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Variance Estimation in Spatial Regression Using aNonparametric Semivariogram Based on ResidualsHyon-Jung Kim and Dennis D. Boos1AbstractThe empirical semivariogram of residuals from a regression model with stationary errors maybe used to estimate the covariance structure of the underlying process. For prediction (kriging)the bias of the semivariogram estimate induced by using residuals instead of errors has only aminor e�ect because the bias is small for small lags. However, for estimating the variance ofestimated regression coe�cients and of predictions, the bias due to using residuals can be quitesubstantial. Thus we propose a method for reducing this bias. The adjusted empirical semi-variogram is then isotonized and made conditionally negative-de�nite and used to estimate thevariance of estimated regression coe�cients in a general estimating equations setup. Simulationresults for least squares and robust regression show that the proposed method works well inlinear models with stationary correlated errors.KEYWORDS: Estimating equations, Mat�ern family, REML, Sandwich variance estimator.
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1 IntroductionRandom processes over time or space typically have the property that nearby observations tend tobe more alike than observations far apart. Scienti�c studies of such processes often involve modelingand estimation of a mean response with random errors assumed to be from a stationary process.For example, an additive error linear model is given byYi = xTi � + ei; i = 1; : : : ; n; (1)where xi may consist of variables that are a function of location as well as other covariates, and theei are errors whose correlation depends only on the distance between observations. Two applicationsof model (1) are as follows.Example 1. For a project of the USDA Forest Service, the ozone index W126 (Lefohn andRuneckles, 1987) was desired at a number of sites in the northeastern United States where plantdamage on bio-indicator plants had been measured. W126 readings and some covariates wereavailable for 174 other sites. Thus a regression model was developed between W126 and thefollowing covariates: x1 = elevation from sea level in meters, x2 = mean annual rainfall in inches,x3 = mean annual temperature in Fahrenheit, x4 = the Palmer drought severity index, and x5 =the distance in meters to the closest city with population over 50,000. We focus here on gettingstandard errors for the regression coe�cients, but it was also of interest to get standard errors forthe kriging predictions at the sites of the bio-indicator site monitors. The OLS coe�cients areintercept: �25:2 (23.5), x1: .0063 (.003), x2: �:26 (.29), x3: 1.23 (.42), x4: :60 (1.3), x5: �:000064(.00002) The standard errors from our proposed method are in parentheses and tell us that x2 =rainfall and x4 = Palmer drought severity may be dropped from the model.Example 2. Global warming has been the focus of many studies, and is still a hotly debatedtopic. The data in Figure 1, taken from Jones et al. (2000), are global mean annual temperaturesfor 1856-1999 with the 1961-1990 mean subtracted. The data are overlaid with a simple OLS �tof the temperature deviations to x1 = year � ymean and x2 = (year � ymean)2, where ymean =1927.5 is the mean of the years. The estimated linear and quadratic coe�cients are 0.00425 and.0000421, respectively, with standard errors from our method of 0.000643 and 0.0000167. Since forany stationary error structure these OLS coe�cients are uncorrelated (due to centering the years),an approximate Wald test statistic for zero linear and quadratic coe�cients is (0:00425=:000643)2+(:0000421=0:0000167)2 = 50:0. Although a chisquared distribution with two degrees of freedom may2
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Figure 1: Global mean annual temperatures for 1856-1999 with the 1961-1990 mean subtracted;from Jones et al. (2000).be a bit optimistic for the null distribution in this situation, the simulations in Table 3 suggestthat 50.0 is highly signi�cant. Other approaches using a linear trend may be found in Bloom�eldand Nychka (1992) and Sun and Pantula (1999). Wu, Woodroofe, and Mentz (2001) use isotonicregression methods to test for global warming.One standard approach for model (1) with normally distributed errors is to assume a particularparametric semivariogram model such as an exponential and use restricted maximum likelihood(REML) for estimating the parameters of the model and then to use estimated generalized leastsquares (EGLS) for estimating �. Alternatively, one can avoid the normality assumption and useweighted least squares with the empirical semivariogram of the residuals to estimate the parametersof the semivariogram model (see Cressie, 1993, p. 94-99, 165-170). In either case the variance ofthe EGLS b� is estimated using standard formulas for generalized least squares with semivariogramestimates inserted where needed. A correct semivariogram model, however, is not always easy tochoose, and we may be interested in estimation methods other than least squares.The purpose of this paper is to give new methods for estimating the variance of b� when b� isobtained from a general estimating equations approach, i.e., satisfyingPSi(Yi;xi; b�; b�) = 0, whereSi is usually a function of residuals and weights and b� are additional dispersion parameter estimates.3



This general class includes ordinary least squares (OLS, with Si(Yi;xi; b�; b�) = (Yi � xTi b�)xi),EGLS, robust regression (e.g., Huber, 1980, Ch. 3, with Si(Yi;xi; b�; b�) = ( [Yi � xTi b�]=b�)xi),and generalized estimating equations (GEE, Liang and Zeger, 1986). Although these estimationmethods are suitable for a much larger class of models than (1), we will focus on methods for(1). However, a parametric semivariogram model will not be chosen; rather, we will estimate thesemivariogram subject only to a monotonicity constraint.Our approach is similar in spirit to that of Lumley and Heagerty (1999), who use a weightedempirical variance estimate for the middle part of the \sandwich" asymptotic variance formulathat arises naturally from the estimating equations formulation. Their approach is more generalbecause it allows nonstationary errors; in fact Lumley and Heagerty (1999) unify a variety ofnonparametric methods including Newey and West (1987), White and Domowitz (1984), Andrews(1991), Lele (1991), and Yasui and Lele (1997). Related nonparametric methods are found inCarlstein (1986), Sherman (1996, 1997), Garcia-Soidan and Hall (1997), and Heagerty and Lumley(2000).Our approach di�ers, though, in two ways from these other methods: we use nonparametricsemivariogram estimation for the middle part of the \sandwich," and we explicitly remove bias inthe semivariogram estimates that would ordinarily result from using residuals rather than errors(which are of course unknown). It is this latter bias issue that we feel is most important. Anynonparametric variance estimation method based on residuals that does not address the bias issueis doomed to underestimate the variance of estimated coe�cients and of predictions. The problemwith using residuals has long been recognized in the spatial statistics literature (Matheron, 1971,p. 152-155, and Cressie, p. 165-170). However, when �tting parametric variogram models, the biasis by de�nition not a problem for REML. It is also claimed (see Cressie, 1993, p. 167-169) that thebias from residuals is not a major problem when estimating parametric semivariograms by weightedleast squares because the early lags, where the bias in the empirical semivariogram is small, havethe largest weights. In general, though, nonparametric semivariogram methods will inherit thebias problem of the empirical semivariogram, especially at moderate to large distances betweenobservations (see Figure 4 in Section 3.2). We have not seen attempts to correct this bias directlyas we suggest in Section 3.2, but Matheron (1973) and Cressie (1987) propose a method similarto di�erencing in time series for handling the bias issue. For visual con�rmation of parametricvariogram models, Brownie and Gumpertz (1997) suggest adjusting REML estimates of parametric4



semivariograms so that graphically they are aligned with a plot of the empirical semivariogram ofresiduals.Our nonparametric semivariogram is based on several simple ideas. First we construct a semi-variogram estimator in the constant mean case by monotonizing the standard empirical semivari-ogram (see Section 3.1). We also check for positive-de�niteness of the resulting covariance matrixand modify our estimate if it is not positive-de�nite. Next (Section 3.2) we compute the bias ofthe residuals-based empirical semivariogram in model (1) when � is estimated by OLS. Then wecorrect for this bias by multiplying the empirical semivariogram by estimated factors computed ateach distinct distance between observations. Finally, we monotonize and make the adjusted em-pirical semivariogram conditionally negative-de�nite. This nonparametric semivariogram is thenused to estimate the variance of the estimated regression coe�cients. Monte Carlo results for OLSestimates are given in Section 4.1, and results for robust regression estimates are given in Section4.2. We begin in Section 2 with a general explanation of how to estimate the variance of regressionparameter estimates from data with correlated errors.2 Variance Estimation of Regression Parameter EstimatesThe estimating equations approach provides a general framework for deriving the asymptotic dis-tribution of b� that solves Gn(�) = 1n nXi=1 Si(Yi;xi;�) = 0(and here for simplicity we have dropped the extra dispersion parameters � mentioned in theIntroduction). That is, by Taylor series approximation,0 = Gn(b�) � Gn(�) + _Gn(�)(b� � �) +Rn;where _vectGn(b�) = @@�TGn(�) = 1n nXi=1 @@�T Si(Yi;xi;�):Then, under suitable regularity conditions, b� p�! � and b� is asymptotically normally distributedwith variance times nA(�)�1B(�)�A(�)�1	T = limn!1[�E _Gn(�)]�1 nVar[Gn(�)] n[�E _Gn(�)]�1oT ; (2)5



where it is assumed that there are matrices A(�) and B(�) such that �E _Gn(�) ! A(�) andnVar[Gn(�)] ! B(�) as n ! 1. In likelihood models �E _Gn(�) = nVar[Gn(�)] is the averageFisher information.Since the estimator _Gn(b�) = 1n nXi=1 @@�T Si(Yi;xi; b�)will typically satisfy _Gn(b�) � E _Gn(�) p�! 0 even for correlated data, the problem of �nding aconsistent estimator of the asymptotic variance (2) is reduced to �nding a consistent estimator forthe middle term, nVar [Gn(�)] = E24 1n nXi=1 nXj=1 Si(Yi;xi;�)Sj(Yj ;xj ;�)T35 :Lumley and Heagerty (1999) point out that the empirical estimator1n nXi=1 nXj=1 Si(Yi;xi; b�)Sj(Yj ;xj ; b�)T = 1n " nXi=1 Si(Yi;xi; b�)#24 nXj=1 Sj(Yj;xj ; b�)T35is identically zero by the de�nition of b�. This of course contrasts with the common situationwhere one can average over independent replications. Thus Lumley and Heagerty (1999) suggestestimating the middle term bybJn(b�) = 1n nXi=1 nXj=1 wijnSi(Yi;xi; b�)Sj(Yj ;xj ; b�)Twhere wijn ! 1 as n ! 1 but wijn ! 0 as the distance between two locations, d(i; j) ! 1 for�xed n. They also show that the methods proposed earlier by Newey and West (1987), Whiteand Domowitz (1984), and Andrews (1991) can all be viewed as weighted empirical estimatorswith di�erent choices of the weight wijn. Although these estimators can be used for nonstationarymodels, one common problem is that they are not very e�cient for highly correlated data (Andrews,1991).To implement our approach we �rst make the simplifying assumption that Si has the formSi(Yi;xi;�) = wi(�)S(ei(�))xi, where S is now a real-valued function and the ei(�) are from astrictly stationary process. Thus, the S(ei(�)) are also from a strictly stationary process, and wewill estimate the latter process using semivariogram techniques. We then employ it to estimatethe middle term of (2) utilizing the relationship between semivariogram and covariance functionsunder second-order stationarity. We present the details of estimating the semivariogram in the nextsection. 6



3 Nonparametric Semivariogram EstimationA process fZ(s); s 2 D;D � Rdg is called intrinsically stationary when it has constant expectationand the variance of the increments depends only on the di�erence of locations. For an intrinsicallystationary process, the semivariogram is de�ned at locations s1 and s2 by
(s1 � s2) = 12Var[Z(s1)� Z(s2)]:It is called isotropic if 
(s1 � s2) is only a function of the Euclidean distance ks1 � s2k betweenlocations. We then use the simpler notation 
(h) where h is the distance between locations. Thefunction 2
(�) is called the variogram. A valid semivariogram needs to be conditionally negative-de�nite; that is, it must satisfy nXi=1 nXj=1 �i�j
(si � sj) � 0for each set of locations s1; :::; sn and all �1; : : : ; �n such that Pni=1 �i = 0 (see Cressie, 1993, p.86). For a sample of given realizations from Z(�), the empirical variogram is the unbiased estimatorof an isotropic variogram given by2b
(h) = 1jN(h)j XN(h)fZ(si)� Z(sj)g2where N(h) = f(si; sj) : ksi � sjk = h : i; j = 1; 2; :::; ngand jN(h)j is the number of distinct pairs in N(h). Although the empirical variogram is unbiasedfor the variogram, it cannot be used directly in procedures such as kriging (spatial prediction)because it may not be conditionally negative-de�nite.One standard approach has been to choose a parametric variogram model (which by de�nitionis conditionally negative-de�nite) and �t it by restricted maximum likelihood (REML), maximumlikelihood (ML), or weighted nonlinear least squares. There are a number of widely used parametricvariogram models based on isotropic processes such as the exponential, spherical, and Gaussian.The Mat�ern class, originally given by Mat�ern (1960), allows a wide range of 
exibility in that ithas a parameter which controls the smoothness of a random �eld. The class can be de�ned by itsisotropic autocovariance function:C(h) = �2��1�(�)  2�1=2h� !� K�  2�1=2h� !7



where � is the scale parameter, � the shape parameter, and � measures how quickly the correlationof the random �eld decays with distance. The function �(�) is the gamma function and K� is themodi�ed Bessel function of the third kind of order � (Stein 1999). When � = 12 , the model becomesthe exponential model, and the limit � ! 1 corresponds to a Gaussian model. The underlyingtrue variogram is rarely known, and selection of a variogram model is quite arbitrary in practice.The Mat�ern class appears to be the best choice of the present parametric models to estimate thedependence structure of a process since it includes or approximates a number of common models.There have been several attempts to avoid selecting variogram models via nonparametric vari-ogram estimation (Shapiro and Botha, 1991; Cherry et al., 1996; Lele, 1995; Hall et al., 1994; Barryand Ver Hoef, 1996; and Gorsich and Genton, 2000). Shapiro and Botha(1991) appear to be the�rst to consider a nonparametric semivariogram estimate based on Bochner's theorem. Cherry et al.(1996) implemented the Shapiro-Botha estimator using the statistical package S-plus and comparedits performance to parametric estimation of the semivariogram using nonlinear least squares. Theyfound good performance of their nonparametric estimates and sometimes better performance thanthe traditional parametric approach. One problem with their method is that the sill estimates tendto be biased and highly variable. Cherry (1997) suggested a simple remedy for this sill problem,but semivariogram values other than the sill also seem to have high variability as well. Lele (1995)provided a nonparametric estimator of the semivariogram using a spline function and included astudy of the performance of his estimator in terms of prediction and prediction error.3.1 Monotone Semivariogram EstimationMost parametric covariance models used in spatial analyses have correlations that are monotonedecreasing with distance. Moreover, most physical processes exhibit this monotone behavior aswell. Thus, the centerpiece of our approach is to assume that the correlations are monotonedecreasing with distance. This is a much weaker assumption than any of the common parametricsemivariogram models.Our basic approach to produce a nonparametric monotone semivariogram estimator is to applythe pool adjacent violators algorithm (PAVA, Barlow et al. 1972, p.13) to empirical semivariogramestimates. Although the variance of the empirical semivariogram at a lag h is not exactly propor-tional to the inverse of the number of pairs (e.g., Genton, 1998, p. 328), we use that weighting in8



the PAVA routine. This is similar to Cressie's (1993, p. 96) weighting in nonlinear least squares�tting of parametric semivariograms except that for simplicity we ignore the extra weighting factordue to the value of the semivariogram.The basic idea of PAVA is the following: starting with y1, move to the right and stop if yi > yi+1.In that case replace yi and yi+1 by their weighted average y�i . Then move to the left to make surethat yi�1 � y�i . If yi�1 > y�i , then replace yi�1 with the weighted average of all three. Continuemoving to the left and checking the monotone requirement, and then proceed again to the right.This process of averaging and back-averaging is continued until the right end point is reached.Consistency of the monotonized empirical semivariogram follows simply from the consistencyof the empirical semivariogram as long as the underlying semivariogram is monotone. For exam-ple, suppose that the empirical semivariogram b
(h) is strongly consistent for a strictly monotonesemivariogram 
(h) at the points h1; : : : ; hk. Then for a su�ciently large sample size with proba-bility one, b
(h1) < b
(h2) < � � � < b
(hk), and the monotonized version is the same as the empiricalsemivariogram. This same idea extends to cases that are not strictly monotone.In many situations, isotonic estimators have improved mean squared error properties over theoriginal estimators used in their construction. We will illustrate that property with Monte Carlosimulation.Since the variance of the empirical semivariogram is large for large lags, we follow the commonpractice of truncating the isotonized semivariogram at half the maximum distance found in thedata set. In order not to induce upward bias at that distance, we monotonize a larger set of lagsbefore truncating. For example, for a time series on the equally spaced time points of 1; : : : ; 100we monotonize on the lags 1; : : : ; 70 (number of pairs � 30) and then truncate at 50.Figure 2 shows the empirical semivariogram and the isotonized semivariogram for one data seton a 10 x 10 grid generated from an exponential semivariogram with range parameter = 1 andsill = 3, 
(h) = 3[1 � exp(�h=3)]. Note that the two estimates only coincide at a few points.Figure 3 gives averages of 1000 replications of the situation in Figure 2. We can see that theempirical semivariogram is unbiased as advertised, and that the monotone estimate is somewhatbiased downward in the middle. Table 1 shows, however, that the monotone estimate has lowermean squared error on the log scale for distances beyond 3. We use the log scale because the meansquared error for variance-like quantities is well-known to reward negatively biased estimators too9
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Figure 2: Empirical semivariograms for data on a 10 x 10 grid generated from a constant meanprocess with an exponential (sill=1,range=3) semivariogram (�): empirical semivariogram (O) andisotonized version (+).much. Note that the standard errors of di�erences of estimates in Table 1 are lower than thereported standard errors for individual entries.Table 1. Mean squared errors of the logarithm of empirical andmonotone semivariogram estimates for constant mean data on a10 � 10 grid with exponential semivariogram. Results based on1000 replications. Average standard errors are in the last row.Distance 1.00 1.41 3.00 4.12 6.32Range=1, Sill=3 Empirical 0.023 0.029 0.043 0.046 0.053Monotone 0.023 0.028 0.039 0.040 0.043Range=2, Sill=3 Empirical 0.022 0.030 0.060 0.078 0.110Monotone 0.022 0.030 0.058 0.075 0.096Std. Errors 0.001 0.001 0.003 0.003 0.004Very often, the isotonized semivariogram is already conditionally negative-de�nite. Sometimesit is not, and then we suggest using the spectral decomposition of the covariance matrix followed by10



Distance

S
em

iv
ar

io
gr

am

0 1 2 3 4 5 6

1.
5

2.
0

2.
5

3.
0

Figure 3: Average of 1000 empirical semivariograms for data on a 10 x 10 grid generated from aconstant mean process with an exponential (sill=1,range=3) semivariogram (�): empirical semi-variogram (O) and isotonized version (+). Standard deviations of estimates are approximatelybounded by .02.replacement of the negative eigenvalues by small positive ones (see Rousseeuw and Molenberghs,1993, for other methods). For the variance estimation discussed in Sections 4 and 5, this hasvirtually no e�ect. However, for other purposes such as kriging, it may be required. Also, theisotonic estimators have a \boxy" appearance, and sometimes we �nd it more appealing to smooththe isotonized semivariogram using a spline or other smoother.3.2 Bias Correction of Residuals-Based SemivariogramConsider model (1) where the errors ei are drawn from a mean zero, second-order stationaryrandom error process. We shall assume that the unknown regression coe�cients � are estimatedby ordinary least squares. A natural approach is then to construct the empirical semivariogram fromthe residuals. Unfortunately, the distribution of the residuals is not the same as the errors, and theempirical semivariogram is seriously biased downward. Figure 4 shows the average of the empiricalsemivariogram for 1000 replications of an exponential semivariogram with range parameter = 111
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Figure 4: Exponential(sill=1,range=3) semivariogram (�) for data on a 10 by 10 grid, average of1000 empirical semivariograms from residuals with p = 3 estimated parameters (O) and with p = 6estimated parameters (+). Standard deviations of estimates are approximately bounded by .02.and sill = 3 for a 10 by 10 grid. The middle curve is for residuals based on �tting an interceptand the location coordinates (x and y). The lower curve is for residuals from a �t with the samethree variables and with three more independent variables (randomly generated standard normalvariables).To understand more clearly the e�ect of the residuals, let V denote the covariance matrix of theerrors for a sample with n data points. Then simple calculations show that the covariance matrixof the residuals bei = Yi � xTi � is given by (I � P )V (I � P ), where I is the n dimensional identitymatrix and P = X(XTX)�1XT is the projection matrix of X, where X is formed from the rowvectors xTi .The expected value of the empirical semivariogram of the residuals at lag h isEres(h) = 12jN(h)j XN(h)E(bei+h � bei)2= 12jN(h)j XN(h) �E(be2i+h) + E(be2i )� 2E(bei+hbei)�12



� 1ntrace(I � P )V (I � P )� 1jN(h)j XN(h) [(I � P )V (I � P )]i;i+h ;where the approximation comes in by taking the average of all of the diagonal elements of (I �P )V (I � P ) instead of the subset of the diagonal elements implied by summing over elements hdistance apart. This approximation is not necessary but makes the computing considerably easier.The expected value of the empirical semivariogram of the errors at lag h is of course 
(h), butwe can write it in a form similar to the above:Eerr(h) = 12jN(h)j XN(h)E(ei+h � ei)2= �2 � 1jN(h)j XN(h) [V ]i;i+h ;where �2 is the variance of the errors. Now the ratio of these quantities, fac(h) = Eerr(h)=Eres(h),is essentially the ratio of the true semivariogram 
(h) in Figure 4 to the average of the empiricalsemivariograms.We feel that the downward bias in Figure 4 in unacceptable. Moreover, applying PAVA to theresiduals-based empirical semivariogram will certainly improve it, but the scope for improvementis quite limited. Thus we feel it is important to �rst adjust the empirical semivariogram beforemonotonizing. Our approach then is to estimate fac(h) by using estimated covariances obtainedfrom the monotonized version of the residuals-based empirical semivariogram. We multiply theoriginal residuals-based empirical semivariogram by these estimated factors resulting in a bias-reduced empirical semivariogram. Finally we monotonize this bias-reduced empirical semivariogramto obtain our estimated semivariogram. It is also possible to iterate the factor estimation step, butwe found that it did not make much di�erence. Figure 5 shows the average of the residuals-basedempirical semivariogram, the bias-reduced empirical semivariogram, and the monotonized versionfor 1000 samples from a linear model with intercept and locations �tted (p = 3 case) and errorsgenerated from an exponential semivariogram with range parameter = 2 and sill = 3. ComparingFigure 5 with Figure 3, one can see that monotonizing has a similar e�ect; that is, it tends to pulldown on average the bias-reduced empirical semivariogram. Table 2 shows that the monotonizedversion has improved mean squared error properties relative to the original residuals-based empiricalsemivariogram.A number of authors (see Cressie, 1993, p. 167�169) have shown concern about the bias13
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Figure 5: Exponential(sill=2,range=3) semivariogram (�) on a 10 x 10 grid and the average of1000 replications of semivariogram estimates based on residuals from p = 3 estimated parameters:empirical semivariogram from residuals (O), bias-reduced empirical variogram (+), monotonizedbias-reduced empirical variogram (�). Standard deviations of estimates are approximately boundedby .02. Table 2. Mean squared errors of logarithms of semivariogram estimates:empirical, bias-reduced empirical and monotone. Data are >from a10 � 10 grid with exponential semivariogram. Results based on1000 replications. Average standard errors are in the last row.Distance 1.00 1.41 3.00 4.12 6.32Range=1, Sill=3 Empirical 0.023 0.029 0.046 0.052 0.067Bias-reduced 0.023 0.029 0.046 0.051 0.060Monotone 0.023 0.029 0.042 0.045 0.047Range=2, Sill=3 Empirical 0.023 0.032 0.069 0.098 0.173Bias-reduced 0.023 0.032 0.067 0.092 0.139Monotone 0.023 0.032 0.067 0.091 0.116Std. Errors 0.001 0.001 0.003 0.003 0.004
14



problems when the variogram is based on least squares residuals. However, to our knowledge, nomethods have successfully corrected the bias of residuals-based empirical variograms. In general,the bias of such estimators is small at lags near the origin but more substantial at distant lags (seeFigure 4). Cressie (1993, p. 167-168) concludes that the e�ect of bias on kriging will be small if
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Figure 6: Exponential(sill=1,range=3) semivariogram (�), average of 1000 replications of semivari-ogram estimates based on residuals from p = 3 estimated parameters: empirical semivariogram fromresiduals (O) and weighted nonlinear least squares parametric estimate (+). Standard deviationsof estimates are approximately bounded by .02.a parametric variogram is �tted with more weight given to the estimates at small lags, such asby the weighted least squares method. However, he notes that a kriging variance can be morein
uenced by the residuals-based variogram estimates. Here our main concern is with estimationof the variance of estimated regression parameters, and the substantial bias at large lags shouldnot be ignored.Figure 6 shows that a parametric semivariogram estimated by WNLS �tted to the residuals-based empirical semivariogram has considerable bias. The average values of the range and sill usingthe Monte Carlo results that produced Figure 6 are 0.85 and 2.82, respectively (true values are 1.0and 3.0). If instead one uses the bias-reduced empirical semivariogram, then the WNLS methodproduces nearly unbiased results: the corresponding average range and sill estimates are 1.01 and15



3.03, respectively.The estimation approach least likely to be a�ected by residual bias is restricted maximumlikelihood (REML). REML maximizes the likelihood of error contrasts that do not depend onestimated regression parameters. The REML method is a useful tool for analyzing data withspatial variation since it does not su�er from the often severe underestimation of the parametersthat regular maximum likelihood does.One disadvantage of likelihood estimation procedures is that they rely on the Gaussian assump-tions, and such assumptions are often inappropriate; the underlying distribution of most processesis not known or contamination of the distribution can occur by a few errant observations. Non-parametric estimation of the variogram may provide less sensitive estimates for some non-Gaussianmodels. Of course, least squares estimation of regression coe�cients is also questionable in the faceof non-Gaussian errors. In Section 4.2 we consider using robust regression estimates.For con�rmation of parametric semivariogram models, Brownie and Gumpertz (1997) suggestadjusting parametric semivariograms �tted by REML so that plots of the adjusted semivariogramswill be consistent with the residual-based empirical semivariogram. Their approach is similar inspirit to our bias-reduced empirical semivariogram; the di�erence is they adjust the �tted semivar-iogram instead of the empirical semivariogram.4 Variance Estimation of Regression Parameter Estimates Basedon Semivariograms4.1 Ordinary Least Squares Estimates of �Under the model (1) with second order stationary errors and � estimated by ordinary least squares,the variance of b� is given by Var(b�) = (XTX)�1XTV X(XTX)�1;where V is the covariance matrix of the errors. For estimating this variance, we utilize the relation-ship between a semivariogram function 
(h) and a covariance function C(h) under second-orderstationarity, 
(h) = C(0) � C(h) and C(h) = 
(1) � 
(h), C(0) = 
(1) is the variance of the16



errors. Then we use the monotone semivariogram estimates proposed in Section 3.2 to estimate Vand substitute in the above expression.Recall, though, that Figure 5 shows how the correlations tend to be overestimated by ourmonotone semivariogram estimate. This happens because on average in the middle distances themonotone estimate is biased downward. On a sample by sample case, this can be seen when themiddle part of the monotone estimate is 
at but rises near the half maximum distance. In sucha case, the correlations are positive for a large number of distances h. This results in varianceestimates that can be too large. Thus we use a cuto� rule for correlations: we set any estimatedcorrelation to 0 if its value is smaller than 1=pn. This is a fairly arbitrary rule, but it is similar inspirit to the WEAVE weight functions of Lumley and Heagerty (1999). Basically, the number ofnonzero correlations cannot be growing too quickly with n if we are to have good variance estimates.Table 3 shows results for errors from an ar(1) process with � =.1, .5, and .9. The X matrixconsists of an intercept term, a linear trend, and a seasonal term and was taken from the simulationstudy of Lumley and Heagerty (1999, p. 469). For comparison, we also report results using theapproach of Lumley and Heagerty (1999) denoted by \WEAVE" in Table 3. We obtained theirresults using a program from their website with default values. Perhaps other settings would haveperformed better for the � = :9 case. Our results, denoted by \Monotone ESV" for monotoneempirical semivariogram, are reasonably on target (values close to 1.00), but more variable thanthe WEAVE results. Part of that higher variability can be explained by the fact that our estimatesare larger on average than the WEAVE estimates.Table 4 shows results for Gaussian spatial processes observed on a 10 � 10 grid, that aregenerated using an exponential variogram model with the sill = 3 and range parameter = 1 and2, respectively. The average correlation is 0.04 for the model with the range parameter equal to1, and is 0.14 for the model with the range parameter 2. (For comparison with the time seriessimulation in Table 3, note that the average correlation for � = .1, .5, and .9 are .002, .02, and .16,respectively.) A mean surface was added to these Gaussian processes to describe a spatial trend:f(�) = �0 + �1x + �2y, where (x; y) de�nes a point in R2 with �0 = 0:0; �1 = 0:9; �2 = 0:06:Three covariates, a column of ones for the intercept and x (longitude) and y (latitude), were �ttedto the model to estimate the mean surface. We then compared our methods to REML estimationusing an assumed Mat�ern variogram model (without nugget, which is correct here). We see inTable 4 that our estimates are a little closer to the target value and a little more variable than the17



Table 3. Average of Standard Deviation Estimates (divided bytrue standard deviation) for Regression from Time Series Dataof Size 100 with Autoregressive Errors. Based on 100 repli-cations. Standard errors are in parentheses.� intercept trend seasonMonotone ESV 0.1 1.10 (0.036) 1.08 (0.031) 1.04 (0.019)WEAVE 0.97 (0.009) 0.95 (0.016) 0.94 (0.013)Monotone ESV 0.5 1.19 (0.051) 1.15 (0.042) 1.00 (0.026)WEAVE 0.87 (0.015) 0.85 (0.018) 0.84 (0.018)Monotone ESV 0.9 0.97 (0.054) 0.96 (0.048) 0.84 (0.033)WEAVE 0.54 (0.021) 0.53 (0.022) 0.65 (0.026)REML-Mat�ern estimates. The entry labeled \WNLS (exp.)" denotes using weighted least squaresto �t an exponential variogram (without nugget) to the empirical variogram of the residuals. Thisentry is similar to the REML-Mat�ern estimates and is perhaps better than we might have expectedbased on Figure 6. Our estimates have one large advantage not illustrated by these results: ourapproach is invariant to the presence or absence of a nugget e�ect. In contrast, with a nugget e�ectthe Mat�ern or exponential models would need to be �t with an added nugget parameter and resultsthen would be more variable.Table 5 contains results similar to Table 4 but for a 16 by 16 lattice. Comparing Table 4 andTable 5 shows that performance is improving with sample size.Table 6 displays results for Gaussian data generated from the Mat�ern model with smoothingparameter 1, often called the Whittle model (Whittle, 1954). Whittle suggests that this model isnatural for agricultural �eld trials. Results here are similar to those in Tables 4 and 5.4.2 Robust Regression Estimates of �The OLS estimators minimize the sum of residual squares Pni=1 ei(�)2, and e�ciency losses mayarise since this sum of squares is sensitive to large values that occur more frequently with non-Gaussian data. Robust M-estimators minimize an objective function Pni=1 �(ei(�)) that is lesssensitive to large values. Equivalently by taking derivatives, one solves Pni=1  (ei(�))xi = 0,18



Table 4. Average of Standard Deviation Estimates (divided by truestandard deviation) for Regression from 10� 10 Spatial Data of Size100 with Exponential Variogram Errors. Based on 100 replications.Standard errors are in parentheses.range sill intercept x coord. y coord.Monotone ESV 1 3 0.89 (0.033) 0.90 (0.034) 0.90 (0.034)REML(Mat�ern) 0.86 (0.031) 0.86 (0.025) 0.86 (0.025)WNLS (exp.) 0.87 (0.025) 0.87 (0.024) 0.87 (0.024)Monotone ESV 2 3 0.73 (0.029) 0.76 (0.030) 0.76 (0.030)REML(Mat�ern) 0.71 (0.025) 0.75 (0.024) 0.75 (0.024)WNLS (exp.) 0.73 (0.029) 0.74 (0.026) 0.74 (0.026)Table 5. Average of Standard Deviation Estimates (divided by truestandard deviation) for Regression from 16� 16 Spatial Data of Size100 with Exponential Variogram Errors. Based on 100 replications.Standard errors are in parentheses.range sill intercept x coord. y coord.Monotone ESV 1 3 1.03 (0.032) 1.03 (0.039) 1.03 (0.039)REML(Mat�ern) 0.94 (0.020) 0.94 (0.020) 0.94 (0.020)WNLS (exp.) 0.93 (0.017) 0.94 (0.017) 0.94 (0.017)Monotone ESV 2 3 0.86 (0.026) 0.87 (0.024) 0.87 (0.024)REML(Mat�ern) 0.84 (0.026) 0.84 (0.024) 0.84 (0.024)WNLS (exp.) 0.82 (0.024) 0.83 (0.022) 0.83 (0.022)where  = �0. In order for the estimators to be scale invariant, one needs to alter the aboveequation to nXi=1  �ei(�)b� �xi = 0;where b� is a scale estimate. There are di�erent options for selecting � and b�, but a commonapproach is to use �(t) = 8<: t22 if jtj � k;kjtj � k22 otherwise:19



Table 6. Average of Standard Deviation Estimates (divided by truestandard deviation) for Regression from 16 � 16 Spatial Data of Size100 with Whittle Variogram Errors. Based on 100 replications.Standard errors are in parentheses.range sill intercept x coord. y coord.Monotone ESV 1 3 1.10 (0.035) 1.08 (0.025) 1.08 (0.025)REML(Mat�ern) 0.98 (0.015) 0.96 (0.025) 0.96 (0.025)WNLS (Whittle) 0.98 (0.013) 0.96 (0.012) 0.96 (0.012)Monotone ESV 2 3 1.00 (0.029) 0.99 (0.029) 0.99 (0.029)REML(Mat�ern) 0.93 (0.019) 0.93 (0.015) 0.93 (0.015)WNLS (Whittle) 1.01 (0.029) 0.99 (0.027) 0.99 (0.027)
 (t) = 8>>><>>>: �k if t < k;t if �k � t � k;k if t > k:where k is a tuning constant, usually selected to give an appropriate asymptotic e�ciency whenthe data are Gaussian. \Huber's Proposal 2" �nds the scale estimate b� by solving simultaneouslynXi=1  2�ei(�)b� � = Ck;where Ck is a constant chosen so that b� is consistent for the standard deviation when the data arefrom a Gaussian distribution. For example, when k = 1, C1 = :516; and the asymptotic relativee�ciency of b� to least squares for independent Gaussian data is close to 90%.Asymptotic normality of b� was proved by Koul (1977, p. 688). One version of the asymptoticvariance is given by D(XTX)�1XTV X(XTX)�1;where D = �=E 0(e1=�) and V is the covariance matrix of  (e1=�); : : : ;  (en=�). We should alsomention that we have ignored the role of estimating � in the asymptotic distribution of b� becausefor errors with symmetric marginal distributions, the asymptotic correlation between b� and b� iszero.These M-estimators �t into the general scheme outlined in Section 2. That is, we assume that (e1=�); : : : ;  (en=�) are second-order stationary and estimate their covariance matrix using our20



Table 7. Average of Standard Deviation Estimates (divided by true standarddeviation) for Regression from 10� 10 Spatial Data of Size 100 with t-transformedExponential Variogram Errors. Based on 100 replications. Standard errors arein parentheses. True standard deviations are based on 10,000 replications and haveestimated coe�cient of variation .007.range sill intercept x coord. y coord.True Standard Dev. (LS) 1 3 0.84 0.118 0.118True Standard Dev. (Robust) 0.75 0.106 0.106Monotone ESV (LS) 1 3 0.91 (0.036) 0.91 (0.034) 0.91 (0.034)Monotone ESV (Robust) 0.89 (0.035) 0.90 (0.032) 0.90 (0.040)True Standard Dev. (LS) 2 3 1.25 0.168 0.168True Standard Dev. (Robust) 1.14 0.154 0.154Monotone ESV (LS) 2 3 0.73 (0.031) 0.75 (0.031) 0.75 (0.031)Monotone ESV (Robust) 0.73 (0.032) 0.76 (0.032) 0.77 (0.036)nonparametric semivariogram estimator based on treating  (be1=b�); : : : ;  (ben=b�) as residuals >fromleast squares regression. The estimated factors for bias reduction are not quite correct since theyo�cially only apply to least squares residuals. However, one way to motivate their use is by de�ningpseudo-observations eYi = xTi b�+d (bei=b�) for any constant d. Then the least squares estimate basedon eYi is just b�, and the residuals are d (bei=b�).Table 7 shows results for situations similar to Table 4 but with errors from t-transformedexponential variogram models. That is, we transformed the exponential errors used in Table 4using the transformation F�15 (�(Yi=p3)), where � is the standard normal distribution functionand F�15 is the inverse distribution function of a t distribution with 5 degrees of freedom. Thus themarginal distribution of Yi is a t distribution with 5 degrees of freedom.The entries in rows 1 and 2 and 5 and 6 of Table 7 are Monte Carlo estimates of the variance of b�based on 10,000 replications. These show that the robust regression estimates have less variabilitythan the least squares estimates as expected. The other rows are our standard deviation estimatesfor the regression parameter estimates divided by the estimated true standard deviations. Theresults are fairly similar to Table 4 and show that the estimates are negatively biased but lessbiased for the data with less correlation. 21



Splus version 3.4 along with the spatial module was used for all calculations. The robustestimates were calculated with the rlm function of Venables and Ripley (1997, p. 260) with k = 1and sw = 3. The PAVA fortran routine in Cran (1980) was called from Splus.5 DiscussionOur main goal has been to estimate the variance of regression coe�cients obtained from a generalestimating equations approach without making parametric semivariogram assumptions. Thus wehave proposed a new method for nonparametric semivariogram estimation based on monotonizinga reduced-bias empirical semivariogram based on residuals.The simulations of Section 4 indicate that the resulting variance estimates are reasonably unbi-ased and are converging as the sample size grows. Comparison with REML using the true Mat�ernmodel andWNLS with the correct model shows that the new method is competitive with parametricmethods. It might be useful to make comparisons when the parametric methods are misspeci�ed.AcknowledgmentWe would like to thank John Coulston and USDA Forest Service grant numberSRS 00-CA-11330146-077 for providing the data of Example 1 and for support during part of theresearch project.REFERENCESAndrews, D.W.K. (1991), \Heteroskedasticity and Autocorrelation Consistent Covariance MatrixEstimation," Econometrica, Vol. 59, No.3 817-858.Barlow, R., Bartholemew, D., Bremner, J., and Brunk, H. (1972) Statistical Inference Under OrderRestrictions, John Wiley, New York.Barry J.P. and Ver Hoef, J. M. (1996), \ Blackbox Kriging: Spatial Prediction Without SpecifyingVariogram Models," Journal of Agricultural, Biological, and Environmental Statistics, 3, 297-322.Bloom�eld, P., and Nychka, D. (1992), \Climate Spectra and Detecting Climate Change," Climatic22
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