
FINAL VERSION 1

Variance-Constrained Recursive State Estimation for

Time-Varying Complex Networks with Quantized

Measurements and Uncertain Inner Coupling
Jun Hu, Member, IEEE, Zidong Wang, Fellow, IEEE, Guo-Ping Liu, Fellow, IEEE and Hongxu Zhang

Abstract—In this paper, a new recursive state estimation
problem is discussed for a class of discrete time-varying stochastic
complex networks with uncertain inner coupling and signal
quantization under the error-variance constraints. The coupling
strengths are allowed to be varying within certain intervals,
and the measurement signals are subject to quantization effects
before being transmitted to the remote estimator. The focus of the
conducted topic is on the design of a variance-constrained state
estimation algorithm with aim to ensure a locally minimized up-
per bound on the estimation error covariance at every sampling
instant. Furthermore, the boundedness of the resulting estimation
error is analyzed and a sufficient criterion is established to ensure
the desired exponential boundedness of the state estimation error
in mean square sense. Finally, some simulations are proposed
with comparisons to illustrate the validity of newly developed
variance-constrained estimation method.

Index Terms—Time-varying stochastic complex networks, op-
timal state estimation, signal quantization, uncertain inner cou-
pling, boundedness analysis, variance-constrained approach.

I. INTRODUCTION

C
OMPLEX networks characterize the dynamical networks

consisted of plenty of interacted dynamical elements,

which can be found in many real-world networks such as tech-

nological networks, power grid networks, computer networks,

biological networks and social networks [4], [22]. Over the

past decade, there has been a surge of research into the analysis

problems of complex dynamical networks due primarily to

their successful applications [9], [26], [36]. In general, it is

of theoretical importance to obtain the state information of
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the network nodes so as to better understand the intrinsic

structures and dynamical behaviors of complex networks [5],

[43]. However, for network nodes, it is quite common in reality

that the accurate state information of the network nodes is

inaccessible for various reasons (e.g. limited resources and

harsh environments), and only the measurement outputs of

the network nodes are made available [1], [3], [6], [7], [14],

[37], [40]. As such, the state estimation problems under dif-

ferent indices for complex dynamical networks have recently

received considerable research attention and a large number

of state estimation algorithms have been proposed according

to specific performance requirements [11], [22], [26], [29],

[30]. For example, the asynchronous state estimation method

with guaranteed dissipativity has been developed in [38] for

stochastic complex networks subject to uncertain measure-

ments described by a multiplicative noise. To attenuate the

impacts from energy-bounded disturbances, in [11], [29], [30],

the H∞ state estimation algorithms have been put forward

through available measurement outputs of stochastic complex

networks. Very recently, the recursive state estimation scheme

under variance constraint has been presented in [15] for a class

of time-varying networked complex networks with stochastic

noises, where the effects from the missing measurements onto

the state estimation algorithm accuracy have been thoroughly

discussed. Subsequently, based on [15], the state estimator un-

der the variance constraint has been designed in [21] for time-

varying nonlinear complex dynamical networks with stochastic

noises.

As is well known, the nodes of a complex network are

intrinsically coupled under a given topological structure which,

in turn, affects the dynamical behaviors of the network itself.

In the context of node coupling, most existing results have

been based on the hypothesis that the coupling strengths

between the network nodes are precisely known [42]. Such

an assumption is, unfortunately, fairly restrictive in certain

practical applications. For example, it has been pointed out in

[18], [24], [29] that the coupling strengths could be uncertain

or even unavailable in engineering practice. Accordingly, some

efforts have been devoted to the synchronization/estimation

problems for many complex dynamical networks subject to

uncertain inner couplings with some excellent results appeared

in the literature [20], [27], [29], [32]. For example, the ex-

ponential synchronization criterion has been given in [27] for

Lur’e complex networks subject to uncertain coupling strength

by designing a pinning impulsive controller. The synchroniza-

tion conditions have been presented in [20], [32] for delayed
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complex networks with uncertain inner couplings, where the

event-triggered control mechanisms have been employed to

reduce the utilizations of the limited communication resources.

Regarding the state estimation problems, a robust H∞ state

estimation approach has been developed in [29] for discrete

complex networks with imperfect measurements characterized

by the Kronecker delta function. Nevertheless, all the afore-

mentioned results concerning uncertain inner couplings are

only applicable to time-invariant complex networks, and there

is a practical need to look into the design problem of the

state estimator for time-varying stochastic complex networks,

where new methodologies ought to be sought to tackle the

time-varying feature.

In nowadays pervasive networked environments, the mea-

surement signals are often quantized before the transmission

due mainly to the limited capacities of the communication

channels [2], [10], [19], [25], [31], [39]. In [34], the way the

quantization affects the network properties has been examined

by utilizing the spectrum of the Laplacian of the underlying

complex network. Recently, the synchronization and state esti-

mation problems have received some initial research attention

for complex networks with uniform/logarithmic quantization.

For instance, the global synchronization criterion has been

derived in [33] for complex networks under quantization

effects, where the uniform quantizer has been employed during

the digital communications and a scaling function has been

used to ensure the bounded quantization levels. With respect

to the logarithmic quantization, the asynchronous H∞ state

estimation algorithm has been designed in [41] for discrete-

time switched dynamical networks subject to packet dropouts,

event-triggered mechanism as well as quantization effects. The

event-based state estimation approach has been proposed in

[23] for complex network systems with quantization effects

and randomly switching nonlinearities. Unfortunately, to the

best of our knowledge, the recursive state estimation prob-

lem for discrete time-varying stochastic complex networks

subject to quantized measurements has not received adequate

attention, not to mention the case that both the uncertain

inner coupling and the variance constraints are also addressed.

Consequently, the main motivation of the paper is to shorten

such a gap by developing a new variance-constrained state

estimation algorithm.

Motivated by the above analysis, we aim to address the

variance-constrained recursive state estimation problem for a

class of time-varying stochastic complex networks subject to

uncertain inner coupling and quantization effects. Firstly, the

uncertain inner coupling with known upper and lower bounds

is considered in the system modeling, and the quantization

errors induced by the logarithmic quantization are addressed

simultaneously. Secondly, the phenomena of uncertain cou-

pling and quantization effects are thoroughly investigated,

and a computationally appealing algorithm is developed to

recursively estimate the network states where the information

about the coupling strength bounds and the quantization levels

are explicitly employed. A rigorous stochastic analysis is

carried out to guarantee the existence of an upper bound on

the error variance of the state estimation at each time step and

such an obtained upper bound is subsequently minimized. A

further analysis is conducted on the boundedness issue of the

estimation errors to quantify the performance of the proposed

state estimation algorithm. Finally, some simulations under

different quantization effects are performed to illustrate the

validity of the variance-constrained state estimation approach

proposed in the paper.

The major contributions of the main results are outlined as

follows: 1) the effects from both the uncertain inner coupling

and the quantization errors are tackled simultaneously when

handling the variance-constrained state estimation problem

for discrete time-varying stochastic complex networks; 2) the

locally optimal state estimation method under variance con-

straint is developed by minimizing the trace of obtained upper

bound of the state estimation error covariance at each step; 3)

the desired performance analysis is conducted and a sufficient

criterion is given to verify the exponential boundedness of

the estimation error; and 4) the proposed estimation algorithm

possesses the recursive form that is applicable for online

computations.

Notations. The notations used throughout this paper are

fairly standard except specifically stated. R
n stands for the

n-dimensional Euclidean space. “XT ” represents the trans-

position of matrix X . X > 0 (X ≥ 0) denotes that

X is a real symmetric and positive definite (positive semi-

definite) matrix. E{y} stands for the mathematical expectation

of y. diag{P1, P2, · · · , Pn} is a block-diagonal matrix with

P1, P2 · · · , Pn on the diagonal. tr(X) represents the trace

of matrix X . I and 0 denote the identity matrix and zero

matrix with proper dimensions. ⊗ stands for the Kronecker

product. Matrices, if their dimensions are not clearly stated,

are assumed to be compatible for algebraic operations.

II. PROBLEM FORMULATION

In this paper, we consider the following class of discrete

time-varying stochastic complex networks consisting of N
coupled nodes:

xi,k+1 = Ai,kxi,k +

N∑

j=1

ωijΓxj,k +Bi,kϖi,k, (1)

yi,k = Ci,kxi,k + νi,k, (2)

where xi,k ∈ R
n denotes the state of the i-th node (i =

1, 2, · · · , N) with the initial state xi,0, yi,k ∈ R
m stands for

the measurement output from the i-th node, ϖi,k and νi,k are

zero-mean noises with covariances Qi,k > 0 and Ri,k > 0,

respectively. Ai,k, Bi,k and Ci,k are bounded and known

matrices with appropriate dimensions. For the considered

complex network, the coupling configuration matrix is denoted

as W = (ωij)N×N with elements ωij ≥ 0 (i ̸= j) but not all

zero.

In (1), Γ = diag{γ1, γ2, · · · , γN} is the inner coupling

matrix, where γj ̸= 0 represents the linking with the j-th

state variable. Here, we consider the case that the coupling

strength γi (i = 1, 2, · · · , N) is unknown but belongs to a

certain interval [γ
i
, γ̄i], where γ

i
and γ̄i are known scalars

with γ
i
< γ̄i. Setting

Γ̄ = diag

{
γ
1
+ γ̄1

2
,
γ
2
+ γ̄2

2
, · · · ,

γ
N
+ γ̄N

2

}

,
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Γ⃗ = diag

{
γ̄1 − γ

1

2
,
γ̄2 − γ

2

2
, · · · ,

γ̄N − γ
N

2

}

,

then Γ can be rewritten as Γ = Γ̄ + Γ̃ with Γ̃ ∈
[

−Γ⃗, Γ⃗
]

.

Subsequently, the matrix Γ can be further described by:

Γ = Γ̄ + F Γ⃗, FFT = FTF ≤ I, (3)

with F = Γ̃Γ⃗−1. Throughout the paper, suppose that the noises

ϖi,k and νi,k are mutually independent in k and i.

Remark 1: In the time-varying complex networks (1)-(2),

the first term in (1) represents its evolution behaviour of node i,
the second term stands for the evolution effects induced by its

adjacent nodes, and the third one reflects the process noise. In

particular, the second term includes two aspects, i.e., the outer

coupling parameters ωij reflect the connection from nodes j to

i (j ̸= i) at the time step k if ωij ̸= 0, and the parameters γi
(i = 1, 2, · · · , N) depict the inner coupling strengthen of the

system states. It should be noted that the coupling strengthens

between the state elements are different when γi ̸= γj , which

can provide more flexibility on the modelling of complex

networks. Besides, the measurement outputs are described by

(2). Overall, the addressed complex networks model can be

seen as a basic one in the existing literature, which can be used

to characterize a variety of practical systems. For example, in

the multiple mobile robotics applications (e.g. the formation

problem), the dynamics trajectory of each robot depends on

its state (e.g. position, velocity). Meanwhile, there is a need

to integrate the states of other robots in order to achieve the

formation, thus the formation of the multiple mobile robots

can be modelled by (1). Consequently, efficient estimation

approach and thorough performance analysis are required to

handle the variance-constrained state estimation problem for

addressed time-varying complex networks (1)-(2).

During the signal transmission, the signal quantization phe-

nomenon is likely to occur since the communication capacity

of the network channels is limited. Here, the mapping of the

quantization process is described by

q(yi,k) =
[

q1(y
(1)
i,k ) q2(y

(2)
i,k ) . . . qm(y

(m)
i,k )

]T

.

For each qj(·), the set of quantization levels is given by

Uj =

{

±u
(j)
l , u

(j)
l =

(

χ(j)
)l

u
(j)
0 , l = 0,±1,±2, . . .

}

∪{0} , 0 < χ(j) < 1, u
(j)
0 > 0,

where χ(j) (j = 1, 2, . . . ,m) denotes the quantization density,

and u
(j)
l means the quantization level. Next, as in [10], the

following logarithmic quantizer is adopted

qj(y
(j)
i,k ) =







u
(j)
l , 1

1+δj
u
(j)
l < y

(j)
i,k ≤ 1

1−δj
u
(j)
l

0, y
(j)
i,k = 0

−qj(−y
(j)
i,k ), y

(j)
i,k < 0

(4)

where δj = 1−χ(j)

1+χ(j) . From the above definition, we have

qj(y
(j)
i,k ) =

(

1 + ∆
(j)
k

)

y
(j)
i,k with |∆

(j)
k | ≤ δj .

Setting ∆k = diag
{

∆
(1)
k ,∆

(2)
k , . . . ,∆

(m)
k

}

, the measure-

ments transmitted to the state estimator can be rewritten as

ỹi,k = q(yi,k) = (I +∆k)Ci,kxi,k + (I +∆k)νk. (5)

Letting Λ = diag{δ1, δ2, · · · , δm} and Fk = ∆kΛ
−1, we

have ∆k = FkΛ with Fk satisfying FkF
T
k = FT

k Fk ≤ I .

j

lu

j

jj

j

jl

j

i kq yu
j

l j

j

i ku y

j

l j

j

i ku y

j

l

j

i kyu

j

i ky

Fig. 1. The logarithmic quantizer.

Remark 2: Together with (4) and Fig. 1 as in [10], it is

observed that the logarithmic quantizer can be bounded by a

sector and the sector bound is expressed by the quantization

density χ(j) (j = 1, 2, . . . ,m) (or the parameter δj).

For node i, the following time-varying state estimator is

designed:

x̂i,k+1|k = Ai,kx̂i,k|k +
N∑

j=1

ωijΓ̄x̂j,k|k, (6)

x̂i,k+1|k+1 = x̂i,k+1|k +Ki,k+1(ỹi,k+1 − Ci,k+1x̂i,k+1|k)

(7)

where x̂i,k+1|k denotes the one-step prediction at time k, x̂i,k|k

(i = 1, 2, . . . , N ) represents the state estimate of xi,k at time

step k with x̂i,0|0, ỹi,k+1 is the actual input to the estimator on

node i, and Ki,k+1 is the desired estimator parameter matrix

to be determined.

For node i, let x̃i,k+1|k = xi,k+1 − x̂i,k+1|k represent the

one-step prediction error and x̃i,k+1|k+1 = xi,k+1−x̂i,k+1|k+1

denote the estimation error. Then, it follows from (1) and (6)

that

x̃i,k+1|k = Ai,kx̃i,k|k +

N∑

j=1

ωijΓ̄(xj,k − x̂j,k|k)

+

N∑

j=1

ωijΓ̃xj,k +Bi,kϖi,k. (8)

Similarly, together with (5) and (7), we have

x̃i,k+1|k+1 = (I −Ki,k+1Ci,k+1)x̃i,k+1|k

−Ki,k+1∆k+1Ci,k+1xi,k+1

−Ki,k+1(I +∆k+1)νi,k+1. (9)
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To proceed, we set

I = diag{I, I, . . . , I
︸ ︷︷ ︸

N

},

∆̃k = diag{∆k,∆k, . . . ,∆k
︸ ︷︷ ︸

N

},

Ak = diag{A1,k, A2,k, . . . , AN,k},

Kk = diag{K1,k,K2,k, . . . ,KN,k},

Bk = diag{B1,k, B2,k, . . . , BN,k},

Ck = diag{C1,k, C2,k, . . . , CN,k},

xk =
[
xT
1,k xT

2,k . . . xT
N,k

]T
,

ϖk =
[
ϖT

1,k ϖT
2,k . . . ϖT

N,k

]T
,

νk =
[
νT1,k νT2,k . . . νTN,k

]T
,

x̂k+1|k =
[

x̂T
1,k+1|k x̂T

2,k+1|k . . . x̂T
N,k+1|k

]T

,

x̂k+1|k+1 =
[

x̂T
1,k+1|k+1 x̂T

2,k+1|k+1 . . . x̂T
N,k+1|k+1

]T

,

x̃k+1|k =
[

x̃T
1,k+1|k x̃T

2,k+1|k . . . x̃T
N,k+1|k

]T

,

x̃k+1|k+1 =
[

x̃T
1,k+1|k+1 x̃T

2,k+1|k+1 . . . x̃T
N,k+1|k+1

]T

.

Then, based on the above notations and using the Kronecker

product, we can rewrite the one-step prediction error x̃k+1|k

and the estimation error x̃k+1|k+1 as

x̃k+1|k = (Ak +W ⊗ Γ̄)x̃k|k + (W ⊗ Γ̃)xk

+Bkϖk, (10)

x̃k+1|k+1 = Πk+1x̃k+1|k −Kk+1∆̃k+1Ck+1xk+1

−Kk+1(I+ ∆̃k+1)νk+1, (11)

where Πk+1 = I−Kk+1Ck+1.

Now, let Pk+1|k+1 = E{x̃k+1|k+1x̃
T
k+1|k+1} be the esti-

mation error covariance at the k + 1-th time step. Then, the

objectives of the paper can be given as follows.

(i) We aim to design a time-varying estimator of form (6)-

(7) such that an upper bound Ωk+1|k+1 of the estimation error

covariance Pk+1|k+1 is guaranteed, i.e.,

Pk+1|k+1 ≤ Ωk+1|k+1. (12)

In addition, the trace of the obtained upper bound Ωk+1|k+1

is minimized by determining the estimator gain matrix at each

time step.

(ii) A sufficient condition is given to guarantee the expo-

nential mean-square boundedness of the estimation error.

Remark 3: Note that the time-varying complex networks

with Gaussian white noises are considered in this paper.

Hence, the variance-constrained estimation method is pro-

posed, which can deal with the effects from the Gaussian white

noises, uncertain inner coupling and quantization errors in a

unified framework. In addition, the newly proposed variance-

constrained estimation scheme can provide satisfactory esti-

mation performance at the worst situation. As will be shown

later, with the designed state estimator (6)-(7), the estimation

algorithm to be presented has the following advantages: (a)

the state estimator structure is simple and easy-to-implement

especially in the time-varying case; (b) the state estimations

from adjacent nodes and the innovation information are both

employed when constructing the estimator; (c) the impacts

induced by the uncertain inner coupling, quantization errors

and different noises are explicitly examined in the proposed

algorithm; and (d) the new variance-constrained estimation

scheme is of a recursive feature applicable for online compu-

tations. On the other hand, in (12), the term Pk+1|k+1 repre-

sents the covariance of the estimation error covariance, which

can characterize the estimation performance of the proposed

method. According to (12), Pk+1|k+1 −Ωk+1|k+1 ≤ 0 means

that Pk+1|k+1 −Ωk+1|k+1 is negative semi-definite matrix. In

this case, this paper provides an alternative method to evaluate

the estimation performance of the developed method to an

extent.

III. MAIN RESULTS

To proceed, the following lemmas are introduced which will

be used in the design of the variance-constrained estimation

algorithm.

Lemma 1: [12] For real vectors a and b with appropriate

dimensions and a scalar ε > 0, we have

abT + baT ≤ εaaT + ε−1bbT . (13)

Lemma 2: [35] For given matrices A, H , E and F with

FFT ≤ I , let γ−1I − EXET > 0 with X > 0 and γ > 0,

the following inequality

(A+HFE)X (A+HFE)
T

≤ A
(
X−1 − γETE

)−1
AT + γ−1HHT (14)

holds.

Lemma 3: [8] For real matrices M , X , N and P , we have

the following properties:

∂tr(MXN)

∂X
= MTNT ,

∂tr(MXTN)

∂X
= NM,

∂tr[(MXN)P (MXN)T ]

∂X
= 2MTMXNPNT .

Based on the definitions of the one-step prediction error

and the state estimation error, the following two lemmas can

be established in which both the one-step prediction error

covariance and the estimation error covariance are calculated,

respectively.

Lemma 4: The recursion of the one-step prediction error

covariance Pk+1|k = E{x̃k+1|kx̃
T
k+1|k} can be calculated by:

Pk+1|k = (Ak +W ⊗ Γ̄)Pk|k(Ak +W ⊗ Γ̄)T

+(Ak +W ⊗ Γ̄)E{x̃k|kx
T
k }(W ⊗ Γ̃)T

+(W ⊗ Γ̃)E{xkx̃
T
k|k}(Ak +W ⊗ Γ̄)T

+(W ⊗ Γ̃)E{xkx
T
k }(W ⊗ Γ̃)T

+BkQkB
T
k (15)

where

Qk = diag{Q1,k, Q2,k, · · · , QN,k}. (16)
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Proof: Based on the definition of Pk+1|k and according

to (10), one has

Pk+1|k = E{x̃k+1|kx̃
T
k+1|k}

= (Ak +W ⊗ Γ̄)Pk|k(Ak +W ⊗ Γ̄)T

+(Ak +W ⊗ Γ̄)E{x̃k|kx
T
k }(W ⊗ Γ̃)T

+(W ⊗ Γ̃)E{xkx̃
T
k|k}(Ak +W ⊗ Γ̄)T

+(Ak +W ⊗ Γ̃)E{x̃k|kϖ
T
k }B

T
k

+BkE{ϖkx̃
T
k|k}(Ak +W ⊗ Γ̄)T

+(W ⊗ Γ̃)E{xkx
T
k }(W ⊗ Γ̃)T

+(W ⊗ Γ̃)E{xkϖ
T
k }B

T
k

+BkE{ϖkx
T
k }(W ⊗ Γ̃)T

+BkQkB
T
k

= (Ak +W ⊗ Γ̄)Pk|k(Ak +W ⊗ Γ̄)T

+(Ak +W ⊗ Γ̄)E{x̃k|kx
T
k }(W ⊗ Γ̃)T

+(W ⊗ Γ̃)E{xkx̃
T
k|k}(Ak +W ⊗ Γ̄)T

+(W ⊗ Γ̃)E{xkx
T
k }(W ⊗ Γ̃)T

+BkQkB
T
k , (17)

where Qk is defined as in (16). When deriving (17), we have

used the fact that ϖk is zero-mean. Then, the proof of this

theorem is complete.

Lemma 5: The evolution of the estimation error covariance

Pk+1|k+1 can be calculated by:

Pk+1|k+1

= Πk+1Pk+1|kΠ
T
k+1

−Πk+1E{x̃k+1|kx
T
k+1}C

T
k+1∆̃

T
k+1K

T
k+1

−Kk+1∆̃k+1Ck+1E{xk+1x̃
T
k+1|k}Π

T
k+1

+Kk+1∆̃k+1Ck+1E{xk+1x
T
k+1}C

T
k+1∆̃

T
k+1K

T
k+1

+Kk+1(I+ ∆̃k+1)Rk+1(I+ ∆̃k+1)
TKT

k+1, (18)

where

Rk+1 = diag{R1,k+1, R2,k+1, · · · , RN,k+1}. (19)

Proof: It follows from (11) that

Pk+1|k+1

= E{x̃k+1|k+1x̃
T
k+1|k+1}

= Πk+1Pk+1|kΠ
T
k+1

−Πk+1E{x̃k+1|kx
T
k+1}C

T
k+1∆̃

T
k+1K

T
k+1

−Kk+1∆̃k+1Ck+1E{xk+1x̃
T
k+1|k}Π

T
k+1

+Kk+1∆̃k+1Ck+1E{xk+1x
T
k+1}C

T
k+1∆̃

T
k+1K

T
k+1

+Kk+1(I+ ∆̃k+1)E{νk+1ν
T
k+1}(I+ ∆̃k+1)

TKT
k+1

−Ak+1 − A
T
k+1 + Bk+1 + B

T
k+1 (20)

where

Ak+1 = Πk+1E{x̃k+1|kν
T
k+1}(I+ ∆̃k+1)

TKT
k+1,

Bk+1 = Kk+1∆̃k+1Ck+1E{xk+1ν
T
k+1}

×(I+ ∆̃k+1)
TKT

k+1.

Subsequently, it is easy to verify that both Ak+1 and Bk+1

are equal to zero. Then, we can conclude that (18) holds and

this ends the proof of this theorem.

It is worth noting that the obtained estimation error covari-

ance contains some unknown terms, and it is therefore difficult

to design the estimator parameter matrix that minimizes the

trace of the resulting estimation error covariance. In what fol-

lows, an alternative method is employed, with which an upper

bound of the estimation error covariance is firstly derived by

using the matrix analysis technique, and then the trace of

the obtained upper bound is minimized by properly choosing

the estimator parameter matrix at every time step. Moreover,

additional assumptions can be made on the system parameters,

the parameters of uncertain inner coupling and quantization

errors, and the covariance of the process noise, thereby the

corresponding boundedness analysis can be proposed as shown

later.

Theorem 1: For given positive scalars ϵ1,k, ϵ2,k, ϵ3,k+1,

ϵ4,k+1 and εk+1, if the following two recursive matrix equa-

tions

Ωk+1|k = (1 + ϵ1,k)(Ak +W ⊗ Γ̄)Ωk|k(Ak +W ⊗ Γ̄)T

+(1 + ϵ−1
1,k)tr

(

Γ̌[(1 + ϵ2,k)Ωk|k + (1 + ϵ−1
2,k)

×x̂k|kx̂
T
k|k]Γ̌

T
)

W̌W̌T +BkQkB
T
k , (21)

and

Ωk+1|k+1

= (1 + ϵ3,k+1)Πk+1Ωk+1|kΠ
T
k+1

+Kk+1

{

(1 + ϵ−1
3,k+1)tr

(
Λ̃Ck+1[(1 + ϵ4,k+1)Ωk+1|k

+(1 + ϵ−1
4,k+1)x̂k+1|kx̂

T
k+1|k]C

T
k+1Λ̃

T
)
I

+(R−1
k+1 − εk+1Λ̃

T Λ̃)−1 + ε−1
k+1I

}

KT
k+1, (22)

under Ω0|0 = P0|0 and the following constraint

ε−1
k+1I− Λ̃Rk+1Λ̃

T > 0, (23)

have symmetric positive definite solutions, then it can be

shown that Ωk+1|k+1 is an upper bound of Pk+1|k+1, that

is,

Pk+1|k+1 ≤ Ωk+1|k+1, (24)

where

W̌ = W ⊗ I,

Λ̃ = diag{Λ,Λ, · · · ,Λ
︸ ︷︷ ︸

N

},

Γ̌ = diag{Γ⃗, Γ⃗, · · · , Γ⃗
︸ ︷︷ ︸

N

},

Ψ1,i =
[
0 0 · · · 0
︸ ︷︷ ︸

i−1

In×n 0 0 · · · 0
︸ ︷︷ ︸

N−i

]
,

Ψ2,i =
[
0 0 · · · 0
︸ ︷︷ ︸

i−1

Im×m 0 0 · · · 0
︸ ︷︷ ︸

N−i

]
. (25)

Moreover, if we adopt the following estimator parameter

Kk+1 = diag{K1,k+1,K2,k+1, . . . ,KN,k+1}, (26)
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with

Ki,k+1 = (1 + ϵ3,k+1)Ψ1,iΩk+1|kC
T
k+1Ψ

T
2,i

×(Ψ2,iΞk+1Ψ
T
2,i)

−1,

Ξk+1 = (1 + ϵ3,k+1)Ck+1Ωk+1|kC
T
k+1

+(R−1
k+1 − εk+1Λ̃

T Λ̃)−1 + ε−1
k+1I

+(1 + ϵ−1
3,k+1)tr

(
Λ̃Ck+1[(1 + ϵ4,k+1)Ωk+1|k

+(1 + ϵ−1
4,k+1)x̂k+1|kx̂

T
k+1|k]C

T
k+1Λ̃

T
)
I, (27)

then the trace of the obtained upper bound Ωk+1|k+1 can be

minimized at each sampling instant.

Proof: By using the stochastic analysis technique and the

mathematical induction approach, we take three steps to verify

the statement in this theorem.

Firstly, let us deal with the uncertain terms of the right-hand

side of (15). Based on Lemma 1, one has

(Ak +W ⊗ Γ̄)E{x̃k|kx
T
k }(W ⊗ Γ̃)T

+(W ⊗ Γ̃)E{xkx̃
T
k|k}(Ak +W ⊗ Γ̄)T

≤ ϵ1,k(Ak +W ⊗ Γ̄)Pk|k(Ak +W ⊗ Γ̄)T

+ϵ−1
1,k(W ⊗ Γ̃)E{xkx

T
k }(W ⊗ Γ̃)T (28)

where ϵ1,k is a positive scalar. In view of the definition of x̃k|k

and by employing Lemma 1 again, we have

E{xkx
T
k }

≤ (1 + ϵ2,k)Pk|k + (1 + ϵ−1
2,k)x̂k|kx̂

T
k|k

:= S̄k, (29)

where ϵ2,k is a positive scalar. In view of (15), (28) and (29),

we obtain

Pk+1|k

≤ (1 + ϵ1,k)(Ak +W ⊗ Γ̄)Pk|k(Ak +W ⊗ Γ̄)T

+(1 + ϵ−1
1,k)(W ⊗ Γ̃)S̄k(W ⊗ Γ̃)T +BkQkB

T
k . (30)

Subsequently, note that W ⊗ Γ̃ = W̌ F̌ Γ̌, where W̌ and Γ̌ are

defined as in (25), and F̌ = diag{F ,F , · · · ,F
︸ ︷︷ ︸

N

}. Then, one

has

(1 + ϵ−1
1,k)(W ⊗ Γ̃)S̄k(W ⊗ Γ̃)T

= (1 + ϵ−1
1,k)W̌ F̌ Γ̌S̄kΓ̌

T F̌T W̌T

≤ (1 + ϵ−1
1,k)tr(Γ̌S̄kΓ̌

T )W̌W̌T . (31)

Therefore, from (30) and (31), we arrive at

Pk+1|k

≤ (1 + ϵ1,k)(Ak +W ⊗ Γ̄)Pk|k(Ak +W ⊗ Γ̄)T

+(1 + ϵ−1
1,k)tr(Γ̌S̄kΓ̌

T )W̌W̌T +BkQkB
T
k . (32)

Secondly, we shall to handle unknown terms of the right-

hand side of (18). Based on Lemma 1 again, we have

−Πk+1E{x̃k+1|kx
T
k+1}C

T
k+1∆̃

T
k+1K

T
k+1

−Kk+1∆̃k+1Ck+1E{xk+1x̃
T
k+1|k}Π

T
k+1

≤ ϵ3,k+1Πk+1Pk+1|kΠ
T
k+1 + ϵ−1

3,k+1Kk+1∆̃k+1

×Ck+1E{xk+1x
T
k+1}C

T
k+1∆̃

T
k+1K

T
k+1, (33)

where ϵ3,k+1 > 0 is a scalar. Substituting (33) into (18) yields

Pk+1|k+1

≤ (1 + ϵ3,k+1)Πk+1Pk+1|kΠ
T
k+1

+(1 + ϵ−1
3,k+1)Kk+1∆̃k+1Ck+1E{xk+1x

T
k+1}

×CT
k+1∆̃

T
k+1K

T
k+1 +Kk+1(I+ ∆̃k+1)

×Rk+1(I+ ∆̃k+1)
TKT

k+1. (34)

Similarly, as in (29), we obtain

E{xk+1x
T
k+1}

≤ (1 + ϵ4,k+1)Pk+1|k + (1 + ϵ−1
4,k+1)x̂k+1|kx̂

T
k+1|k

:= T̄k+1 (35)

where ϵ4,k+1 > 0 is a scalar. Then, it follows from (35) and

∆̃k+1 = F̃k+1Λ̃ that

Kk+1∆̃k+1Ck+1E{xk+1x
T
k+1}C

T
k+1∆̃

T
k+1K

T
k+1

= Kk+1F̃k+1Λ̃Ck+1E{xk+1x
T
k+1}C

T
k+1Λ̃

T
F̃

T
k+1K

T
k+1

≤ Kk+1F̃k+1Λ̃Ck+1T̄k+1C
T
k+1Λ̃

T
F̃

T
k+1K

T
k+1

≤ tr(Λ̃Ck+1T̄k+1C
T
k+1Λ̃

T )Kk+1K
T
k+1, (36)

where F̃k+1 = diag{Fk+1,Fk+1, · · · ,Fk+1
︸ ︷︷ ︸

N

} and Λ̃ is

defined in (25). Next, together with Lemma 2 and (23) that

the last term of the right-hand side of (18) can be calculated

Kk+1(I+ ∆̃k+1)Rk+1(I+ ∆̃k+1)
TKT

k+1

= Kk+1(I+ F̃k+1Λ̃)Rk+1(I+ F̃k+1Λ̃)
TKT

k+1

≤ Kk+1[(R
−1
k+1 − εk+1Λ̃

T Λ̃)−1 + ε−1
k+1I]K

T
k+1. (37)

Subsequently, substituting (36) and (37) into (34) yields

Pk+1|k+1

≤ (1 + ϵ3,k+1)Πk+1Pk+1|kΠ
T
k+1

+(1 + ϵ−1
3,k+1)tr(Λ̃Ck+1T̄k+1C

T
k+1Λ̃

T )Kk+1K
T
k+1

+Kk+1

[
(R−1

k+1 − εk+1Λ̃
T Λ̃)−1 + ε−1

k+1I
]
KT

k+1. (38)

Thirdly, we are in a position to show that Pk+1|k+1 ≤
Ωk+1|k+1 in view of the mathematical induction approach.

To prove the assertion, note the initial condition P0|0 = Ω0|0

and assume Pk|k ≤ Ωk|k. Then, it follows from (21), (32), S̄k

in (29) and Pk|k ≤ Ωk|k that

Pk+1|k ≤ Ωk+1|k.

In the sequel, according to (22), (38), T̄k+1 in (35) and

Pk+1|k ≤ Ωk+1|k, it is not difficult to testify that

Pk+1|k+1 ≤ Ωk+1|k+1. (39)

Finally, we are ready to minimize the trace of the obtained

upper bound Ωk+1|k+1 by properly choosing the estimator

parameter matrix Ki,k+1. Rewriting (22), we have

Ωk+1|k+1

= (1 + ϵ3,k+1)Ωk+1|k − (1 + ϵ3,k+1)Ωk+1|kC
T
k+1K

T
k+1

−(1 + ϵ3,k+1)Kk+1Ck+1Ωk+1|k +Kk+1Ξk+1K
T
k+1,
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(40)

where Ξk+1 is defined as in (27). Notice that Kk+1 =
∑N

i=1(Ψ
T
1,iKi,k+1Ψ2,i), where Ψ1,i and Ψ2,i are defined as

in (25). Then, it can be easily obtained that Ψ1,jΨ
T
1,i = 0

for i ̸= j. Thus, from the algebraic manipulations and the

properties of trace, it follows that

tr
[
(ΨT

1,iKi,k+1Ψ2,i)Ξk+1(Ψ
T
1,jKj,k+1Ψ2,j)

T
]

= tr
[
ΨT

1,iKi,k+1Ψ2,iΞk+1Ψ
T
2,jK

T
j,k+1Ψ1,j

]

= tr
[
Ψ1,jΨ

T
1,iKi,k+1Ψ2,iΞk+1Ψ

T
2,jK

T
j,k+1

]

= 0 (41)

for i ̸= j. Consequently, the trace of Ωk+1|k+1 can be given

by

tr[Ωk+1|k+1]

= tr

[

(1 + ϵ3,k+1)Ωk+1|k − (1 + ϵ3,k+1)Ωk+1|kC
T
k+1

×
N∑

i=1

(ΨT
1,iKi,k+1Ψ2,i)

T

−(1 + ϵ3,k+1)

N∑

i=1

(ΨT
1,iKi,k+1Ψ2,i)Ck+1Ωk+1|k

+
N∑

i=1

(ΨT
1,iKi,k+1Ψ2,i)Ξk+1

N∑

i=1

(ΨT
1,iKi,k+1Ψ2,i)

T

]

= tr

[

(1 + ϵ3,k+1)Ωk+1|k − (1 + ϵ3,k+1)Ωk+1|kC
T
k+1

×

N∑

i=1

(ΨT
1,iKi,k+1Ψ2,i)

T

−(1 + ϵ3,k+1)
N∑

i=1

(ΨT
1,iKi,k+1Ψ2,i)Ck+1Ωk+1|k

+

N∑

i=1

(ΨT
1,iKi,k+1Ψ2,i)Ξk+1(Ψ

T
1,iKi,k+1Ψ2,i)

T

]

. (42)

It should be noticed that, when deriving the second equation

of (42), we have utilized the equation (41).

Next, take the partial derivative of tr[Ωk+1|k+1] with respect

to the estimator parameter matrix Ki,k+1 and set the derivative

be zero. Moreover, according to Lemma 3, we arrive at

∂tr[Ωk+1|k+1]

∂Ki,k+1
= −2(1 + ϵ3,k+1)Ψ1,iΩk+1|kC

T
k+1Ψ

T
2,i

+2Ψ1,iΨ
T
1,iKi,k+1Ψ2,iΞk+1Ψ

T
2,i

= 0. (43)

Note that Ψ1,iΨ
T
1,i = In×n, then the optimal estimator

parameter matrix is described by

Ki,k+1 = (1 + ϵ3,k+1)Ψ1,iΩk+1|kC
T
k+1Ψ

T
2,i

×(Ψ2,iΞk+1Ψ
T
2,i)

−1, (44)

which is the same as that in (27). Consequently, the proof is

complete.

Remark 4: Up to now, we have designed a variance-

constrained recursive state estimator for a class of discrete

time-varying stochastic dynamical networks subject to uncer-

tain inner coupling and signal quantization. In view of the

information of the quantized measurements and the bounds of

the inner coupling strength, the recursion of an optimal upper

bound of the estimation error covariance is given, where the

desired state estimation algorithm can be implemented via the

solutions to two recursive matrix equations. In addition, the

explicit form of the estimator parameter matrix is presented

which can be easily computed at each sampling instant.

Remark 5: It is worthwhile to mention that the symmetric

positive definite solutions of matrix equations (21) and (22)

are dependent on the values of some given positive scalars

ϵ1,k, ϵ2,k, ϵ3,k+1, ϵ4,k+1 and εk+1. Moreover, the feasibility

of inequality constraint (23) affects the existence of the sym-

metric positive definite solutions of matrix equations (21) and

(22). Hence, during the implementation, the proper εk+1 can

be chose to ensure the feasibility of inequality constraint (23)

and then to enhance the existence of the symmetric positive

definite solutions of matrix equations (21) and (22).

IV. BOUNDEDNESS ANALYSIS

In this section, we will propose a sufficient criterion to

ensure that the resulting estimation error is exponentially

mean-square bounded. To proceed, the following definition is

needed which will be used in the subsequent developments.

Definition 1: [28] If there exist real scalars η > 0, ν > 0
and 0 < ϑ < 1 such that

E{∥ζk∥
2} ≤ ηE{∥ζ0∥

2}ϑk + ν (45)

for each k ≥ 0, then the stochastic process ζk is exponentially

bounded in mean square sense.

According to Definition 1 and Theorem 1, the following the-

orem proposes a sufficient criterion to verify the exponential

mean-square boundedness of the resulting estimation error.

Theorem 2: Consider the discrete time-varying stochastic

complex networks (1)-(2) and the time-varying state estimator

(6)-(7). If there exist real positive constants ā, b, b̄, c̄, w̄, q, q̄,

τ̄ , ξ̄1 and ξ̄2 satisfying the following conditions

∥Ai,k∥ ≤ ā, bI ≤ Bi,kB
T
i,k ≤ b̄I, c ≤ ∥Ci,k∥ ≤ c̄,

∥W̌∥ ≤ w̄, qI ≤ Qk ≤ q̄I, Rk ≤ τ̄ I,

tr(Ξk|k) ≤ ξ̄1, tr(Ξk+1|k) ≤ ξ̄2,

ϱ = 2a⃗

(

1 +
c̄2

c2

)2

< 1, (46)

where

a⃗ = ā2 +

[

w̄max
i

(
γ
i
+ γ̄i

2

)]2

,

Ξk|k = (1 + ϵ2,k)Ωk|k + (1 + ϵ−1
2,k)x̂k|kx̂

T
k|k,

Ξk+1|k = (1 + ϵ4,k+1)Ωk+1|k + (1 + ϵ−1
4,k+1)

×x̂k+1|kx̂
T
k+1|k, (47)

then we can conclude that the estimation error is exponentially

mean-square bounded.

Proof: Please see Appendix A.

Remark 6: So far, we have developed a new robust

variance-constrained state estimation scheme for addressed
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time-varying stochastic complex networks with two factors

contributing to the network complexities, that is, uncertain

inner coupling and signal quantization. Accordingly, the corre-

sponding information of these two factors has been explicitly

reflected in Theorem 1. To be more specific, the matrices

Γ̄ and Γ⃗ characterize the uncertain inner coupling, and the

scalars δi (i = 1, 2 · · · ,m) reflect the quantization effects.

Besides, a sufficient condition has been proposed to analyze

the boundedness issue of the resulting estimation error.

Remark 7: According to Theorem 2, it is not difficult to

show that E{∥x̃k+1|k+1∥} ≤
√

ϕ̄
ϕ
E{∥x̃0|0∥2}ϑk+1 + ςϕ̄

1−ϑ
,

which implies that the upper bound of estimation error is

dependent on the information of inner coupling strength, quan-

tization parameters and the covariances of different noises.

It can be seen that, the smaller the inner coupling error Γ̃,

the smaller the parameter r̄, the smaller the parameter ς , and

therefore the smaller final bound of the estimation error is

obtained. Moreover, the bigger the quantization density χ(j),

the smaller the parameters s̄ and r̄, the smaller the parameter ς ,

and therefore the smaller final bound of the estimation error is

also obtained, which is consistent with the illustrations shown

in the simulation. Moreover, a slightly smaller upper bound

might be obtained if the system does not exist uncertain inner

coupling and signal quantization because of the existence of

different noises.

Remark 8: In this paper, the major aim is to reply the

following three issues. (i) How to propose a proper model

that is as comprehensive as possible to depict the time-varying

complex dynamics networks? (ii) How to present an efficient

and easy-to-implement estimation algorithm under the vari-

ance constraint to handle the effects induced by the uncertain

inner coupling and signal quantization? (iii) How to evaluate

the estimation algorithm performance with proper theoretical

analysis criterion for the developed estimation method?

Remark 9: It is worthy to notice that some effective syn-

chronization methods have been proposed in [16], [17] for

time-invariant dynamics networks with communication con-

straints, where the missing channels have been modeled and

discussed. Compared with the existing methods, major effort

has been devoted to provide the variance-constrained recursive

estimation algorithm for time-varying complex networks. In

particular, our main results distinguish from existing ones in

that: 1) we have made one of the first attempts to tackle

both the uncertain inner coupling and the quantization errors

for time-varying stochastic complex networks; 2) we have

conducted comprehensive analysis on two important perfor-

mance indices, namely, the estimation error variance and the

estimation error bounds, for the addressed state estimation

problem; and 3) we have proposed an effective recursive

algorithm that corresponds to the time-varying nature of the

underlying networks, thereby offers an attractive feature for

online applications.

V. AN ILLUSTRATIVE EXAMPLE

In this section, a simulation example is provided to illustrate

the validity of the proposed state estimation algorithm under

the variance constraint. The localization of multiple mobile

robots is utilized to clarify the potential applicability of the

proposed variance-constrained estimation method.

As analyzed in [21], consider the localization problem of

multiple mobile robots via the visual tracking. The state could

compose of the position and the orientation of the robot. In

addition, the dynamics behaviour of each mobile robot is

affected by other robots with the interaction and hence the

coupling terms exist. When tracking a robot through a system

equipped with sensors communicating via a (possibly wireless)

network, the signal quantization might occur due to the band-

width limitations of the communication channels. For real-

time tracking, the system parameters would have to be time-

varying and there exist different type noises. As such, our aim

is to develop a new variance-constrained estimation method

such that a locally optimal upper bound of the estimation

error covariance is obtained, where both the uncertain inner

coupling and the quantization errors are explicitly reflected in

the main results.

Motivated by this background, we consider the discrete

time-varying stochastic dynamical networks as in (1)-(2) with

3 nodes, and the coupling configuration matrix is given by

W =





0.3 0.2 0.2
0.2 0.3 0.2
0.2 0.2 0.3



 .

The related parameters are chosen by:

A1,k =

[
0.55 + 0.1 cos(2k) 0.35

−0.6 0.75− 0.1 sin(k)

]

,

A2,k =

[
0.45 + 0.1 sin(2k) −0.45

0.75 0.7

]

,

A3,k =

[
0.85 0.75
−0.35 0.35− 0.1 sin(6k)

]

,

B1,k =

[
0.6− 0.1 sin(5k)

−0.6

]

,

B2,k =

[
0.4

0.3− 0.12 cos(3k)

]

, B3,k =

[
0.3
0.5

]

,

C1,k =
[
1.96 1.3 + 0.1 sin(2k)

]
,

C2,k =
[
3 + cos(k) sin(3k) 1.5

]
,

C3,k =
[
1.9 + 2 cos(2k) 3.6 + 1.5 sin(3k)

]
.

Here, the inner coupling matrix is Γ = diag{γ1, γ2}, where the

unknown coupling strength γi (i = 1, 2) belongs to the interval

[0.3, 0.5]. Then, it is easy to obtain that Γ̄ = diag{0.4, 0.4}
and Γ⃗ = diag{0.1, 0.1}.

In the simulation, the other parameters are selected

as x1,0 =
[
1.8 1.2

]T
, x2,0 =

[
1.2 −1.6

]T
,

x3,0 =
[
1.6 0.8

]T
, x̂1,0|0 =

[
1.5 −1.2

]T
, x̂2,0|0 =

[
1 −2.3

]T
, x̂3,0|0 =

[
−0.5 1.5

]T
, P1,0|0 = 30I2,

P2,0|0 = 20I2, P3,0|0 = 25I2, ϵ1,k = 0.5, ϵ2,k = 0.5, ϵ3,k+1 =

0.1, ϵ4,k+1 = 1, εk+1 = 1/(1.2λmax(Λ̃Rk+1Λ̃) + 0.5),
Q1,k = Q3,k = 0.1, Q2,k = 0.2, R1,k = R2,k = 0.2 and

R3,k = 0.1.

For the comparison purpose, the parameters of the logarith-

mic quantizer are chosen in the two cases, i.e., Case I: u
(1)
0 =

0.5, χ(1) = 0.8, Case II: u
(1)
0 = 0.5, χ(1) = 0.3. As such, the

newly developed variance-constrained state estimation method
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can be realized and the corresponding simulation results are

plotted in Figs. 2-11. Figs. 2-7 depict one estimation result of

the possible realizations, hence a single line refers to real state,

the estimation, ideal measurement output and quantization

signal, respectively. To be more specific, the real states of all

network nodes and their estimations in two cases are plotted

in Figs. 2-4. In Figs. 5-7, the ideal measurement outputs of all

network nodes and the quantization signals are depicted. From

the simulations in Figs. 2-7, it can be seen that the estimation

results under Case I are better, which show that the proposed

variance-constrained estimation method performs well when

estimating the state of considered complex networks.

Secondly, we have provided the corresponding simulations

in Figs. 8-10, where the average estimation error of each

node after 500 simulation tests has been provided. From the

simulations in Figs. 8-10, it can be observed that the smaller

final bound of the estimation error can be obtained if the

bigger quantization density χ(j) is chose (i.e. Case I). That

is to say, the estimation accuracy under the Case I is better

compared with the one under the Case II, which is consistent

with the assertion in Remark 7 and further illustrates that the

newly proposed state estimation approach has a satisfactory

estimation performance.

For the purpose of comparison, the traces of Pk+1|k+1

and the traces of their upper bound Ωk+1|k under Cases I-II

are depicted in Fig. 11. Again, according to the simulations,

the larger the quantization density χ(j), the better the esti-

mation performance, which is in agreement with engineering

practice. Overall, this paper makes the first attempt to tackle

the variance-constrained estimation problem for time-varying

stochastic complex networks with both the uncertain inner

coupling and the quantization errors, which can be seen as

the novelty/advantage of main results.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

Fig. 2. Actual state x1,k and estimates under Cases I-II.

VI. CONCLUSIONS

In this paper, the variance-constrained state estimation prob-

lem has been discussed for a class of discrete time-varying

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

Fig. 3. Actual state x2,k and estimates under Cases I-II.
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-2

-1

0

1

2

3

Fig. 4. Actual state x3,k and estimates under Cases I-II.

stochastic complex networks subject to uncertain inner cou-

pling and quantization effects. A new state estimator has been

constructed based on the quantized measurements, where the

coupling configuration information of the networks has been

properly reflected. In view of the intensive stochastic analysis

technique, the recursion of the upper bound of the estimation

error covariance has been established and then such an upper

bound has been minimized at each time step by properly

choosing the estimator gain matrix. Moreover, the detailed

form of the estimator parameter matrix has been given. In

addition, a sufficient condition has been derived to testify the

boundedness of the estimation error. Finally, some simulations

have been presented to show the validity of the optimal

variance-constrained estimation algorithm proposed in this

paper. The further research extensions include the investiga-

tion of variance-constrained recursive estimation problems for

uncertain time-varying stochastic complex networks (e.g. with

norm-bounded uncertainties) with/without the communication

constraints as in [13], [43], where the desired results can be

obtained in the near future.
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Fig. 5. The measurement output and quantization signal of y1,k .
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Fig. 6. The measurement output and quantization signal of y2,k .

APPENDIX

A. The Proof of Theorem 2

Proof: Denoting Ak = Ak+W⊗Γ̄ and noticing Πk+1 =
I−Kk+1Ck+1, together with (10) and (11), we have

x̃k+1|k+1 = Πk+1Akx̃k|k + rk+1 + sk+1 (48)

where

rk+1 = Πk+1(W ⊗ Γ̃)xk −Kk+1∆̃k+1Ck+1xk+1,

sk+1 = Πk+1Bkϖk −Kk+1(I+ ∆̃k+1)νk+1. (49)

Based on (26) and (27), one has

∥Kk+1∥ ≤ max
i

∥Ki,k+1∥

< max
i

∥(1 + ϵ3,k+1)Ψ1,iΩk+1|kC
T
k+1Ψ

T
2,i

×[(1 + ϵ3,k+1)Ψ2,iCk+1Ωk+1|kC
T
k+1Ψ

T
2,i]

−1∥

<
c̄

c2
:= κ̄, (50)
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Fig. 7. The measurement output and quantization signal of y3,k .
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Fig. 8. The average error of x̃1,k after 500 iterations.

with c and c̄ being defined in (46). Next, it is straightforward

to see that

∥Πk+1∥ = ∥I−Kk+1Ck+1∥ ≤ 1 +
c̄2

c2
:= π̄. (51)

Then, it follows from Lemma 1 and the properties of trace

that

E{rTk+1rk+1}

≤ (1 + η)E{xT
k (W ⊗ Γ̃)TΠT

k+1Πk+1(W ⊗ Γ̃)xk}

+(1 + η−1)E{xT
k+1C

T
k+1∆̃

T
k+1K

T
k+1

×Kk+1∆̃k+1Ck+1xk+1}

≤ (1 + η)tr
[
E{xkx

T
k }(W ⊗ Γ̃)TΠT

k+1Πk+1(W ⊗ Γ̃)
]

+(1 + η−1)tr
[
E{xk+1x

T
k+1}C

T
k+1∆̃

T
k+1K

T
k+1

×Kk+1∆̃k+1Ck+1

]
.

Next, according to (46), (49)-(51) and W ⊗ Γ̃ = W̌ F̌ Γ̌, one

has

E{rTk+1rk+1}
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Fig. 9. The average error of x̃2,k after 500 iterations.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

Fig. 10. The average error of x̃3,k after 500 iterations.

≤ (1 + η)tr
[
Ξk|kΓ̌

T F̌T W̌TΠT
k+1Πk+1W̌ F̌ Γ̌

]

+(1 + η−1)tr
[
Ξk+1|kC

T
k+1Λ̃

T
F̃

T
k+1K

T
k+1

×Kk+1F̃k+1Λ̃Ck+1

]

≤ (1 + η)π̄2w̄2∥Γ⃗∥2ξ̄1 + (1 + η−1)κ̄2∥Λ̃∥2c̄2ξ̄2

:= r̄, (52)

where η > 0 is a scalar. Similarly, it is not difficult to see that

E{sTk+1sk+1}

= E{ϖT
k B

T
k Π

T
k+1Πk+1Bkϖk}

+E{νTk+1(I+ ∆̃k+1)
TKT

k+1Kk+1(I+ ∆̃k+1)νk+1}

≤ b̄q̄π̄2 + 2κ̄2(1 + ∥Λ̃∥2)τ̄

:= s̄. (53)

Subsequently, we consider the following matrix equation

with respect to the matrix Φk:

Φk+1 = Πk+1AkΦkA
T
kΠ

T
k+1 +BkQkB

T
k + δ0I (54)

where Φ0 = B0Q0B
T
0 +δ0I with δ0 > 0 being a scalar. Then,

according to the above iterative matrix equation, it suffices to
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Fig. 11. The traces of Pk+1|k+1 and their upper bound Ωk+1|k+1.

see that

∥Φk+1∥ ≤ ∥Πk+1∥
2∥Ak∥

2∥Φk∥+ ∥BkQkB
T
k ∥+ ∥δ0I∥

≤ ϱ∥Φk∥+ b̄q̄ + δ0 (55)

where ϱ is defined as in (46). In addition, we can obtain the

following inequality directly

∥Φk∥ ≤ ϱk∥Φ0∥+ (b̄q̄ + δ0)
k−1∑

i=0

ϱi. (56)

It follows from ϱ < 1 that

∥Φk∥ < ∥Φ0∥+ (b̄q̄ + δ0)
∞∑

i=0

ϱi

= ∥Φ0∥+
b̄q̄ + δ0
1− ϱ

. (57)

On the other hand, we have

Φk ≥ δ0I. (58)

In view of (57) and (58), there exist two positive scalars ϕ̄
and ϕ such that ϕI ≤ Φk ≤ ϕ̄I holds for all k ≥ 0.

Subsequently, based on the matrix inversion lemma, we
have

A
T
k Π

T
k+1Φ

−1

k+1Πk+1Ak − Φ
−1

k

= A
T
k Π

T
k+1

(

Πk+1AkΦkA
T
k Π

T
k+1 +BkQkB

T
k + εI

)−1

×Πk+1Ak − Φ
−1

k

= −

[

Φk +ΦkA
T
k Π

T
k+1

(

BkQkB
T
k + εI

)−1

Πk+1AkΦk

]−1

= −

[

I+A
T
k Π

T
k+1

(

BkQkB
T
k + εI

)−1

Πk+1AkΦk

]−1

Φ
−1

k

≤ −ᾱΦ
−1

k (59)

where ᾱ =
(

1 + 2a⃗π̄2ϕ̄
qb

)−1

and a⃗ is defined in (47). Note

that ᾱ ∈ (0, 1), then there exists a scalar ϵ > 0 satisfying

ϑ = (1 + ϵ)(1− ᾱ) < 1. Setting Vk(x̃k|k) = x̃T
k|kΦ

−1
k x̃k|k, it

follows from (48) that

E{Vk+1(x̃k+1|k+1)|x̃k|k} − (1 + ϵ)Vk(x̃k|k)
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= E

{

[Πk+1Akx̃k|k + rk+1 + sk+1]
TΦ−1

k+1

×[Πk+1Akx̃k|k + rk+1 + sk+1]
}

−(1 + ϵ)x̃T
k|kΦ

−1
k x̃k|k

= E

{

x̃T
k|k[A

T
kΠ

T
k+1Φ

−1
k+1Πk+1Ak − (1 + ϵ)Φ−1

k ]x̃k|k

}

+2E
{

x̃T
k|kA

T
kΠ

T
k+1Φ

−1
k+1rk+1

}

+E
{
rTk+1Φ

−1
k+1rk+1

}
+ E

{
sTk+1Φ

−1
k+1sk+1

}
.

Then, in view of the Lemma 1 again, the following inequalities

can be obtained:

E{Vk+1(x̃k+1|k+1)|x̃k|k} − (1 + ϵ)Vk(x̃k|k)

≤ (1 + ϵ)E
{

x̃T
k|k[A

T
kΠ

T
k+1Φ

−1
k+1Πk+1Ak − Φ−1

k ]x̃k|k

}

+(1 + ϵ−1)E
{
rTk+1Φ

−1
k+1rk+1

}

+E
{
sTk+1Φ

−1
k+1sk+1

}

≤ −ᾱ(1 + ϵ)Vk(x̃k|k) + ς (60)

where ς = (1+ϵ−1) r̄
2

ϕ
+ s̄2

ϕ
. Then, according to (60), we have

E{Vk+1(x̃k+1|k+1)|x̃k|k} ≤ ϑVk(x̃k|k) + ς (61)

with ϑ = (1 + ϵ)(1− ᾱ).
Finally, we arrive at

E{∥x̃k+1|k+1∥
2} ≤

ϕ̄

ϕ
E{∥x̃0|0∥

2}ϑk+1 + ςϕ̄
k∑

i=0

ϑi

≤
ϕ̄

ϕ
E{∥x̃0|0∥

2}ϑk+1 + ςϕ̄

∞∑

i=0

ϑi

=
ϕ̄

ϕ
E{∥x̃0|0∥

2}ϑk+1 +
ςϕ̄

1− ϑ
. (62)

Therefore, it follows from Definition 1 that x̃k|k is exponential-

ly mean-square bounded, which ends the proof of this theorem.
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tion fusion algorithms for state estimation in multi-sensor systems with
correlated missing measurements, Applied Mathematics and Computa-

tion, vol. 226, pp. 548–563, Jan. 2014.
[6] R. Caballero-Águila, A. Hermoso-Carazo, and J. Linares-Pérez, Dis-
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