statistics of the quanta noise where including

or ignoring the electronic noise does not make a noticeable

difference. The noticeable difference at the low mAs level,

e.g., 17 mAs indicates the influence of the electronic noise

(i.e., the difference occurs because of the electronic noise pre-

sented in the acquired data, but was ignored in the calcula-

tion procedure). The above observations from Fig. 3(a) with

comparison to the results in Ref. 16 can also be seen with

comparison to Fig. 3(b). The curves in Fig. 3(b) were fitted

from the variance model (21) with consideration of the elec-

tronic noise. Those curves at higher mAs levels (≥40 ) are

similar in shape to that in Fig. 3(a), indicating the domina-

tion of the Poisson statistics at relatively higher dose imag-

ing cases. The curve at 17 mAs level is noticeably different

from that in Fig. 3(a), indicating the influence of the electronic

noise.
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FIG. 2. The sinogram presentation of variance images calculated from the 150 repeated samples of the scaled outputted sinogram for each channel i in one of

the 16 detector rows at each mAs value. From (a) to (e), the corresponding mAs value is 17, 40, 60, 80, and 100, respectively.

To more clearly see the difference between Figs. 3(a) and

3(b), we plotted the curves by continuous lines in Figs. 3(c)

and 3(d). These continuous lines compare the fitted {Ŵi}

with/without considerations of the electronic noise in model

(21) at 17 mAs and 100 mAs, respectively. The most differ-

ent line segment ranges from bin 200 to bin 500, concurring

with the heavily attenuated area in Fig. 2. In summary, it is

observed that the shapes of {Ŵi} curves from the variance

model (21) are similar at all the mAs levels in the presence

of electronic noise, see Fig. 3(b). This is expected, because of

Ŵi ≈ 1/I i
0 , that (1) each curve shall be symmetric from left

to right to reflect the symmetrical effect of the Bowtie filtra-

tion and (2) the amplitude of each curve shall increase from

center toward both sides to reflect the inverse proportional re-

lationship between Ŵi and I i
0 (or the Poisson characteristics).

It is further observed that the difference of the fitted {Ŵi}

with/without consideration of the electronic noise in model

(21) is noticeable in the low-dose imaging case of 17 mAs

level, see Fig. 3(c). This difference demonstrates that in low-

dose CT imaging, the electronic noise can have a noticeable

influence for ideal singoram estimation and image reconstruc-

tion. At the normal-dose level with mAs value of 100, the sim-

ilarity in Fig. 3(d) demonstrates that the electronic noise back-

ground can be ignored. This experimental observation con-

curs with the current practice in x-ray CT applications at the

normal-dose level. By comparing Fig. 3(a) with Fig. 3(b) for

this phantom/body size, the electronic noise may be ignored

at a mAs level greater than 40.

The above graphical observations from Fig. 3 can be doc-

umented by quantitative validation measures. For example,
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FIG. 3. An illustration of the fitted factor {Ŵi} in model (21) from 150 repeated measurements at the five different mAs levels: (a) the fitted results from the

variance estimation model (21) without considering the electronic noise (i.e., set σ 2
e,i = 0); (b) the fitted results from the variance estimation model (21) with

consideration of the electronic noise; (c) a comparison of the fitted {Ŵi} with/without consideration of the electronic noise in model (21) at 17 mAs level; and

(d) a comparison of the fitted {Ŵi} with/without consideration of the electronic noise in model (21) at 100 mAs level.

Table III shows the corresponding coefficients of determi-

nation with 95% confidence bounds and the goodness-of-fit

for fitting model (21) at the detector bin 300 and bin 450.

It can be seen that in all the cases, the goodness-of-fit mea-

sures with consideration of the electronic noise are better than

those without considering the electronic noise in model (21).

Another example is the consistency measure between the fit-

ted parameters {Ŵi} with and without considering the elec-

tronic noise in model (21) at different mAs levels. This mea-

sure is usually given by the Lin’s concordance correlation

coefficients.21 Table IV shows the results of this measure. It

can be seen that the Lin’s concordance coefficients increase

as the mAs level increases from 17 to 100, and all the lower

bounds of the 95% confidence interval of the correlations are

larger than 0.9, except in the case of 17 mAs. This consis-

tency measure indicates that the difference is significant at

17 mAs level with and without considering the electronic

noise in model (21), and suggests that the influence of elec-

tronic noise at lower mAs level must be considered.

Figure 4 shows the fitted parameter factor {σ 2
e,i} in model

(21) at five different mAs levels, where the median value of

each fitted {σ 2
e,i} is shown by the horizontal lines. To get in-

sight into these fitted results about {σ 2
e,i}, we look back to

Figs. 2 and 3.

At the 17 mAs level, we have observed from Figs. 2(a)

and 2(e) that the electronic noise plays a significant role in

the data (or total) noise. Thus, we expect that at the 17 mAs

level, the system calibration on the detected signals for the

outputted sinograms would not alter too much the electronic

noise variance. In other words, the fitted {σ 2
e,i} at low mAs

level would reflect more closely to the actual variance of the

electronic noise than that at high mAs level. Therefore, the

fitted {σ 2
e,i} are relative-uniformly distributed among all de-

tector bins, see Fig. 4(a), concurring with the expectation, and

the median value is around 10, agreeing with the previously

reported values.4, 7, 11, 12

At 40 and higher mAs levels, the electronic noise plays

less and less role in the total data noise, and the nonstationary
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TABLE III. The coefficients of determination with 95% confidence bounds and the goodness-of-fit for fitting model (21) at the detector bin 300 and bin 450

using the 150 repeated measurements at the five different mAs levels.

Coefficients of determination

(with 95% confidence bounds) Goodness-of-fit

mAs level Detector bin

Considering

electronic noise Ŵi σ 2
e,i SSE R-square RMSE

17 300 Yes (1.999, 2.121) × 10−5 (6.162, 8.202) 1.006×10−2 0.9718 2.947 × 10−3

No (2.686, 2.747) × 10−5 – 1.476 × 10−2 0.9587 3.568 × 10−3

450 Yes (2.778, 2.938) × 10−5 (12.40, 17.24) 1.906 × 10−3 0.9686 1.283 × 10−3

No (3.511, 3.577) × 10−5 – 2.439 × 10−3 0.9598 1.451 × 10−3

40 300 Yes (8.342, 8.839) × 10−6 (14.07, 19.06) 1.604 × 10−3 0.9734 1.177 × 10−3

No (1.091, 1.113) × 10−5 – 2.192 × 10−3 0.9636 1.375 × 10−3

450 Yes (1.379, 1.446) × 10−5 (11.01, 18.06) 3.303 × 10−4 0.9714 5.341 × 10−4

No (1.559, 1.584) × 10−5 – 3.586 × 10−4 0.9689 5.562 × 10−4

60 300 Yes (6.188, 6.471) × 10−6 (6.668, 10.78) 5.036 × 10−4 0.9791 6.594 × 10−4

No (6.958, 7.065) × 10−6 – 5.485 × 10−4 0.9773 6.879 × 10−4

450 Yes (9.193, 9.615) × 10−6 (8.13, 17.43) 1.307 × 10−4 0.9718 3.359 × 10−4

No (9.950, 10.10) × 10−6 – 1.356 × 10−4 0.9708 3.421 × 10−4

80 300 Yes (4.334, 4.583) × 10−6 (10.54, 18.14) 3.869 × 10−4 0.9688 5.780 × 10−4

No (4.961, 5.054) × 10−6 – 4.161 × 10−4 0.9664 5.992 × 10−4

450 Yes (6.884, 7.218) × 10−6 (5.008, 17.65) 8.110 × 10−5 0.9674 2.646 × 10−4

No (7.298, 7.416) × 10−6 – 8.253 × 10−5 0.9668 2.669 × 10−4

100 300 Yes (3.536, 3.703) × 10−6 (10.61, 18.09) 1.732 × 10−5 0.9777 3.867 × 10−4

No (3.944, 4.008) × 10−6 – 1.956 × 10−5 0.9748 4.108 × 10−4

450 Yes (5.490, 5.736) × 10−6 (1.991, 16.21) 4.403 × 10−5 0.9711 1.950 × 10−4

No (5.726, 5.812) × 10−6 – 4.427 × 10−5 0.9710 1.954 × 10−4

nature of Poisson noise becomes noticeable. In these cases,

the second term (σ 2
e,i − 1.25) in Eq. (21) approaches to neg-

ligible, as compared to the first term. Therefore, the fitted

{σ 2
e,i} would be affected more and more by the contribution

of the first term (i.e., the Poisson noise). In other words, the

fitted {σ 2
e,i} would be less uniformly distributed as the mAs

value increases. The nonuniform distribution shall happen in

the range from bin 200 to bin 500, concurring with the heavy

attenuation area in Fig. 2. Considering that median value can

rule out the interference of the extreme values, Fig. 4(f) shows

the tendency of the median values of electronic noise at all

channels about five mAs levels. It can be seen that median

value decreases as the mAs value increases. To be seen be-

low, the amplitude of the median value variation is small as

compared to the first term in Eq. (21).

To get more insight into the results about the electronic

noise in the total data noise in Fig. 4, we performed an-

other analysis. The results are shown in Fig. 5. The top

row shows the mean number of the transmitted photons (i.e.,

λi = I i
0 exp(−p̄i)) and the variance of the electronic noise

(i.e., σ 2
e,i) along one projection view at 17 mAs level. The bot-

tom row shows the results at 100 mAs level. The other rows

show the results at other mAs levels. The left column shows

the results across all the detector bins. The right column

shows the zoomed-up image of the left column for those bins

from 250 to 400 where heavy attenuation occurs, referring to

Fig. 2.

It is clearly seen that at the 17 mAs level, the mean num-

ber of the transmitted photons (which is equal to the variance

of the transmitted data of Poisson statistics) and the variance

of the electronic noise are at the same order in the heavily at-

tenuated area between bin 250 and bin 400. However, at the

100 mAs level, the domination of the Poisson noise is clearly

seen, while the electronic noise remains at the same order as

that at 17 mAs level.

Putting Figs. 4 and 5 together, the left column of Fig. 5

shows the global picture of both variances of the Poisson

noise and the electronic noise, while Fig. 4 and the right col-

umn of Fig. 5 show the zoomed or local picture of the Poisson

and electronic noises. From the global picture, it is clear that

TABLE IV. Lin’s concordance coefficient between the fitted parameters Ŵi at the detector bins from 200 to 500 with and without considering the electronic

noise in model (21) at different mAs levels.

95% confidence interval of

mAs level Sample size N Lin’s concordance coefficient concordance coefficient

17 301 0.6340 (0.5611, 0.6970)

40 301 0.9504 (0.9382, 0.9603)

60 301 0.9836 (0.9795, 0.9869)

80 301 0.9901 (0.9875, 0.9921)

100 301 0.9912 (0.9890, 0.9930)
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FIG. 4. An illustration of the fitted factor {σ 2
e,i} in model (21) from 150 repeated measurements at the five different mAs levels and the median value of the

fitted {σ 2
e,i} (a)–(e); and the fitted curve with an exponential functional from the calculated five median values (f).

at the heavily attenuated areas, the data quality is severely af-

fected at all mAs levels from 17 up to 100. From the local

picture, the different roles of the Poisson noise and the elec-

tronic noise in the total data noise are seen. At higher mAs

levels (≥60 ), the electronic noise background can be distin-

guished from the x-ray photon counts and, therefore, it may be

corrected by subtraction or simply be ignored. At lower mAs

levels, the electronic noise contaminates the photon counts.

In such cases, it shall be considered via modeling of the data

statistics.

In addition to the observations in the global and local pic-

tures, we also noted from Fig. 4(f) the decreasing of the me-

dian value of the electronic noise as the mAs level increases.

While the decreasing of the median value as the mAs level

increases is observable, the change is so small as compared

to the changing of the Poisson noise variance as mAs level
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FIG. 5. Number of transmitted photons and electronic noise along one projection view at different mAs levels of (a) −17, (c) −40, (e) −60, (g) −80, and (i)

−100. Pictures (b), (d), (f), (h), and (j) show the details for those detector bins between 250 and 400 at the different mAs levels, respectively.
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FIG. 5. (Continued).

increases. If this changing of the overall variance level of the

electronic noise is not ignorable, it can be incorporated via

Eq. (21) into a statistical image reconstruction.

So far, we have presented a global picture of Fig. 2 to show

the effect of the electronic noise background in the sinograms,

showed the effect of the Bowtie filtration on the variance of

the sinogram data in Fig. 3, and revealed the relative influence

of the electronic noise at five different mAs levels by Figs. 4

and 5. In the following, we report the experimental studies on

the effect of the electronic noise {σ 2
e,i} on the linearity of the

{Ŵi} and on the variance estimation of Eq. (21).

The similarity of {Ŵi} curves for different mAs levels can

be further seen by plotting the paired points {Ŵi, 100, Ŵi, mAs},

where {Ŵi, 100} are the {Ŵi} values at the 100 mAs level while

{Ŵi, mAs} are the values at a lower mAs level. Figure 6 shows

the plots of the paired points at the five different mAs lev-

els with/without consideration of the electronic noise back-

ground. A linear relationship can be observed for each of the

four (17, 40, 60, and 80) mAs levels, similar to the results in

Ref. 16. The slope of the four lines in each of the two cases

(i.e., with and without consideration of the electronic noise)

was determined by linear fitting and the results are shown by

the four points at 17, 40, 60, and 80 mAs in Fig. 7.

Essentially, all the four slope values are closely represented

by the corresponding ratios of {Ŵi, mAs/Ŵi, 100}, see Fig. 6.

A noticeable difference between Fig. 6(a) (without consid-

ering the electronic noise) and Fig. 6(b) (with consideration

of the electronic noise) can be seen at the lower left cor-

ners of the figures for low mAs levels of 17 and 40. This

observation further indicates that the electronic noise shall

be considered at the low mAs levels for low-dose CT imag-

ing. The relationship between the ratio of {Ŵi, mAs/Ŵi, 100} and

the mAs values can be described by a reciprocal function as

shown in Fig. 7. It illustrates that when the mAs level is not

greater than 40, the difference between the two cases, i.e.,

considering electronic noise and without consideration of the

electronic noise, becomes noticeable. In other words, when

the mAs level is less than a threshold, the influence of the
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FIG. 6. Illustration of a linear relationship between factors {Ŵi} at 100 mAs level and at other lower mAs levels from the variance estimation model (21).

(a) is from model (21) without considering the electronic noise (i.e., set σ 2
e,i = 0) and (b) is from model (21) with consideration of the electronic noise.
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electronic noise should be considered in such a low-dose CT

imaging.

To further show the difference between the two cases

with/without consideration of the electronic noise, we first di-

rectly calculated the variance of the acquired sinogram data

from the repeated scans at 17 mAs level. The plots of the

mean–variance of the line-integral measurements at two dif-

ferent bins are shown by the circles in Fig. 8 as an exam-

ple. We then calculated the mean–variance curves based on

the variance model (21) with consideration (the solid lines)

and without consideration (the dotted lines) of the electronic

noise. From this figure, it can be observed that the results

from both the repeated scans and the theoretical model (21)

with consideration of the electronic noise agree with each

other better than the results without considering the electronic

noise. To quantitatively measure the consistency between the

variances of the line-integral measurements from the repeated

scans and the predicted variances from the theoretical model

2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

V
a

ri
a

n
c
e

Mean

Variance from repeated scans

Considering electronic noise

Without considering electronic noise

1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

V
a

ri
a

n
c
e

Mean

Variance from repeated scans

Considering electronic noise

Without considering electronic noise

(a)           (b) 

FIG. 8. Plots of the mean–variance of the line-integral measurements at two different detector bins from the repeated scans and from the analytical formulas

(21) with and without considering the electronic noise. (a) is the result at bin 300 and (b) is the result at bin 450.
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TABLE V. Quantitative evaluation of the consistency between the variances

of the line-integral measurements from the repeated scans and the predicted

variances from the theoretical model (21) at two different detector bins with

and without considering the electronic noise.

Detector Considering

bin electronic noise SSE R-square RMSE

300 Yes 1.393×10−2 0.9662 3.464 × 10−3

No 4.336×10−2 0.7612 6.114 × 10−3

450 Yes 2.176×10−3 0.9583 1.370 × 10−3

No 6.004×10−3 0.8296 2.275 × 10−3

(21) at two different detector bins with and without consid-

ering the electronic noise, we calculated the associated SSE,

R-square, and RMSE as shown in Table V. Both the graphical

observation and the quantitative consistency measure further

indicate the importance of considering the electronic noise

background for low-dose CT imaging.

IV. CONCLUSION AND DISCUSSION

In our previous work,1, 2, 10, 16 a nonlinear relationship be-

tween the mean and variance of the measurements in the sin-

goram domain was presented without consideration of the

electronic noise background. In this experimental study, we

extended our previous mean–variance model in the sinogram

domain to include the electronic noise background for low-

dose CT imaging.

Based on the presented statistical moment analysis of the

measurements in the transmission domain via the Taylor ex-

pansion approximation of a continuous function, the variance

of the sinogram data at a specific detector bin can be deter-

mined by four physical quantities, as shown in formula (15):

(i) the line integral (i.e., p̄i) of the attenuation coefficients

along the x-ray path i; (ii) the incident photon number (i.e.,

1/Ŵi); (iii) the mean (i.e., me) of the electronic noise; and (iv)

the variance (i.e., σ 2
e ) of the electronic noise. In modern CT

systems, some parameters in the mean–variance model (15)

can be measured as part of the standard routine calibration

operation. For example, from our systematic studies using the

repeated measurements in Ref. 16 and above, it can be ob-

served that parameter Ŵi primarily depends on both the in-

cident photon number (or the mAs level) and the shape of

the Bowtie attenuating filter across the FOV, as shown in Fig.

3, and therefore can be estimated from measurements of air

scans. Another parameter in the mean–variance model (15),

i.e., the mean me of the electronic noise, arising from the

detector dark current, can be determined immediately before

each scan by sampling the signals in those unexposed detec-

tors over some time interval.6, 7, 12 From Figs. 4 and 5, it can

be observed that another parameter, i.e., the variance σ 2
e of

the electronic noise, reduces slightly as the mAs value in-

creases, and can be determined by the exponential relation-

ship of Fig. 5(f). In practice, the variance σ 2
e of the electronic

noise may be estimated from the sample variance of a series

of dark current measurements.6, 7 Given the above four phys-

ical quantities, Eq. (15) provides a theoretical means to esti-

mate the variance, which reflects the relative importance of

each measurement for various data processing tasks, for ex-

ample, a statistical image reconstruction task in the sinogram

domain.10

In the special case where the mean of the electronic noise

is calibrated to zero, we obtained the mean–variance model

(21), which reflects the ground-truth for an accurate statisti-

cal modeling of the low-dose CT data in the sinogram domain.

Based on Eq. (21), the sinogram variances can be predicted

accurately from the corresponding transmission data acquired

at a specific mAs level. Figures 3–5 illustrate that, because the

mean and variance relationship of Eq. (21) includes explicitly

the electronic noise background, the difference between the

two cases with and without considering the electronic noise

at a mAs level, e.g., lower than 60 mAs for the phantom body,

is visually noticeable. This observation on the difference be-

tween the two cases indicates that inclusion of the electronic

noise is needed for low-dose CT imaging.

The observation that the variance σ 2
e of the electronic noise

reduced slightly as the mAs value increased seems contradic-

tory to our intuition that the variance should be independent

from the mAs level. This intuition is based on the assump-

tion that the detection system is perfectly linear in the con-

cerned energy and count rate ranges. In general, the detection

system is made by the manufacturer to do so. If the assump-

tion does not hold, then the dependence would be reflected

by the small variation of Fig. 4(f). If the assumption holds,

then the dependence may be due to several factors in the data

calibration. For example, both Ii and I i
0 in their relationship

of Ii = I i
0 exp(−pi) of Eq. (12) contain the electronic noise.

If the scanner calibration uses a different way to handle the

electronic noise in Ii than that in I i
0 , the outcome may af-

fect the intuition. By common perception, I i
0 is treated as a

parameter (nonstatistical). Therefore, the outcome may affect

the intuition. Another factor which may affect the intuition is

the calibration or correction for the beam hardening. Since the

energy spectrum of I i
0 is altered by the body attenuation, the

energy spectrum of Ii becomes unknown. Using the energy

spectrum of I i
0 to correct for the beam hardening on Ii may af-

fect the intuition. Another factor may be the calibration for mi

= 0. It is very interesting to see that by fixing the electronic

noise variance at the level found at 17 mAs [i.e., Fig. 4(a)],

the fitting on the Gamma parameter {Ŵi} remained almost the

same (no noticeable difference) as that in Fig. 3. The same

outcome was also observed when fitting the Gamma parame-

ter {Ŵi} by using the mean–variance level from the five mAs

levels. Based on these fitting experiments, we would conjec-

ture that the fitting on {σ 2
e } is relatively sensitive to the error

in the measured data. This may be another factor affecting

the intuition. Despite these influencing factors, the slight de-

crease of variance σ 2
e as mAs level increases is so small as

compared to the amplitude of the signals at those mAs lev-

els. So the small change will not affect the conclusion of this

experimental work.

It is expected that the gained knowledge on the noise

properties of the low-mAs sinogram data in this experimen-

tal work would assist the development of a statistical image

reconstruction algorithm in currently available CT scanners
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to achieve low-dose CT clinical applications, such as that in

Ref. 15. In the reconstruction algorithm development, since

the relationship between the mean and variance is no longer

linear, a Poisson model for the sinogram data is no longer

valid. Other statistical models are needed. Without an explicit

expression to describe the sinogram data statistics, the penal-

ized weighted least squares approach10 can be a choice with

accuracy up to the second order statistical moment. Searching

for an adequate expression to describe the sinogram statistics

remains a research topic, and our recent exploratory study in-

dicates that the information divergence theory can be a poten-

tial choice to describe the sinogram statistics.22

ACKNOWLEDGMENTS

This work was partially supported by the NIH/NCI under

Grant Nos. CA143111 and CA082402. H. Lu and J. Ma were

also supported in part by the National Key Technologies R&D

Program of China under Grant No. 2011BAI12B03. W. Chen

and J. Ma were also supported in part by the 973 Program of

China under Grant No. 2010CB732503. J. Huang and J. Ma

also were supported in part by the NSF of China under Grant

Nos. 81000613 and 81101046. The authors would appreci-

ate the discussions with Dr. Bruce Whiting on the compound

Poisson statistics and the editing of this paper by Ms. Donna

Carroll. Comments from Dr. Hao Han, Ph.D., on different or-

der Taylor expansion for Eq. (18) is acknowledged.

APPENDIX: VARIANCE ANALYSIS OF A FUNCTION
OF ONE RANDOM VARIABLE

Suppose x ∈ X is a random variable and f( · ) is a smooth

function, ∀ε > 0 and ∃c > 0, applying three-order Taylor ex-

pansion at point EX, we can have

f (x) = f (EX) + f ′(EX)(x − EX) +
f ′′(EX)

2!
(x − EX)2

+
f ′′′(EX)

3!
(x − EX)3 +

f ′′′(ξ )

4!
(x − EX)4, (A1)

where ξ ∈ [EX − c, EX + c] and c is a constant. Equation

(A1) holds for all x ∈ [EX − c, EX + c] because the Taylor ex-

pansion works for a function in a bounded closed interval. In

our case, only the first four terms were considered in the Tay-

lor expansion because these four terms are sufficient for data

analysis. Including more terms can be conducted straightfor-

wardly if needed. The expectation of f(x) for the first four

terms can be expressed as

Ef (X) ≈ f (EX) +
f ′′(EX)

2!
Var(X)

+
f ′′′(EX)

3!
E(X − EX)3. (A2)

Similar to the Taylor expansion of function f(x), the expansion

of f 2(x) can be written as

f 2(x) ≈ f 2(EX) + 2f (EX)f ′(EX)(x − EX)

+
2((f ′(EX))2 + f (EX)f ′′(EX))

2!
(x − EX)2

+
(f 2(EX))′′′

3!
(x − EX)3. (A3)

The expectation of f 2(x) for the first four terms can be ex-

pressed as

Ef 2(X) ≈ f 2(EX) + [(f ′(EX))2 + f (EX)f ′′(EX)]Var(X)

+
(f 2(EX))′′′

3!
E(X − EX)3. (A4)

The formula for the variance of f(X) then can be expressed as

Var(f (X)) = E(f (X) − Ef (X))2 = E(f 2(X)) − (E(f (X)))2

≈

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

f 2(EX) + [(f ′(EX))2 + f (EX)f ′′(EX)]Var(X) +
(f 2(EX))′′′

3!
E(X − EX)3

−

(

f (EX) +
f ′′(EX)

2!
Var(X) +

f ′′′(EX)

3!
E(X − EX)3

)2

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

f 2(EX) + [(f ′(EX))2 + f (EX)f ′′(EX)]Var(X) +
(f 2(EX))′′′

3!
E(X − EX)3

−

(

f (EX) +
f ′′(EX)

2!
Var(X)

)2

−

(

2

(

f (EX) +
f ′′(EX)

2!
Var(X)

)
f ′′′(EX)

3!
E(X − EX)3 +

(
f ′′′(EX)

3!
E(X − EX)3

)2
)

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

f 2(EX) + (f ′(EX))2Var(X) + f (EX)f ′′(EX)Var(X) +
(f 2(EX))′′′

3!
E(X − EX)3

−

(

f 2(EX) + f (EX)f ′′(EX)Var(X) +
(f ′′(EX))2Var2(X)

4

)

−

(

2

(

f (EX) +
f ′′(EX)

2!
Var(X)

)
f ′′′(EX)

3!
E(X − EX)3 +

(
f ′′′(EX)

3!
E(X − EX)3

)2
)

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

= (f ′(EX))2Var(X) −
(f ′′(EX))2Var2(X)

4
+ T .

,

(A5)
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where

T =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(f 2(EX))′′′

3!
E(X − EX)3−

2

(

f (EX) +
f ′′(EX)

2!
Var(X)

)
f ′′′(EX)

3!
E(X − EX)3 −

(
f ′′′(EX)

3!
E(X − EX)3

)2

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

=

(

(f 2(EX))′′′

3!
− 2

(

f (EX) +
f ′′(EX)

2!
Var(X)

)
f ′′′(EX)

3!
−

(
f ′′′(EX)

3!

)2

E(X − EX)3

)

E(X − EX)3. (A6)
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