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Variance Estimation, Design Effects, and Sample
Size Calculations for Respondent-Driven Sampling

Matthew J. Salganik

ABSTRACT Hidden populations, such as injection drug users and sex workers, are
central to a number of public health problems. However, because of the nature of these
groups, it is difficult to collect accurate information about them, and this difficulty
complicates disease prevention efforts. A recently developed statistical approach called
respondent-driven sampling improves our ability to study hidden populations by
allowing researchers to make unbiased estimates of the prevalence of certain traits in
these populations. Yet, not enough is known about the sample-to-sample variability of
these prevalence estimates. In this paper, we present a bootstrap method for
constructing confidence intervals around respondent-driven sampling estimates and
demonstrate in simulations that it outperforms the naive method currently in use. We
also use simulations and real data to estimate the design effects for respondent-driven
sampling in a number of situations. We conclude with practical advice about the power
calculations that are needed to determine the appropriate sample size for a study using
respondent-driven sampling. In general, we recommend a sample size twice as large as
would be needed under simple random sampling.

KEYWORDS Design effects, Hidden populations, Power analysis, Respondent-driven
sampling, Sample size, Snowball sampling, Variance estimation.

INTRODUCTION

To understand and control the spread of HIV, it is important to have accurate
information about hidden populations such as injection drug users and sex workers.1

However, these populations are difficult to study with standard sampling methods
because sampling frames do not exist. The need to gather information about such
hidden populations is not limited to public health. Social scientists and policy-
makers are interested in many other hidden populations such as undocumented
immigrants, artists, and members of some social movements.

In response to the problem of studying hidden populations, a new statistical
approach called respondent-driven sampling has been developed.2–4 Respondent-
driven sampling data are collected via a link-tracing (snowball) design, where current
sample members recruit future sample members. For many years, researchers thought
it was impossible to make unbiased estimates from this type of sample. However, it
was recently shown that if certain conditions are met and if the appropriate
procedures are used, then the prevalence estimates from respondent-driven sampling
are asymptotically unbiased.4 For example, respondent-driven sampling can be used
to estimate the prevalence of HIV among drug injectors in New York City.
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Despite the progress that has been made in making prevalence estimates, less is
known about the sample-to-sample variability of these estimates. This gap in
knowledge can lead researchers to construct inaccurate confidence intervals around
estimates and to undertake studies with sample sizes that are too small to meet study
goals. Filling this important gap in the respondent-driven sampling literature, this
paper explores issues related to the sample-to-sample variability of estimates. The
paper consists of four main parts. First, we briefly review the existing respondent-
driven sampling methodology. Next, we develop and evaluate a bootstrap procedure
for constructing confidence intervals around respondent-driven sampling estimates.
Then, we estimate the design effect of the prevalence estimates in a number of
simulated and real populations. The paper concludes with advice about the sample
sizes needed for studies using respondent-driven sampling. In general, we recommend
a sample size twice as large as would be needed under simple random sampling.

REVIEW OF RESPONDENT-DRIVEN SAMPLING

A respondent-driven sample is collected with a link-tracing design, similar to a
snowball sample.5–7 The sampling process begins with the selection of a set people
in the target population who serve as seeds. After participating in the study, these
seeds are each provided with a fixed number of unique recruitment coupons, which
they use to recruit other people they know in the target population. After
participating in the study, these new sample members are also provided with
recruitment coupons, which they then use to recruit others. The sampling continues
in this way, with subjects recruiting more subjects, until the desired sample size is
reached.2–4 Experience has shown that this sample selection method is practical and
it has already been used to study a number of different hidden populations, including
jazz musicians,8 drug injectors,2 Latino gay men,9 and MDMA/Ecstasy users.10

In addition to collecting information that addresses the substantive focus of the
study, a researcher using respondent-driven sampling must also collect two other
pieces of information: the recruiter of each sample member and the number of
relationships that each sample member has in the population of interest (sometime
called degree of each person). This additional information is necessary because the
estimation procedure is a variation of the traditional sampling and estimation pro-
cess. Ordinarily, researchers take a sample and then use that sample to make infer-
ences about a population (Figure 1a). However, when the data are collected with
respondent-driven sampling, it is very difficult (and maybe even impossible) to make
inferences from the sample directly to the population. Fortunately, such data can be
used to make inferences about the social network connecting the hidden population,
and this information about the social network can be used to estimate the prevalence
a specific trait (Figure 1b).3 Within this new framework, unbiased estimation
becomes possible.a A more detail description of the estimation procedure and the
conditions under which it is unbiased is available in the literature.4

While the ability to make unbiased prevalence estimates represented a step
forward for the study of hidden populations, it was an incomplete one. In order for
respondent-driven sampling to be practical as a methodology, a procedure is needed
in order to put confidence intervals around these prevalence estimates.

aThis new framework (Figure 1b) makes great sense when one considers the history of snowball

sampling. These methods were introduced5 and elaborated6 to study characteristics of social networks,

not the characteristics of the people in the network.11
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CONFIDENCE INTERVALS

Before introducing the confidence interval procedure, we first need to introduce
some language with which to describe the hidden population. In this paper we will
consider the situation of a hidden population that is made up of two mutually
exclusive and collectively exhaustive groups that, for the sake of generality, we will
call group A and group B. The groups could be, for example, people with and
without HIV. The proportion of the population in group A will be called PA. A
point estimate of this prevalence is useful, but it is difficult to interpret without
some measure of the precision of the estimate. One common way of describing this
precision is with a confidence interval that provides a range within which the
researcher expects to find the true population value with some level of certainty.
Procedures to generate confidence intervals are well developed in the case of simple
random sampling,12,13 but researchers using a complex sample design, where not all
units have the same probability of selection, are often left without guidance. Despite
numerous warnings,7,14 researchers often ignore the fact that their data were
collected with a complex sample design and construct confidence intervals as if they
had a random sample. This approach of ignoring the sampling design, which we
will call the naive method, will generally cause researchers using respondent-driven
sampling to produce confidence intervals that are too small. These incorrect con-
fidence intervals are not just a technical concern; incorrect confidence intervals can
lead to incorrect substantive conclusions.

In order to produce better confidence intervals, we will develop and evaluate a
bootstrap method specifically designed for respondent-driven sampling.b Although
an analytic approach would be preferable,c bootstrap methods are commonly used

Population
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Social NetworkCollection

Estimation

Estimation
Sample

a b

FIGURE 1. Schematic of both traditional sampling and estimation and respondent-driven
sampling. By not attempting to estimate directly from the sample to the population, respondent-
driven sampling avoids many of the well-known problems with estimation from snowball samples.

bSome preliminary work on bootstrap procedures for respondent-driven sampling has been reported in

the literature.3 Here we build on those first steps by offering an improved procedure and a more
developed analysis.

cWe tried and failed to produce analytic results. However, some progress has been made on analytic

variance estimation when an alternative estimation procedure is used.15
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for variance estimation from complex sample designs because analytic solutions are
often not possible.16,17 In the next sections, we will describe our proposed boot-
strap procedure and then evaluate its performance using computer simulations.

PROPOSED BOOTSTRAP PROCEDURE

The general idea of the bootstrap procedure is to use the observed sample to
generate a set of replicate samples. Then this set of replicate samples is used to
produce a set of replicate estimates. By examining the variation in these replicate
estimates, one can construct a confidence interval around the original point
estimate. This three-step process can be seen in Figure 2.17

The first step in our procedure is the resampling step. In traditional boot-
strapping, this resampling is done by randomly sampling with replacement from the
original sample until the replicate sample is the same size as the original sample. This
resampling procedure is well grounded theoretically for the case where the original
sample is collected via simple random sampling.17 However, as described previously,
in respondent-driven sampling there are dependencies in the sample selection process,
and so we must use a modified resampling procedure which mimics these features.
The modification of the resampling step is the main way that this approach deviates
from traditional bootstrapping techniques.

Under our proposed procedure we divide the sample members into two sets
based on how they were recruited: people recruited by someone in group A (which
we will call Arec) and people recruited by someone in group B (which we will call
Brec). For example, Arec could be the set of all sample members who were recruited
by someone with HIV. Note that this set could include both people with and without
HIV. In order to mimic the actual sampling process, the resampling begins when a
seed is chosen with uniform probability from the entire sample. Then, based on the
group membership of the seed, we draw with replacement from either Arec or Brec.
For example, if the seed chosen for the replicate sample was a sample member with
HIV, we draw from the set of sample members who were recruited by someone with
HIV. Next, we examine the group membership of this newly chosen person and
then draw again with replacement from either Arec or Brec.

d This process continues
until the bootstrap sample is the same size as the original sample. Overall, this
resampling scheme preserves some, but not all, of the dependencies that exist in the
respondent-driven sampling data collection.e

Once the bootstrap samples are selected, we move to step 2 in Figure 2: the
estimation step. Here we use the normal respondent-driven sampling estimation
procedure on each of the R replicate samples to produce a set of R replicate
estimates. Finally, in step 3 of the bootstrap procedure, the R replicate estimates are

dIn some extremely rare cases, usually where one of the groups is very small, either Arec or Brec are
empty. When this occurs we draw randomly from the entire sample.

eSimulation results indicate that this proposed procedure works better than the simpler procedure of

choosing a sample member and then, based on the estimated cross-group connection probabilities,

choosing a sample member from the appropriate group. The method presented here preserves those
probabilities, but in addition allows for the possibility that those recruited by people in group A might be

different than those recruited by people in group B.
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converted into a confidence interval. One way to do this would be to construct a
90% confidence interval based on the normal approximation,

P̂PA � 1:65�ŝe P̂PA

� �
;P̂PA þ 1:65�ŝe P̂PA

� �
c

�
ð1Þ

where the estimated standard error, ŝe P̂PA

� �
, is the standard deviation of the replicate

estimates. While this approach is reasonable, it has two main disadvantages. First, it
forces the confidence intervals to be symmetric, which can reduce accuracy, and
second, it can produce intervals with endpoints outside of the range [0, 1].

Fortunately, there are several improvements over this standard error method,
and in this paper we will use the percentile method.f When using the percentile method,
we define the endpoints of the 90% confidence interval to be the two replicate
estimates, such that 5% of the replicate estimates fall below the interval, and 5% of the
replicate estimates fall above the interval. For example, if a researcher generated 2,000
bootstrap replicates, a 90% confidence interval would be defined by the 100 and 1,900
ordered replicate estimates. As we shall see in the next section, the proposed resam-
pling scheme combined with the percentile method produces confidence intervals that
are generally good in an absolute sense and better than the naive method.g

COMPARING THE NAIVE AND BOOTSTRAP METHODS

The quality of a confidence interval procedure can be measured by calculating �,
the percentage of proposed intervals that contain the true population value. For

FIGURE 2. Schematic of the procedure for producing confidence intervals.

fWe also attempted to use the BCa method which, in some cases, has better asymptotic properties than

the percentile method. However, in our simulations, the BCa method performed worse. We suspect that

the poor performance of the BCa method was because of difficulties estimating the acceleration term

baað Þwhen the data were collected via respondent-driven sampling.
gSimulations reveal that, in general, the standard error method produces intervals only slightly worse

than the percentile method and so, in practice, either method can be used.
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example, if we took 1,000 samples from the population and produced a 90%
confidence interval from each of these samples, then 900 out of 1,000 of these
confidence intervals should include the true population prevalence.h Unfortunately,
due to resource constraints, we cannot repeatedly sample from real hidden
populations. However, using computer simulations, we can construct hypothetical
hidden populations and then repeatedly sample from them to evaluate the coverage
properties of the different confidence interval procedures. Further, in these
computer simulations we can systematically vary the characteristics of the hidden
population in order to understand the effects of population and network
characteristics on the quality of the proposed confidence intervals.

For example, to explore how network structure affects the quality of the
confidence intervals, we constructed a series of hypothetical populations that were
identical except for the amount of interconnectedness between the two groups. More
specifically, we varied the ratio of the actual number of cross-group relationships to
the number of possible cross-group relationship, and thus, our measure of intercon-
nectedness, I, can vary from 0 (no connections between the groups) to 1 (maximal
interconnection). All populations were constructed with 10,000 people, 30% of
which were assigned a specific trait, for example HIV. Next, we began to construct
the social network in the population by giving each person a number of relation-
ships with other people in the population. The number of relationships that an
individual has is called her degree. When assigning an individual_s degree we
wanted to roughly match data collected in studies of drug injectors in Connecticut,2

so each person with HIV was assigned a degree drawn randomly from an exponential
distribution with mean 20, and those without HIV were assigned a degree drawn
from an exponential distribution with mean 10; later in this paper we will explore
other degree distributions. Once the degrees were assigned, we insured that the
population had the appropriate amount of interconnection between the groups.i

After each population was constructed, we took 1,000 samples of size 500, and for
each of these 1,000 samples we constructed a confidence interval using both the naive
method (i.e., ignoring the complex sample design and pretending to have a simple
random sample) and the proposed bootstrap method. By seeing if each of these
confidence intervals included the true population prevalence, we calculated �naive and
�boot. The results of these simulations are presented in Figure 3 and reveal two
important features. First, the figure shows that, for the populations used in these
simulations, the proposed bootstrap procedure outperforms the naive procedure.
Second, it shows that the bootstrap procedure also performs well in an absolute
sense, meaning �boot � 0:9.

To test the robustness of these findings, we explored the coverage properties in
a larger portion of the possible parameter space by varying the sample size, the
proportion of the population in the groups, and the average degree of the groups

hStrictly speaking, since we are sampling from a finite population we could enumerate all possible
samples and then run the confidence interval procedure on every possible sample giving us the exact

coverage properties of our procedure. However, the number of possible samples is astronomical, and so,

following common practice, we take a sample from the set of all possible samples and use the coverage

rate from these samples to estimate the true coverage rate. Thus, our presented coverage rates are only
estimates of the true coverage rate with standard error, se �̂�ð Þ �

ffiffiffiffiffiffiffiffiffiffiffi
� 1��ð Þ

r

q
�

ffiffiffiffiffiffiffiffiffiffiffiffi
0:9 � 0:1

1000

q
� 0:01. In this paper we

will ignore this complication and use �̂� and � interchangeably.
iFurther details about computer simulations and default parameter values can be found elsewhere.4

Unless otherwise stated, the default parameter values were always used.
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(results not shown). To summarize these findings, in a few unusual portions of the
parameter space, the proposed bootstrap procedure did not perform well in an
absolute sense, but in most portions of the parameter space, the proposed procedure
performed well.j Additionally, in all cases the proposed bootstrap procedure out-
performed the naive procedure. To conclude, in the situations that we have
examined, the proposed bootstrap procedure works well in an absolute sense and
better than the naive procedure. Further, these results seem robust. Therefore, until
some superior procedure is developed, we recommend this bootstrap procedure for
future researchers who wish to construct confidence intervals around prevalence
estimates from respondent-driven sampling.

DESIGN EFFECTS

Even though respondent-driven sampling produces unbiased prevalence estimates
and allows researchers to produce approximate confidence intervals, respondent-
driven sampling may not be appropriate for all situations. The unbiasedness of the
estimates does not ensure that any particular estimate will be equal to the true
population value. Rather, just like all other unbiased estimators, sometimes the
estimate will be too low or too high; only on average will the estimate equal the
true population value. If the respondent-driven sampling estimates are too variable,
then, even if they are unbiased, they might not be useful in practice. For example,
we constructed a population with 30% prevalence of a specific trait, for example
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FIGURE 3. Coverage probabilities of the naive and bootstrap procedure. Results indicate that the
proposed bootstrap procedure outperforms the naive procedure and performs well in an absolute
sense.

jThe proposed bootstrap procedure performed poorly (�boot � 0:6) when the two groups had very

different total degrees (PADA 99 PBDB) and I was very small (I $ 0.1). As we will see in the next section,

in these types of networks the design effects are very large (910), and so respondent-driven sampling

probably should not be used. However, even in this extreme part of the space of all networks, the
proposed bootstrap method still outperformed the naive method.
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HIV, and repeatedly sampled from that population using respondent-driven
sampling. To provide a benchmark for interpreting the sample-to-sample variabil-
ity, we also repeatedly sampled from the population using simple random sampling
(even though this would not be possible in a real hidden population). Figure 4
shows the distribution of prevalence estimates from these two methods. Both
distributions center around 0.30, the true value, so both sampling methods
produced unbiased estimates. But, the distribution of respondent-driven sampling
estimates was more variable than the distribution of estimates under simple random
sampling. A common way to quantify this difference is the design effect,12 which
measures the increased variation of the estimates under respondent-driven
sampling.k That is,

deff bPPA

� �
¼

V RDS; bPPA

� �

V SRS; bPPA

� � ð2Þ

where V RDS; bPPA

� �
is the variance of under respondent-driven sampling and V SRS; bPPA

� �

is the variance of under simple random sampling. Because respondent-driven sam-
pling generally provides less information, we expect that the design effect will gen-
erally, but not always, be greater than 1. For example, the results in Figure 4 show a
design effect of 2.8. In the next section we will explore the design effects for a range of
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FIGURE 4. Distribution of estimates from respondent-driven sampling and simple random
sampling. The respondent-driven sampling estimates center around the true population value,
0.30, but they are more variable than the estimates from simple random sampling. This extra
variation corresponds to a design effect of 2.8.

kUnfortunately, the term Bdesign effect^ has taken on two meanings in the sampling literature.12,18 The

first meaning is the ratio of the variance of the estimate under a specified sampling plan to the variance
under simple random sampling (deff). An alternative definition is based on the ratio of the standard

errors (deft). Since
ffiffiffiffiffiffiffiffiffi
deff

p
= deft, readers who prefer deft can make the appropriate conversion.
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different network structures to better understand the situations in which respondent-
driven sampling is likely to be precise enough to be useful.

SIMULATION RESULTS ON DESIGN EFFECTS

Estimating the design effect requires comparing the variance of the prevalence
estimate under different sampling methods. While the variability of the prevalence
estimate under simple random sampling can be derived from basic probability
theory,12 we must use simulations to discover the variability under respondent-
driven sampling. Thus, as when we evaluated the confidence interval procedure, we
constructed a range of populations and simulated repeated sampling from them. We
observed several general patterns that seem to occur in all portions of the parameter
space. First, generally, but not always, the design effects from respondent-driven
sampling were greater than 1, which indicates that respondent-driven sampling
estimates were less precise than estimates from simple random sampling. This finding
is consistent with the literature on complex sampling designs, which generally finds
that departures from simple random sampling lead to increased variability of
estimates. Second, as the interconnectedness, I, increased, that is, as the two groups
became more closely connected, the design effect decreased (see Figure 5). Third,
the minimum design effect for a given interconnectedness occurred not when the
two groups had the same average degree (DA = DB), but when the two groups had
the same total degree, (PADA = PBDB) (see Figure 6). Fourth, the design effects were
sensitive to the degree distribution assumed in the simulations. Previously in this
paper we assumed an exponential degree distribution, but for specific subpopula-
tions, such as drug injectors, the true functional form of the degree distribution is
unknown. When we assigned a Poisson degree distribution for both groups, we
observed much lower design effects, including some design effects below 1 (Figure
7); the reason for this change is currently unknown.l Overall, these observations
should be viewed with some caution because they have not been verified analytically
due to the previously mentioned inability to develop closed-form expressions for the
variance of the prevalence estimate under respondent-driven sampling.

Taken together, these simulation results suggest that the design effect is a
complex function of the network structure in the population.m The simulation
results also suggest that in some cases respondent-driven sampling can be quite
blunt, with design effects as large as 10, but that in other cases it can be extremely
precise, sometimes even more precise than simple random sampling.

lOne possible explanation for this finding is that the Poisson distribution has lower variance than the

exponential distribution; an exponential distribution has mean m and variance m2, but a Poisson

distribution of mean m has variance m.19 However, there are also many other differences between these

two distributions. To assess the role of the variance in the degree distribution on the design effects, we
ran simulations where we assigned both groups a normal degree distributions. In this case, direct

manipulation of the variability of the degree distribution did not change the estimated design effect.
mThe complicated relationship between network structure and design effects implies that the

relationship between homophily2,3 and design effect is many-to-many. That is, many homophily values

yield the same design effect, and a given design effect is consistent with many different homophily values.

Therefore, homophily is not the best way to understand design effects.
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ESTIMATED DESIGN EFFECTS IN REAL STUDIES

The simulation results indicate that a range of design effects are possible. Therefore,
an important question becomes: What are the design effects in populations that
people actually study? Our best attempt to answer that question is presented in
Table 1, where we report the estimated design effects from all studies that are
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FIGURE 6. Design effect as a function of DA for different DB. In general, the minimum design
effect, for a given interconnectedness, occurs when the two groups have the same total degree
(PADA = PBDB). So if PA = 0.3 and PB = 0.7, then when DB = 10 the minimum design effect occurs
when DA $ 23 and when DB = 20 the minimum occurs when DA $ 46. Results are based on 10,000
replicate samples.
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FIGURE 5. Design effect as a function of interconnectedness I. In general, as the interconnec-
tedness increases the design effect decreases. Results are based on 10,000 replicate samples.
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currently available.n To produce the estimated design effects we took the published
estimates of PA and used them to estimate the variability of the prevalence estimates
(bVV SRS; bPPA

� �
). This variability is then compared to the published estimates of the

variability under respondent-driven sampling (bVV RDS; bPPA

� �
).o We report only

one design effect because, due to the symmetry of the two-group system,
deff P̂PA

� �
¼ deff P̂PB

� �
.

Overall, Table 1 shows that the prevalence estimates from existing studies had
design effects around 2, suggesting that respondent-driven sampling is reasonably
precise in the situations in which it has been used so far.p Based on this crude
analysis of existing respondent-driven sampling data, we recommend that when
planning a study using respondent-driven sampling researchers should assume a
design effect of 2. This guideline should only be considered a preliminary rule-of-
thumb and should be adjusted, if necessary, depending on pre-existing knowledge
of the study population.

SAMPLE SIZE CALCULATION

Information on design effects should be used when planning the sample size of a
study using respondent-driven sampling, or else the sample size will not meet the
goals of the study. Fortunately, once the researcher has an estimated design effect, it
is rather straightforward to adjust the required sample size; the researcher need only
to multiply the sample size needed under simple random sampling by the assumed
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FIGURE 7. Design effect as a function of interconnectedness for different degree distributions. In
general, the design effects are smaller when the degree distribution of the groups is Poisson rather
than exponential. Results are based on 10,000 replicate samples.

nThe results presented here for Latino gay men differ from the results originally published9 because the

standard errors published in the original paper were too large (D. Heckathorn, [ddh22@cornell.edu],

email, February 5, 2006).
oSince these authors all used the bootstrap procedure proposed in this paper, their confidence intervals

allow reasonable estimation of bVV RDS; bPPA

� �
.

pTable 1 also illustrates that the design effect is a property of a specific estimate and not a population;

estimates from the same dataset may have different design effects.12
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design effect. Thus, for studies using respondent-driven sampling we recommend a
sample size twice as large as would be needed under simple random sampling.
However, calculating the appropriate sample size under simple random sampling is
often difficult due to the overly general nature of the power analysis literature.20,21

Therefore, we will review the sample size calculations for two specific cases of most
interest to researchers using respondent-driven sampling: estimating the prevalence
of a trait with a given precision and detecting a change in prevalence over time.q

One common goal of studies is to estimate the prevalence of a characteristic
with some pre-specified precision, for example, to estimate the proportion of sex
workers in New York City that are HIV-positive with a standard error of no greater
than 0.03. Since it is the case that,

V P̂PA

� �
¼ deff �

PA 1� PAð Þ
n

ð3Þ

we can solve for the required sample size, n, in terms of the desired standard error,
which yields,

n ¼ deff �
PA 1� PAð Þ

se P̂PA

� �� �2 ð4Þ

Therefore, if based on pre-existing knowledge we suspect that 20% of the sex
workers have HIV and that the design effect is 2, we would need a sample size of at
least 356 sex workers to estimate the HIV prevalence with a standard error no
greater than 0.03. Notice that this calculation depends on our initial guess of the
prevalence. If researchers do not have enough information to make such a guess,
they should assume a value of 0.5 which is maximally conservative.

TABLE 1. Estimated design effects from real respondent-driven sampling data.8–10 Sample
sizes vary within the same study due to missing data

Study description Study results

Population Location n Trait bPPA
bVV RDS; bPPA

� �
bVV SRS; bPPA

� �
defbff bPPA

� �

Latino gay
men

Chicago 69 HIV+ 0.17 0.0024 0.0021 1.1

Latino gay
men

San
Francisco

72 HIV+ 0.49 0.0041 0.0035 1.2

MDMA/
Ecstasy
users

Ohio 374 Male 0.58 0.0012 0.0007 1.7

Jazz
musicians

New
York City

263 Male 0.76 0.0016 0.0007 2.3

Jazz
musicians

New
York City

261 Union
member

0.25 0.0010 0.0007 1.4

Jazz
musicians

New
York City

253 Received
airplay

0.75 0.0017 0.0007 2.4

qIn addition to making prevalence estimates, some researchers are interested in using statistical
techniques like multivariate regression to look for statistical patterns within the data. The feasibility of

this approach is discussed elsewhere.22
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A second problem of interest to many researchers is comparing the prevalence of
some behavior at two time points. For example, a researcher might want to test
whether an outreach program was successful at getting drug injectors to stop sharing
injection equipment. Assume that the researcher suspects that before the intervention
40% of drug injectors share injection equipment and that the researcher would like
to choose the appropriate sample size to be able to detect a drop to 25% such that
there is an 80% probability that a 95% confidence interval for the estimated
difference will not include 0. Further, assume that the researcher suspects that each
prevalence estimate will have a design effect of 2. Based on a derivation available in
the literature,23 we can calculate that the required sample size is,

n ¼ 2 �
2:8 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:6 � 0:4þ 0:25 � 0:75
p� 	2

0:4� 0:25ð Þ2
¼ 298 in each sampleð Þ ð5Þ

More generally, the required sample size for comparing prevalence in two
populations is,

n ¼ deff �
Z1��2 þ Z1��

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PA;1 1� PA;1

� �
þ PA;2 1� PA;2

� �qh i2

PA;2 � PA;1

� �2 in each sampleð Þ ð6Þ

where Z1_ �
2

and Z1_� are the appropriate values from the standard normal
distribution and deff is the design effect.r

These sample size calculations are based on assumptions about the prevalence
of the characteristics and the design effect. Therefore, the sample sizes produced by
Eqs. 4 and 6 should be considered approximate.

CONCLUSIONS

This paper makes two main contributions to the literature on respondent-driven
sampling. First, we introduce a bootstrap confidence interval procedure that in
simulations outperforms the naive method currently in practice. Therefore, we
recommend this bootstrap procedure be used in future analysis of respondent-driven
sampling data. The procedure requires some custom computer programming to
implement, but, fortunately, it is already included in RDSAT, a software package for
organizing and analyzing respondent-driven sampling data.s

The second major contribution of this paper is the information on design effects.
The simulation results suggest that the design effects can range from as high as 10
to less than 1. These findings imply that, because of the possibility of high design
effects, respondent-driven sampling is not appropriate in all cases. In some extreme
network structures, the prevalence estimates could be so variable that, even though
they are unbiased, they might not be very useful. Fortunately, data from existing studies
suggest that, so far, respondent-driven sampling has been used in situations where it is

rThis formula is an approximation of the more complicated formula derived elsewhere,24:

n ¼ deff �



Z 1��2 �

ffiffiffiffiffiffiffiffiffiffiffiffi
2P 1�Pð Þ

p
þZ1�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PA;1 1�PA;1ð ÞþPA;2 1�PA;2ð Þ

p
�2

PA;2�PA;1ð Þ2
where P ¼ PA;1þPA;2

2 , which has appeared in the public health literature.25

When PA,1$PA,2 then 2P 1� P
� �

� PA;1 1� PA;1

� �
þ PA;2 1� PA;2

� �
so both formula yield similar values.

sThe RDSAT software was written by Erik Volz and Doug Heckathorn and is currently available from

http://www.respondentdrivensampling.org.
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reasonably precise, yielding estimated design effects around 2 (see Table 1). Based on
these data, we suggest that when using respondent-driven sampling, researchers col-
lect a sample twice as large as would be needed under simple random sampling.

The sensitivity of the design effect to the functional form of the degree
distribution further emphasizes the need for more research on methods to accurately
measure the degree of each respondent. Currently, the estimated average degree
depends on subjects’ self-reported degree, and these reports may be inaccurate.26,27

In almost all cases, inaccuracy in the self-reported degree will introduce bias into
the prevalence estimates.4 As far as we know, the best methods for estimating an
individual_s degree are scale-up method and summation method.28 However, it is
not clear that either of these approaches, which were designed for the general
population, is appropriate for studying hidden populations.

Taken together, the results about the sample-to-sample variability presented in
this paper add to the growing literature on respondent-driven sampling. By allowing
researchers to obtain better information about key hidden populations, this research
should allow public health professionals to monitor population dynamics more
accurately, target resources more carefully, and intervene to slow the spread of
disease more effectively.
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Méthodol Sociol. 1992;36:59–70.

12. Lohr SL. Sampling: Design and Analysis. Pacific Grove: Duxbury; 1999.
13. Thompson SK. Sampling. New York: Wiley; 2002.
14. Thompson SK, Collins LM. Adaptive sampling in research on risk-related behaviors.

Drug Alcohol Depend. 2002;68:S57–S67.
15. Volz E, Heckathorn DD. Probability-based estimation theory for respondent-driven

sampling. Working Paper. 2006.
16. Wolter KM. Introduction to Variance Estimation. Berlin Heidelberg New York:

Springer; 1985.
17. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. New York, NY: Chapman &

Hall; 1993.
18. Lu H, Gelman A. A method for estimating design-based sampling variances for surveys

with weighting, poststratification, and raking. J Off Stat. 2003;19(2):133–151.
19. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Boca Raton:

Chapman & Hall; 2004.
20. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence

Erlbaum Associates; 1987.
21. Murphy KR, Myors B. Statistical Power Analysis: A Simple and General Model for

Traditional and Modern Hypothesis Tests. Mahwah, NJ: Lawrence Erlbaum Associates;
1998.

22. Heckathorn DD. Extensions of respondent-driven sampling: dual-components sampling
weights. Paper presented at: RAND Statistical Seminar Series, 2005; Santa Monica, CA.

23. Gelman A, Hill J. Data Analysis Using Regression and Multilevel / Hierarchial Models.
Cambridge: Cambridge University Press; 2006.

24. Fleiss JL. Statistical Methods for Rates and Proportions. New York: Wiley; 1973.
25. FHI. Behavioral Surveillance Surveys: Guidelines for Repeated Behavioral Surveys in

Populations at Risk of HIV. Arlington, VA: Family Health International; 2000.
26. Brewer DD. Forgetting in the recall-based elicitation of personal and social networks.

Soc Netw. 2000;22:29–43.
27. Bell DC, Belli-McQueen B, Haider A. Partner naming and forgetting: Recall of network

members. Working Paper. 2006; (in press).
28. McCarty C, Killworth PD, Bernard HR, Johnsen EC, Shelley GA. Comparing two

methods for estimating network size. Human Organ. 2001;60(1):28–39.

SALGANIKi112


	Variance Estimation, Design Effects, and Sample Size Calculations for Respondent-Driven Sampling
	Abstract
	Introduction
	Review of Respondent-driven Sampling
	Confidence Intervals
	Proposed Bootstrap Procedure
	Comparing the Naive and Bootstrap Methods
	Design Effects
	Simulation Results on Design Effects
	Estimated Design Effects in Real Studies
	Sample Size Calculation
	Conclusions
	References


