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Abstract. Generic types in C� behave invariantly with respect to sub-
typing. We propose a system of type-safe variance for C� that supports
the declaration of covariant and contravariant type parameters on generic
types. To support more widespread application of variance we also gener-
alize the existing constraint mechanism with arbitrary subtype assertions
on classes and methods. This extension is useful even in the absence of
variance, and subsumes equational constraints proposed for Generalized
Algebraic Data Types (GADTs). We formalize the subtype relation in
both declarative and syntax-directed style, and describe and prove the
correctness of algorithms for constraint closure and subtyping. Finally,
we formalize and prove a type safety theorem for a featherweight lan-
guage with variant classes and generalized constraints.

1 Introduction

The Generics feature of C� 2.0 introduced parametric polymorphism to the lan-
guage, supporting type parameterization for types (classes, interfaces, structs,
and delegates) and methods (static and instance). Being object-oriented, C� al-
ready offers subtype polymorphism, namely the ability for a value of type T to
be used in a context that expects type U , if T is a subtype of U .

As it stands, though, subtype and parametric polymorphism interact only
through subclassing. In particular, there is no subtyping relationship between
distinct instantiations of the same generic type – type parameters are said to be-
have invariantly with respect to subtyping. This leads to a certain inflexibility: a
method whose parameter has type IEnumerable<Control> cannot be passed an
argument of type IEnumerable<Button>, even though this is safe: since Button
is a subclass of Control, something that enumerates Buttons also enumerates
Controls. Dually, a method expecting a parameter of type IComparer<Button>
cannot be passed an argument of type IComparer<Control>, even though this
is safe: something that can compare Controls can also compare Buttons.

1.1 Variance

We can increase the flexibility of generic types by declaring variance properties
on type parameters. For example, IEnumerable is declared covariant (+) in its



type parameter, and IComparer is declared contravariant (-), meaning that if
T<:U (“T is a subtype of U ”) then IEnumerable<T><:IEnumerable<U > and
IComparer<U ><:IComparer<T>. In our extension, these interfaces are declared
as follows:

interface IEnumerable<+T> { IEnumerator<T> GetEnumerator(); }

interface IEnumerator<+T> { T Current { get; } }

interface IComparer<-T> { int Compare(T x, T y); }

interface IComparable<-T> { int CompareTo(T other); }

To be safe, covariant type parameters can be used only in ‘producer’ posi-
tions in signatures (e.g. as result types, as in the GetEnumerator method and
Current property above), and contravariant type parameters can be used only in
‘consumer’ positions (e.g. as argument types, as in the Compare and CompareTo
methods above). These stringent requirements can make it hard to apply variance
where it is desired. For example, a List<+T> type representing functional-style
lists cannot even declare an append operation (T occurs in argument position):

class List<+T> {

public List<T> Append(T other); // illegal

public List<T> Append(List<T> other); // also illegal

Without such restrictions, there would be nothing to stop an implementation of
the Append method updating the receiver list with its argument:

class List<+T> { private T head; private List<T> tail;

public List(T head, List<T> tail){ this.head=head; this.tail=tail; }

public T Hd(){ return head;} public List<T> Tl(){ return tail;}

public List<T> Append(T other){ this.head=other; return this; }

public List<T> Append(List<T> other){ this.tail=other; return this; }

}

This is unsafe: a List<Button> object could be updated with a VScrollBar
value by first coercing it to List<Control>. As VScrollBar subtypes Control,
but not Button, this violates safety:

List<Button> lb = new List<Button>(new Button(),null);

((List<Control>) lb).Append(new VScrollBar());

Button b = lb.Hd(); // we just read a scrollbar as a button

1.2 Generalized Constraints

We can overcome these restrictions through the use of type constraints :

class List<+T> { ...

List<U> Append<U>(U other) where T : U { ... }

List<U> Append<U>(List<U> other) where T : U { ... } }

Here Append is parameterized on an additional type U, constrained to be a su-
pertype of the element type T. So an implementation of Append cannot place its



argument in the list, as U is not a subtype of T, but it can create a new list cell
of type List<U> with tail of type List<T>, as List<T> is a subtype of List<U>.
It is easy to check that these refined signatures for Append rule out the unsafe
implementations above, while still allowing the intended, benign ones:

class List<+T> { ...

public List<U> Append<U>(U other) where T : U

{ return new List<U>(head,

tail==null? new List<U>(other,null) : tail.Append(other)); }

public List<U> Append<U>(List<U> other) where T : U

{ return new List<U>(head, tail==null? other: tail.Append(other));}

Notice how this is actually less constraining for the client code – it can
always instantiate Append with T, but also with any supertype of T. For example,
given a List<Button> it can append a Control to produce a result of type
List<Control>. The designers of Scala [12] identified this useful pattern.

The type constraint above is not expressible in C� 2.0, which supports only
‘upper bounds’ on method type parameters. Here we have a lower bound on U.
Alternatively, it can be seen as an additional upper bound of the type param-
eter T of the enclosing class, a feature that is useful in its own right, as the
following example demonstrates:

interface ICollection<T> { ...

void Sort() where T : IComparable<T>;

bool Contains(T item) where T : IEquatable<T>; ...

Here, constraints on T are localized to the methods that take advantage of them.
We therefore propose a generalization of the existing constraint mechanism to

support arbitrary subtype constraints at both class and method level. This neatly
subsumes both the existing mechanism, which has an unnatural asymmetry, and
the equational constraint mechanism proposed previously [10]: any equation T=U
between types can be expressed as a pair of subtype constraints T:U and U:T.

1.3 Contribution and Related Work

Adding variance to parametric types has a long history [1], nicely summarized
by [8]. More recently, others have proposed variance for Java. NextGen, one of
the original designs for generics in Java, incorporated definition-site variance
annotations, but details are sketchy [2]. Viroli and Igarashi described a system
of use-site variance for Java [8], which is appealing in its flexibility. It was since
adopted in Java 5.0 through its wildcard mechanism [16]. However, use-site vari-
ance places a great burden on the user of generic types: annotations can become
complex, and the user must maintain them on every use of a generic type. We fol-
low the designers of Scala [11] and place the burden on the library designer, who
must annotate generic definitions, and if necessary, factor them into covariant
and contravariant components.

Our type constraints generalize the ‘F-bounded polymorphism’ of Java [7]
and C� and the bounded method type parameters of Scala [11], and also sub-
sume previous work on equational constraints [10]. The treatment of constraint



closure was inspired by previous work on constrained polymorphism for func-
tional programming languages [14, 17] but has been adapted to handle Java-style
inheritance.

We present the first formalization and proof of type safety for an object sys-
tem featuring definition-site variance and inheritance in the style of Java or C�.
Independently, variance for generics in the .NET Common Language Runtime
has recently been formalized and proved sound [5].

We present an algorithm to decide subtyping in the presence of contravari-
ance and generic inheritance. Previous systems have been presented in a non-
algorithmic fashion [8, 16]. This is sufficient for showing soundness, but as we
demonstrate, a näıve reading even of syntax-directed subtyping rules as a pro-
cedure leads to non-termination.

2 Design Issues

In this section, we study variance and generalized constraints in more detail,
considering issues of type safety and language expressivity informally in code
fragments. Sections 3 and 4 provide a formal foundation, proving the correctness
of a subtyping algorithm and the soundness of the type system.

2.1 Variant Interfaces

Use-site variance, as first proposed by Viroli and Igarashi [8] and recast as wild-
cards in Java 5.0 [16], requires no annotations on type parameters at type def-
initions. Instead, an annotation on the use of a generic type determines (a)
its properties with respect to subtyping, and (b) the members of the type
that are ‘visible’ for that variance annotation. For example, a mutable List<X>
class can be used covariantly, permitting values of type List<+String> to be
passed at type List<+Object> (in Java, List<? extends String> passed at
type List<? extends Object>), and restricting invocation to ‘reader’ meth-
ods such as Get. Conversely, the class can be used contravariantly, permitting
values of type List<-Object> to be passed at type List<-String> (in Java,
List<? super Object> passed at type List<? super String>), and restrict-
ing invocation to ‘writer’ methods such as Add.

With definition-site variance, the library designer must prepare for such uses
ahead of time. One natural way to achieve this is to expose covariant and con-
travariant behaviour through the implementation of covariant and contravariant
interfaces. For example, a non-variant mutable list class could implement two
interfaces, one containing ‘reader’ methods, and the other ‘writer’ methods.

interface IListReader<+X> {

X Get(int index);

void Sort(IComparer<X> comparer); ...

}

interface IListWriter<-Y> {

void Add(Y item);



void AddRange(IEnumerable<Y> items); ...

}

class List<Z> : IListReader<Z>, IListWriter<Z> {

private Z[] arr; public List() { ... }

public Z Get(int index) { ... } ...

}

To be safe, covariant type parameters must not appear in argument positions,
and contravariant parameters must not appear in result positions. To see why,
consider the following counterexample:

interface IReader<+X> {

X Get(); // this is legal

void BadSet(X x) // this is illegal

}

interface IWriter<-Y> {

void Set(Y y); // this is legal

Y BadGet(); // this is illegal

}

class Bad<T> : IReader<T>, IWriter<T> {

private T item; public Bad(T item) { this.item = item; }

public void T Get() { return this.item ; }

public void BadSet(T t) { this.item = t; }

public void Set(T t) { this.item = t ; }

public T BadGet() { return this.item; }

}

IReader<object> ro = new Bad<string>("abc");

ro.BadSet(new Button()); // we just wrote a button as a string

...

IWriter<string> ws = new Bad<object>(new Button());

string s = ws.BadGet(); // we just read a button as a string

This might give the impression that type safety violations necessarily involve
reading and writing of object fields. This is not so: the toy subset of C� stud-
ied in Section 4 is purely functional, but nevertheless it is worthwhile proving
soundness, as the following example illustrates:

interface IComparer<+T> { int Compare(T x, T y); } // this is illegal

class LengthComparer : IComparer<string> {

int Compare(string x, string y)

{ return Int32.Compare(x.Length, y.Length); }

}

... IComparer<object> oc = new LengthComparer();

int n = oc.Compare(3,new Button()); // takes Length of int & button

2.2 Variant Delegates

Variance on interfaces has a very simple design: interfaces represent a pure con-
tract, with no code or data, so there are no interactions with mutability, access
qualifiers, or implementation inheritance. C�’s delegates have a similar feel – they



can be considered as degenerate interfaces with a single Invoke method. It is
natural to support variance on generic delegates too. Here are some examples,
taken from the .NET base class library:

delegate void Action<-T>(T obj);

delegate int Comparison<-T>(T x, T y);

delegate bool Predicate<-T>(T obj)

delegate TOutput Converter<-TInput,+TOutput>(TInput input);

Variance on interfaces and delegates is already supported by the .NET Common
Language Runtime (and was recently proved sound [5]). Although no CLR lan-
guages currently expose variance in their type system, it is expected that Eiffel’s
(unsafe) covariant generic classes will be represented by covariant generic inter-
faces, making use of the CLR’s support for exact runtime types to catch type
errors at runtime.

2.3 Variant Classes

The Adaptor pattern provides another means of factoring variant behaviour.
Here, rather than implement variant interfaces directly, adaptor methods in a
non-variant class provide alternative views of data by returning an object that
implements a variant interface – or, if supported, a variant abstract class:

abstract class ListReader<+X> {

abstract X Get(int index);

abstract void Sort(IComparer<X> comparer); ...

}

abstract class ListWriter<-Y> {

abstract void Add(Y item);

abstract void AddRange(IEnumerable<Y> items); ...

}

class List<Z> {

public ListReader<Z> AsReader() { ... }

public ListWriter<Z> AsWriter() { ... } ...

}

Concrete variant classes are also useful. For example, here is a covariant class
Set that implements immutable sets:

class Set<+X> : IEnumerable<X> where X : IComparable<X> {

private RedBlackTree<X> items;

public Set() { ... }

public Set(X item) { ... }

public bool All(Predicate<X> p) { ... }

public bool Exists(Predicate<X> p) { ... }

public IEnumerator<X> GetEnumerator() { ... } ...

}

When are covariant and contravariant parameters on classes safe? First, note
that no restrictions need be placed on the signatures of constructors or static



members, as the class type parameters cannot vary. The second constructor
above has X appearing in a contravariant position (the argument), but this is
safe: once an object is created, the constructor cannot be invoked at a supertype.
For the same reason, constraints declared on a class may make unrestricted use
of variant type parameters, as in the example above.

In general, fields behave invariantly and so their types must not contain any
covariant or contravariant parameters. Fields marked readonly, however, can
be treated covariantly – as we do in our formalization in Section 4.

No restrictions need be placed on private members, which is handy in prac-
tice when re-factoring code into private helpers. It is also useful on fields, as
above, where a field can be mutated from within the class – for example, to re-
balance the RedBlackTree representing the Set above. However, we must take
care: if private is interpreted as a simple lexical restriction – “accessible from
code lexically in this class” – then a type hole is the result:

class Bad<+X> { private X item;

public void BadAccess(Bad<string> bs) {

Bad<object> bo = bs;

bo.item = new Button(); } // we just wrote a button as a string

}

A suitable safe interpretation of private is “accessible only through type-of-
this”. Here, that means access only through objects of type Bad<X>; bo.item
would be inaccessible as bo has type Bad<object>.

The base types of a generic type must, of course, behave covariantly, otherwise
we could circumvent our restrictions through inheritance.

2.4 Generalized Constraints

As we saw in the introduction, restrictions on the appearance of variant type
parameters in signatures can be very limiting. For example, we cannot define a
set-union operation for the class above because its argument has type Set<X>.
But using generalized constraints, we can define it, as follows:

class Set<+X> : IEnumerable<X> where X : IComparable<X> { ...

public Set<Y> Union<Y>(Set<Y> that) where X : Y { ... }

}

Note that Java cannot express such a signature, because it does not support
lower bounds on method type parameters; though the use of bounded wildcards
can achieve the same effect for type parameters used for a single argument.

What restrictions, if any, should we apply to occurrences of class type pa-
rameters within method level constraints? The answer is that a constraint on
a method behaves covariantly on the left of the constraint, and contravariantly
on the right. To see why this must be the case, consider the following pair of
interfaces, which attempt to avoid occurrences of covariant (contravariant) pa-
rameters in argument (result) positions, by introducing illegal bounds:



interface IReader<+X> {

X Get(); // this is legal

void BadSet<Z>(Z z) where Z : X; // this is illegal

}

interface IWriter<-Y> {

void Set(Y y); // this is legal

Z BadGet<Z>() where Y : Z; // this is illegal

}

class Bad<T> : IReader<T>, IWriter<T> {

private T item; public Bad(T item) { this.item = item; }

public void T Get() { return this.item ; }

public void BadSet<Z>(Z z) where Z : T { this.item = z; }

public void Set(T t) { this.item = t ; }

public Z BadGet<Z>() where T : Z { return this.item; }

}

... IReader<object> ro = new Bad<string>("abc");

ro.BadSet<Button>(new Button()); // we wrote a button as a string

... IWriter<string> ws = new Bad<object>(new Button());

string s = ws.BadGet<string>(); // we read a button as a string

2.5 Deconstructing Constraints

In earlier work [10], we made the observation that the interesting class of Gen-
eralized (rather than Parametric) Algebraic Datatypes, currently a hot topic in
Functional Programming, are already definable using Generics in C�. However,
capturing the full range of programs over such GADTs requires the addition of
both equational constraints on methods and some equational reasoning on types.

Perhaps the smallest example requiring equational constraints and reasoning
is implementing strongly-typed equality over type-indexed expressions. The spe-
cial case for tuple expressions highlights the issues (see [10] for the full example):

abstract class Exp<T> {

public abstract T Eval();

public abstract bool Eq(Exp<T> that);

public abstract bool EqTuple<C,D>(Tuple<C,D> that)

where Tuple<C,D> : Exp<T>;

}

class Tuple<A,B>: Exp<Pair<A,B>> { public Exp<A> e1; public Exp<B> e2;

public Tuple(Exp<A> e1,Exp<B> e2) { this.e1 = e1; this.e2 = e2; }

public override Pair<A,B> Eval(){

return new Pair<A,B>(e1.Eval(),e2.Eval()); }

public override bool Eq(Exp<Pair<A,B>> that) {

return that.EqTuple<A,B>(this);} // NB: Tuple<A,B><:Exp<Pair<A,B>>

public override bool EqTuple<C,D>(Tuple<C,D> that) {

// where Tuple<C,D><:Exp<Pair<A,B>>

return e1.Eq(that.e1) && e2.Eq(that.e2); }

}

In [10], we add the equational constraint where Pair<C,D> = T to the ab-
stract EqTuple method to allow the override in the specialized Tuple sub-



class to typecheck. In the override, the constraint specializes to the assumption
Pair<A,B>=Pair<C,D> which the type system can deconstruct (since all generic
type constructors are both injective and invariant) to deduce the equations A=C
and B=D. From this it follows that Exp<C><:Exp<A> and Exp<D><:Exp<B>, justi-
fying, respectively, the calls to methods e1.Eq(that.e1) and e2.Eq(that.e2).

With subtype constraints we can employ the more natural pre-condition
Tuple<C,D><:Exp<T>, shown here, which directly relates the type of that to the
type of this using a bound rather than an oblique equation on T. In the over-
ride, the inherited bound yields the assumption Tuple<C,D><:Exp<Pair<A,B>>.
From the class hierarchy, it is evident that Exp<Pair<C,D>><:Exp<Pair<A,B>>,
since the only way Tuple<C,D> can subtype Exp<Pair<A,B>> is if its declared
superclass, Exp<Pair<C,D>>, does so too. Since Exp<T> is invariant, we can de-
construct this constraint to conclude that Pair<C,D><:Pair<A,B> and, symmet-
rically, Pair<A,B><:Pair<C,D>. Deconstructing yet again, assuming that Pair
is covariant, we obtain C<:A,D<:B and A<:C,B<:D. Shuffling these inequalities
we can derive Exp<C><:Exp<A> and Exp<D><:Exp<B> which, finally, justify the
recursive calls to e1.Eq(that.e1) and e2.Eq(that.e2). To accommodate this
sort of reasoning in general, our subtype judgement must be able to both de-
construct the inheritance relation, to obtain lower bounds on superclass instan-
tiations, and deconstruct subtype relationships betweens different instantiations
of the same generic class, to deduce relationships between corresponding type
arguments, oriented by the variance properties of the class.

3 Types and Subtyping

We begin our formal investigation of variance and constraints with a description
of the subtype relation, presented in both declarative and syntax-directed styles.
Types, ranged over by T , U and V , are of two forms:

– type variables, ranged over by X , Y and Z , and
– constructed types, ranged over by K , of the form C<T> where C is a class

or interface name, and T is a sequence of zero or more type arguments.

(As is common, we write vectors such as T as shorthand for T1, . . . ,Tn).
The subtype relation <: is determined by a class hierarchy (subclassing is

subtyping in C�), and by variance properties of generic types. We therefore
assume a set of declarations which specify for each class C its formal type pa-
rameters X , variance annotations on those parameters v , and base class and
interfaces K . We write C<vX >:K for such a declaration. A variance annotation
v is one of ◦ (invariant), + (covariant), and - (contravariant). In our examples,
omitted annotations are implicitly ◦ (for backwards compatibility with C�).

For type soundness it is necessary to impose restrictions on how variant
type parameters appear in signatures. Formally, we define a judgment vX �
T mono which states that a type T behaves ‘monotonically’ with respect to its
type variables X whose variance annotations are v . This predicate on types is
presented in Figure 1, with extension to subtype assertions. It makes use of a
negation operation on variance annotations, with the obvious definition.



vi ∈ {◦, +}
vX � Xi mono

v-vvar
X /∈ X

vX � X mono
v-var

C<wY >:K
∀i wi ∈ {◦, +} ⇒ vX � Ti mono

∀i wi ∈ {◦, -} ⇒ ¬vX � Ti mono

vX � C<T> mono
v-con

¬v =

8><
>:

-, if v = +,

◦, if v = ◦,
+, if v = -

¬vX � T mono vX � U mono

vX � T<:U mono
v-sub

Fig. 1. Variance validity of types and subtypes

∆ � T<:U ∆ � U<:V
∆ � T<:V

tran
∆ � X<:X

var
T<:U ∈ ∆
∆ � T<:U

hyp

C<vX >:K ∀i, vi ∈ {◦, +} ⇒ ∆ � Ti<:Ui and vi ∈ {◦, -} ⇒ ∆ � Ui<:Ti

∆ � C<T><:C<U >
con

C<vX >:K

∆ � C<T><:[T/X ]Ki

base
C<T> � D<U > ∆ � C<T><:D<V >

∆ � D<U ><:D<V >
debase

C<vX >:K ∆ � C<T><:C<U > vi ∈ {◦, +}
∆ � Ti<:Ui

decon+

C<vX >:K ∆ � C<T><:C<U > vi ∈ {◦, -}
∆ � Ui<:Ti

decon−

Fig. 2. Subtyping rules

Before defining the subtyping relation proper, we introduce an auxiliary re-
lation � over constructed types, denoting the reflexive transitive closure of the
‘is an immediate base class of’ relation. It is defined as follows.

K � K
C<vX >:K [T/X ]Ki � K

C<T> � K

We impose three restrictions on the class hierarchy. First, that it is acyclic: if
C<vX >:K and Ki � D<T> then C �= D . Second, that generic instantiations are
uniquely determined : if C<X> � D<T> and C<X > � D<U > then T = U . Third,
that it respects variance: if C<vX >:K then vX � K mono. It is easy to show
that this extends transitively: under the same definition of C , if C<X >�K then
vX � K mono.

We are now ready to specify subtyping. Let ∆ range over lists of subtype
assumptions of the form T<:U . Our subtyping relation is defined by a judgment
∆ � T<:U which should be read “under assumptions ∆ we can deduce that T is
a subtype of U ”. A declarative presentation of this relation is given in Figure 2.



Ignoring ∆ for the moment, ground subtyping requires just three rules: we
assert that subtyping is transitive (tran), that instantiations of the same class
vary according to the annotations on the type parameters (con), and that sub-
classing induces subtyping (base). Observe that reflexivity is admissible (by re-
peated use of con), and that the induced equivalence relation for ground types
is just syntactic equality.

Now suppose that subtyping judgments are open and we make use of assump-
tions in ∆. We add reflexivity on type variables (var), and hypothesis (hyp).
This lets us deduce, for example, for contravariant I that X<:C � I<C><:I<X >.

These rules alone are insufficient to check code such as in Section 2.5. Sup-
pose our subtype assumptions include C<X ><:C<Y >. Take any ground in-
stantiation of X and Y , say [T/X ,U /Y ]. If C is invariant or covariant then
� C<T><:C<U > can hold only if � T<:U . Dually, if C is invariant or contra-
variant then � C<T><:C<U > can hold only if � U <:T . This justifies inverting
rule con to obtain rules decon+ and decon− that ‘deconstruct’ a type accord-
ing to its variance.

In a similar vein, suppose our subtype assumptions include C<X ><:D<Y >,
for class definitions C<◦Z>:D<Z> and D<-Z>:object. Consider any ground in-
stantiation of X and Y , say [T/X ,U /Y ]. Then a derivation of � C<T><:D<U >
exists only if � D<T><:D<U > and thus � U <:T . We are justified in ‘inverting’
rule base to obtain debase that uses the class hierarchy to derive a subtype
relationship between two instantiations of the same class.

It is straightforward to prove standard properties of subtype entailment.

Lemma 1 (Substitution). If ∆ � T<:U then S∆ � ST<:SU for any substi-
tution S = [T/X ].

Proof. By induction on the derivation, using a similar property of �. ��

Lemma 2 (Weakening). If ∆ � ∆′ and ∆′ � T<:U then ∆ � T<:U .

Proof. By induction on the subtyping derivation. ��

We will also make use of the following lemma, which states that subtype asser-
tions lift through type formers according to variance.

Lemma 3 (Subtype lifting). Suppose that vX � V mono, and for all i, if
vi ∈ {◦, +} then ∆ � Ti<:Ui, and if vi ∈ {◦, -} then ∆ � Ui<:Ti. Then ∆ �
[T/X ]V <:[U /X ]V .

Proof. By induction on the variance validity derivation. ��

3.1 Syntax-directed Subtyping

The declarative presentation of subtyping is direct, and it is easy to prove proper-
ties such as Substitution and Weakening, but it is not easy to derive an algorithm
from the rules: reading the rules backwards, we can always apply rule tran to



Ψ � X<:X
s-var

C<vX >:K Ψ � [T/X ]Ki<:D<U > C �= D

Ψ � C<T><:D<U >
s-base

Ψ � T<:U U<:X ∈ Ψ T �= X

Ψ � T<:X
s-lower

X<:T ∈ Ψ Ψ � T<:K
Ψ � X<:K

s-upper

C<vX >:K ∀i, vi ∈ {◦, +} ⇒ Ψ � Ti<:Ui and vi ∈ {◦, -} ⇒ Ψ � Ui<:Ti

Ψ � C<T><:C<U >
s-con

Fig. 3. Syntax-directed subtyping rules

introduce new subgoals. So we now consider an alternative set of syntax-directed
subtyping rules, where the structure of the types determines uniquely a rule
(scheme) to apply. These are presented in Figure 3.

We write Ψ �T<:U to mean that “under context Ψ we can deduce that T is
a subtype of U ”. As is usual, we eliminate the transitivity rule tran, rolling it
into rules s-base, s-upper, and s-lower. We also work with a different form of
context: instead of an arbitrary set of subtype assertions, the context Ψ provides
upper or lower bounds for type variables. In place of a hypothesis rule, we have
rules s-upper and s-lower that replace a type variable by one of its bounds.

For transitivity to be admissible, we need to impose some restrictions on
the context Ψ . For example, consider the context Ψ = {C<X ><:Z ,Z<:C<Y >}
for covariant C . Clearly we have Ψ � C<X ><:Z and Ψ � Z<:C<Y >, but not
Ψ � C<X ><:C<Y >. We need to add X<:Y to Ψ to achieve this. We define a
notion of consistency for contexts (see Pottier [14] and Trifonov and Smith [17]
for similar ideas).

Definition 1 (Consistency). A context Ψ is consistent if for any pair of as-
sertions T<:X ∈ Ψ and X<:U ∈ Ψ it is the case that Ψ � T<:U .

We should now have enough to relate the syntax-directed and declarative
rules: given a consistent context Ψ that is equivalent to a set of constraints ∆
(in the sense that Ψ �∆ and ∆ � Ψ), the relation Ψ �−<:− should coincide with
∆ � −<:−. The proof of this rests on the admissibility of transitivity: if Ψ�T<:U
and Ψ � U <:V then Ψ � T<:V . Attempts at a direct proof of transitivity fail
(for example, by induction on the total height of the derivations). There are
two difficult cases. If the first derivation ends with rule s-con and the second
ends with s-base then we need to ‘push’ the premises of s-con through the
second derivation. We use an auxiliary result (Lemma 6) to achieve this. If the
first derivation ends with rule s-lower (so we have a proof of Ψ � T<:X ) and
the second ends with rule s-upper (so we have a proof of Ψ � X<:V ) then we
need to make use of the consistency of Ψ in the side-conditions of these rules
(T ′<:X ∈ Ψ and X<:U ′ ∈ Ψ) to obtain a derivation of Ψ � T ′<:U ′. But to
apply the induction hypothesis on this derivation we need to bound its size.

Lemma 4. For any consistent context Ψ there exists a context Ψ ′ such that
Ψ � Ψ ′ and Ψ ′

� Ψ and satisfying the following property: if T<:X<:U ∈ Ψ ′ then



Ψ �b,m X<:X
r-var

C<vX >:K Ψ �b,m [T/X ]Ki<:D<U > C �= D

Ψ �b,m C<T><:D<U >
r-base

Ψ �b,m T<:U U<:X ∈ Ψ T �= X

Ψ �b+1,m T<:X
r-lower

X<:T ∈ Ψ Ψ �b,m T<:K

Ψ �b+1,m X<:K
r-upper

C<vX >:K ∀i, vi ∈ {◦, +} ⇒ Ψ �b,n Ti<:Ui and vi ∈ {◦, -} ⇒ Ψ �b,n Ui<:Ti

Ψ �b,n+1 C<T><:C<U >
r-con

Fig. 4. Ranked syntax-directed subtyping rules

there is a derivation Ψ ′
�T<:U in which all uses of rules s-lower and s-upper

are trivial, namely, that the premise is of the form Ψ ′
� V <:V .

Proof. By consistency of Ψ , for any T<:X<:U ∈ Ψ we have a derivation of
Ψ�T<:U . For every sub-derivation that ends with the conclusion Ψ�V <:X , add
V <:X to the context, likewise for every sub-derivation that ends with Ψ�X<:V ,
add X<:V to the context. If we repeat this process the resultant context Ψ ′ ⊇ Ψ
has the desired property. ��

Figure 4 presents a ‘ranked’ variant of the syntax-directed rules, where the
judgment Ψ �b,m T<:U is indexed by natural numbers b and m, where b is a
bound on the height of the derivation with respect to rules r-lower and r-
upper, and n is a bound on the height with respect to rule r-con. Note that
rule r-base does not count towards either measure: in our proofs we make use
of the following lemma that lets us elide inheritance.

Lemma 5 (Variant inheritance). If Ψ �b,m C<T><:D<U > then C<T> �

D<V > and Ψ �b,m D<V ><:D<U > for some V .

Proof. By induction on the subtyping derivation. ��

Lemma 6. Fix some n, c, l, T , U . Suppose that for any m � n, any b � c
and any W , if Ψ �b,m Ti<:W and vi ∈ {◦, +}, then there exists r such that
Ψ �b+l,r Ui<:W . Likewise suppose that for any m � n, any b � c and any W ,
if Ψ �b,m W <:Ti and vi ∈ {◦, -}, then there exists r such that Ψ �b+l,r W <:Ui.

1. For any T and V such that vX � T mono, if Ψ �c,n [T/X ]T<:V then
Ψ �c+l,r [U /X ]T<:V for some r.

2. For any U and V such that ¬vX � U mono, if Ψ �c,n V <:[T/X ]U then
Ψ �c+l,r V <:[U /X ]U for some r.

Proof. By simultaneous induction on the subtyping derivations in (1) and (2).

Lemma 7 (Transitivity). Let Ψ be a consistent context. If Ψ � T<:U and
Ψ � U <:V then Ψ � T<:V .



Proof. Using Lemma 4, assume that Ψ satisfies the stronger conditions described
there. We now prove the following equivalent ‘ranked’ statement. If D1 and D2

are derivations of Ψ �b,m T<:U and Ψ �c,n U <:V , then Ψ �b+c,r T<:U for some
r. We proceed by induction on (b+c, m+n), ordered lexicographically. We make
use of Lemma 6 for r-con against r-base. ��

Theorem 1 (Equivalence of syntax-directed and declarative rules).
Provided Ψ is consistent, Ψ � ∆ and ∆ � Ψ , then Ψ � T<:U iff ∆ � T<:U .

Proof. By induction on the derivations, using Lemma 7 for rule tran. ��

3.2 Subtyping Algorithm

Our syntax-directed rules can be interpreted as a procedure for checking sub-
types: if a subtype assertion holds, then the procedure terminates with result
true. To show that the procedure will terminate with false if the relation does
not hold, it suffices to find some measure on subtype judgments that strictly de-
creases from conclusion to premises of the syntax-directed rules. Unfortunately,
there is no such measure for the rules of Figure 3. Consider the following classes:

N <-X >:object and C:N <N <C>>

Now consider checking the subtype assertion C<:N <C>. If we attempt to con-
struct a derivation, we end up back where we started:

...
� C<:N <C>

s-con
� N <N <C>><:N <C>

s-base
� C<:N <C>

A similar issue arises with constraints. Suppose that Ψ = {X<:N <N <X >>},
and consider checking the subtype assertion X<:N <X >. Even simple equations
on type variables, expressed as bounds, such as {X<:Y ,Y <:X }, can induce
looping behaviour, for example testing X<:object.

These examples can be dealt with straightforwardly if the algorithm keeps a
set of goals ‘already seen’, returning false when asked to prove an assertion from
the set. Unfortunately this solution is not universal. Consider these definitions:

N <-X >:object and D<Y >:N <N <D<D<Y >>>>

Now consider checking Dm<T><:N <Dm<T>> where Dm has the obvious inter-
pretation as m iterations of the type constructor D :

...
� Dm+1<T><:N <Dm+1<T>>

s-con
� N <N <Dm+1<T>>><:N <Dm+1<T>>

s-base
� Dm<T><:N <Dm+1<T>>

s-con
� N <N <Dm+1<T>>><:N <Dm<T>>

s-base
� Dm<T><:N <Dm<T>>



Sub(Ξ,Ψ,T ,U ) =
if (T ,U ) ∈ Ξ then false
else let Sub′(T ′,U ′) = Sub({(T ,U )} ∪ Ξ,Ψ,T ′,U ′) in
case T ,U of
X ,X ⇒ true
T ,X ⇒ W

Ti<:X∈Ψ Sub′(T ,Ti)

X ,K ⇒ W
X<:Ti∈Ψ Sub′(Ti, K )

C<T>,D<U > ⇒ W
K∈K Sub′([T/X ]K ,D<U >), if C �= D and C<vX >:K

C<T>,C<U > ⇒ V
i|vi∈{◦,+} Sub′(Ti,Ui) ∧ V

i|vi∈{◦,-} Sub′(Ui,Ti), if C<vX >:K

Fig. 5. Subtyping algorithm

After four rules we end up at the subgoal Dm+1<T><:N <Dm+1<T>>, demon-
strating that there is no derivation.

We have not yet devised an algorithm that can check this assertion; nor
have we proved that the problem is undecidable. Instead, we impose a natural
restriction on class hierarchies that guarantees termination. We introduce the
notion of closure of a set of types under decomposition and inheritance.

Definition 2 (Closure of types). A set of types S is closed if whenever
C<T> ∈ S then T ⊆ S (decomposition) and whenever K ∈ S and K � K ′

then K ′ ∈ S (inheritance). The closure of S is the least closed superset of S.

Now consider the closure of the set {D<object>} with respect to the above
class definitions. It is easy to see that it is infinite. We rule out such classes; in
fact, the .NET Common Language Runtime already imposes the same restric-
tion [4, Partition II, §9.2], which enables eager loading of superclasses.

Definition 3 (Finitary definitions). A set of class definitions is finitary if
for any set of types S making use of those classes, its closure is finite.

Fortunately, there is an algorithm that can check whether or not a set of class
definitions is finitary [18, §6].

Figure 5 presents our subtyping algorithm in functional style. The additional
parameter Ξ is a set of pairs of types representing subtype assertions already
visited. The algorithm assumes that class definitions are finitary.

Definition 4 (Small derivations). A derivation of Ψ �T<:U is small if each
proper sub-derivation has a conclusion other than Ψ �T<:U , and is itself small.

It is easy to see that an arbitrary derivation can be transformed into a small
derivation. We make use of this fact in the proof of completeness.

Theorem 2 (Soundness and completeness of subtyping algorithm).
Sub({}, Ψ,T ,U ) = true iff Ψ � T<:U .

Proof. Soundness (⇒). By induction on the call tree. Completeness (⇐). Let
P = {(T ,U ) | Ψ �T<:U is a sub-derivation of D}. We show, by induction on D,
that if D is a small derivation of Ψ�T<:U and Ξ∩P = ∅ then Sub(Ξ, Ψ,T ,U ) =
true. ��



Theorem 3 (Termination). For any Ξ, any consistent, finite Ψ and any T
and U , the procedure Sub(Ξ, Ψ,T ,U ) terminates with result true or false.

Proof. Let S = {T ,U } ∪ {T | T<:U ∈ Ψ} ∪ {U | T<:U ∈ Ψ}. Call its closure
T , which is finite if we assume finitary class definitions. Then it is easy to see
that at each recursive call to Sub, the cardinality of (T × T ) \ Ξ decreases by
one. Hence the algorithm terminates. ��

3.3 Constraint Closure

There remains one piece of the subtyping jigsaw to put in place: given a set
of constraints ∆, as declared or inherited by a method, determining an equiva-
lent, consistent context Ψ , used as input to the subtyping algorithm when type-
checking the body of the method.

Not all constraint sets are useful: in particular, constraints between types
that are unrelated in the hierarchy can never be satisfied. That’s not enough,
though: a constraint set may entail unsatisfiable constraints. (For example, the
set {C<:X ,X<:D} is unsatisfiable if C is unrelated to D in the class hierarchy.)
So we define a notion of closure for constraint sets.

Definition 5 (Closure). A constraint set ∆ is closed if it is closed under tran-
sitivity, inheritance and decomposition:

– If T<:U ∈ ∆ and U <:V ∈ ∆ then T<:V ∈ ∆.
– If C<T><:D<U > ∈ ∆ and C<T> � D<V > with D<vX >:K then for each i,

if vi ∈ {◦, +} then Vi<:Ui ∈ ∆ and if vi ∈ {◦, -} then Ui<:Vi ∈ ∆.

The closure of ∆, written Cl(∆), is the least closed superset of ∆.

Definition 6 (Consistency of constraint sets). A constraint set ∆ is con-
sistent if for any constraint C<T><:D<U > ∈ Cl(∆) there exists some V such
that C<T> � D<V >.

To construct a context Ψ from a constraint set ∆ we make use of a partial
function Dec which takes an arbitrary constraint T<:U and produces a set of
constraints on type variables through a combination of inheritance and decom-
position (Pottier defines a similar notion [14]).

Dec(X<:T ) = {X<:T}
Dec(T<:X ) = {T<:X }

Dec(C<V ><:D<U >) =




⋃
i|vi∈{◦,+} Dec(Ti<:Ui) ∪

⋃
i|vi∈{◦,-} Dec(Ui<:Ti)

if C<V > � D<T> for some T where D<vX >:K
undefined otherwise.

We combine this with transitive closure in the following Lemma.



(class def) cd ::= class C< v X > : K where ∆ { P T f ; kd md}
(constr def) kd ::= public C(T f ) : base(f ) {this.f = f ;}

(field qualifier) P ::= public readonly

(method qualifier) Q ::= public virtual | public override

(method def) md ::= Q T m<X >(T x) where ∆ {return e;}
(expression) e ::= x | e.f | e.m<T>(e) | new K(e) | (T)e

(value) v , w ::= new K(v)

(typing environment) Γ ::= X , x : T , ∆

(method signature) ::= <X where ∆ >T → T (X is bound in ∆,T , T )
(substitutions) ::= [T/X ], [e/x ]

Fig. 6. Syntax of C� minor with variance and constraints

Lemma 8 (Context construction). Let ∆ be a set of constraints. Define

Ψ0 =
⋃

T<:U∈∆ Dec(T<:U )
Ψn+1 = Ψn ∪

∑
T<:X<:U∈Ψn

Dec(T<:U ).

If the class definitions are finitary, and ∆ is consistent, then Ψn is defined for
each n and has a fix-point Ψ = Ψ∞. Then Ψ is consistent, ∆ � Ψ and Ψ � ∆.

This provides a means of computing a consistent Ψ that models a set of
constraints ∆, or rejecting the constraints as unsatisfiable if they are found to
be inconsistent. In practice one might want to simplify constraints further, using
techniques such as those described by Pottier [14], though constraint sets in C�

are unlikely to be large.

4 C� minor with Variance and Generalized Constraints

In this section we formalize variance and generalized constraints as extensions of
a small, but representative fragment of C�. After presenting the type system and
operational semantics, we prove the usual Preservation and Progress theorems
(Theorems 4 and 5) that establish Type Soundness (Theorem 6). Preservation
tells us that program evaluation preserves types. Progress tells us that well-
typed programs are either already fully evaluated, may be evaluated further,
or are stuck, but only at the evaluation of an illegal cast (but not, say, at an
undefined runtime member lookup). The fact that we have to accommodate stuck
programs has nothing to do with our extensions; it is just the usual symptom of
supporting runtime-checked downcasts.

We formulate our extensions for ‘C� minor’ [9], a small, purely-functional
subset of C� version 2.0 [15, 6]. Its (extended) syntax, typing rules and small-
step reduction semantics are presented in Figures 6–8. To aid the reader, we
emphasize the essential differences to basic C� minor using shading. C� minor
itself is based on Featherweight GJ [7] and has similar aims: it is just enough
for our purposes but does not “cheat” – valid (constraint-free) programs in C�

minor really are valid C� programs. The differences from FGJ are as follows:



Subtyping:
(sub-incl)

∆ � T<:U

X , x :T , ∆ � T <: U

Well-formed types and constraints:

Γ � object ok

X ∈ Γ

Γ � X ok

D(C ) = class C< v X> : K where ∆ { . . . }
Γ � T ok Γ � [T/X ]∆

Γ � C<T> ok

∆ ≡ T<:U Γ � T , U ok

Γ � ∆ ok

Typing:
(ty-var)

Γ, x :T � x : T
(ty-fld)

Γ � e : K fields(K ) = P T f

Γ � e.fi : Ti

(ty-cast)
Γ � U ok Γ � e : T

Γ � (U )e : U
(ty-sub)

Γ � e : T Γ � U ok Γ � T <: U

Γ � e : U

(ty-new)
Γ � K ok fields(K ) = P T f Γ � e : T

Γ � new K(e) : K

(ty-meth)

Γ � e : K mtype(K .m) = <X where ∆ >U → U

Γ � T ok Γ � [T/X ]∆ Γ � e : [T/X ]U

Γ � e.m<T>(e) : [T/X ]U

Method and Class Typing:

(ok-virtual)

D(C ) = class C< v X > : K where ∆1 { . . . } mtype(K .m) not defined

¬vX � ∆2,T mono vX � T mono ∆1, ∆2 consistent

X ,Y , ∆1, ∆2 � T ,T , ∆2 ok X ,Y , ∆1, ∆2 , x :T , this:C<X > � e : T

� public virtual T m<Y >(T x) where ∆2 {return e;} ok in C<X >

(ok-override)

D(C ) = class C< v X > : K where ∆1 { . . . }
mtype(K .m) = <Y where ∆2 >T → T

∆1, ∆2 consistent X , Y , ∆1, ∆2 , x :T , this:C<X > � e : T

� public override T m<Y >(T x) {return e;} ok in C<X>

(ok-class)

vX � K ,T mono ∆ consistent X , ∆ � K , ∆ , T ok

fields(K ) = P U g f and g disjoint

� md ok in C<X > kd = public C(U g ,T f ) base(g) {this.f =f ; }
� class C< v X > : K where ∆ { P T f ; kd md} ok

Fig. 7. Typing rules for C� minor with variance and constraints



Operational Semantics:
(reduction rules)

(r-fld)
fields(K ) = P T f

new K(v).fi → vi

(r-meth)
mbody(K .m<T>) = 〈x , e ′〉

new K(v).m<T>(w) → [w/x , new K(v)/this]e ′

(r-cast)
� K <: T

(T)new K(v) → new K(v)

(evaluation rules)

(c-new)
e → e ′

new K(v , e, e) → new K(v , e ′, e)
(c-fld)

e → e ′

e.f → e ′
.f

(c-cast)
e → e ′

(T)e → (T)e ′
(c-meth-rcv)

e → e ′

e.m<T>(e) → e ′
.m<T>(e)

(c-meth-arg)
e → e ′

v.m<T>(v , e, e) → v.m<T>(v , e ′, e)

Field lookup:

fields(object) = {}

D(C ) = class C< v X> : K where ∆ { P1 U1 f1; kd md}
fields([T/X ]K ) = P2 U2 f2

fields(C<T>) = P2 U2 f2, P1 [T/X ]U1 f1

Method lookup:
D(C ) = class C< v X1> : K where ∆ { . . . md}
m not defined public virtual in md

mtype(C<T1>.m) = mtype([T1/X1]K .m)

D(C ) = class C<X1> : K where ∆1 { . . . md}
public virtual U m<X2>(U x) where ∆2 {return e;} ∈ md

mtype(C<T1>.m) = [T1/X1](<X2 where ∆2 >U → U )

Method dispatch:
D(C ) = class C< v X1> : K where ∆ { . . . md}
m not defined in md

mbody(C<T1>.m<T2>) = mbody([T1/X1]K .m<T2>)

D(C ) = class C< v X1> : K where ∆1 { . . . md}
Q U m<X2>(U x) where ∆2 {return e;} ∈ md

mbody(C<T1>.m<T2>) = 〈x , [T1/X1,T2/X2]e〉

Fig. 8. Evaluation rules and helper definitions for C� minor with variance and con-
straints



– Instead of bounds on type parameters, we allow subtype constraints on types,
specified at class and virtual method definitions but implicitly inherited at
method overrides. In this way, a virtual method may further constrain its
outer class type parameters as well as its own method type parameters.

– We include a separate rule for subsumption instead of including subtyping
judgments in multiple rules.

– We fix the reduction order to be call-by-value.

Like Featherweight GJ, this language does not include object identity and en-
capsulated state, which arguably are defining features of the object-oriented
programming paradigm, nor does it model interfaces. It does include dynamic
dispatch, generic methods and classes, and runtime casts. Despite the lack of
mutation, unrestricted use of variant type parameters leads to unsoundness:

class C<-X> { public readonly X x; public C(X x) { this.x = x; } }

// Interpret a Button as a string!

((C<string>) (new C<object>(new Button()))).x

For readers unfamiliar Featherweight GJ we summarize the language here.
Type variables X , types T , classes C , constructed types K , constraints

T<:U , constraint lists ∆ and indeed the declarative subtyping relation ∆ �
T<:U are as in Section 3 and not re-defined here; object abbreviates object<>.

A class definition cd consists of a class name C with formal, variance-
annotated type parameters v X , single base class (superclass) K , constraints

∆, constructor definition kd , typed instance fields P T f and methods md .
Method names in md must be distinct i.e. there is no support for overloading.

A field qualifier P is always public readonly, denoting a publicly acces-
sible field that can be read, but not written, outside the constructor. Readonly
fields behave covariantly.

A method qualifier Q is either public virtual, denoting a publicly-
accessible method that can be inherited or overridden in subclasses, or public
override, denoting a method that overrides a method of the same name and
type signature in some superclass.

A method definition md consists of a method qualifier Q , a return type
T , name m, formal type parameters X , formal argument names x and types
T , constraints ∆ and a body consisting of a single statement return e;. The
constraint-free sugar Q T m<X >(T x) {return e;} abbreviates a declaration
with an empty where clause (|∆| = 0). By design, the typing rules only allow
constraints to be placed on a virtual method definition: constraints are inher-
ited, modulo base-class instantiation, by any overrides of this virtual method.
Implicitly inheriting constraints matches C�’s implicit inheritance of bounds on
type parameters. Note that if ∆ contains a bound on a class type parameter,
then it may become a general constraint between types in any overrides of this
method (by virtue of base class specialization). This is why we accommodate
arbitrary constraints, not just bounds, in constraint sets ∆.

A constructor kd initializes the fields of the class and its superclass.



An expression e can be a method parameter x , a field access e.f , the
invocation of a virtual method at some type instantiation e.m<T>(e) or the
creation of an object with initial field values new K(e). A value v is a fully-
evaluated expression, and (always) has the form new K(v).

A class table D maps class names to class definitions. The distinguished
class object is not listed in the table and is dealt with specially.

A typing environment Γ has the form Γ = X , x :T , ∆ where free type vari-
ables in T and ∆ are drawn from X . We write · to denote the empty environment.
Judgment forms are as follows. The subtype judgment Γ � T <: U extracts ∆
from Γ and defers to subtype judgment of Figure 2. To do this we define the
predicates C<vX >:K of Section 3 to mean |K | = 0 and C<vX > ≡ object<>
or |K | = 1 and D(C ) = class C<vX > : K1 . . .. The formation judgment
Γ � T ok states “in typing environment Γ , the type T is well-formed with
respect to the class table, type variables and constraints declared in Γ”. The
typing judgment Γ � e : T states that “in the context of a typing environ-
ment Γ , the expression e has type T” with type variables in e and T drawn
from Γ . The method well-formedness judgment � md ok in C<X > states that
“method definition md is valid in class C<X >.” The class well-formedness judg-
ment � cd ok states that “class definition cd is valid”. The judgment e → e
states that “(closed) expression e reduces, in one step, to (closed) expression
e ′.” As usual, the reduction relation is defined by both primitive reduction rules
and contextual evaluation rules.

All of the judgment forms and helper definitions of Figures 7 and 8 assume
a class table D. When we wish to be more explicit, we annotate judgments and
helpers with D. We say that D is a valid class table if �D cd ok for each class
definition cd in D and the class hierarchy is a tree rooted at object (which we
could easily formalise but do not).

The operation mtype(T .m), given a statically known class T ≡ C<T> and
method name m, looks up the generic signature of method m, by traversing the
class hierarchy from C to find its virtual definition. The operation also computes
the inherited constraints of m so it cannot simply return the syntactic signature
of an intervening override but must examine its virtual definition.

The operation mbody(T .m<T>), given a runtime class T ≡ C<U >, method
name m and method instantiation T , walks the class hierarchy from C to find
the most specific override of the virtual method, returning its instantiated body.

Now some comments on the differences in our rules. Rule (ty-meth) imposes
an additional premise: the actual, instantiated constraints of the method sig-
nature (if any) must be derivable from the constraints in the context. In turn,
rules (ok-virtual) and (ok-override) add the class constraints and any declared
or inherited formal method constraints to the environment, before checking the
method body: the body may assume the constraints hold, thus allowing more
code to type-check. Note that we may apply subsumption, including subtyping
through variance, to the receiver of a method call or field lookup: for safety, the
run-time type or signature of the field or method must always be a subtype of
this static type. To this end, rule (ok-class) restricts field types to be monotonic
in the variance of class type parameters. Because the base class must be mono-



tonic too, this property is preserved by the types of any inherited fields (it is
easy to show that monotonicity is preserved by monotonic substitution). Rule
(ok-virtual) on the other hand, requires the method constraints and argument
types to be anti-monotonic in the variance of the class type parameters, but the
return type to be monotonic.

Our type checking rules are not algorithmic in their current form. In particu-
lar, the rules do not give a strategy for proving subtyping judgments and the type
checking rules for expressions are not syntax-directed because of rule (ty-sub).
As a concession to producing an algorithm, rules (ok-virtual) and (ok-override)
require that the declared constraints in ∆ are consistent. This ensures that an
algorithm will only have to cope with the bodies of methods that have consistent
constraints. This does not rule out any useful programs: methods with incon-
sistent constraints are effectively dead, since the pre-conditions for calling them
can never be established. However, imposing consistency means that subtype
relations can be decided by appealing to our subtyping algorithm.

Nevertheless, our proof of Type Soundness does not rely on the notion of
consistency. Type soundness holds even if we omit the consistency premises.

We now outline the proof (eliding standard lemmas like Well-formedness,
Weakening and Inversion). The class table implicit in all results is assumed to
be valid.

We prove the usual type and term substitution properties that follow, but a
key lemma for our system is Lemma 11, that lets us discharge proven hypothet-
ical constraints from various judgment forms (a similar lemma appears in [10],
but for equations).

Lemma 9 (Substitution Property for Lookup).

– If fields(K ) = P T f then fields([U /Y ]K ) = P [U /Y ]T f .
– mtype(K .m) = <X where ∆>T → T implies

mtype(([U /Y ]K ).m) = [U /Y ](<X where ∆>T → T ).
– mtype(K .m) is undefined then mtype(([U /Y ]K ).m) is undefined.

Lemma 10 (Substitution for types). Let J range over the judgment forms
of subtyping (T<:U), type well-formedness (T ok) and typing (e : T):

If X ,Y , x :T , ∆ � J and Y � U ok then Y , x :[U /X ]T , [U /X ]∆ � [U /X ]J .

Proof. Straightforward induction on the derivation of J , using Lemma 9. ��

Lemma 11 (Constraint Elimination). Let J range over the judgment forms
of subtyping (T<:U), type well-formedness (T ok) and typing (e : T):

If Γ, ∆ � J and Γ � ∆ then Γ � J .

Proof. Induction on the derivation of J . ��

Lemma 12 (Substitution for terms). If Γ, x :T � e : T and Γ � v : T then
Γ � [v/x ]e : T.



Proof. By induction on the typing derivation. ��

To prove Preservation we also need the following properties of (ground) sub-
typing. The first two lemmas tell us that the types of members are preserved by
subtyping, but only up to subtyping, since fields and method signatures behave
covariantly (subtyping on method signatures may be defined in the usual contra-
co fashion, treating constraints contra-variantly). The proofs of these lemmas
rely on the monotonicity restrictions on base classes, fields and method signa-
tures enforced by rules (ok-class) and (ok-virtual): these, in turn, justify appeals
to Lemma 3 in the proofs.

Lemma 13 (Field Preservation). If · � T ,U ok and · � T <: U , then
fields(U ) = P U g and fields(T ) = P T f implies · � Ti <: Ui and fi = gi for
all i ≤ |g |.

Lemma 14 (Signature Preservation).
If · � T ,U ok and · � T <: U then mtype(U .m) = <X where ∆1>V 1 → V1

implies mtype(T .m) = <X where ∆2>V 2 → V2 where ∆1 � ∆2 and · �
V 1<:V 2 and · � V2<:V1.

Lemma 15 (Soundness for Dispatch). If mbody(T .m<T>) = 〈x , e〉 then,
provided · � T ,T ok and mtype(T .m) = <X where ∆>U → U and · �
[T/X ]∆, there must be some type V such that · � V ok, · � T <: V and
x :[T/X ]U , this:V � e : [T/X ]U .

Proof. By induction on the relation mbody(T .m<T>) = 〈x , e〉 using Substitution
Lemmas 10 and 9 and Lemma 11. ��

Theorem 4 (Preservation). If · � e : T then e → e ′ implies · � e ′ : T.

Proof. By induction on the reduction relation using Lemmas 12–15. ��

The proof of Progress relies on Lemma 16. The lemma guarantees the pres-
ence of a dynamically resolved field or method body, given the existence of a
member of the same name in a statically known superclass.

Lemma 16 (Runtime Lookup). If · � T ,U ok and · � T <: U then

– fields(U ) = P U g implies fields(T ) = P T f , for some T , f , with
· � Ti <: Ui and fi = gi for all i ≤ |g |.

– mtype(U .m) = <X where ∆>V → V implies
mbody(T .m<T>) = 〈x , e〉 for some x , e with |x | = |V |.

To state the Progress Theorem in the presence of casts, as for FGJ, we first
characterize the implicit evaluation contexts, E , defined by the evaluation rules:

E ::= [] | new K(v , E , e) | E.f | E.m<T>(e) | v.m<T>(v , E , e) | (T)E

We define E [e] to be the obvious expression obtained by replacing the unique
hole [] in E with e.



Theorem 5 (Progress). If · � e : T then:

– e = v for some value v (e is fully evaluated), or
– e → e ′ for some e′ (e can make progress), or
– e = E [(U )new K(v)], for some evaluation context E, types U and K and

values v where � � K <: U ( e is stuck, but only at the evaluation of a failed
cast).

Proof. By (strong) induction on the typing relation, applying Lemma 16. ��

Theorem 6 (Type Soundness). Define e →� e ′ to be the reflexive, transitive
closure of e → e ′. If · � e : T, e →� e ′ with e ′ a normal form, then either e′

is a value with · � e ′ : T, or a stuck expression of the form E [(U )new K(v)]
where � � K <: U .

Proof. An easy induction over e →� e ′ using Theorems 5 and 4. ��

5 Conclusion

We have described and formalized a significant generalization of the C� generics
design. Generalized constraints, in particular, are useful in their own right, and
easy to understand. In a sense, they are simply a lifting of a restriction imposed
in both Java and C�: that the type on the left of a class constraint must be a
class type parameter, and that the type on the left of a method constraint must
be a method type parameter.

The practicality of definition-site variance is less clear, bearing in mind the
refactoring of libraries that is necessary to make good use of the feature. The
experience of Scala users will be valuable, as Scala adopts a very similar design
for variant types.

For future work, we would like to develop an algorithm for – or prove un-
decidable – the extension of subtyping to infinitary inheritance. These results
would transfer almost directly to variant subtyping in Viroli and Igarashi’s sys-
tem [8] and to wildcards in Java, which have similar inheritance and variance
behaviour.

Our formalization could be extended to support interfaces, and perhaps also
mutable fields in objects. Finally, we are studying the generalization of our pre-
vious work on type-preserving translations from variants of System F into C�,
providing some handle on the expressivity of the extensions. It does not seem
possible to translate Full F<:, for which subtyping is undecidable [13]. Neither
is it possible to translate Kernel F<:. But a third variant, called F�

<: [3], can be
translated into C� with variance and upper bounds.

The first author has completed a prototype implementation of variant inter-
faces, variant delegates, and generalized constraints. We hope to release this as
a ‘diff’ to the shared source release of C� 2.0.
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