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Introduction
Variance component methods have a long history in both human quantitative genetics and
agricultural genetics and animal breeding. They are designed for genetic analysis of
continuously varying quantitative traits like body mass index (BMI), cholesterol levels, or
IQ. They can be used to assess the strength of genetic effects on a trait, to localize genes
influencing a trait though either linkage or association methods, to assess whether associated
variants are likely to be the functional variants behind a given localization signal, to explore
whether related traits have shared genetic influences in multivariate analyses, and to
characterize the genetic effects on a trait through analyses of gene-gene and gene-
environment interaction. An excellent reference for a thorough explanation of classical
variance component methods in genetics is Falconer and Mackay 1996.

Conceptually, the idea behind variance component methods is very simple – to decompose
the overall variance in a phenotype into particular sources. Assuming that the trait of interest
is normally distributed, a common assumption in variance component analyses, the
distribution of a trait or phenotype can be described in terms of the mean and variance of the
trait. Figure 1 shows the distribution of height in the 1411 participants of the San Antonio
Family Heart Study (SAFHS) (Mitchell et al. 1996). The height of study participants ranges
from 132.4 cm to 190.5 cm and the mean is 161.64 cm. Most people are about average and a
few people are very short or very tall. The variance describes the spread of the trait values
around the mean. The variance in height in the SAFHS is 85.65. Asking what the sources of
variance in a trait are is essentially asking what makes people different from each other.

The most basic way to group these sources of variance is to divide the overall phenotypic
variance (σ2

p) into genetic (σ2
g) and environmental (σ2

e) components:

(1)

Each of these can be further subdivided. Genetic variance is often subdivided into additive
and dominance variance and sometimes epistatic variance, which arises from interactions
among genes. Environmental variance is typically divided into shared and unshared or
unique. Shared environmental variance may reflect influences that are common to members
of a nuclear family, to spouses, to sibships, or to larger community units that extend beyond
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the nuclear family. Unshared or unique environmental variance is specific to each individual
and may include things such as measurement error.

Heritability and Covariates
Heritability is a measure of the strength of genetic effects on a trait. In its most general
sense, heritability (h2) is defined as the proportion of the phenotypic variance in a trait that is
attributable to genetic effects:

(2)

This is broad sense heritability and includes dominance and epistatic interaction effects.
However, most human family studies deal with additive genetic or narrow sense heritability,
which is the proportion of the phenotypic variance attributable to additive genetic effects or

(3)

The overall phenotypic variance is estimated from the observed distribution of trait values in
a sample and is decomposed into genetic and environmental components using the observed
covariance in the trait among family members (Ω) and structuring matrices that predict the
covariances among family members if they are due to additive genetic effects or to
environmental effects.

(4)

Here Ω is an N-by-N matrix, where N is the number of individuals in the data set, whose
elements are the observed covariances in phenotype for each pair of individuals in the data
set (see Chapter 2, Sinsheimer for a definition of covariance). The right side of the equation
consists of possible sources of covariance among individuals and structuring matrices
describing what the covariances among individuals should be if they are due to that
component. In this case, equation 4 describes a very simple model including only aggregate
additive genetic effects of an unspecified number of loci at unknown locations in the
genome (σ2

a) and unique, unshared environmental effects (σ2
e). Each variance component is

accompanied by a structuring matrix that predicts the covariance among individuals
attributable to that component. In the case of the additive genetic component, the structuring
matrix is the coefficient of relationship, 2Φ, which is also twice the kinship coefficient. The
coefficient of relationship can be specified for any two individuals on the basis of their
family relationship and requires only knowledge of the pedigree connections between
individuals, not their genotypes. It is one half for first degree relatives and goes down by a
factor of one half with each degree of relationship, being one quarter for second degree
relative pairs, one eighth for third degree pairs, and so on (Table 1). For pairs with more
complex types of relationships who are related through multiple lines of descent, as may
occur with inbreeding or with marriage loops in a pedigree, this coefficient can also be
calculated by tracing the paths between them through all common ancestors multiplying by
one half for each step along the path and summing across the multiple paths. The coefficient
of relationship is also the expected proportion of DNA shared on average by a given relative
pair across the whole genome. The basic idea behind this model is intuitively obvious - to
the extent that additive genetic effects influence a trait of interest, regardless of how many

Almasy and Blangero Page 2

Cold Spring Harb Protoc. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



genes influence the trait, close relatives should be more correlated in their phenotype than
are more distant relatives who should be more correlated than are unrelated individuals. The
structuring matrix for the environmental component is an identity matrix, which is ones
down the diagonal (i.e. for the individual with themselves) and zeros everywhere else. This
implies that the environmental component is unique to each individual and unshared or
uncorrelated between individuals. Based on the observed covariances in phenotype among
individuals in the data set and on these structuring matrices, maximum likelihood techniques
are used to estimate the additive genetic and environmental variance components (see
Chapter 2, Sinsheimer for more on maximum likelihood). Returning to our example of
height in the SAFHS, the maximum likelihood estimate of the additive genetic variance,
given the observed covariances among individuals and the kinship coefficients among
family members, is 45.39, providing an additive genetic heritability of 45.39/85.65 = 0.53.
As a proportion, heritability varies between zero and one, with higher values indicating
stronger genetic effects.

It is important to note that genes are not the only thing shared by family members and that
some study designs are susceptible to confounding familial effects with genetic ones,
inflating estimates of the additive genetic variance and therefore heritability through
unaccounted for effects of shared environment. In twin studies, a common assumption is that
environmental sharing is the same for monozygotic and dizygotic pairs. If this is true,
estimating the heritability of a trait by taking the difference in the covariances of the two
types of twin pairs results in the environmental variance canceling out. In studies of
extended pedigrees, the comparable assumption is that shared environment is unlikely to
mimic genetic sharing, which falls off by a factor of one half with each degree of
relationship as shown in Table 1. Studies of nuclear families that do not include twins do not
have either of these protections and are somewhat more vulnerable to the problem of
overestimation of heritability due to the effects of correlations among family members that
are due to shared environment rather than shared genes.

One approach to the problem of shared environmental effects is to incorporate them directly
into the variance component model. This is easily done, provided one can specify a
structuring matrix that indicates which individuals in the study share the relevant
environment. In its simplest form, this could be a matrix of zeroes and ones specifying for
each pair of individuals in the study whether they do or do not share the environmental
factor. Household is often used in this way, with a matrix indicating which individuals lived
in the same household at the time of study, as a proxy for many difficult to measure factors
such as diet. One might also use this kind of matrix to model childhood rearing environment
(i.e. which individuals lived together as children) or to allow for correlations between
spouses. Although a simple share/don’t share matrix of zeroes and ones is the most common
type of environmental sharing incorporated into human variance component studies, there is
no reason such a matrix can’t contain continuously varying measures of sharing. One
example of this would be a distance matrix where individuals in the same household have
complete sharing (ones in our zero/one matrix) and individuals in different household have
values decaying toward zero and depending on how far apart the households are. This type
of household matrix might be useful as a proxy for environmental exposures such as
pollutants.

Another important source of trait variation to consider is known environmental factors that
can be measured in each study participant. It is more powerful to incorporate a direct
measure of an environmental factor than to use indirect measures of whether individuals
share or don’t share this environmental factor. Using the examples above, if we could
measure diet or pollution exposure for each individual, that would be preferable to using
household membership as a proxy for sharing of these factors among family members.
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Accounting for the effects of measured environmental factors reduces the unexplained trait
variance and effectively magnifies a genetic signal. Covariates are dealt with in variance
component analyses as a modification to the trait mean, rather than a component of the
variance. Essentially, covariate-specific trait means are used in the calculation of
covariances among relatives. In the case of height, it is well known that men are, on average,
taller than women. Including sex as a covariate in our example analysis from the SAFHS,
we learn that females in this study are, on average, 13.4 cm shorter than males and after
taking into account mean differences in height between males and females, we reduce the
residual trait variance to 39.68 of which 69% can be attributed to additive genetic effects. If
we consider the heritability to be a sort of signal-to-noise ratio for genetic effects, including
this one covariate increased our ratio by 0.16, from 0.53 to 0.69. Another covariate we might
choose to include for height is age, as people do lose some height as they get older, or birth
cohort as there are known secular trends in height.

The selection of covariates can have a large effect on the outcome of variance component
analyses. Accounting for non-genetic sources of variance can magnify the genetic signal, as
demonstrated above. However, one must consider that it is also possible to choose as
covariates traits that absorb genetic variance as well as environmental. For example, many
individuals with type 2 diabetes also have hypertension, abdominal obesity, high triglyceride
levels and low HDL cholesterol levels: a clustering of phenotypes described as metabolic
syndrome. Because of this, one might choose to include the known correlates blood
pressure, triglyceride levels, and HDL levels as covariates in genetic analyses of type 2
diabetes. However, because these traits are themselves genetically influenced, including
them as covariates raises the possibility that one is correcting out not only environmental
factors but also genetic ones, potentially decreasing the magnitude of the genetic signals for
type 2 diabetes. If hypertension, abdominal obesity, high triglyceride levels, low HDL
cholesterol levels and diabetes commonly occur together because they are influenced by the
same genes, including blood pressure and lipid measurements as covariates in an analysis of
type 2 diabetes will likely reduce the power to find genes that influence both these
phenotypes and diabetes. There are instances when one may decide to take this route as a
deliberate choice, for example if one is interested in genetic effects on type 2 diabetes that
are independent of obesity. However, in general, one should be very cautious about
including as a covariate anything that might share overlapping genetic influences with the
trait of interest. One way to assess this is to examine the genetic correlations among traits
(discussed below in the section on Multivariate Analysis).

Liability Threshold Model
Although variance component methods were designed for continuously varying quantitative
traits, an extension of this basic model can be used to analyze discrete or categorical traits by
assuming that there is an unobserved, continuous, quantitative trait underlying the observed
categorical one. This imagined underlying quantitative trait is referred to as the liability and
is assumed to be normally distributed. A threshold is placed on this imaginary distribution so
that a portion of the distribution equal to the trait prevalence is above the threshold. So if
12% of the population is affected, the threshold is placed such that 12% of the liability
distribution is above the threshold. Covariates, such as age and sex, are modeled as effects
on this threshold and allow for different prevalences of the trait in males and females or by
age or with smoking or medication use. One conceptual advantage of this model is that it
acknowledges differences within affected and unaffected individuals. Some affected
individuals are mildly affected and can be thought of as having a liability that is just over the
threshold whereas others are severely affected with a very high liability. Similarly, as the
threshold moves with age, some young individuals with higher liabilities who are now
unaffected may become affected as they get older.
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Of course, it is impossible to directly measure an individual’s liability since liability is an
unobserved and imaginary trait. We only know which side of the threshold an individual is
on given their affection status and where the threshold is for someone of their age, sex, and
covariate status. The analysis is thus performed by integrating over the possible liability
threshold values each individual could have given their observed dichotomous trait status
and age, sex, and other covariates. The success of this analysis once again depends on
contrasting relatives who are more and less alike in their phenotypes, so it requires the
presence of individuals on both sides of the threshold and could not be done with a sample
that contains, for example, only affected individuals. The power of the approach depends in
part on the prevalence of the trait. Imagine a relatively rare disease, such as schizophrenia
which has a prevalence of roughly 1%. Knowing someone is affected localizes their liability
to a relatively small portion of the curve, the top 1%. But knowing that someone is
unaffected tells you almost nothing about their liability, they are somewhere in the bottom
99%. The power of the liability threshold is greatest when the prevalence approaches 50%
and affected and unaffected individuals are equally informative (Williams and Blangero
2004).

Linkage
The basic model for linkage analysis within a variance components framework is a simple
extension of equation (4), adding in a new locus-specific variance component (σ2

qtl) and a
structuring matrix for it (Π) that is a function of observed allele sharing among family
members at genotyped markers in a region of interest (Goldgar 1990; Amos 1994; Almasy
and Blangero 1998):

(5)

The elements of the Π matrix are the proportion of alleles shared identical by descent (IBD)
by each relative pair at a particular location in the genome, which is estimated based on the
genotypes at surrounding markers. To be IBD, two alleles must not only be the same (e.g.
both 116 base pairs for a microsatellite or both G alleles for a SNP), they must be copies of
the same ancestral chromosome. This is the heart of how linkage differs from association.
Linkage analysis is not based on which allele any given person or pair of relatives have at a
given marker; the genotypes are merely used to mark the flow of chromosomes through
pedigrees and to determine how correlated a relative pair is for their alleles on that segment
of chromosome. In the region of a gene influencing a trait of interest, relatives who are more
correlated in their trait values should have higher IBD allele sharing and relatives who are
less correlated phenotypically should have lower IBD sharing. This is true regardless of the
type and complexity of the underlying genetic model. Imagine a gene with extensive allelic
heterogeneity. This same quantitative trait locus (QTL) influences the trait of interest in
many families, but there are many functional variants. This QTL can still be detected by
linkage because although there may be a different allele in each family, within a family
relatives who share the same allele will be more phenotypically alike than relatives who are
discordant at the QTL, regardless of which functional allele they carry and whether that
particular allele increases or decreases trait values.

IBD sharing is usually represented as a proportion – 0 for pairs that share no alleles, ½ for
pairs that share exactly one allele, and 1 for pairs that share both alleles – and the Π matrix
contains the estimated IBD sharing at a given location for each pair of individuals in the
sample. In practice, when parents are ungenotyped or homozygous, we may not be able to
determine whether a pair shares 0, 1, or 2 alleles. In this case, the estimated IBD sharing is a
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weighted average of the probability of sharing 1 allele and the probability of sharing 2
alleles:

(6)

The power of variance component linkage analysis is a function of the proportion of
variance due to the QTL (σ2

q), the sample size, and the family configuration. For a fixed
sample size, linkage power is maximized when the individuals are concentrated into as few
pedigrees as possible; larger pedigrees provide more power per person sampled (Blangero et
al. 2003). Analytical power formulae can be written down for fixed pedigree configurations
(Williams and Blangero 1999), but in practice most studies contain a mixture of different
types of pedigrees and power is estimated by simulation. It can be shown that power is
greater for quantitative traits than for discrete traits derived from a quantitative measure (e.g.
as obesity is from BMI), when QTL effect and sample size and configuration are held
constant, unless the quantitative trait is very poorly measured with a high degree of error.

Ascertainment
A common rule of thumb often taught is that the ascertainment scheme used to select
families for study must be taken into account in segregation analyses but not in linkage
analyses. However, not taking into account the way in which families were ascertained can
hurt power in variance component analyses. As described above, the analyses depend on the
trait mean and variance, which is being estimated from the sample. If the trait of interest is
genetically influenced, family members are correlated with each other for their trait values.
So selecting families through an individual with an extreme phenotype, e.g. a BMI > 35,
affects the distribution of trait values not only in those probands but also in their family
members. In such a sample, the estimated mean will be higher than the population mean and
the variance will be lower than the population variance, as individuals from the lower end of
the trait distribution are likely to be underrepresented. Consequently, an individual with a
BMI of 40, who would be very extreme compared to the population distribution, is less
extreme relative to the sample trait distribution, effectively undervaluing this individual in
the analysis. Additionally, correlations among relatives will be underestimated.

The most straightforward ascertainment correction involves conditioning the likelihood of
each pedigree on the proband’s phenotype (Boehnke and Lange 1984). However, this is only
an exact correction when each family was ascertained based on the phenotype of a single
individual. When families were ascertained through multiple individuals, e.g. affected
sibling pairs, it is possible to condition on both individuals’ phenotypes, but this correction
is no longer guaranteed to recover the correct population mean and variance and may, in
some cases, further reduce analytical power. Another approach that can be used is to fix the
trait mean and variance based on measures from epidemiological studies in the same
population, rather than estimating them. However, if this is done, one must also fix any
covariate effects rather than estimating them. When faced with a complicated ascertainment
scheme where it is difficult to identify probands and no appropriate epidemiological data is
available for fixing the mean and variance, the good news is that failing to employ an
ascertainment correction should be conservative. It reduces power but should not increase
false positive rate.

Non-normality
Likelihood-based variance component methods typically assume that a trait is normally
distributed, like a bell curve. Skewness and kurtosis describe two ways that a distribution
may be non-normal. It may not be symmetrical around the mean with more of the trait

Almasy and Blangero Page 6

Cold Spring Harb Protoc. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



values falling to one side than to the other, in which case it is skewed. Or it may have tails
that have too many or too few individuals, which is kurtosis. Examining Figure 1, we can
see that the distribution of height is slightly skewed, but there is no significant kurtosis. The
specific type of non-normality that can be problematic for variance component analyses is
leptokurtosis, when the tails of a distribution are too full and there are more trait values far
from the mean than would be expected in a normal distribution. It has been shown that the
evidence for linkage can be inflated if such data is analyzed assuming a normal distribution.
The increase in false positive rate depends on the degree of kurtosis and on the heritability
of the trait, but could be two or even three times what is expected.

Fortunately, this situation is easily corrected and one only need be aware of the issue and
take appropriate steps when analyzing leptokurtic traits. Two commonly used corrections
are using the t-distribution instead of the normal or calculating a correction constant. The
correction constant can be calculated directly for pedigrees of fixed structure, but more
commonly it is derived from comparing LOD scores obtained in simulations under the null
of no linkage to the observed LOD score distribution for the trait at hand. These corrections
are discussed more fully in Blangero et al 2000 and Blangero et al 2001. Some investigators
also choose to use transformations to normalize their data. These transformations could
range from taking the natural log of the trait values to rank ordering the trait values and
replacing them with a corresponding value from a normal distribution. The use of such
transformations is somewhat controversial, with some arguing that changing the distribution
of the trait may change the properties and detectability of the underlying genetic signal. One
potential safeguard against this is to choose transformations that maintain or enhance the
trait heritability. If the goal of the study is gene localization, choosing a transformation that
maximizes heritability should not bias any eventual linkage or association results.

Multivariate Analysis
Joint analysis of multiple related phenotypes can be used to answer questions about the
nature of the relationship between the traits and to increase power to localize genes
influencing the traits (Lange and Boehnke 1983; Almasy et al 1997). For example, when
two traits are known to be correlated, we often would like to know whether this is because
they are influenced by the same genes. Identifying networks of related risk factors that share
overlapping genetic effects may provide insight into the biology of a disease phenotype.
Similarly, showing that two heritable risk factors for the same disease have no overlapping
genetic effects suggests that there are at least two independent pathways contributing to
disease risk.

As with the variance for a single trait, the overall phenotypic correlation between two traits
(ρp) can be broken down into a genetic (ρg) and an environmental component (ρe):

(7)

where h2
1 and h2

2 are the heritabilities of trait 1 and trait 2. In practice, the genetic and
environmental correlations are obtained by estimating the genetic and environmental
variance components for each trait (σ2

a and σ2
e) and the covariance between them, using the

observed covariances among family members for the two traits and the same structuring
matrices as before, 2Φ and I.

The additive genetic correlation, ρg, varies between −1 and 1 and is a measure of pleiotropy,
the extent of common genetic effects on the two traits. If ρg = 0, the two traits are influenced
by independent genetic factors. If ρg = −1 or 1, the genetic influences on the two traits are
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identical with the sign indicating whether variants that increase levels of one trait also
increase levels of the other (+1) or whether factors that increase levels of one trait decrease
levels of the other (−1). Likelihood ratio tests can be used to obtain a p-value testing the
hypothesis of pleiotropy (i.e. whether ρg is different from 0). This test of pleiotropy is one
way to assess whether a measured co-factor may have overlapping genetic influences with
the focal trait in an analysis before deciding whether to use it as a covariate.

The linkage models discussed above are also easily expanded to bivariate or multivariate
analyses via a QTL variance for each trait and the locus-specific correlations between them
(Almasy et al 1997). For a specific test of pleiotropy, one may choose to fix the locus-
specific correlation to 1 or −1, implying that the same functional variant (or variants) in the
region affect both traits. In the case where there are multiple functional variants that
comprise a QTL, one may observe a genetic correlation < | 1 | if some variants influence
both traits and some influence only one or if there are gene-environment interactions
influencing one trait but not the other.

Association
The simplest association analysis for quantitative traits is to test whether the mean trait
values differ by genotype, sometimes called a measured genotype test (Boerwinkle et al.
1986). This tested is implemented in the same way as are covariate effects such as age and
sex. The genotype of each individual is scored, a regression coefficient is estimated, and a
likelihood ratio test is used to assess whether the regression coefficient is different from
zero.

Often an additive model of gene action is assumed. For a marker with only two alleles, such
as a SNP, an additive model requires a single genotype score with genotypes AA, Aa, and aa
being scored as 0, 1, and 2, respectively. This model effectively constrains the trait mean for
heterozygotes to be at the midpoint of the mean for the two homozygotes and provides a one
degree of freedom association test. Recessive and dominant models, in which the
heterozygote mean is constrained to be equal to that of one of the homozygotes and the
genotypes are scored 0 or 1, also provide one degree of freedom tests but are less commonly
used. Means may also be estimated separately for each genotype using two 0/1 genotype
scores to differentiate the three genotype classes. This does not require any assumptions
about the underlying model of gene action. However, it results in a two degree of freedom
test and it may lead to parameter estimates that are biologically implausible for many
phenotypes (e.g. a situation of overdominance where the mean for the heterozygote is
outside the range of the homozygote means). These fixed effects regression-based
association tests for differences in trait mean by genotype are identical to ones that might be
performed with any statistical analysis software. The advantage to implementing them
within a variance component framework is that the non-independence among family
members is accounted for through the additive genetic component in the random effects
model of the variance. Ignoring this non-independence among family members could bias
the p-values of the association tests.

Although the measured genotype test implemented in a variance component framework
takes into account the non-independence among family members, it is still susceptible to the
effects of population stratification. A variety of transmission disequilibrium tests for
quantitative traits have also been implemented in a variance component framework. These
tests protect against association due to population stratification by separating the genotype
score for association with a marker into between- and within-family components and using
only the within-family component for the test of association (Fulker et al. 1999; Abecasis et
al. 2000a; Abecasis et al. 2000b; Siegmund et al. 2001).
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Gene-Gene and Gene-Environment Interactions
The above models are easily expanded to incorporate or test gene-gene and gene-
environment interactions. On the level of aggregate genetic effects at unspecified points in
the genome, gene-environment interactions (described in Chapter 11 Loos) can be thought
of as due to either differences in magnitudes of genetic effects between environments or
differences in which genes influence a trait in different environments. Differences in
magnitudes of genetic effects are modeled for dichotomous environments (e.g. smokers and
non-smokers) by specifying environment-specific variance components (σ2

a, σ2
e, and σ2

q if
it is a linkage model). Differences in which genes influence a trait in different environments
are modeled with correlations between the genetic and environmental variance components
in the two environments (ρg and ρe). A simple test of overall, non-locus-specific, gene-
environment interaction can be achieved by comparing the likelihood of a model where
separate additive genetic components are allowed to differ between environments to the
likelihood of a model where the additive genetic variances are constrained to be equal for a
simple one degree of freedom test. The same type of test can also be used in linkage by
testing equality of the QTL-specific variances in the two environments. On the level of
association, the analogous test would be to model the difference in mean trait values by
genotype separately for smokers and non-smokers and perform a likelihood ratio test using
models where regression coefficients for the SNP effect are estimated separately versus
constrained to be equal. In the simple non-locus-specific, additive genetic model, gene-
environment interaction is also present when the genetic correlation between environments
is different from one, implying different genes influencing the trait in the two environments.
Variance component models for gene-environment interaction are described more fully in
Blangero 1993. In the case of an environmental factor that varies continuously, the genetic
and environmental variance components can be modeled as a function of the environmental
measure, with genetic or environmental variances increasing or decreasing per unit of
change in the environmental measure, as described in Diego et al 2003.

Gene-gene interactions, or epistasis, can be modeled on the level of linkage by adding a
variance component for epistatic interaction between two loci with an appropriate
structuring matrix to a two QTL linkage model that also contains QTL-specific variance
components for the independent effects of each of the loci (Mitchell et al 1997):

(8)

For additive-additive interaction, the structuring matrix for the epistatic component would
be the Hadamard product of the IBD matrices for each of the individual QTLs, Π1⊙Π2. A
focal test of gene-gene interaction is then provided by testing whether the new epistatic
component of variance, σ2

epi, is > 0. Additive-dominance, dominance-additive, and
dominance-dominance epistasis are not often used in human genetic studies but also can be
modeled with the appropriate structuring matrices. For additive components this is the IBD
sharing matrix, Π, whereas for dominance components it is a locus-specific version of
Jaquard’s Δ7, the probability that each pair of individuals shares both alleles identical by
descent. On the level of association, gene-gene interaction can be modeled similar to gene-
environment interaction, by estimating multiple regression coefficients (as above in gene-
environment interaction) and evaluating whether the displacement among trait means by
genotype at one locus differs by genotype at a second locus.
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Identifying Potentially Functional Variants
Ideally, localization of a QTL to a region or gene through linkage or association will be
followed by identification of the specific DNA variants that influence a phenotype.
Confirmation of functional variants will of course involve laboratory studies of function,
such as expression constructs, and potentially animal models. However, statistical genetic
techniques may aid in prioritizing variants for these studies. Suppose that there are two
functional variants within a particular QTL, a promoter variant that has a relatively small
effect on the mean trait values in the population (QTN1 in Figure 2) and a coding change
that has a large population-level effect (QTN2). (Remember that the effect size on the
population level is a function of both the frequency of a variant and the shift in phenotype
values it causes in each individual who carries it. A variant may have a larger population
level effect either by being common or by causing a large displacement in the mean
phenotype value.) Suppose also that there are many other SNPs in and around this gene that
do not affect our phenotype (SNPs 1-3 in Figure 2). Some of these non-functional
polymorphisms are in greater or lesser degrees of linkage disequilibrium (LD) with one or
the other of the two functional variants. If we rank SNPs for functional studies in order of
their p-values for association with the phenotype, non-functional SNPs that are in strong LD
with the coding variant of large effect (SNPs 2 and 3 in Figure 2) will be higher on our list
of candidates than QTN1, the promoter variant that is truly functional but has a smaller
effect size. This is because the effective effect size for association studies for a given
genotyped marker (σ2

mark) is a function of the proportion of variance attributable to a
functional variant (σ2

qtn), which we call a QTN or quantitative trait nucleotide, and the
correlation between that QTN and the genotyped marker:

(9)

where ρ is the correlation between genotypes at the marker and at the QTN, which is also
the square root of the common measure of linkage disequilibrium r-squared. If our
functional variants account for 1% of the trait variance, in the case of the weaker QTN1, or
2%, in the case of the stronger QTN2, non-functional SNPs with r-squared of > 0.25 with
QTN2 will have a σ2

mark that is greater than the σ2
qtn of QTN1 and will produce stronger p-

values in an association analysis.

Bayesian methods of multi-marker association analysis have been proposed to screen out
SNPs whose strong p-value in an association analysis is due to LD with another genotyped
variant (Blangero et al. 2005). This approach involves obtaining a goodness of fit statistic
for models including each variant individually and then pairs of variants and then three
variants at a time and so with the addition of variants continuing until no n+1 variant model
fits better than the best n variant model. Then the Bayesian Information Criterion (BIC) is
used to compare these non-nested models. Rather than selecting one model as the ‘best’, all
of the models within a certain window of BIC values are retained and Bayesian Model
Averaging is used to obtain a posterior probability for each SNP. Returning to the example
above, with a coding variant of large effect and a promoter variant of smaller effect and
other SNPs in LD with them, both of the functional variants and all of the markers in LD
with them will do well in the models with individual markers. However, in the two locus
models, once one of the functional variants is in the model the SNPs in LD with that variant
will provide no additional information. Unless another SNP is in complete LD with one of
the functional variants (r-square = 1), the models with the true functional variant will
provide a better fit than the models with variants that are only in LD with the functional
variant. This approach depends on having assayed all of the variants in a region that are
present in the samples being analyzed, such that the functional variants are among the
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genotyped markers, as we will soon have given the growing access to high-throughput
sequencing as a routine part of studies. It also depends on the LD between the functional
variants and surrounding markers. The degree of LD that can be distinguished depends on
the sample size and configuration, but it is not out of the question to be able to pick out a
functional variant from markers with an r-squared of 0.95 with that variant.

Summary and conclusions
Variance component methods have a long history in quantitative human, animal, and plant
genetics. They can be used to assess the strength of genetic effects on a phenotype of
interest, to explore which phenotypes are influenced by the same genes, and to localize,
identify, and characterize the genetic variants influencing a trait. They have been used in
many successful studies of quantitative risk factors related to human disease (e.g. Comuzzie
et al 1997; Curran et al 2005; Goring et al 2007; Mitchell et al 1996; Soria et al 2005).
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Figure 1.
Distribution of height in the San Antonio Family Heart Study.
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Figure 2.
A chromosomal region with two functional variants (QTN1 and QTN2) and three SNPs and
the linkage disequilibrium between these pairs of markers. Darker boxes indicate stronger
disequilibrium.
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Table 1

Family relationships and coefficient of relationship.

Degree of relationship Types of relative pairs
Coefficient of
relationship (2Φ)

1 Parent-child, sibling ½ = 0.5

2 Grandparent-grandchild, half sibling, avuncular (aunt or uncle with niece or nephew) ¼ = 0.25

3 Great grandparent –grandchild, half avuncular, grand avuncular, first cousins 1/8 = 0.125

4 Great great grandparent – grandchild, half grand avuncular, great grand avuncular, first
cousins once removed

1/16 = 0.0625
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