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SUMMARY 5

This paper concerns numerical assessment of Monte Carlo error in particle filters. We show
that by keeping track of certain key features of the genealogical structure arising from resampling
operations, it is possible to estimate variances of a number of Monte Carlo approximations that
particle filters deliver. All our estimators can be computed from a single run of a particle filter. We
establish that as the number of particles grows, our estimators are weakly consistent for asymp- 10

totic variances of the Monte Carlo approximations and some of them are also non-asymptotically
unbiased. The asymptotic variances can be decomposed into terms corresponding to each time
step of the algorithm, and we show how to estimate each of these terms consistently. When the
number of particles may vary over time, this allows approximation of the asymptotically optimal
allocation of particle numbers. 15

Some key words: Allocation; Particle filter; Sequential Monte Carlo; Simulation; Variance estimation.

1. INTRODUCTION

Particle filters, or sequential Monte Carlo methods, provide approximations of integrals with
respect to sequences of measures. In popular statistical inference applications, these measures
arise naturally from conditional distributions in hidden Markov models, or are constructed artifi- 20

cially to bridge between target distributions in Bayesian analysis. The number of particles used
controls the tradeoff between computational complexity and accuracy. Theoretical properties of
this relationship have been the subject of intensive research; the literature includes central limit
theorems (Del Moral & Guionnet, 1999; Chopin, 2004; Künsch, 2005; Douc & Moulines, 2008)
and a variety of refined asymptotic (Douc et al., 2005; Del Moral et al., 2007) and non-asymptotic 25

(Del Moral & Miclo, 2001; Cérou et al., 2011) results. These studies provide a wealth of insight
into the mathematical behaviour of particle filter approximations and validate them theoretically,
but considerably less is known about how, in practice, to extract information from a realization
of a single particle filter in order to report numerical measures of Monte Carlo error. This is in
notable contrast to other families of Monte Carlo techniques, especially Markov chain Monte 30

Carlo, for which an extensive literature on variance estimation exists. Our main aim is to address
this gap.

We introduce particle filters via a framework of Feynman–Kac models (Del Moral, 2004). This
allows us to identify the key ingredients of particle filters and the measures they approximate.
Based on a single realization of a particle filter, we provide unbiased estimators of the variance 35

and individual asymptotic variance terms for a class of unnormalized particle approximations. No
estimators of these quantities based on a single run of a particle filter have previously appeared in
the literature, and all of our estimators ultimately arise from particle approximations of quantities
appearing in a non-asymptotic second-moment expression. Upon suitable rescaling, we establish

C© 2017 Biometrika Trust
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that our estimators are weakly consistent for asymptotic variances associated with a larger class40

of particle approximations. One of these re-scaled estimators is closely related to that of Chan
& Lai (2013), which is the only other consistent asymptotic variance estimator based on a single
realization of a particle filter in the literature. We also demonstrate how one can use the estimators
to inform the choice of algorithm parameters in an attempt to improve performance.

2. PARTICLE FILTERS45

2·1. Notation and conventions

For a generic measurable space (E, E), we denote by L(E) the set of R-valued, E-measurable
and bounded functions on E. For ϕ ∈ L(E), µ a measure and K an integral kernel on (E, E), we
write µ(ϕ) =

∫

E
ϕ(x)µ(dx), K(ϕ)(x) =

∫

E
K(x, dx′)ϕ(x′) and µK(A) =

∫

E
µ(dx)K(x,A).

Constant functions x ∈ E 7→ c ∈ R are denoted simply by c. For ϕ ∈ L(E), ϕ⊗2(x, x′) =50

ϕ(x)ϕ(x′). The Dirac measure located at x is denoted δx. For any sequence (an)n∈Z and p ≤ q,
ap:q = (ap, . . . , aq) and by convention

∏−1
p=0 ap = 1. For any m ∈ N, [m] = {1, . . . ,m}. For

any c ∈ R, ⌈c⌉ is the smallest integer greater than or equal to c. For a vector of positive val-
ues (a1, . . . , am), we denote by C(a1, . . . , am) the categorical distribution over {1, . . . ,m} with
probabilities (a1/

∑m
i=1 ai, . . . , am/

∑m
i=1 ai). When a random variable is indexed by a super-55

script N , a sequence of such random variables is implicitly defined by considering each value
N ∈ N, and limits will always be taken along this sequence.

2·2. Discrete time Feynman–Kac models

On a measurable space (X,X ) with n a non-negative integer, let M0 be a probability measure,
M1, . . . ,Mn a sequence of Markov kernels and G0, . . . , Gn a sequence of R-valued, strictly60

positive, upper-bounded functions. We assume throughout that X does not consist of a single
point. We define a sequence of measures by γ0 = M0 and, recursively,

γp(S) =

∫

X

γp−1(dx)Gp−1(x)Mp(x, S), p ∈ [n], S ∈ X . (1)

Since γp(X) ∈ (0,∞) for each p, the following probability measures are well-defined:

ηp(S) =
γp(S)

γp(X)
, p ∈ {0, . . . , n}, S ∈ X . (2)

The representation γn(ϕ) = E{ϕ(Xn)
∏n−1

p=0 Gp(Xp)}, where the expectation is taken with re-
spect to the Markov chain with initial distribution X0 ∼M0 and transitions Xp ∼Mp(Xp−1, ·),65

establishes the connection to Feynman–Kac formulae. Measures with the structure in (1)–(2)
arise in a variety of statistical contexts.

2·3. Motivating examples of Feynman–Kac models

As a first example, consider a hidden Markov model: a bivariate Markov chain
(Xp, Yp)p=0,...,n where (Xp)p=0,...,n is itself Markov with initial distribution M0 and transi-70

tions Xp ∼Mp(Xp−1, ·), and such that each Yp is conditionally independent of (Xq, Yq; q 6= p)
given Xp. If the conditional distribution of Yp given Xp admits a density gp(Xp, ·) and one
fixes a sequence of observed values y0, . . . , yn−1, then with Gp(xp) = gp(xp, yp), ηn is the con-
ditional distribution of Xn given y0, . . . , yn−1. Hence, ηn(ϕ) is a conditional expectation and
γn(X) = γn(1) is the marginal likelihood of y0, . . . , yn−175

As a second example, consider the following sequential simulation setup. Let π0 and π1 be two
probability measures on (X,X ) such that π0(dx) = π̄0(x)dx/Z0 and π1(dx) = π̄1(x)dx/Z1,
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where π̄0 and π̄1 are unnormalized probability densities with respect to a common dominat-
ing measure dx and Zi =

∫

X
π̄i(x)dx, i ∈ {0, 1} are integrals unavailable in closed form. In

Bayesian statistics π1 may arise as a badly-behvaved posterior distribution from which one 80

wishes to sample, π0 is a more benign distribution from which sampling is feasible, and cal-
culating Z1/Z0 allows assessment of model fit. Introducing a sequence 0 = β0 < · · · < βn = 1

and taking Gp(x) = {π̄1(x)/π̄0(x)}
βp+1−βp , M0 = π0, and, for each p = 1, . . . , n, taking Mp

as a Markov kernel invariant with respect to the distribution with density proportional to
π̄0(x)

1−βp π̄1(x)
βp , elementary manipulations yield 85

γp(S) =
1

Z0

∫

S
π̄0(x)

1−βp π̄1(x)
βpdx, ηn = π1, γn(X) =

Z1

Z0
,

so that η1, . . . , ηn−1 forms a sequence of intermediate distributions between π0 and π1. This type
of construction appears in Del Moral et al. (2006) and references therein.

2·4. Particle approximations

We now introduce particle approximations of the measures in (1)–(2). Let c0:n be a sequence
of positive real numbers and let N ∈ N. We define a sequence of particle numbers N0:n by Np = 90

⌈cpN⌉ for p ∈ {0, . . . , n}. To avoid notational complications, we shall assume throughout that
c0:n and N are such that minpNp ≥ 2. The particle system consists of a sequence ζ = ζ0:n, where

for each p, ζp = (ζ1p , . . . , ζ
Np
p ) and each ζip is valued in X. To describe the resampling operation

we also introduce random variables denoting the indices of the ancestors of each random variable
ζip. That is, for each i ∈ [Np], Ai

p−1 is a [Np−1]-valued random variable and we write Ap−1 = 95

(A1
p−1, . . . , A

Np

p−1) for p ∈ [n] and A = A0:n−1.
A simple description of the particle system is given in Algorithm 1. An important and non-

standard feature is that we keep track of a collection of indices E0:n with Ep = (E1
p , . . . , E

Np
p )

for each p, which will be put to use in our variance estimators. We call these Eve indices because
Ei

p represents the index of the time 0 ancestor of ζip . The fact that Np may vary with p is also 100

atypical, and allows us to address asymptotically optimal particle allocation in Section 5·1. On
a first reading, one may wish to assume that N0:n is not time-varying, i.e., cp = 1 so Np = N
for all p ∈ {0, . . . , n}. Figure 1 is a graphical representation of a realization of a small particle
system.

Algorithm 1. The particle filter. 105

1. At time 0: for each i ∈ [N0], sample ζi0 ∼M0(·) and set Ei
0 ← i.

2. At each time p = 1, . . . , n: for each i ∈ [Np],

a. sample Ai
p−1 ∼ C{Gp−1(ζ

1
p−1), . . . , Gp−1(ζ

Np−1

p−1 )}.

b. sample ζip ∼Mp(ζ
Ai

p−1

p−1 , ·) and set Ei
p ← E

Ai
p−1

p−1 .

The particle approximations to ηn and γn are defined respectively by the random measures 110

ηNn =
1

Nn

∑

i∈[Nn]

δζin , γNn =







n−1
∏

p=0

ηNp (Gp)







ηNn ,

and we observe that, similar to (2), ηNn = γNn /γNn (1). To simplify presentation, the dependence
of γNn and ηNn on c0:n is suppressed from the notation. The following proposition establishes
basic properties of the particle approximations, which validate their use.
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Figure 1: A particle system with n = 3 and N0:3 = (4, 3, 3, 4). An arrow from ζip−1 to ζjp indi-

cates that the ancestor of ζjp is ζip−1, i.e. Aj
p−1 = i. In the realization shown, the ancestral indices

are A0 = (1, 2, 4), A1 = (2, 1, 2) and A2 = (3, 2, 2, 3), while E0 = (1, 2, 3, 4), E1 = (1, 2, 4),
E2 = (2, 1, 2) and E3 = (2, 1, 1, 2).

PROPOSITION 1. There exists a map σ2
n : L(X )→ [0,∞) such that for any ϕ ∈ L(X ):

1. E
{

γNn (ϕ)
}

= γn(ϕ), for all N ≥ 1;115

2. γNn (ϕ)→ γn(ϕ) almost surely and Nvar
{

γNn (ϕ)/γn(1)
}

→ σ2
n(ϕ);

3. ηNn (ϕ)→ ηn(ϕ) almost surely and NE
[

{

ηNn (ϕ)− ηn(ϕ)
}2

]

→ σ2
n{ϕ− ηn(ϕ)}.

In the case that the number of particles is constant over time, Np = N , these properties are
well known and can be deduced, for example, from various results of Del Moral (2004). The
arguments used to treat the general Np = ⌈cpN⌉ case are not substantially different, but since120

they seem not to have been published anywhere in exactly the form we need, we include a proof
of Proposition 1 in the supplement.

2·5. A variance estimator

For ϕ ∈ L(X ), consider the quantity

V N
n (ϕ) = ηNn (ϕ)2 −





n
∏

p=0

Np

Np − 1





1

N2
n

∑

i,j:Ei
n 6=Ej

n

ϕ(ζin)ϕ(ζ
j
n) (3)125

= ηNn (ϕ)2



1−
n
∏

p=0

Np

Np − 1



+





n
∏

p=0

Np

Np − 1





1

N2
n

∑

i∈[N0]

∑

j:Ej
n=i

ϕ(ζjn)
2, (4)

which is readily computable as a byproduct of Algorithm 1. The following theorem is the first
main result of the paper. We state it here to make some of the practical implications of our work
accessible to the reader before entering into more technical details; it shows that via (3), the
variables Ei

n can be used to estimate the Monte Carlo errors associated with γNn (ϕ) and ηNn (ϕ).130

THEOREM 1. The following hold for any ϕ ∈ L(X ), with σ2
n(·) as in Proposition 1:

1. E
{

γNn (1)2V N
n (ϕ)

}

= var
{

γNn (ϕ)
}

for all N ≥ 1;

2. NV N
n (ϕ)→ σ2

n(ϕ) in probability;

3. NV N
n {ϕ− ηNn (ϕ)} → σ2

n{ϕ− ηn(ϕ)} in probability.
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Remark 1. Since ηNn {ϕ− ηNn (ϕ)} = 0, the estimator NV N
n {ϕ− ηNn (ϕ)} simplifies to 135

NV N
n

{

ϕ− ηNn (ϕ)
}

= N





n
∏

p=0

Np

Np − 1





1

N2
n

∑

i∈[N0]

∑

j:Ej
n=i

{

ϕ(ζjn)− ηNn (ϕ)
}2

.

This estimator is a deterministic and asymptotically negligible modification of Chan & Lai
(2013)’s weakly consistent estimator of σ2

n{ϕ− ηn(ϕ)}, given by

σ̂2
CL{ϕ− ηn(ϕ)} =

1

N

∑

i∈[N ]

∑

j:Ej
n=i

{

ϕ(ζjn)− ηNn (ϕ)
}2

,

when N is not time-varying. Our estimator is larger than Chan and Lai’s due to the factor
∏n

p=0Np/(Np − 1); we find in the examples that there is little difference in the regime where
both are nearly unbiased. Our main contributions, therefore, are the estimators proposed for 140

which there are no existing alternatives in the literature: those with properties 1 or 2 of Theo-
rem 1, and those developed in the sequel to estimate individual asymptotic variance terms arising
from a natural decomposition of σ2

n(ϕ).

The proof of Theorem 1, given in the Appendix, relies on a number of intermediate results
concerning moment properties of the particle approximations which we shall develop. Before 145

embarking on this, we discuss how V N
n (ϕ) may be interpreted. Consider independent, identically

distributed random variables X1, . . . , XN with sample mean X̄ . The unbiased estimator of the
variance of X̄ is

1

N(N − 1)

∑

i

(Xi − X̄)2 = X̄2

(

1−
N

N − 1

)

+

(

N

N − 1

)

1

N2

N
∑

i=1

X2
i . (5)

Observe the resemblance between the right–hand sides of (4) and (5): the role of X2
i is played

by
∑

j:Ej
n=i

ϕ(ζjn)2, the sum of ϕ2 evaluated at the descendants of ζi0. This change, and the 150

product term
∏n

p=0Np/(Np − 1) replacing N/(N − 1), arise from the non-trivial dependence
structure associated with ζ0, . . . , ζn. One of the main difficulties we face is to develop a suitable
mathematical perspective from which to account for this dependence and establish Theorem 1.

The main statistical implication of Theorem 1 is that the variance estimators are weakly con-
sistent as N →∞ with n fixed. In the opposite regime, where N is fixed and n→∞, the 155

estimators degenerate because the resampling operations cause E1
n, . . . , E

N
n to eventually be-

come equal. Using results reported here, Olsson & Douc (2018) address the degeneracy issue by
modifying σ̂2

CL so that ancestries are traced only over a fixed time horizon.

3. MOMENT PROPERTIES OF THE PARTICLE APPROXIMATIONS

3·1. Genealogical tracing variables 160

Our next step is to introduce some auxiliary random variables associated with the genealog-
ical structure of the particle system. These variables are introduced only for purposes of anal-
ysis: they will assist in deriving and justifying our variance estimators. Given (A, ζ), the first
collection of variables, K1 = (K1

0 , . . . ,K
1
n), is conditionally distributed as follows: K1

n is uni-

formly distributed on [Nn] and for each p = n− 1, . . . , 0, K1
p = A

K1
p+1

p . Given (A, ζ) and K1, 165

the second collection of variables, K2 = (K2
0 , . . . ,K

2
n), is conditionally distributed as follows:
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K2
n is uniformly distributed on [Nn] and for each p = n− 1, . . . , 0 we have K2

p = A
K2

p+1
p if

K2
p+1 6= K1

p+1 and K2
p ∼ C{Gp(ζ

1
p ), . . . , Gp(ζ

Np
p )} if K2

p+1 = K1
p+1. The interpretation of K1

is that it traces backwards in time the ancestral lineage of a particle chosen randomly from the
population at time n. The interpretation of K2 is slightly more complicated: it traces backwards170

in time a sequence of broken ancestral lineages, where breaks occur when components of K1

and K2 coincide.

3·2. Lack of bias and second moment of γNn (ϕ)

We now give expressions for the first two moments of γNn (ϕ).

LEMMA 1. For any ϕ ∈ L(X ), E
{

γNn (1)ϕ(ζ
K1

n
n )

}

= γn(ϕ) and E
{

γNn (ϕ)
}

= γn(ϕ).175

The proof is in the Supplementary Material. The lack-of-bias property E
{

γNn (ϕ)
}

= γn(ϕ) is
well-known and a martingale proof for the Np = N case can be found in Del Moral (2004, Ch.
9).

In order to present an expression for the second moment of γNn (ϕ), we now introduce a col-
lection of measures on X⊗2, denoted {µb : b ∈ Bn} where Bn = {0, 1}n+1 is the set of bi-180

nary strings of length n+ 1. The measures are constructed as follows. For a given b ∈ Bn, let
(Xp, X

′
p)p=0,...,n be a Markov chain with state-space X

2, distributed according to the following
recipe. If b0 = 0 then X0 ∼M0 and X ′

0 ∼M0 independently, while if b0 = 1 then X ′
0 = X0 ∼

M0. Then, for p = 1, . . . , n, if bp = 0 then Xp ∼Mp(Xp−1, ·) and X ′
p ∼Mp(X

′
p−1, ·) inde-

pendently, while if bp = 1 then X ′
p = Xp ∼Mp(Xp−1, ·). Letting Eb denote expectation with185

respect to the law of this Markov chain we then define

µb(S) = Eb



I
{

(Xn, X
′
n) ∈ S

}

n−1
∏

p=0

Gp(Xp)Gp(X
′
p)



 , S ∈ X⊗2, b ∈ Bn.

Recalling that γn(ϕ) = E{ϕ(Xn)
∏n−1

p=0 Gp(Xp)} for ϕ ∈ L(X ), we write µb(φ) =

Eb

{

φ(Xn, X
′
n)

∏n−1
p=0 Gp(Xp)Gp(X

′
p)
}

for φ ∈ L(X⊗2) and b ∈ Bn, and can view µb

as defining a Feynman–Kac model on X⊗2.

Remark 2. Observe that with 0n ∈ Bn denoting the zero string, µ0n(ϕ
⊗2) = γn(ϕ)

2.190

In order to succinctly express the second moment of γNn (ϕ), we define appropriate sets of pairs
of strings of length n+ 1. Letting [N0:n] = [N0]× · · · × [Nn], and for any b ∈ Bn,

I(b) = {(k1, k2) ∈ [N0:n]
2 : for each p, k1p = k2p ⇐⇒ bp = 1},

we have that I(b) contains strings which coincide in their p-th coordinate exactly when bp = 1.

LEMMA 2. For any φ ∈ L(X⊗2), ϕ ∈ L(X ) and b ∈ Bn,

E
[

I
{

(K1,K2) ∈ I(b)
}

γNn (1)2φ(ζK
1
n

n , ζK
2
n

n )
]

=

n
∏

p=0

{

(

1

Np

)bp (

1−
1

Np

)1−bp
}

µb(φ)

(6)
and195

E
{

γNn (ϕ)2
}

=
∑

b∈Bn

n
∏

p=0

(

1

Np

)bp (

1−
1

Np

)1−bp

µb(ϕ
⊗2). (7)
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The proof of Lemma 2uses an argument involving the law of a doubly conditional sequential
Monte Carlo algorithm (see also Andrieu et al., 2018). The identity (7) was first proved by Cérou
et al. (2011) in the case where Np = N . Our proof technique is different: we obtain (7) as a
consequence of (6). The appearance of K1,K2 in (6) is also central to the justification of our
variance estimators below. 200

3·3. Asymptotic variances

For each p ∈ {0, . . . , n}, let ep ∈ Bn denote the vector with a 1 in position p and zeros else-
where. As in Remark 2, 0n denotes the zero string in Bn. The following result builds upon
Lemmas 1–2. It shows that a particular subset of the measures {µb : b ∈ Bn}, namely µ0n and
{µep : p = 0, . . . , n}, appear in the asymptotic variances; its proof is in the Supplementary Ma- 205

terial.

LEMMA 3. Let, for any ϕ ∈ L(X ),

vp,n(ϕ) =
µep(ϕ

⊗2)− µ0n(ϕ
⊗2)

γn(1)2
, p ∈ {0, . . . , n}. (8)

Then Nvar
{

γNn (ϕ)/γn(1)
}

→
∑n

p=0 c
−1
p vp,n(ϕ) and

NE
[

{

ηNn (ϕ)− ηn(ϕ)
}2

]

→
n
∑

p=0

c−1
p vp,n{ϕ− ηn(ϕ)}. (9)

Remark 3. The map in Proposition 1 satisfies σ2
n(ϕ) =

∑n
p=0 c

−1
p vp,n(ϕ). We observe that if

Qp(xp−1, dxp) = Gp−1(xp−1)Mp(xp−1, dxp) for p ∈ [n] and Qn,n = Id, Qp,n = Qp+1 · · ·Qn 210

for p ∈ {0, . . . , n− 1}, then µep(ϕ
⊗2) = γp(1)γp{Qp,n(ϕ)

2}. With Remark 2, we obtain

vp,n(ϕ) =
γp(1)γp{Qp,n(ϕ)

2}

γn(1)2
− ηn(ϕ)

2 =
ηp{Qp,n(ϕ)

2}

ηpQp,n(1)2
− ηn(ϕ)

2. (10)

This particular decomposition of σ2
n(ϕ) is also prominent in the limiting variance for the Central

Limit Theorem for γNn (ϕ) in Del Moral (2004, Chapter 9).

4. ESTIMATORS

4·1. Particle approximations of each µb 215

We now introduce particle approximations to the measures {µb : b ∈ Bn}, from which we
shall subsequently derive the variance estimators. For each b ∈ Bn, and φ ∈ L(X⊗2) we define

µN
b (φ) =





n
∏

p=0

(Np)
bp

(

Np

Np − 1

)1−bp



 γNn (1)2E
[

I
{

(K1,K2) ∈ I(b)
}

φ(ζK
1
n

n , ζK
2
n

n ) | A, ζ
]

.

(11)
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Recalling from Section 3·1 that given A and ζ, K1
n and K2

n are conditionally independent and
uniformly distributed on [Nn], it follows from (11) that

γNn (ϕ)2 = γNn (1)2
1

N2
n

∑

i,j∈[Nn]

ϕ(ζin)ϕ(ζ
j
n)

= γNn (1)2
∑

b∈Bn

E
[

I
{

(K1,K2) ∈ I(b)
}

ϕ(ζK
1
n

n )ϕ(ζK
2
n

n ) | A, ζ
]

=
∑

b∈Bn







n
∏

p=0

(

1

Np

)bp (

1−
1

Np

)1−bp







µN
b (ϕ⊗2), (12)

mirroring (7). This identity is complemented by the following result.220

THEOREM 2. For any b ∈ Bn and φ ∈ L(X⊗2),

1. E
{

µN
b (φ)

}

= µb(φ) for all N ≥ 1,

2. supN≥1NE
[

{

µN
b (φ)− µb(φ)

}2
]

<∞ and hence µN
b (φ)→ µb(φ) in probability.

The proof of Theorem 2 is in the Supplementary Material. Although (11) can be computed in
principle from the output of Algorithm 1 without the need for any further simulation, the con-225

ditional expectation in (11) involves a summation over all binary strings in I(b), so calculating
µN
b (ϕ⊗2) in practice may be computationally expensive. Fortunately, relatively simple and com-

putationally efficient expressions are available for µN
b (ϕ⊗2) in the cases b = 0n and b = ep (see

Lemma 7), and those are the only ones required to construct our variance estimators.

4·2. Variance estimators230

Our next objective is to explain how (3) is related to the measures µN
b and to introduce another

family of estimators associated with the individual terms (10).

LEMMA 4. The following identity of events holds:
{

E
K1

n
n 6= E

K2
n

n

}

=
{

(K1,K2) ∈ I(0n)
}

.

The proof is in the Appendix. Combined with the fact that given (A, ζ), K1
n,K

2
n are independent

and identically distributed according to the uniform distribution on [Nn], we have235

E
[

I
{

(K1,K2) ∈ I(0n)
}

φ(ζK
1
n

n , ζK
2
n

n ) | A, ζ
]

= N−2
n

∑

i,j:Ei
n 6=Ej

n

φ(ζin, ζ
j
n), (13)

and therefore we arrive at the following equivalent of (3), written in terms of µN
0n ,

V N
n (ϕ) = ηNn (ϕ)2 −

µN
0n(ϕ

⊗2)

γNn (1)2
. (14)

Detailed pseudocode for computing V N
n (ϕ) in O(N) time and space upon running Algorithm 1

is provided in the Supplementary Material. Mirroring (8), we now define

vNp,n(ϕ) =
µN
ep(ϕ

⊗2)− µN
0n(ϕ

⊗2)

γNn (1)2
, p ∈ {0, . . . , n}, vNn (ϕ) =

n
∑

p=0

c−1
p vNp,n(ϕ),

and these estimators also satisfy lack-of-bias and weak consistency properties.

THEOREM 3. For any ϕ ∈ L(X ),240
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1. E
{

γNn (1)2vNp,n(ϕ)
}

= γn(1)
2vp,n(ϕ) for all N ≥ 1;

2. vNp,n(ϕ)→ vp,n(ϕ) and vNp,n{ϕ− ηNn (ϕ)} → vp,n{ϕ− ηn(ϕ)}, both in probability;

3. E
{

γNn (1)2vNn (ϕ)
}

= γn(1)
2σ2

n(ϕ) for all N ≥ 1 and vNn (ϕ)→ σ2
n(ϕ) in probability.

Pseudocode for computing each vNp,n(ϕ) and vNn (ϕ) with time and space complexity inO(Nn)
time upon running Algorithm 1 is provided in the Supplementary Material. The time complexity 245

is the same as that of running Algorithm 1, but the space complexity is larger. Empirically,
we have found that NV N

n (ϕ) is very similar to vNn (ϕ) as an estimator of σ2
n(ϕ) when N is

large enough that they are both accurate, and hence may be preferable due to its reduced space
complexity. On the other hand, the estimators vNp,n(ϕ) and vNp,n{ϕ− ηNn (ϕ)} are the first of their
kind to appear in the literature, and may be used to gain insight into the underlying Feynman–Kac 250

model.

5. USE OF THE ESTIMATORS TO TUNE THE PARTICLE FILTER

5·1. Asymptotically optimal allocation

The variance estimators can be used to report Monte Carlo error alongside particle approxima-
tions, but may also be useful in algorithm design and tuning. Here and in Section 5·2 we provide 255

simple examples to illustrate this point. To simplify presentation, we focus on performance in
estimating γNn (ϕ), but the ideas can easily be modified to deal instead with ηNn (ϕ).

The following well known result is closely related to Neyman’s optimal allocation in stratified
random sampling (Tschuprow, 1923; Neyman, 1934). A short proof using Jensen’s inequality
can be found in Glasserman (2004, Section 4.3). 260

LEMMA 5. Let a0, . . . , an ≥ 0. The function (c0, . . . , cn) 7→
∑n

p=0 c
−1
p ap is minimized, sub-

ject to minp cp > 0 and
∑n

p=0 cp = n+ 1, at (n+ 1)−1(
∑n

p=0 a
1/2
p )2 when cp ∝ a

1/2
p .

As a consequence, we can in principle minimize σ2
n(ϕ) by choosing cp ∝ vp,n(ϕ)

1/2. An
approximation of this optimal allocation can be obtained by the following two-stage proce-
dure. First run a particle filter with Np = N to obtain the estimates vNp,n(ϕ) and then define 265

c0:n by cp = max
{

vNp,n(ϕ), g(N)
}1/2

, where g is some positive but decreasing function with
limN→∞ g(N) = 0. Then run a second particle filter with each Np = ⌈cpN⌉, and report the
quantities of interest, e.g., γNn (ϕ). The function g is chosen to ensure that cp > 0 and that for
large N we permit small values of cp. The quantity

∑n
p=0 v

N
p,n(ϕ)/{

∑n
p=0 c

−1
p vNp,n(ϕ)}, obtained

from the first run, is an indication of the improvement in variance using the new allocation. 270

Approximately optimal allocation has previously been addressed by Bhadra & Ionides (2016),
who introduced a meta-model to approximate the distribution of the Monte Carlo error associated
with log γNn (1) in terms of an autoregressive process, the objective function to be minimized
then being the variance under this meta-model. They provide only empirical evidence for the fit
of their meta-model, whereas our approach targets the true asymptotic variance σ2

n(ϕ) directly. 275

5·2. An adaptive particle filter

Monte Carlo errors of particle filter approximations can be sensitive to N , and an adequate
value of N to achieve a given error may not be known a priori. The following procedure increases
N until V N

n (ϕ) is in a given interval. Given an initial number of particles N (0) and a threshold
δ > 0, one can run successive particle filters, doubling the number of particles each time, until 280

the associated random variable V N(τ)

n (ϕ) ∈ [0, δ]. Finally, one runs a final particle filter with
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Figure 2: Estimated asymptotic variances NV N
n (ϕ) (dots and error bars for the mean ± one

standard deviation from 104 replicates) against log2N for the linear Gaussian example. The hor-
izontal lines correspond to the true asymptotic variances. The sample variances of γNn (1)/γn(1)
and ηNn (Id), scaled by N , were close to their asymptotic variances. Corresponding results for
the estimator of Chan & Lai (2013) are overlaid with boxes instead of dots and wider tick marks
on the error bars.
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Figure 3: Plot of vNp,n(1) (dots and error bars for the mean ± one standard deviation from 103

replicates) and vp,n(1) (crosses) at each p ∈ {0, . . . , n} for the Linear Gaussian example, with
N = 105.

N (τ) particles, and returns the estimate of interest. In Section 6 we provide empirical evidence
that this procedure can be effective in some applications.

6. APPLICATIONS AND ILLUSTRATIONS

6·1. Linear Gaussian hidden Markov model285

This model is specified by M0(·) = N (·; 0, 1), Mp(xp−1, ·) = N (·; 0.9xp−1, 1) and
Gp(xp) = N (yp;xp, 1). The measures ηn and γn are available in closed form via the Kalman
filter, and vp,n(ϕ) can be computed exactly and very accurately for ϕ ≡ 1 and ϕ = Id re-
spectively, allowing us to assess the accuracy of our estimators. We used a synthetic dataset,
simulated according to the model with n = 99. A Monte Carlo study with 104 replicates of290

V N
n (ϕ) for each value of N and cp ≡ 1 was used to measure the accuracy of the estimate

NV N
n (ϕ) as N grows; results are displayed in Figure 2 and for this data σ2

n(1) = 294.791 and
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Figure 4: Logarithmic plots of sample variance for 104 replicates of γNn (1)/γn(1) against N
for the linear Gaussian example, using a constant N particle filter (dotted), the approximately
asymptotically optimal particle filter (dot-dash), and the asymptotically optimal particle filter
(solid). In Figure 4b, the observation sequence is yp = 0 for p ∈ {0, . . . , 99} \ {49} and y49 = 8.

σ2
n{Id− ηn(Id)} ≈ 1.95. The Chan & Lai (2013) estimator of σ2

n{Id− ηn(Id)} is fairly sim-
ilar for N large enough that the variance estimator is approximately unbiased. The estimates
vNn (ϕ) differed very little from NV N

n (ϕ), and so are not shown. We then tested the accuracy of 295

the estimates vNp,n(1); results are displayed in Figure 3. The estimates vNp,n{Id− ηNn (Id)} are
very close to 0 for p < 95 with values (0.009, 0.07, 0.39, 1.48) for p ∈ {96, 97, 98, 99}; this be-
haviour is in keeping with time-uniform bounds on asymptotic variances (Whiteley, 2013, and
references therein) .

We also compared a constant N particle filter, the asymptotically optimal particle filter where 300

the asymptotically optimal allocation is computed exactly, and its approximation described in
Section 5·1 for different values of N using a Monte Carlo study with 104 replicates. We took
g(N) = 2/ log2N in defining the approximation, and the results in Figure 4a indicate that the
approximation reduces the variance. The improvement is fairly modest for this particular model,
and indeed the exact asymptotic variances associated with the constant N and asymptotically 305

optimal particle filters differ by less than a factor of 2. In contrast, Figure 4b shows that the
improvement can be fairly dramatic in the presence of outlying observations; the improvement in
variance there is by a factor of close to 40. Finally, we tested the adaptive particle filter described
in Section 5·2 using 104 replicates for each value of δ; results are displayed in Figure 5, and
indicate that the variances are close to their prescribed thresholds. 310

6·2. Stochastic volatility hidden Markov model

A stochastic volatility model is defined by M0(·) = N
{

· ; 0, σ2/(1− ρ2)
}

, Mp(xp−1, ·) =
N ( · ; ρxp−1, σ

2) and Gp(xp) = N (yp; 0, β
2 exp(xp)). We used the pound/dollar daily exchange

rates for 100 consecutive weekdays ending on 28th June, 1985, a subset of the well-known
dataset analyzed in Harvey, Ruiz and Shephard (1994). Our results are obtained by choosing 315

the parameters (ρ, σ, β) = (0.95, 0.25, 0.5). We provide in the supplement plots of the accuracy
of the estimate NV N

n (ϕ) as N grows using 104 replicates for each value of N ; the asymptotic
variances σ2

n(1) and σ2
n(Id− ηn(Id)) are estimated as being approximately 347 and 1.24 re-

spectively. In the Supplementary Material we plot the estimates of vp,n(ϕ). We found modest
improvement for the approximation of the asymptotically optimal particle filter, as one could 320

infer from the estimated vp,n(ϕ) and Lemma 5. For the simple adaptive N particle filter, results
in the Supplementary Material indicate that the variances are close to their prescribed thresholds.
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Figure 5: Logarithmic plots for the simple adaptive N particle filter estimates of γn(1) for the
linear Gaussian example. Figure (a) plots the sample variance of γNn (1)/γn(1) against δ, with
the straight line y = x. Figure (b) plots N against δ, where N is the average number of particles
used by the final particle filter.

6·3. A Sequential Monte Carlo sampler

We consider a sequential simulation problem, as described in Section 2·3, with X = R,
π̄0(x) = N (0, 102) and π̄1(x) = 0.3N (x;−10, 0.12) + 0.7N (x; 10, 0.22). The distribution π1325

is bi-modal with well-separated modes. With n = 11, and the sequence of tempering parameters

β0:n = (0, 0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1),

we let each Markov kernel Mp, p ∈ {1, . . . , n} be an ηp-invariant random walk Metropolis kernel
iterated k = 10 times with proposal variance τ2p , where τ1:n = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1).

One striking difference between the estimates for this model and those for the hidden Markov
models above is that the asymptotic variance σ2

n{Id− ηn(Id)} ≈ 822 is considerably larger than330

σ2
n(1) ≈ 2.1; the variability of the estimates NV N

n (ϕ) is shown in the Supplementary Material.
Inspection of the estimates of vp,n(ϕ) in Figures 6 allows us to investigate both this difference
and the dependence of vp,n(ϕ) on k in greater detail.

Figure 6(a)–(b) shows that while vp,n(1) is small for all p, the values of vp,n{Id− ηn(Id)}
are larger for large p than for small p; this could be due to the inability of the Metropolis ker-335

nels (Mq)q≥p to mix well due to the separation of the modes in (ηq)q≥p when p is large. In
Figure 6(c)–(d), k = 1, that is each Mp consists of only a single iterate of a Metropolis kernel,
and we see that the values of vp,n(ϕ) associated with small p are much larger than when k = 10,
indicating that the larger number of iterates does improve the asymptotic variance of the particle
approximations. However, the impact on vp,n(ϕ) is less pronounced for large p. Results for the340

simple adaptive N particle filter approximating ηn(Id) are provided in the supplement, which
again show that the estimates are close to their prescribed thresholds.

7. DISCUSSION

7·1. Alternatives to the bootstrap particle filter

In the hidden Markov model examples above, we have constructed the Feynman–Kac mea-345

sures taking M0, . . . ,Mn to be the initial distribution and transition probabilities of the latent
process and defining G0, . . . , Gn to incorporate the realized observations. This is only one, al-
beit important, way to construct particle approximations of ηn, and the algorithm itself is usually
referred to as the bootstrap particle filter. Alternative specifications of (Mp, Gp)0≤p≤n lead to dif-
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(d) ϕ = Id− ηn(Id), k = 1

Figure 6: Plot of vNp,n(ϕ) (dots and error bars for the mean ± one standard deviation) at each
p ∈ {0, . . . , n}with k = 10 iterations (a)–(b) and k = 1 iteration (c)–(d) for each Markov kernel
in the sequential Monte Carlo sampler example and N = 105.
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Figure 7: Plot of v̌Np,n(1) (dots and error bars for the mean ± one standard deviation) and v̌p,n(1)
(crosses) at each p ∈ {0, . . . , n} in the linear Gaussian example.

ferent Feynman–Kac models, as discussed in Del Moral (2004, Section 2.4.2), and the variance 350

estimators introduced here are applicable to these models as well.
One particular specification corresponds to the fully adapted auxiliary particle filter of Pitt &

Shephard (1999), as discussed by Doucet & Johansen (2008). Specifically, we define M̌0(dx0) =
M0(dx0)G0(x0)/M0(G0), and

M̌p(xp−1, dxp) =
Mp(xp−1, dxp)Gp(xp)

Mp(Gp)(xp−1)
, p ∈ [n],

and then Ǧ0(x0) = M0(G0)M1(G1)(x0) and Ǧp(xp) = Mp+1(Gp+1)(xp), p ≥ 1. If we de- 355

note by γ̌n and η̌n the Feynman–Kac measures associated with (M̌p, Ǧp)0≤p≤n, we obtain
γ̌n−1(1) = γn(1). Moreover, the variance of γ̌Nn−1(1) is often smaller than the variance of γNn (1).
In Figure 7, we plot the corresponding v̌p,n−1(1) and their approximations for the same linear
Gaussian example in Section 6·1. Here, the asymptotic variance of γ̌Nn−1(1)/γ̌n−1(1) is 40.679,
more than 7 times smaller than σ2

n(1). 360

7·2. Estimators based on independent, identically distributed replicates

It is clearly possible to consistently estimate the variance of γNn (ϕ)/γn(1) by using inde-
pendent identically distributed replicates of γNn . Such estimates necessarily entail simulation
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Figure 8: Plot of the standard estimate of var
{

γNn (ϕ)/γn(1)
}

(gray dots and error bars) and the
alternative estimate using V N

n (1) (black crosses and error bars) against B in (left to right) the
examples of Sections 6·1–6·3.

of multiple particle filters. We now compare the accuracy of such estimates with those based
on independent, identically distributed replicates of V N

n (ϕ). For some ϕ ∈ L(X ) and B ∈ N,365

let γNn,i(ϕ) and V N
n,i(ϕ) be i.i.d. replicates for i ∈ [B], and define M = N−1

∑

i∈[B] γ
N
n,i(1).

A standard estimate of var
{

γNn (ϕ)/γn(1)
}

is obtained by calculating the sample variance of
{M−1γNn,i(ϕ) ; i ∈ [B]}. Noting the lack-of-bias of γNn (1)2V N

n (ϕ), an alternative estimate of

var
{

γNn (ϕ)/γn(1)
}

can be obtained as B−1
∑

i∈[B]

{

M−1γNn,i(1)
}2

V N
n,i(ϕ). Both these esti-

mates can be seen as ratios of simple Monte Carlo estimates of var
{

γNn (ϕ)
}

and γn(1)
2, and370

are therefore consistent as B →∞. We show in Figure 8 a comparison between these estimates
for the three models discussed in Section 6 with N = 103 and ϕ ≡ 1, and we can see that the
alternative estimate based on V N

n (1) is empirically more accurate for these examples.

7·3. Final remarks

The particular approximations developed here provide a natural way to estimate the terms ap-375

pearing in the non-asymptotic second moment expression (7). We have also provided the first
generally applicable, consistent estimators of vp,n(ϕ). The expression (7) does not apply to par-
ticle approximations with resampling schemes other than multinomial; one possible avenue of
future research is to investigate these other settings. Whilst we have emphasized variances and
asymptotic variances, the measures µb also appear in expressions which describe propagation of380

chaos properties of the particle system. For instance, in the situation Np ≡ N , the asymptotic
bias formula of Del Moral et al. (2007, p.7.) can be expressed as

NE
{

ηNn (ϕ)− ηn(ϕ)
}

→ −
n−1
∑

p=0

ηp {Qp,n(1)Qp,n(ϕ− ηn(ϕ))}

ηpQp,n(1)2
≡ −

n−1
∑

p=0

µep {1⊗ (ϕ− ηn(ϕ))}

γn(1)2
,

which can be consistently estimated using µN
ep and γNn . Finally, the technique used to prove

Lemma 2 can be generalized to arbitrary positive integer moments of γNn (ϕ).
In many applications, particularly in the context of hidden Markov models, particle filters are385

used to approximate conditional expectations with respect to updated Feynman–Kac measures.
We define these, their approximations, and provide corresponding variance estimators in the sup-
plement. Of some interest is the updated estimator γ̂Nn−1(1) = γNn (1) whose variance estimator is
V̂ N
n−1(1) = V N

n−1(Gn−1)/η
N
n−1(Gn−1)

2 6= V N
n (1). In fact, V N

n (1) is an unbiased, noisy approxi-
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mation of V̂ N
n−1(1), due to using En instead of Gn−1 and ζn−1. However, empirical investigations 390

indicate that the difference in variance is practically negligible.
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APPENDIX

Proof of Theorem 1. Throughout the proof,→ denotes convergence in probability. For part 1., the fact 400

µ0n
(ϕ⊗2) = γn(ϕ)

2 and Theorem 2 together give

E
{

γN
n (1)2V N

n (ϕ)
}

= E
{

γN
n (ϕ)2 − µN

0n
(ϕ⊗2)

}

= E
{

γN
n (ϕ)2

}

− γn(ϕ)
2 = var

{

γN
n (ϕ)

}

.

For part 2., combining the identity (12), µN
b (ϕ⊗2)→ µb(ϕ

⊗2) by Theorem 2, and the fact that for any

b ∈ Bn other than 0n and e0, . . . , en,
∏n

p=0

(

1

Np

)bp (

1− 1

Np

)1−bp

is in O(N−2), we obtain

γN
n (ϕ)2 − µN

0n
(ϕ⊗2) =

{

n
∑

p=0

µN
ep
(ϕ⊗2)− µN

0n
(ϕ⊗2)

⌈cpN⌉

}

+Op(N
−2). (A1)

Also noting that by Proposition 1 γN
n (1)2 → γn(1)

2, from (8) that γn(1)
2vp,n(ϕ) = µep(ϕ

⊗2)−
µ0n

(ϕ⊗2) and again using µN
b (ϕ⊗2)→ µb(ϕ

⊗2), we then have 405

NV N
n (ϕ) =

N

γN
n (1)2

{

γN
n (ϕ)2 − µN

0n
(ϕ⊗2)

}

→
n
∑

p=0

vp,n(ϕ)

cp
= σ2

n(ϕ). (A2)

For part 3., first note that by Theorem 2 and Proposition 1, for any b ∈ Bn,

µN
b [{ϕ− ηNn (ϕ)}⊗2] = µN

b (ϕ⊗2)− ηNn (ϕ){µN
b (ϕ⊗ 1) + µN

b (1⊗ ϕ)}+ ηNn (ϕ)2µN
b (1⊗2)

→ µb[{ϕ− ηn(ϕ)}
⊗2], �

from which it follows that (A1) also holds with ϕ replaced by ϕ− ηNn (ϕ), and similarly to (A2),

NV N
n {ϕ− ηNn (ϕ)} →

n
∑

p=0

vp,n{ϕ− ηn(ϕ)}

cp
= σ2

n {ϕ− ηn(ϕ)} .

Proof of Lemma 4. For i ∈ [Nn] define Bi
n−1

= Ai
n−1

and Bi
p−1

= A
Bi

p

p−1
for p ∈ [n− 1]. Since in

Algorithm 1, Ei
p = E

Ai
p−1

p−1
for all p ∈ [n], i ∈ [Np] , a simple inductive argument then shows that

Ei
n = E

Bi
p

p , p ∈ {0, . . . , n}, i ∈ [Nn]. (A3)

We shall now prove (K1,K2) ∈ I(0n)⇒ E
K1

n
n 6= E

K2

n
n . Recall from Section 3·1 that when (K1,K2) ∈ 410

I(0n), we have A
K1

p

p−1
= K1

p−1
6= K2

p−1
= A

K2

p

p−1
for all p ∈ [n], hence B

K1

n

0
= K1

0
6= K2

0
= B

K2

n

0
. Ap-

plying (A3) with p = 0 and using the fact that in Algorithm 1, Ei
0
= i for all i ∈ [Nn], we have
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Ei
n = E

Bi
0

0
= Bi

0
, hence E

K1

n
n = B

K1

n

0
6= B

K2

n

0
= E

K2

n
n as required. It remains to prove (K1,K2) /∈

I(0n)⇒ E
K1

n
n = E

K2

n
n . Assuming (K1,K2) /∈ I(0n), consider τ = max{p : K1

p = K2

p}. If τ = n then

clearly E
K1

n
n = E

K2

n
n , so suppose τ < n. It follows from Section 3·1 that BK1

n
τ = K1

τ = K2

τ = B
K2

n
τ , so415

taking p = τ and i = K1

n,K
2

n in (A3) gives EK1

n
n = E

K2

n
n . �

Proof of Theorem 3. For part 1., Theorem 2 gives

E
{

γN
n (1)2vNp,n(ϕ)

}

= E
{

µN
ep
(ϕ⊗2)− µN

0n
(ϕ⊗2)

}

= µep(ϕ
⊗2)− µ0n

(ϕ⊗2) = γn(1)
2vp,n(ϕ).

For the remainder of the proof, → denotes convergence in probability. For part 2., µN
ep
(ϕ⊗2)−

µN
0n
(ϕ⊗2)→ γn(1)

2vp,n(ϕ) by Theorem 2, and γN
n (1)2 → γn(1)

2 by Proposition 1, so vNp,n(ϕ) =

{µN
ep
(ϕ⊗2)− µN

0n
(ϕ⊗2)}/γN

n (1)2 → vp,n(ϕ); as in the proof of Theorem 1, µN
b [{ϕ− ηNn (ϕ)}⊗2]→420

µb[{ϕ− ηn(ϕ)}
⊗2] gives vNp,n{ϕ− ηNn (ϕ)} → vp,n{ϕ− ηn(ϕ)}. Part 3. follows from parts 1. and 2. �
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