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Variance Estimation in Spatial Regression Using a
Nonparametric Semivariogram Based on Residuals

Hyon-Jung Kim and Dennis D. Boos!

Abstract

The empirical semivariogram of residuals from a regression model with stationary errors may
be used to estimate the covariance structure of the underlying process. For prediction (kriging)
the bias of the semivariogram estimate induced by using residuals instead of errors has only a
minor effect because the bias is small for small lags. However, for estimating the variance of
estimated regression coefficients and of predictions, the bias due to using residuals can be quite
substantial. Thus we propose a method for reducing this bias. The adjusted empirical semi-
variogram is then isotonized and made conditionally negative-definite and used to estimate the
variance of estimated regression coeflicients in a general estimating equations setup. Simulation
results for least squares and robust regression show that the proposed method works well in

linear models with stationary correlated errors.
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1 Introduction

Random processes over time or space typically have the property that nearby observations tend to
be more alike than observations far apart. Scientific studies of such processes often involve modeling
and estimation of a mean response with random errors assumed to be from a stationary process.

For example, an additive error linear model is given by
Y'l:m'LTIB_I_ela Z:].,,’fl, (1)

where x; may consist of variables that are a function of location as well as other covariates, and the
e; are errors whose correlation depends only on the distance between observations. Two applications

of model (1) are as follows.

Example 1. For a project of the USDA Forest Service, the ozone index W126 (Lefohn and
Runeckles, 1987) was desired at a number of sites in the northeastern United States where plant
damage on bio-indicator plants had been measured. W126 readings and some covariates were
available for 174 other sites. Thus a regression model was developed between W126 and the
following covariates: z; = elevation from sea level in meters, 9 = mean annual rainfall in inches,
z3 = mean annual temperature in Fahrenheit, £, = the Palmer drought severity index, and z5 =
the distance in meters to the closest city with population over 50,000. We focus here on getting
standard errors for the regression coefficients, but it was also of interest to get standard errors for
the kriging predictions at the sites of the bio-indicator site monitors. The OLS coefficients are
intercept: —25.2 (23.5), z1: .0063 (.003), x9: —.26 (.29), z3: 1.23 (.42), x4: .60 (1.3), z5: —.000064
(.00002) The standard errors from our proposed method are in parentheses and tell us that zo =

rainfall and z4 = Palmer drought severity may be dropped from the model.

Example 2. Global warming has been the focus of many studies, and is still a hotly debated
topic. The data in Figure 1, taken from Jones et al. (2000), are global mean annual temperatures
for 1856-1999 with the 1961-1990 mean subtracted. The data are overlaid with a simple OLS fit
of the temperature deviations to 1 = year — ymean and 2 = (year — ymean)?, where ymean =
1927.5 is the mean of the years. The estimated linear and quadratic coefficients are 0.00425 and
.0000421, respectively, with standard errors from our method of 0.000643 and 0.0000167. Since for
any stationary error structure these OLS coefficients are uncorrelated (due to centering the years),
an approximate Wald test statistic for zero linear and quadratic coefficients is (0.00425/.000643)? +
(.0000421/0.0000167)? = 50.0. Although a chisquared distribution with two degrees of freedom may
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Figure 1: Global mean annual temperatures for 1856-1999 with the 1961-1990 mean subtracted;
from Jones et al. (2000).

be a bit optimistic for the null distribution in this situation, the simulations in Table 3 suggest
that 50.0 is highly significant. Other approaches using a linear trend may be found in Bloomfield
and Nychka (1992) and Sun and Pantula (1999). Wu, Woodroofe, and Mentz (2001) use isotonic

regression methods to test for global warming.

One standard approach for model (1) with normally distributed errors is to assume a particular
parametric semivariogram model such as an exponential and use restricted maximum likelihood
(REML) for estimating the parameters of the model and then to use estimated generalized least
squares (EGLS) for estimating 3. Alternatively, one can avoid the normality assumption and use
weighted least squares with the empirical semivariogram of the residuals to estimate the parameters
of the semivariogram model (see Cressie, 1993, p. 94-99, 165-170). In either case the variance of
the EGLS B is estimated using standard formulas for generalized least squares with semivariogram
estimates inserted where needed. A correct semivariogram model, however, is not always easy to

choose, and we may be interested in estimation methods other than least squares.

The purpose of this paper is to give new methods for estimating the variance of B when B is
obtained from a general estimating equations approach, i.e., satisfying > S;(V;, z;, B, o) = 0, where

S is usually a function of residuals and weights and & are additional dispersion parameter estimates.



This general class includes ordinary least squares (OLS, with Si(Yi,:ci,B,a') = (V; — mZTB):cl),
EGLS, robust regression (e.g., Huber, 1980, Ch. 3, with Si(Yi,mi,B,E) = (YlY; — mZT,@]/Ef\)ml),
and generalized estimating equations (GEE, Liang and Zeger, 1986). Although these estimation
methods are suitable for a much larger class of models than (1), we will focus on methods for
(1). However, a parametric semivariogram model will not be chosen; rather, we will estimate the

semivariogram subject only to a monotonicity constraint.

Our approach is similar in spirit to that of Lumley and Heagerty (1999), who use a weighted
empirical variance estimate for the middle part of the “sandwich” asymptotic variance formula
that arises naturally from the estimating equations formulation. Their approach is more general
because it allows nonstationary errors; in fact Lumley and Heagerty (1999) unify a variety of
nonparametric methods including Newey and West (1987), White and Domowitz (1984), Andrews
(1991), Lele (1991), and Yasui and Lele (1997). Related nonparametric methods are found in
Carlstein (1986), Sherman (1996, 1997), Garcia-Soidan and Hall (1997), and Heagerty and Lumley
(2000).

Our approach differs, though, in two ways from these other methods: we use nonparametric
semivariogram estimation for the middle part of the “sandwich,” and we explicitly remove bias in
the semivariogram estimates that would ordinarily result from using residuals rather than errors
(which are of course unknown). It is this latter bias issue that we feel is most important. Any
nonparametric variance estimation method based on residuals that does not address the bias issue
is doomed to underestimate the variance of estimated coefficients and of predictions. The problem
with using residuals has long been recognized in the spatial statistics literature (Matheron, 1971,
p. 152-155, and Cressie, p. 165-170). However, when fitting parametric variogram models, the bias
is by definition not a problem for REML. It is also claimed (see Cressie, 1993, p. 167-169) that the
bias from residuals is not a major problem when estimating parametric semivariograms by weighted
least squares because the early lags, where the bias in the empirical semivariogram is small, have
the largest weights. In general, though, nonparametric semivariogram methods will inherit the
bias problem of the empirical semivariogram, especially at moderate to large distances between
observations (see Figure 4 in Section 3.2). We have not seen attempts to correct this bias directly
as we suggest in Section 3.2, but Matheron (1973) and Cressie (1987) propose a method similar
to differencing in time series for handling the bias issue. For visual confirmation of parametric

variogram models, Brownie and Gumpertz (1997) suggest adjusting REML estimates of parametric



semivariograms so that graphically they are aligned with a plot of the empirical semivariogram of

residuals.

Our nonparametric semivariogram is based on several simple ideas. First we construct a semi-
variogram estimator in the constant mean case by monotonizing the standard empirical semivari-
ogram (see Section 3.1). We also check for positive-definiteness of the resulting covariance matrix
and modify our estimate if it is not positive-definite. Next (Section 3.2) we compute the bias of
the residuals-based empirical semivariogram in model (1) when 3 is estimated by OLS. Then we
correct for this bias by multiplying the empirical semivariogram by estimated factors computed at
each distinct distance between observations. Finally, we monotonize and make the adjusted em-
pirical semivariogram conditionally negative-definite. This nonparametric semivariogram is then
used to estimate the variance of the estimated regression coefficients. Monte Carlo results for OLS
estimates are given in Section 4.1, and results for robust regression estimates are given in Section
4.2. We begin in Section 2 with a general explanation of how to estimate the variance of regression

parameter estimates from data with correlated errors.

2 Variance Estimation of Regression Parameter Estimates

The estimating equations approach provides a general framework for deriving the asymptotic dis-

tribution of B that solves

1 n
Gu(B) =~ SiYizi.B) =0
=1

(and here for simplicity we have dropped the extra dispersion parameters o mentioned in the

Introduction). That is, by Taylor series approximation,

0=G,(B) ~ G,(B) +G.(B)(B—B) + Ry,

where

. ~ 0 1o~ 9
vectGL(B) = WG”(ﬂ) = Z al.ﬁsi(yiamiuﬁ)'
i=1

Then, under suitable regularity conditions, B SN B and ﬁ is asymptotically normally distributed

with variance times n

T

AB) BB {AB) ) = tim [-BG.(B) " aVarlGa(B)] {[-BG.B) ) . @

n—0o0



where it is assumed that there are matrices A(8) and B(8) such that —EG,(8) — A(8) and
nVar[G,(B8)] — B(B) as n — oco. In likelihood models —~EG,(8) = nVar[G,(8)] is the average

Fisher information.

Since the estimator

PG
Ga(B) = - Z%ﬁMm@

will typically satisfy Gn(,/@) — EG.(B) -2, 0 even for correlated data, the problem of finding a
consistent estimator of the asymptotic variance (2) is reduced to finding a consistent estimator for

the middle term,

n n

nVar [G,(8)] = E % YN SiYi,xi,8)8,(Y;,x;.8)"

i=1 j=1

Lumley and Heagerty (1999) point out that the empirical estimator

S Su(Ye i B)S; (Y w5 B)

i=1 j=1

n

EZ:S Vi, zi, B ] ji:sjog,mj,ﬁ)T

=1

is identically zero by the definition of B This of course contrasts with the common situation
where one can average over independent replications. Thus Lumley and Heagerty (1999) suggest
estimating the middle term by

Zzwz]n Y;amluﬁ) j(Y37wj7B)T

21]1

where w;;, — 1 as n — oo but w;;, — 0 as the distance between two locations, d(i, j) — oo for
fixed n. They also show that the methods proposed earlier by Newey and West (1987), White
and Domowitz (1984), and Andrews (1991) can all be viewed as weighted empirical estimators
with different choices of the weight w;;,. Although these estimators can be used for nonstationary

models, one common problem is that they are not very efficient for highly correlated data (Andrews,

1991).

To implement our approach we first make the simplifying assumption that S; has the form
Si(Yi,x;, B) = wi(B)S(ei(B))xi, where S is now a real-valued function and the e;(3) are from a
strictly stationary process. Thus, the S(e;(3)) are also from a strictly stationary process, and we
will estimate the latter process using semivariogram techniques. We then employ it to estimate
the middle term of (2) utilizing the relationship between semivariogram and covariance functions
under second-order stationarity. We present the details of estimating the semivariogram in the next

section.



3 Nonparametric Semivariogram Estimation

A process {Z(s),s € D, D C R%} is called intrinsically stationary when it has constant expectation
and the variance of the increments depends only on the difference of locations. For an intrinsically

stationary process, the semivariogram is defined at locations s; and sy by
1
v(s1 — 89) = §Var[Z(sl) — Z(s9)].

It is called isotropic if (81 — 82) is only a function of the Euclidean distance ||s; — 83|| between
locations. We then use the simpler notation y(h) where h is the distance between locations. The
function 2v(-) is called the variogram. A valid semivariogram needs to be conditionally negative-

definite; that is, it must satisfy

DD Nidjy(si—s5) <0

i=1 j=1
for each set of locations s1,..., 8p and all Ay,..., A, such that Y | A; = 0 (see Cressie, 1993, p.
86). For a sample of given realizations from Z(-), the empirical variogram is the unbiased estimator

of an isotropic variogram given by

B(h) = —— 3" {Z(ss) - Z(s7)}

where

N(h) = {(s4,85) : |si —sj||=h:4,5=1,2,....,n}

and |N(h)| is the number of distinct pairs in N(h). Although the empirical variogram is unbiased
for the variogram, it cannot be used directly in procedures such as kriging (spatial prediction)

because it may not be conditionally negative-definite.

One standard approach has been to choose a parametric variogram model (which by definition
is conditionally negative-definite) and fit it by restricted maximum likelihood (REML), maximum
likelihood (ML), or weighted nonlinear least squares. There are a number of widely used parametric
variogram models based on isotropic processes such as the exponential, spherical, and Gaussian.
The Matérn class, originally given by Matérn (1960), allows a wide range of flexibility in that it
has a parameter which controls the smoothness of a random field. The class can be defined by its

isotropic autocovariance function:

C(h) = o 21/2, VIC 21/2,
S 2TITw) o "\ »




where o is the scale parameter, v the shape parameter, and p measures how quickly the correlation
of the random field decays with distance. The function I'(-) is the gamma function and /C, is the
modified Bessel function of the third kind of order v (Stein 1999). When v = 1, the model becomes
the exponential model, and the limit v — oo corresponds to a Gaussian model. The underlying
true variogram is rarely known, and selection of a variogram model is quite arbitrary in practice.
The Matérn class appears to be the best choice of the present parametric models to estimate the

dependence structure of a process since it includes or approximates a number of common models.

There have been several attempts to avoid selecting variogram models via nonparametric vari-
ogram estimation (Shapiro and Botha, 1991; Cherry et al., 1996; Lele, 1995; Hall et al., 1994; Barry
and Ver Hoef, 1996; and Gorsich and Genton, 2000). Shapiro and Botha(1991) appear to be the
first to consider a nonparametric semivariogram estimate based on Bochner’s theorem. Cherry et al.
(1996) implemented the Shapiro-Botha estimator using the statistical package S-plus and compared
its performance to parametric estimation of the semivariogram using nonlinear least squares. They
found good performance of their nonparametric estimates and sometimes better performance than
the traditional parametric approach. One problem with their method is that the sill estimates tend
to be biased and highly variable. Cherry (1997) suggested a simple remedy for this sill problem,
but semivariogram values other than the sill also seem to have high variability as well. Lele (1995)
provided a nonparametric estimator of the semivariogram using a spline function and included a

study of the performance of his estimator in terms of prediction and prediction error.

3.1 Monotone Semivariogram Estimation

Most parametric covariance models used in spatial analyses have correlations that are monotone
decreasing with distance. Moreover, most physical processes exhibit this monotone behavior as
well. Thus, the centerpiece of our approach is to assume that the correlations are monotone
decreasing with distance. This is a much weaker assumption than any of the common parametric

semivariogram models.

Our basic approach to produce a nonparametric monotone semivariogram estimator is to apply
the pool adjacent violators algorithm (PAVA, Barlow et al. 1972, p.13) to empirical semivariogram
estimates. Although the variance of the empirical semivariogram at a lag h is not exactly propor-

tional to the inverse of the number of pairs (e.g., Genton, 1998, p. 328), we use that weighting in



the PAVA routine. This is similar to Cressie’s (1993, p. 96) weighting in nonlinear least squares
fitting of parametric semivariograms except that for simplicity we ignore the extra weighting factor

due to the value of the semivariogram.

The basic idea of PAVA is the following: starting with y;, move to the right and stop if y; > ;1.
In that case replace y; and y; 1 by their weighted average y;. Then move to the left to make sure
that y,_1 < ;. If y;_1 > y;, then replace y;_; with the weighted average of all three. Continue
moving to the left and checking the monotone requirement, and then proceed again to the right.

This process of averaging and back-averaging is continued until the right end point is reached.

Consistency of the monotonized empirical semivariogram follows simply from the consistency
of the empirical semivariogram as long as the underlying semivariogram is monotone. For exam-
ple, suppose that the empirical semivariogram 7(h) is strongly consistent for a strictly monotone
semivariogram y(h) at the points hq,...,hg. Then for a sufficiently large sample size with proba-
bility one, 7(h1) < J(h2) < --- < 7(hg), and the monotonized version is the same as the empirical

semivariogram. This same idea extends to cases that are not strictly monotone.

In many situations, isotonic estimators have improved mean squared error properties over the
original estimators used in their construction. We will illustrate that property with Monte Carlo

simulation.

Since the variance of the empirical semivariogram is large for large lags, we follow the common
practice of truncating the isotonized semivariogram at half the maximum distance found in the
data set. In order not to induce upward bias at that distance, we monotonize a larger set of lags
before truncating. For example, for a time series on the equally spaced time points of 1,...,100

we monotonize on the lags 1,...,70 (number of pairs > 30) and then truncate at 50.

Figure 2 shows the empirical semivariogram and the isotonized semivariogram for one data set
on a 10 x 10 grid generated from an exponential semivariogram with range parameter = 1 and
sill = 3, y(h) = 3[1 — exp(—h/3)]. Note that the two estimates only coincide at a few points.
Figure 3 gives averages of 1000 replications of the situation in Figure 2. We can see that the
empirical semivariogram is unbiased as advertised, and that the monotone estimate is somewhat
biased downward in the middle. Table 1 shows, however, that the monotone estimate has lower
mean squared error on the log scale for distances beyond 3. We use the log scale because the mean

squared error for variance-like quantities is well-known to reward negatively biased estimators too
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Figure 2: Empirical semivariograms for data on a 10 x 10 grid generated from a constant mean
process with an exponential (sill=1,range=3) semivariogram (A): empirical semivariogram (O) and

isotonized version (+).

much. Note that the standard errors of differences of estimates in Table 1 are lower than the

reported standard errors for individual entries.

Table 1. Mean squared errors of the logarithm of empirical and
monotone semivariogram estimates for constant mean data on a
10 x 10 grid with exponential semivariogram. Results based on
1000 replications. Average standard errors are in the last row.

Distance 1.00 1.41 3.00 4.12 6.32

Range=1, Sill=3 Empirical 0.023 0.029 0.043 0.046 0.053
Monotone  0.023 0.028 0.039 0.040 0.043

Range=2, Sill=3 Empirical 0.022 0.030 0.060 0.078 0.110
Monotone  0.022 0.030 0.058 0.075 0.096

Std. Errors 0.001 0.001 0.003 0.003 0.004

Very often, the isotonized semivariogram is already conditionally negative-definite. Sometimes

it is not, and then we suggest using the spectral decomposition of the covariance matrix followed by

10
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Figure 3: Average of 1000 empirical semivariograms for data on a 10 x 10 grid generated from a
constant mean process with an exponential (sill=1,range=3) semivariogram (A): empirical semi-
variogram (O) and isotonized version (4). Standard deviations of estimates are approximately

bounded by .02.

replacement of the negative eigenvalues by small positive ones (see Rousseeuw and Molenberghs,
1993, for other methods). For the variance estimation discussed in Sections 4 and 5, this has
virtually no effect. However, for other purposes such as kriging, it may be required. Also, the
isotonic estimators have a “boxy” appearance, and sometimes we find it more appealing to smooth

the isotonized semivariogram using a spline or other smoother.

3.2 Bias Correction of Residuals-Based Semivariogram

Consider model (1) where the errors e; are drawn from a mean zero, second-order stationary
random error process. We shall assume that the unknown regression coefficients 3 are estimated
by ordinary least squares. A natural approach is then to construct the empirical semivariogram from
the residuals. Unfortunately, the distribution of the residuals is not the same as the errors, and the
empirical semivariogram is seriously biased downward. Figure 4 shows the average of the empirical

semivariogram for 1000 replications of an exponential semivariogram with range parameter = 1

11
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Figure 4: Exponential(sill=1,range=3) semivariogram (A) for data on a 10 by 10 grid, average of
1000 empirical semivariograms from residuals with p = 3 estimated parameters (O) and with p = 6

estimated parameters (4). Standard deviations of estimates are approximately bounded by .02.

and sill = 3 for a 10 by 10 grid. The middle curve is for residuals based on fitting an intercept
and the location coordinates (z and y). The lower curve is for residuals from a fit with the same
three variables and with three more independent variables (randomly generated standard normal

variables).

To understand more clearly the effect of the residuals, let V' denote the covariance matrix of the
errors for a sample with n data points. Then simple calculations show that the covariance matrix
of the residuals €; = Y; — =! B is given by (I — P)V(I — P), where [ is the n dimensional identity

matrix and P = X (X7 X) !XT is the projection matrix of X, where X is formed from the row

T

vectors x; .

The expected value of the empirical semivariogram of the residuals at lag h is

1
Eres(h) = SN N E(/e\z —/6\1‘)2
2N(h>N% o

1 e ot ~ —~
~ 2N Nz(;) [B(E) + (@) — 2B(@1nei)]

12



~ %trace([ _PW(-P)— |N1h)| N% [(I=P)V (I —P)), i

where the approximation comes in by taking the average of all of the diagonal elements of (I —
P)V (I — P) instead of the subset of the diagonal elements implied by summing over elements h

distance apart. This approximation is not necessary but makes the computing considerably easier.

The expected value of the empirical semivariogram of the errors at lag h is of course «(h), but

we can write it in a form similar to the above:

1
Eerr(h) = = Eleipn — €)’
( ) 2‘N(h)‘ ke ( i+h )

9 1
= o° — E V.. ;
|N(h)| o [ ]z,l+h

where 02 is the variance of the errors. Now the ratio of these quantities, fac(h) = Egpp (h)/Eres(h),
is essentially the ratio of the true semivariogram ~y(h) in Figure 4 to the average of the empirical

semivariograms.

We feel that the downward bias in Figure 4 in unacceptable. Moreover, applying PAVA to the
residuals-based empirical semivariogram will certainly improve it, but the scope for improvement
is quite limited. Thus we feel it is important to first adjust the empirical semivariogram before
monotonizing. Our approach then is to estimate fac(h) by using estimated covariances obtained
from the monotonized version of the residuals-based empirical semivariogram. We multiply the
original residuals-based empirical semivariogram by these estimated factors resulting in a bias-
reduced empirical semivariogram. Finally we monotonize this bias-reduced empirical semivariogram
to obtain our estimated semivariogram. It is also possible to iterate the factor estimation step, but
we found that it did not make much difference. Figure 5 shows the average of the residuals-based
empirical semivariogram, the bias-reduced empirical semivariogram, and the monotonized version
for 1000 samples from a linear model with intercept and locations fitted (p = 3 case) and errors
generated from an exponential semivariogram with range parameter = 2 and sill = 3. Comparing
Figure 5 with Figure 3, one can see that monotonizing has a similar effect; that is, it tends to pull
down on average the bias-reduced empirical semivariogram. Table 2 shows that the monotonized
version has improved mean squared error properties relative to the original residuals-based empirical

semivariogram.

A number of authors (see Cressie, 1993, p. 167—169) have shown concern about the bias

13
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Figure 5: Exponential(sill=2,range=3) semivariogram (A) on a 10 x 10 grid and the average of
1000 replications of semivariogram estimates based on residuals from p = 3 estimated parameters:
empirical semivariogram from residuals (O), bias-reduced empirical variogram (4), monotonized
bias-reduced empirical variogram (x). Standard deviations of estimates are approximately bounded

by .02.

Table 2. Mean squared errors of logarithms of semivariogram estimates:
empirical, bias-reduced empirical and monotone. Data are ;from a

10 x 10 grid with exponential semivariogram. Results based on

1000 replications. Average standard errors are in the last row.

Distance 1.00 1.41 3.00 4.12 6.32

Range=1, Sill=3 Empirical 0.023 0.029 0.046 0.052 0.067
Bias-reduced 0.023 0.029 0.046 0.051 0.060
Monotone 0.023 0.029 0.042 0.045 0.047

Range=2, Sill=3 Empirical 0.023 0.032 0.069 0.098 0.173
Bias-reduced 0.023 0.032 0.067 0.092 0.139
Monotone 0.023 0.032 0.067 0.091 0.116

Std. Errors  0.001 0.001 0.003 0.003 0.004
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problems when the variogram is based on least squares residuals. However, to our knowledge, no
methods have successfully corrected the bias of residuals-based empirical variograms. In general,
the bias of such estimators is small at lags near the origin but more substantial at distant lags (see

Figure 4). Cressie (1993, p. 167-168) concludes that the effect of bias on kriging will be small if
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Figure 6: Exponential(sill=1,range=3) semivariogram (A), average of 1000 replications of semivari-
ogram estimates based on residuals from p = 3 estimated parameters: empirical semivariogram from
residuals (O) and weighted nonlinear least squares parametric estimate (4). Standard deviations

of estimates are approximately bounded by .02.

a parametric variogram is fitted with more weight given to the estimates at small lags, such as
by the weighted least squares method. However, he notes that a kriging variance can be more
influenced by the residuals-based variogram estimates. Here our main concern is with estimation
of the variance of estimated regression parameters, and the substantial bias at large lags should

not be ignored.

Figure 6 shows that a parametric semivariogram estimated by WNLS fitted to the residuals-
based empirical semivariogram has considerable bias. The average values of the range and sill using
the Monte Carlo results that produced Figure 6 are 0.85 and 2.82, respectively (true values are 1.0
and 3.0). If instead one uses the bias-reduced empirical semivariogram, then the WNLS method

produces nearly unbiased results: the corresponding average range and sill estimates are 1.01 and
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3.03, respectively.

The estimation approach least likely to be affected by residual bias is restricted maximum
likelihood (REML). REML maximizes the likelihood of error contrasts that do not depend on
estimated regression parameters. The REML method is a useful tool for analyzing data with
spatial variation since it does not suffer from the often severe underestimation of the parameters

that regular maximum likelihood does.

One disadvantage of likelihood estimation procedures is that they rely on the Gaussian assump-
tions, and such assumptions are often inappropriate; the underlying distribution of most processes
is not known or contamination of the distribution can occur by a few errant observations. Non-
parametric estimation of the variogram may provide less sensitive estimates for some non-Gaussian
models. Of course, least squares estimation of regression coefficients is also questionable in the face

of non-Gaussian errors. In Section 4.2 we consider using robust regression estimates.

For confirmation of parametric semivariogram models, Brownie and Gumpertz (1997) suggest
adjusting parametric semivariograms fitted by REML so that plots of the adjusted semivariograms
will be consistent with the residual-based empirical semivariogram. Their approach is similar in
spirit to our bias-reduced empirical semivariogram; the difference is they adjust the fitted semivar-

iogram instead of the empirical semivariogram.

4 Variance Estimation of Regression Parameter Estimates Based

on Semivariograms

4.1 Ordinary Least Squares Estimates of 3

Under the model (1) with second order stationary errors and 3 estimated by ordinary least squares,

the variance of B is given by
Var(8) = (X" X)"' XxTvx(xTx) ",

where V is the covariance matrix of the errors. For estimating this variance, we utilize the relation-
ship between a semivariogram function y(h) and a covariance function C'(h) under second-order

stationarity, y(h) = C(0) — C(h) and C(h) = y(o0) — v(h), C(0) = y(o0) is the variance of the
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errors. Then we use the monotone semivariogram estimates proposed in Section 3.2 to estimate V

and substitute in the above expression.

Recall, though, that Figure 5 shows how the correlations tend to be overestimated by our
monotone semivariogram estimate. This happens because on average in the middle distances the
monotone estimate is biased downward. On a sample by sample case, this can be seen when the
middle part of the monotone estimate is flat but rises near the half maximum distance. In such
a case, the correlations are positive for a large number of distances h. This results in variance
estimates that can be too large. Thus we use a cutoff rule for correlations: we set any estimated
correlation to 0 if its value is smaller than 1/4/n. This is a fairly arbitrary rule, but it is similar in
spirit to the WEAVE weight functions of Lumley and Heagerty (1999). Basically, the number of

nonzero correlations cannot be growing too quickly with n if we are to have good variance estimates.

Table 3 shows results for errors from an ar(1) process with p =.1, .5, and .9. The X matrix
consists of an intercept term, a linear trend, and a seasonal term and was taken from the simulation
study of Lumley and Heagerty (1999, p. 469). For comparison, we also report results using the
approach of Lumley and Heagerty (1999) denoted by “WEAVE” in Table 3. We obtained their
results using a program from their website with default values. Perhaps other settings would have
performed better for the p = .9 case. Our results, denoted by “Monotone ESV” for monotone
empirical semivariogram, are reasonably on target (values close to 1.00), but more variable than
the WEAVE results. Part of that higher variability can be explained by the fact that our estimates

are larger on average than the WEAVE estimates.

Table 4 shows results for Gaussian spatial processes observed on a 10 x 10 grid, that are
generated using an exponential variogram model with the sill = 3 and range parameter = 1 and
2, respectively. The average correlation is 0.04 for the model with the range parameter equal to
1, and is 0.14 for the model with the range parameter 2. (For comparison with the time series
simulation in Table 3, note that the average correlation for p = .1, .5, and .9 are .002, .02, and .16,
respectively.) A mean surface was added to these Gaussian processes to describe a spatial trend:
f(w) = Bo + Brz + Boy, where (z,y) defines a point in R? with fy = 0.0, 8, = 0.9, By = 0.06.
Three covariates, a column of ones for the intercept and z (longitude) and y (latitude), were fitted
to the model to estimate the mean surface. We then compared our methods to REML estimation
using an assumed Matérn variogram model (without nugget, which is correct here). We see in

Table 4 that our estimates are a little closer to the target value and a little more variable than the
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Table 3. Average of Standard Deviation Estimates (divided by
true standard deviation) for Regression from Time Series Data

of Size 100 with Autoregressive Errors. Based on 100 repli-

cations. Standard errors are in parentheses.

) intercept trend season
Monotone ESV || 0.1 1.10 (0.036) 1.08 (0.031) 1.04 (0.019)
WEAVE 0.97 (0.009) 0.95 (0.016) 0.94 (0.013)
Monotone ESV || 0.5 1.19 (0.051) 1.15 (0.042) 1.00 (0.026)
WEAVE 0.87 (0.015) 0.85 (0.018) 0.84 (0.018)
Monotone ESV | 0.9 0.97 (0.054) 0.96 (0.048) 0.84 (0.033)
WEAVE 0.54 (0.021) 0.53 (0.022) 0.65 (0.026)

REML-Matérn estimates. The entry labeled “WNLS (exp.)” denotes using weighted least squares
to fit an exponential variogram (without nugget) to the empirical variogram of the residuals. This
entry is similar to the REML-Matérn estimates and is perhaps better than we might have expected
based on Figure 6. Our estimates have one large advantage not illustrated by these results: our
approach is invariant to the presence or absence of a nugget effect. In contrast, with a nugget effect
the Matérn or exponential models would need to be fit with an added nugget parameter and results

then would be more variable.

Table 5 contains results similar to Table 4 but for a 16 by 16 lattice. Comparing Table 4 and

Table 5 shows that performance is improving with sample size.

Table 6 displays results for Gaussian data generated from the Matérn model with smoothing
parameter 1, often called the Whittle model (Whittle, 1954). Whittle suggests that this model is

natural for agricultural field trials. Results here are similar to those in Tables 4 and 5.

4.2 Robust Regression Estimates of 3

The OLS estimators minimize the sum of residual squares > 1, e;(8)?, and efficiency losses may
arise since this sum of squares is sensitive to large values that occur more frequently with non-
Gaussian data. Robust M-estimators minimize an objective function Y. | p(e;(8)) that is less

sensitive to large values. Equivalently by taking derivatives, one solves Y .  9(e;(8))x; = 0,
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Table 4. Average of Standard Deviation Estimates (divided by true
standard deviation) for Regression from 10 x 10 Spatial Data of Size
100 with Exponential Variogram Errors. Based on 100 replications.

Standard errors are in parentheses.

range | sill intercept x coord. y coord.
Monotone ESV 1 0.89 (0.033) 0.90 (0.034) 0.90 (0.034)
REML(Matérn) 0.86 (0.031) 0.86 (0.025) 0.86 (0.025)
WNLS (exp.) 0.87 (0.025) 0.87 (0.024) 0.87 (0.024)
Monotone ESV 2 0.73 (0.029) 0.76 (0.030) 0.76 (0.030)
REML(Matérn) 0.71 (0.025) 0.75 (0.024) 0.75 (0.024)
WNLS (exp.) 0.73 (0.029) 0.74 (0.026) 0.74 (0.026)

Table 5. Average of Standard Deviation Estimates (divided by true
standard deviation) for Regression from 16 x 16 Spatial Data of Size
100 with Exponential Variogram Errors. Based on 100 replications.
Standard errors are in parentheses.

range | sill intercept x coord. y coord.
Monotone ESV 1 1.03 (0.032) 1.03 (0.039) 1.03 (0.039)
REML(Matérn) 0.94 (0.020) 0.94 (0.020) 0.94 (0.020)
WNLS (exp.) 0.93 (0.017) 0.94 (0.017) 0.94 (0.017)
Monotone ESV 2 0.86 (0.026) 0.87 (0.024) 0.87 (0.024)
REML(Matérn) 0.84 (0.026) 0.84 (0.024) 0.84 (0.024)
WNLS (exp.) 0.82 (0.024) 0.83 (0.022) 0.83 (0.022)

where 1) = p'. In order for the estimators to be scale invariant, one needs to alter the above

equation to

where o is a scale estimate. There are different options for selecting p and &, but a common

approach is to use

L if ¢ <k,

klt| — % otherwise.
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Table 6. Average of Standard Deviation Estimates (divided by true
standard deviation) for Regression from 16 x 16 Spatial Data of Size

100 with Whittle Variogram Errors. Based on 100 replications.
Standard errors are in parentheses.

range | sill intercept x coord. y coord.

Monotone ESV 1 3 1.10 (0.035) 1.08 (0.025) 1.08 (0.025)
REML(Matérn) 0.98 (0.015) 0.96 (0.025) 0.96 (0.025)
WNLS (Whittle) 0.98 (0.013) 0.96 (0.012) 0.96 (0.012)
Monotone ESV 2 3 1.00 (0.029) 0.99 (0.029) 0.99 (0.029)
REML(Matérn) 0.93 (0.019) 0.93 (0.015) 0.93 (0.015)
WNLS (Whittle) 1.01 (0.029) 0.99 (0.027) 0.99 (0.027)

—k ift <k,

P(t) =< ¢ if —k <t<k,
ko ift> k.

where k is a tuning constant, usually selected to give an appropriate asymptotic efficiency when

the data are Gaussian. “Huber’s Proposal 2” finds the scale estimate & by solving simultaneously
n
e (B
(5 =
i=1

where C}, is a constant chosen so that o is consistent for the standard deviation when the data are

from a Gaussian distribution. For example, when k£ = 1, C; = .516, and the asymptotic relative

efficiency of B to least squares for independent Gaussian data is close to 90%.

Asymptotic normality of B was proved by Koul (1977, p. 688). One version of the asymptotic
variance is given by

DIXTxX) ' XTv, x(XTX)™",

where D = o /E¢/(e1 /o) and Vy is the covariance matrix of ¢(e1/0),...,9¥(e,/0). We should also
mention that we have ignored the role of estimating ¢ in the asymptotic distribution of B because
for errors with symmetric marginal distributions, the asymptotic correlation between B and o is

Z€ero.

These M-estimators fit into the general scheme outlined in Section 2. That is, we assume that

Pler/o),...

, (e, /o) are second-order stationary and estimate their covariance matrix using our
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Table 7. Average of Standard Deviation Estimates (divided by true standard

deviation) for Regression from 10 x 10 Spatial Data of Size 100 with ¢-transformed
Exponential Variogram Errors. Based on 100 replications. Standard errors are

in parentheses. True standard deviations are based on 10,000 replications and have
estimated coefficient of variation .007.

range | sill intercept x coord. y coord.
True Standard Dev. (LS) 1 3 0.84 0.118 0.118
True Standard Dev. (Robust) 0.75 0.106 0.106
Monotone ESV (LS) 1 | 3| 091(0.036) 0.91(0.034) 0.91 (0.034)
Monotone ESV (Robust) 0.89 (0.035) 0.90 (0.032) 0.90 (0.040)
True Standard Dev. (LS) 2 3 1.25 0.168 0.168
True Standard Dev. (Robust) 1.14 0.154 0.154
Monotone ESV (LS) 2 | 3| 0.73(0.031) 0.75(0.031) 0.75 (0.031)
Monotone ESV (Robust) 0.73 (0.032) 0.76 (0.032) 0.77 (0.036)

nonparametric semivariogram estimator based on treating ¢ (e1/9),...,1¥(e,/0) as residuals ;from
least squares regression. The estimated factors for bias reduction are not quite correct since they
officially only apply to least squares residuals. However, one way to motivate their use is by defining

pseudo-observations Y; = m?B-I—dq/;(é}/&) for any constant d. Then the least squares estimate based

on Y; is just B, and the residuals are di(e; /o).

Table 7 shows results for situations similar to Table 4 but with errors from ¢-transformed
exponential variogram models. That is, we transformed the exponential errors used in Table 4
using the transformation Fy '(®(Y;/v/3)), where @ is the standard normal distribution function
and Fgl is the inverse distribution function of a ¢ distribution with 5 degrees of freedom. Thus the

marginal distribution of Y; is a ¢ distribution with 5 degrees of freedom.

The entries in rows 1 and 2 and 5 and 6 of Table 7 are Monte Carlo estimates of the variance ofB
based on 10,000 replications. These show that the robust regression estimates have less variability
than the least squares estimates as expected. The other rows are our standard deviation estimates
for the regression parameter estimates divided by the estimated true standard deviations. The
results are fairly similar to Table 4 and show that the estimates are negatively biased but less

biased for the data with less correlation.
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Splus version 3.4 along with the spatial module was used for all calculations. The robust
estimates were calculated with the rlm function of Venables and Ripley (1997, p. 260) with k£ =1
and sw = 3. The PAVA fortran routine in Cran (1980) was called from Splus.

5 Discussion

Our main goal has been to estimate the variance of regression coefficients obtained from a general
estimating equations approach without making parametric semivariogram assumptions. Thus we
have proposed a new method for nonparametric semivariogram estimation based on monotonizing

a reduced-bias empirical semivariogram based on residuals.

The simulations of Section 4 indicate that the resulting variance estimates are reasonably unbi-
ased and are converging as the sample size grows. Comparison with REML using the true Matérn
model and WNLS with the correct model shows that the new method is competitive with parametric

methods. It might be useful to make comparisons when the parametric methods are misspecified.
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