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Summary. Variance estimation is a fundamental problem in statistical modelling. In ultrahigh
dimensional linear regression where the dimensionality is much larger than the sample size,
traditional variance estimation techniques are not applicable.Recent advances in variable selec-
tion in ultrahigh dimensional linear regression make this problem accessible. One of the major
problems in ultrahigh dimensional regression is the high spurious correlation between the unob-
served realized noise and some of the predictors. As a result, the realized noises are actually
predicted when extra irrelevant variables are selected, leading to a serious underestimate of the
level of noise. We propose a two-stage refitted procedure via a data splitting technique, called
refitted cross-validation, to attenuate the influence of irrelevant variables with high spurious
correlations. Our asymptotic results show that the resulting procedure performs as well as the
oracle estimator, which knows in advance the mean regression function.The simulation studies
lend further support to our theoretical claims. The naive two-stage estimator and the plug-in
one-stage estimators using the lasso and smoothly clipped absolute deviation are also studied
and compared. Their performances can be improved by the refitted cross-validation method
proposed.

Keywords: Data splitting; Dimension reduction; High dimensionality; Refitted cross-validation;
Sure screening; Variable selection; Variance estimation

1. Introduction

Variance estimation is a fundamental problem in statistical modelling. It is prominently featured
in the statistical inference on regression coefficients. It is also important for variable selection
criteria such as Akaike’s information criterion AIC and the Bayesian information criterion BIC.
It provides also a benchmark of forecasting error when an oracle actually knows the regression
function and such a benchmark is very important for forecasters to gauge their forecasting per-
formance relative to the oracle. For conventional linear models, the residual variance estimator
usually performs well and plays an important role in the inferences after model selection and
estimation. However, the ordinary least squares methods do not work for many contempo-
rary data sets which have a greater number of covariates than the sample size. For example, in

Address for correspondence: Jianqing Fan, Department of Operational Research and Financial Engineering,
Princeton University, Princeton, NJ 08544, USA.
E-mail: jqfan@princeton.edu



38 J. Fan, S. Guo and N. Hao

disease classification using microarray data, the number of arrays is usually in tens, yet tens of
thousands of gene expressions are potential predictors. When interactions are considered, the
dimensionality grows even more quickly; for example considering possible interactions among
thousands of genes or single-nucleotide polymorphisms yields a number of parameters in the
order of millions. In this paper, we propose and compare several methods for variance estima-
tion in the setting of an ultrahigh dimensional linear model. A key assumption which makes the
high dimensional problems solvable is the sparsity condition: the number of non-zero compo-
nents is small compared with the sample size. With sparsity, variable selection can identify the
subset of important predictors and improve the model interpretability and predictability.

Recently, there have been several important advances in model selection and estimation for
ultrahigh dimensional problems. The properties of penalized likelihood methods such as the
lasso and smoothly clipped absolute deviation (SCAD) have been extensively studied in high
and ultrahigh dimensional regression. Various useful results have been obtained. See, for exam-
ple, Fan and Peng (2004), Zhao and Yu (2006), Bunea et al. (2007), Zhang and Huang (2008),
Meinshausen and Yu (2009), Kim et al. (2008), Meier et al. (2008), Lv and Fan (2009) and Fan
and Lv (2011). Another important model selection tool is the Dantzig selector that was proposed
by Candes and Tao (2007), which can be easily recast as a linear program. It is closely related
to the lasso, as demonstrated by Bickel et al. (2009). Fan and Lv (2008) showed that correlation
ranking has a sure screening property in the Gaussian linear model with Gaussian covariates
and proposed the sure independent screening (SIS) and iteratively sure independent screening
(ISIS) methods. Fan et al. (2009) extended ISIS to a general pseudolikelihood framework, which
includes generalized linear models as a special case. Fan and Song (2010) have developed general
conditions under which the marginal regression has a sure screening property in the context of
generalized linear models. For an overview, see Fan and Lv (2010).

In all the work mentioned above, the primary focus is the consistency of model selection and
parameter estimation. The problem of variance estimation in ultrahigh dimensional settings
has hardly been touched. A natural approach to estimate the variance is the following two-stage
procedure. In the first stage, a model selection tool is applied to select a model which, if is not
exactly the true model, includes all important variables with moderate model size (smaller than
the sample size). In the terminology of Fan and Lv (2008), the model selected has a sure screen-
ing property. In the second stage, the variance is estimated by an ordinary least squares method
based on the variables selected in the first stage. Obviously, this method works well if we can
recover exactly the true model in the first stage. This is usually difficult to achieve in ultrahigh
dimensional problems. Yet, sure screening properties are much easier to obtain. Unfortunately,
this naive two-step approach can seriously underestimate the level of noise even with the sure
screening property in the first stage owing to spurious correlation that is inherent in ultrahigh
dimensional problems. When the number of irrelevant variables is huge, some of these variables
have large sample correlations with the realized noises. Hence, almost all variable selection pro-
cedures will, with high probability, select those spurious variables in the model when the model
is overfitted, and the realized noises are actually predicted by several spurious variables, leading
to a serious underestimate of the residual variance.

The above phenomenon can be easily illustrated in the simplest model, in which the true
coefficient β = 0. Suppose that one extra variable is selected by a method such as the lasso or
SIS in the first stage. Then, the ordinary least squares estimator σ̂2

n is

σ̂2
n = .1−γ2

n/
1

n−1

n∑
i=1

.Yi − Ȳ /2, .1/

where γn is the sample correlation of the spurious variable and the response, which is really the
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realized noise in this null model. Most variable selection procedures such as stepwise addition,
SIS and the lasso will first select the covariate that has the highest sample correlation with the
response, namely γn = maxj�p |ĉorrn.Xj, Y/|. In other words, this extra variable is selected to
predict the realized noise vector best. However, as Fan and Lv (2008) stated, the maximum
absolute sample correlation γn can be very large, which makes σ̂2

n seriously biased. To illustrate
the point, we simulated 500 data sets with sample size n = 50 and the number of covariates
p = 10, 100, 1000, 5000, with {Xj}p

j=1 and noise independent and identically distributed (IID)
from the standard normal distribution. Fig. 1(a) presents the densities of γn across the 500 sim-
ulations and Fig. 1(b) depicts the densities of the estimator σ̂2

n defined in equation (1). Clearly,
the biases of σ̂2

n become larger as p increases.
The bias becomes larger when more spurious variables are recruited to the model. To illustrate

the point, let us use stepwise addition to recruit s variables to the model. Clearly, the realized
noises are now better predicted, leading to an even more severe underestimate of the level of
noise. Fig. 2 depicts the distributions of spurious multiple correlation with the response (realized
noise) and the corresponding naive two-stage estimator of variance for s = 1, 2, 5, 10, keeping
p=1000 fixed. Clearly, the biases become much larger with s. For comparison, we also depict
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Fig. 1. (a) Densities of the maximum absolute sample correlation γn for various p and (b) densities of the
corresponding estimates σ̂2

n given by equation (1) (all calculations are based on 500 simulations and the
sample size n is 50): j, true variance 1; , pD10; – – –, pD100; � - � - �, pD1000; —o—, pD5000
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Fig. 2. (a) Densities of spurious multiple correlation with the response for various numbers of spurious
variables s and (b) densities of the naive two-stage estimators of variance (all calculations are based on
the stepwise addition algorithm with 500 simulations, n D 50 and p D 1000): j, true variance 1; , s D 1;
– – –, sD2; � - � - �, sD5; —o—, sD10

similar distributions based on SIS, which selects s variables that are marginally most correlated
with the response variable. The results are depicted in Fig. 3(a). Although the biases based on the
SIS method are still large, they are smaller than those based on the stepwise addition method,
as the latter chose the co-ordinated spurious variables to optimize the prediction of the realized
noise.

A similar phenomenon was also observed in classical model selection by Ye (1998). To cor-
rect the effects of model selection, Ye (1998) developed the concept of a generalized degree of
freedom but it is computationally intensive and can only be applied to some special cases.

To attenuate the influence of spurious variables that are entered into the selected model and to
improve the accuracy of estimation, we introduce a refitted cross-validation (RCV) technique.
Roughly speaking, we split the data randomly into two halves, do model selection by using the
first half of the data set and refit the model on the basis of the variables selected in the first
stage, using the second half of the data to estimate the variance, and vice versa. The estimator
proposed is just the average of these two estimators. The results of the RCV variance estimators
with s=1, 2, 5, 10 are presented in Fig. 3(b). The corrections of biases due to spurious correlation
are dramatic. The essential difference between this approach and the naive two-stage approach
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Fig. 3. (a) Densities of the variance estimators based on the naive two-stage approach for various numbers
of spurious variables and (b) densities of RCV estimators of variance (all calculations are based on 500
simulations using SIS as a model selector and the sample size n is 50; they show that the biases of the naive
two-stage estimator are correctable): j, true variance 1; , sD1; – – –, sD2; � - � - �, sD5; —o—, sD10

is that the regression coefficients in the first stage are discarded and refitted by using the second
half of the data and hence the spurious correlations in the first stage are significantly reduced
at the second stage. The variance estimation is unbiased as long as the models selected in the
first stage contain all relevant variables, namely they have a sure screening property. It turns
out that this simple RCV method improves dramatically the performance of the naive two-stage
procedure. Clearly, the RCV can also be used to do model selection itself, reducing the influence
of spurious variables.

To appreciate why, suppose that a predictor has a big sample correlation with the response
(realized noise in the null model) over the first half of the data set and is selected into the model
by a model selection procedure. Since the two halves of the data set are independent and the
chance that a given predictor is highly correlated with realized noise is small, it is very unlikely
that this predictor has a large sample correlation with the realized noise over the second half
of the data set. Hence, its influence on the variance estimation is very small when refitted and
estimating the variance over the second half will not cause any bias. This argument is also true
for the non-null models provided that the model selected includes all important variables.

To gain better understanding of the RCV approach, we compare our method with the direct
plug-in method, which computes the residual variance based on a regularized fit. This was
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inspired by Greenshtein and Ritov (2004) on the persistence of the lasso estimator. An inter-
pretation of their results is that such an estimator is consistent. However, a bias term of order
O{s log.p/=n} is inherent in the lasso-based estimator, when the regularization parameter is
optimally tuned. When the bias is negligible, the lasso-based plug-in estimator is consistent.
The plug-in variance estimation based on the general folded concave penalized least squares
estimators such as SCAD is also discussed. In some cases, this method is comparable with the
RCV approach.

The paper is organized as follows. Section 2 gives some additional insights into the chal-
lenges of high dimensionality in variance estimation. In Section 3, the RCV variance estimator
is proposed and its sampling properties are established. Section 4 studies the variance-estima-
tion-based penalized likelihood methods. Extensive simulation studies are conducted in Section
5 to illustrate the advantage of the methodology proposed. Section 6 is devoted to a discussion
and the detailed proofs are provided in Appendix A.

2. Insights into challenges of high dimensionality in variance estimation

Consider the usual linear model

Yi =xT
i β+ "i, or y =Xβ+ε, .2/

where y = .Y1, . . . , Yn/T is an n-vector of responses, X = .x1, . . . , xn/T is an n × p matrix of
IID variables x1, . . . , xn, β= .β1, . . . , βp/T is a p-vector of parameters and ε= ."1, . . . , "n/T is an
n-vector of IID random noises with mean 0 and variance σ2. We always assume that the noise
is independent of predictors. For any index set M ⊂ {1, 2, . . . , p}, βM denotes the subvector
containing the components of the vector β that are indexed by M , XM denotes the sub-
matrix containing the columns of X that are indexed by M and PM = XM.XT

MXM/−1XT
M is

the projection operator onto the linear space that is generated by the column vectors of XM .
When p>n or p�n, it is often assumed that the true model M0 ={j :βj �=0} is sparse, i.e. the

number of non-zero coefficients s=|M0| is small. It is usually assumed that s is fixed or diverging
at a mild rate. Under various sparsity assumptions and regularity conditions, the most popular
variable selection tools such as the lasso, SCAD, adaptive lasso, SIS and Dantzig selector have
various good properties regarding model selection consistency. Among these properties are the
sure screening property, model consistency, sign consistency, the weak oracle property and
the oracle property, from weak to strong. Theoretically, under some regularity conditions, all
the aforementioned model selection tools can achieve model consistency. In other words, they
can exactly pick out the true sparse model with probability tending to 1. However, in practice,
these conditions are impossible to check and difficult to meet. Hence, it is often very difficult
to extract the exact subset of significant variables among a huge set of covariates. One of the
reasons is the spurious correlation, as we now illustrate.

Suppose that unknown to us the true data-generating process in model (2) is

Y =2X1 +0:3X2 +ε

where Xj is the n-dimensional vector of the realizations of the covariate Xj. Furthermore, let us
assume that {Xj}p

j=1 and " follow independently the standard normal distribution. As illustrated
in Fig. 1(a), where p is large, there are realizations of variables that have high correlations with
ε. Let us say ĉorr.X9, ε/=0:5. Then, X9 can even have a better chance of being selected than X2.
Here and hereafter, we refer the spurious variables to those variables that are selected to predict
the realized noise ε and their associated sample correlations are called spurious correlations.
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Continuing with the above example, the naive two-stage estimator will work well when the
model selection is consistent. Since we may not obtain model consistency in practice and have
no way to check even if we obtain it by chance, it is natural to ask whether the naive two-stage
strategy works if only sure screening can be achieved in the first stage. In the aforementioned
example, let us say that a model selector chooses the set {X1, X2, X9}, which contains all true
variables. However, in the naive two-stage fitting, X9 is used to predict ε, resulting in a substantial
underestimate of σ2 =var."/. If both variables X1 and X2 are selected, all spurious variables are
recruited to predict ε. The more spurious variables are selected, the better ε is predicted, and
the more serious underestimation of σ2 by the naive two-stage estimation.

We say that a model selection procedure satisfies the sure screening property if the selected
model M̂ with model size ŝ includes the true model M0 with probability tending to 1. Explicitly,

P.M̂ ⊃M0/→1 as n→∞:

The sure screening property is a crucial criterion when evaluating a model selection procedure
for high or ultrahigh dimensional problems. Among all model consistent properties, the sure
screening property is the weakest and the easiest to achieve in practice.

We demonstrate the naive two-stage procedure in detail. Assume that the selected model M̂

in the first stage includes the true model M0. The ordinary least squares estimator σ̂2
M̂

at the
second stage, using only the selected variables in M̂, is

σ̂2
M̂

= yT.In −PM̂/y
n− ŝ

= εT.In −PM̂/ε

n− ŝ
, .3/

where In is the n×n identity matrix. How does this estimator perform? To facilitate the notation,
denote the naive estimator by σ̂2

n. Then, estimator (3) can be written as

σ̂2
n = 1

n− ŝ
.1− γ̂2

n/εTε,

where γ̂2
n = εTPM̂ε=εTε: Let us analyse the asymptotic behaviour of this naive two-stage

estimator.

Theorem 1. Under assumptions 1 and 2 together with 3 and 4 or 5 and 6 in Appendix A, we
have the following results.

(a) If a procedure satisfies the sure screening property with ŝ�bn where bn =o.n/ is given in
assumption 2, then σ2

n=.1− γ̂2
n/ converges to σ2 in probability as n→∞. Furthermore,

{σ̂2
n=.1− γ̂2

n/−σ2}√
n

D→N.0, E["4
1]−σ4/,

where ‘→D’ stands for ‘convergence in distribution’.
(b) If, in addition, log.p/=n=O.1/, then γ̂n =OP [

√{ŝ log.p/=n}].

It is perhaps worthwhile to make a remark about theorem 1. γ̂2
n plays an important role in

the performance of σ̂2
n. It represents the fraction of bias in σ̂2

n. The slower γ̂n converges to
0, the worse σ̂2

n performs. Moreover, if γ̂2
n converges to a positive constant with a non-neg-

ligible probability, it will lead to an inconsistent estimator. The estimator cannot be root n
consistent if ŝ log.p/=

√
n→∞. This explains the poor performance of σ̂2

n, as demonstrated in
Figs 2 and 3. Although theorem 1 gives an upper bound of γn, it is often sharp. For instance,
if {Xj}p

j=1 and " are IID standard normal distributions and ŝ = 1, then γ̂n is just the maxi-
mum absolute sample correlation between " and {Xj}p

j=1. Denote the jth sample correlation
by γ̂nj = ĉorrn.Xj, "/, j = 1, . . . , p. Applying the transformation T.r/ = r=

√
.1− r2/, we obtain



44 J. Fan, S. Guo and N. Hao

a sequence {ξnj = √
.n−2/ T.γ̂nj/}p

j=1 with IID Student t-distribution with n − 2 degrees of
freedom. Simple analysis on the extreme statistics of the sequences {ξnj} and {γ̂nj} shows that,
for any c> 0 such that log.p=c/�n+2, we have

P

[
γ̂n >

√{
log.p=c/

2n

}]
> 1− exp.−c/, .4/

which implies the sharpness of theorem 1 in this specific case. Furthermore, when log.p/ =
o.n1=2/,

γ̂n =√{2 log.p/=n}{1+op.1/}
with the limiting distribution is given by

P [
√{2 log.2p/}.γ̂n

√
n−d2p/<x]→ exp{−exp.−x/}: .5/

where

dp =
√{2 log.p/}− log

√{4π log.p/}√{2 log.p/} :

See Appendix A.5 for details.

3. Variance estimation based on refitted cross-validation

3.1. Refitted cross-validation
In this section, we introduce the RCV method to remove the influence of spurious variables in the
second stage. The method requires only that the model selection procedure in stage 1 has a sure
screening property. The idea is as follows. We assume that the sample size n is even for simplicity
and split randomly the sample into two groups. In the first stage, an ultrahigh dimensional
variable selection method like SIS is applied to these two data sets separately, which yields two
small sets of selected variables. In the second stage, the ordinary least squares method is used to
re-estimate the coefficient β and variance σ2. Differently from the naive two-stage method, we
apply ordinary least squares again to the first subset of the data with the variables selected by the
second subset of the data and vice versa. Taking the average of these two estimators, we obtain
our estimator of σ2. The refitting in the second stage is fundamental to reduce the influence of
the spurious variables in the first stage of variable selection.

To implement this idea of RCV, consider a data set with sample size n, which is randomly split
into two even data sets .y.1/, X.1// and .y.2/, X.2//. First, a variable selection tool is performed
on .y.1/, X.1// and let M̂1 denote the set of variables selected. The variance σ2 is then estimated
on the second data set .y.2/, X.2/

M̂1
/, namely

σ̂2
1 =

y.2/T.In=2 −P.2/

M̂1
/y.2/

n=2−|M̂1|
,

where P.2/

M̂1
=X.2/

M̂1
.X.2/T

M̂1
X.2/

M̂1
/−1X.2/T

M̂1
. Similarly, we use the second data set .y.2/, X.2// to select

the set of important variables M̂2 and the first data set .y.1/, X.1/

M̂2
/ for estimation of σ2, resulting

in

σ̂2
2 =

y.1/T.In=2 −P.1/

M̂2
/y.1/

n=2−|M̂2|
:
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We define the final estimator as

σ̂2
RCV = .σ̂2

1 + σ̂2
2/=2: .6/

An alternative is the weighted average defined by

σ̂2
WRCV =

y.2/T.In=2 −P.2/

M̂1
/y.2/ +y.1/T.In=2 −P.1/

M̂2
/y.1/

n−|M̂1|− |M̂2|
: .7/

When |M̂1|= |M̂2|, we have σ̂2
RCV = σ̂2

WRCV.
In this procedure, although M̂1 includes some extra unimportant variables besides the impor-

tant variables, these extra variables will play minor roles when we estimate σ2 by using the second
data set along with refitting since they are just some random unrelated variables over the second
data set. Furthermore, even when some important variables are missed in the first stage of model
selection, they have a good chance of being well approximated by the other variables selected
in the first stage to reduce modelling biases. Thanks to the refitting in the second stage, the
best linear approximation of those selected variables is used to reduce the biases. Therefore, a
larger selected model size gives us, not only a better chance of sure screening, but also a way to
reduce modelling biases in the second stage when some important variables are missing. This
explains why the RCV method is relatively insensitive to the model size selected, demonstrated in
Fig. 3 and in Fig. 6 in Section 5.1. With a larger model being selected in stage 1, we may lose
some degrees of freedom and hence obtain an estimator with slightly larger variance than the
oracle estimator at finite sample. Nevertheless, the RCV estimator performs well in practice and
is asymptotically optimal when ŝ=o.n/. The following theorem gives the property of the RCV
estimator. It requires only a sure screening property, which was studied by Fan and Lv (2008)
for normal multiple regression, Fan and Song (2010) for generalized linear models and Zhao
and Li (2010) for the Cox regression model.

Theorem 2. Assume that regularity conditions 1 and 2 in Appendix A hold and E["4] <∞. If
a procedure satisfies the sure screening property with ŝ1 �bn and ŝ2 �bn, then

.σ̂2
RCV −σ2/

√
n

D→N.0, E["4]−σ4/: .8/

Theorem 2 reveals that the RCV estimator of variance has an oracle property. If the regression
coefficient βÅ is known by oracle, then we can compute the realized noise "i =Yi − xT

i βÅ and
obtain the oracle estimator

σ̂2
O =n−1

n∑
i=1

.Yi −xT
i βÅ/2: .9/

This oracle estimator has the same asymptotic variance as σ̂2
RCV.

There are two natural extensions of the aforementioned RCV techniques.

(a) K-fold data splitting: the first natural extension is to use a K -fold data splitting technique
rather than twofold splitting. We can divide the data into K groups and select the model
with all groups except one, which is used to estimate the variance with refitting. We may
improve the sure screening probability with this K -fold method since there are now more
data in the first stage. However, there are only n=K data points in the second stage for
refitting. This means that the number of variables that are selected in the first stage should
be much less than n=K. This makes the ability of sure screening difficult in the first stage.
For this reason, we work only on the twofold RCV.

(b) Repeated data splitting: there are many ways to split the data randomly. Hence, many RCV
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variance estimators can be obtained. We may take the average of the resulting estimators.
This reduces the influence of the randomness in the data splitting.

Remark 1. The RCV procedure provides an efficient method for variance estimation. The
technical conditions in theorem 2 may not be the weakest possible. They are imposed to facilitate
the proofs. In particular, we assume that P{φmin.bn/�λ0}=1 for all n, which implies that the
variables selected in stage 1 are not highly correlated. Other methods beyond least squares can
be applied in the refitted stage when those assumptions are possibly violated in practice. For
instance, if some selected variables in stage 1 are highly correlated or the selected model size
is relatively large, ridge regression or penalization methods can be applied in the refitted stage.
Moreover, if the density of the error " seems heavy tailed, some classical robust methods can
also be employed.

Remark 2. The paper focuses on variance estimation under the exact sparsity assumption and
sure screening property. It is possible to extend our results to nearly sparse cases. For example,
the parameter β is not sparse but satisfies some decay condition such as Σk|βi|� C for some
positive constant C. In this case, we do not have to worry too much whether a model selection
procedure can recover small parameters. In this case, so long as a model selection method can
pick up a majority of all variables with large coefficients in the first stage, we would expect that
the RCV estimator performs well.

3.2. Applications
Many statistical problems require knowledge of the residual variance, especially for high or
ultrahigh dimensional linear regression. Here we briefly outline a couple of applications.

(a) Constructing confidence intervals for coefficients: a natural application is to use estimated
σ̂RCV to construct confidence intervals for non-vanishing estimated coefficients. For exam-
ple, it is well known that the SCAD estimator has an oracle property (Fan and Li, 2001;
Fan and Lv, 2011). Let β̂M̂ be the SCAD estimator, with corresponding design matrix
XM̂ . Then, for each j ∈ M̂, the 1−α confidence interval for βj is

β̂j ± z1−α=2cjσ̂RCV, .10/

in which cj is the diagonal element of the matrix .XT
M̂

XM̂/−1 that corresponds to the jth
variable. Our simulation studies show that such a confidence interval is accurate and has
a similar performance to the case where σ is known.

The confidence intervals can also be constructed on the basis of the raw materials in the
RCV. For example, for each element in M̂ ≡M̂1 ∩M̂2, we can take the average of the refitted
coefficients as the estimate of the regression coefficients in the set M̂, and .S1 +S2/σ̂2

RCV=4
as the corresponding estimated covariance matrix, where S1 = .X.1/T

M̂
X.1/

M̂
/−1 is computed

on the basis of the first half of the data at the refitting stage and S2 = .X.2/T
M̂

X.2/

M̂
/−1 is

computed on the basis of the second half of the data. In addition, some ‘cleaning’ tech-
niques through p-values can be also applied here. In particular, Wasserman and Roeder
(2009) and Meinshausen et al. (2009) studied these techniques to reduce the number of
falsely selected variables substantially.

(b) Genomewide association studies: let Xj be the coding of the jth single-nucleotide polymor-
phism and Y be the observed phenotype (e.g. height or blood pressure) or the expression
of a gene of interest. In such a quantitative trait loci study, one frequently fits the marginal
linear regression

E[Y |Xj]=αj +βjXj .11/
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on the basis of a sample of size n individuals, resulting in the marginal least squares esti-
mate β̂j. The interest is to test simultaneously the hypotheses H0,j :βj =0 .j =1, . . . , p/.
If the conditional distribution of Y given X1, . . . , Xp is N{μ.X1, . . . , Xp/, σ2}, then it can
easily be shown (Han et al., 2011) that .β̂1, . . . , β̂p/T ∼ N{.β1, . . . , βp/T, σ2S=n}, where
the .i, j/ element of S is the sample covariance matrix of Xi and Xj divided by their sample
variances. With σ2 estimated by the RCV, the P-value for testing individual hypothesis
H0,j can be computed. In addition, the dependence of the least squares estimates is now
known and hence the false discovery proportion or rate can be estimated and controlled
(Han et al., 2011).

(c) Model selection: popular penalized approaches for variable selection such as the lasso,
SCAD, adaptive lasso and elastic net often involve the choice of a tuning or regulariza-
tion parameter. A proper tuning parameter can improve the efficiency and accuracy for
variable selection. Several criteria, such as Mallows’s Cp, AIC and BIC, are constructed
to choose tuning parameters. All these criteria rely heavily on a common parameter: the
error variance. As an illustration, consider estimating the tuning parameter of the lasso
(see also Zou et al. (2007)). Let λ be the tuning parameter with the fitted value μ̂λ =Xβ̂λ.
Then AIC and BIC for the lasso are written as

AIC.μ̂λ, σ2/= ‖y − μ̂λ‖2

nσ2 + 2
n

d̂f.μ̂λ/

and

BIC.μ̂λ, σ2/= ‖y − μ̂λ‖2

nσ2 + log.n/

n
d̂f.μ̂λ/:

It is easily seen that the variance σ2 has an important impact on both AIC and BIC.

4. Folded concave penalized least squares

In this section, we discuss some related methods on variance estimation and their corresponding
asymptotic properties. The oracle estimator of σ2 is

R̂.βÅ/=n−1
n∑

i=1
.Yi −xT

i βÅ/2:

A natural candidate to estimate the variance is R̂.β̂/, where β̂ is the lasso or SCAD estimator
of βÅ. Greenshtein and Ritov (2004) showed the persistent property for the lasso estimator β̂L.
Their result, interpreted in the linear regression setting, implies that R.β̂L/ → R.βÅ/ = σ2 in
probability, where R.β/=E[.Y −Xβ/2]. In fact, it is easy to see that their result implies that

R̂.β̂L/→σ2 =R.βÅ/:

In other words, R̂.β̂L/ is a consistent estimator for the variance.
Recall that the lasso estimator is defined as

β̂L =arg min
β

{
1
n

n∑
i=1

.Yi −xT
i β/2 +λn‖β‖1

}
: .12/

To make R̂.β̂L/ consistent, Greenshtein and Ritov (2004) suggested λn = o[{n= log.p/}1=2]
asymptotically. Wasserman and Roeder (2009) showed that the consistency still holds when
λn is chosen by cross-validation. Therefore, we define the lasso variance estimator σ̂2

L by

σ̂2
L = 1

n− ŝL

n∑
i=1

.Yi −xT
i β̂Ls/2, .13/
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where ŝL =#{j : .β̂L/j �=0}.
We shall see that σ̂2

L usually underestimates the variance owing to spurious correlation, as the
lasso shares a similar spirit to that of the stepwise addition (see the algorithm LARS by Efron
et al. (2004)). Thus, we also consider the leave-one-out lasso variance estimator

σ̂2
LL = 1

n

n∑
i=1

.Yi −xT
i β̂

.−i/

L /2 .14/

where β̂
.−i/

L is the lasso estimator using all samples except the ith. In practice, a K -fold (K
equals 5 or 10) cross-validated lasso estimator is often used and shares the same spirit as that
of equation (14). We divide the data set into K parts, say D1, . . . , DK, and define

σ̂2
CVL =min

λ

{
1
n

K∑
k=1

∑
i∈Dk

.Yi −xT
i β̂

.−k/

λ /2

}
.15/

where β̂
.−k/

λ is the lasso estimator using all data except those in Dk with tuning parameter λ.
This estimator differs from the plug-in method (13) in that multiple estimates from training
samples are used to compute residuals from the testing samples. We shall see that the estimator
σ̂2

CVL is typically closer to R.β̂L/ than to R̂.β̂L/, but it usually somewhat overestimates the true
variance from our simulation experience. The following theorem shows the rate of convergence
for the lasso estimator.

Theorem 3. Suppose that assumptions 1–4 and 7 in Appendix A hold. If the true model size
s=o.nα0/ for some α0 < 1, then we have

σ̂2
L −σ2 =OP [max{n−1=2, s log.p/=n}]:

If s log.p/=
√

n→0, we have

.σ̂2
L −σ2/

√
n→N.0, E["4]−σ4/:

The factor s log.p/=n reflects the bias of the penalized L1-estimator. It can be non-negligible.
When it is negligible, the plug-in lasso estimator also has the oracle property. In general, it is
difficult to study the asymptotic distribution of the lasso estimator when the bias is not neg-
ligible. In particular, we cannot obtain the standard error for the estimator. Even for finite p,
Knight and Fu (2000) investigated the asymptotic distribution of lasso-type estimators but it
is too complicated to be applied for inference. To tackle this difficulty, Park and Casella (2008)
and Kyung et al. (2010) used a hierarchical Bayesian formulation to produce a valid standard
error for the lasso estimator, and Chatterjee and Lahiri (2011) proposed a modified bootstrap
method to approximate the distribution of the lasso estimator. But it is unclear yet whether or
not their methods can be applied to a high or ultrahigh dimensional setting.

Recently, Fan and Lv (2011) studied the oracle properties of the non-concave penalized like-
lihood method in the ultrahigh dimensional setting. Inspired by their results, the variance σ2

can be consistently and efficiently estimated. The SCAD penalty ρλ.t/ (Fan and Li, 2001) is the
function whose derivative is given by

ρ′
λ.t/=λ

{
I.t �λ/+ .aλ− t/+

.a−1/λ
I.t>λ/

}
, t �0, a> 2,

where a=3:7 is often used. Denote by

Qn,λn.β/=‖y −Xβ‖2 +2n
p∑

j=1
ρλn.|βj|/, .16/
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and let β̂SCAD be a local minimizer of Qn,λn.β/ with respect to β. Thus, the variance σ2 can be
estimated by

σ̂2
SCAD = 1

n− ŝ

n∑
i=1

.Yi −xT
i β̂SCAD/2,

where ŝ=#{j : .β̂SCAD/j �=0}.
The following theorem shows the oracle property and rate of convergence for the SCAD

estimator.

Theorem 4. Assume that log.p/=O.nα0/ and the true model size s=O.nα0/, where α0 ∈ [0, 1/.
Suppose that assumptions 1, 3 and 4 (or 5 and 6) and 8 and 9 in Appendix A are satisfied. Then,

(a) (model consistency) there is a strictly local minimizer β̂n = .β̂1, . . . , β̂p/T of Qn,λn.β/ such
that

{j : β̂j �=0}=M0

with probability tending to 1 and
(b) (asymptotic normality) with this estimator β̂n, we have

.σ̂2
SCAD −σ2/

√
n

D−→ N.0, E["4]−σ4/:

Theorem 4 reveals that, if λn is chosen reasonably, σ̂2
SCAD works as well as the RCV estimator

σ̂2
RCV and better than σ̂2

L. However, it is difficult to achieve this oracle property sometimes.

Table 1. Simulation results for example 1: bias BIAS, standard error SE and average model size AMS for
the oracle, naive and RCV two-stage procedures

Method Results for the following values of n:

n=50 n=100 n=200

BIAS SE AMS BIAS SE AMS BIAS SE AMS

p=10
Oracle 0.006 0.220 0 −0.023 0.144 0 −0.015 0.109 0
N-SIS −0.072 0.209 5 −0.064 0.142 5 −0.030 0.109 5
RCV-SIS 0.017 0.234 5 −0.029 0.150 5 −0.013 0.114 5
N-LASSO −0.052 0.211 1.08 −0.051 0.148 1.01 −0.028 0.108 0.94
RCV-LASSO −0.003 0.219 1.41 −0.026 0.149 1.24 −0.015 0.110 1.02

p=100
Oracle −0.011 0.205 0 0.023 0.154 0 −0.010 0.154 0
N-SIS −0.325 0.151 5 −0.164 0.135 5 −0.112 0.135 5
RCV-SIS −0.004 0.216 5 0.018 0.165 5 −0.009 0.165 5
N-LASSO −0.272 0.319 5.90 −0.153 0.279 13.56 −0.073 0.279 3.16
RCV-LASSO 0.032 0.359 4.67 0.022 0.171 5.89 −0.010 0.171 12.41

p=1000
Oracle −0.011 0.176 0 −0.015 0.130 0 −0.015 0.095 0
N-SIS −0.488 0.118 5 −0.314 0.098 5 −0.192 0.079 5
RCV-SIS −0.017 0.211 5 −0.018 0.144 5 −0.012 0.098 5
N-LASSO −0.351 0.399 7.47 −0.256 0.330 9.37 −0.196 0.251 9.90
RCV-LASSO −0.029 0.266 5.03 −0.022 0.186 8.27 −0.014 0.103 8.79
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5. Numerical Results

5.1. Simulation study
In this section, we illustrate and compare the finite sample performance of the methods that
were described in the last three sections. We applied these methods to three examples: the null
model and two sparse models. The null model (example 1) is given by

Y =xT0 + ", "∼N.0, 1/ .17/

where X1, X2, . . . , Xp are IID random variables, following the standard Gaussian distribution.
This is the sparsest possible model. The second sparse model (example 2) is given by

Y =b.X1 +X2 +X3/+ ", "∼N.0, 1/, .18/

0.
0

0.
5

1.
0

1.
5

σ̂2

Oracle N-SIS N-LASSO RCV-SIS RCV-LASSO

0.
0

0.
5

1.
0

1.
5

σ̂2

Oracle N-SIS N-LASSO RCV-SIS RCV-LASSO

0.
0

0.
5

1.
0

1.
5

σ̂2

Oracle N-SIS N-LASSO RCV-SIS RCV-LASSO

(a) (b)

(c)

Fig. 4. Boxplots of σ̂2
n when data are generated from the null model (17) with p D 1000 and (a) n D 50,

(b) nD100 and (c) nD200 (the number of simulations is 100): , true variance 1
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with different b representing different levels of signal-to-noise ratio. The covariates that are
associated with model (18) are jointly normal with equal correlation ρ, and marginally N.0, 1/.

The third sparse model (example 3) is more challenging, with 10 non-trivial coefficients,
{βj|j = 1, 2, 3, 5, 7, 11, 13, 17, 19, 23}. The covariates are jointly normal with cov.Xi, Xj/ =
0:5|i−j|. The non-zero coefficients vector is

b.1:01,−0:06, 0:72, 1:55, 2:32,−0:36, 3:75,−2:04,−0:13, 0:61/

where b varies to fit different signal-to-noise ratio levels. The random error follows the standard
normal distribution.

In each of these settings, we test the following four methods to estimate the variance:

(a) oracle estimator (9), which is not a feasible estimator whose performance provides a
benchmark (method 1);

(b) a naive two-stage method, denoted by N-SIS, if SIS is employed in the model selection
step (method 2);

(c) RCV variance estimator (6) (method 3);
(d) a one-step method via penalized least squares estimators (method 4). We introduced this

method in Section 4 and recommended two formulae to estimate the variance: a direct
plug-in, P, method like formula (13) and a cross-validation, CV, method like formula
(15).

In methods 2–4, we employed (I)SIS, SCAD or the lasso as our model selection tools. For
SCAD and the lasso, the tuning parameters were chosen by fivefold or 10-fold cross-validation.
For (I)SIS, the predetermined model size is always taken to be 5 in the null model and n=4 in
the sparse model, unless specified explicitly. The principled method of Zhao and Li (2010) can
be employed to choose the model size automatically.

5.1.1. Example 1
Assume that the response Y is independent of all predictors Xis, which follow an IID standard
Gaussian distribution. We consider the cases when the numbers of covariates vary from 10, 100
to 1000 and the sample sizes equal 50, 100 and 200. The simulation results are based on 100
replications and are summarized in Table 1. In Fig. 4, three boxplots are illustrated to compare
the performance of the various methods for the case n=50, 100, 200 and p=1000. From the sim-
ulation results, we can see that the improved two-stage estimators RCV-SIS and RCV-LASSO

0.
0

0.
5

1.
0

1.
5

σ̂
2

Oracle N-SIS N-ISIS N-LASSO RCV-SIS RCV-ISIS RCV-LASSO P-SCAD CV-SCAD P-LASSO CV-LASSO

Fig. 5. Comparison of various methods for variance estimation in model (18) with n D 200 and p D 2000
(ρD0:5 and bD1): presented are boxplots of σ̂2

n based on 100 replications
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Table 2. Simulation results for example 2 with nD200 and pD2000: bias BIAS, standard
error SE, average model size AMS and sure screening probability SSP

Method Results for the following value of ρ:

ρ = 0 ρ = 0.5

BIAS SE AMS SSP BIAS SE AMS SSP

b=2
Oracle −0.014 0.089 3.000 1.000 −0.014 0.090 3.000 1.000
N-SIS −0.111 0.096 50.000 1.000 −0.011 0.102 50.000 1.000
N-ISIS −0.791 0.073 49.130 1.000 −0.821 0.036 46.870 1.000
N-LASSO −0.581 0.163 41.460 1.000 −0.526 0.172 43.310 1.000
RCV-SIS −0.030 0.132 50.000 1.000 0.025 0.279 50.000 0.960
RCV-ISIS −0.017 0.113 25.770 1.000 −0.020 0.106 22.185 1.000
RCV-LASSO −0.004 0.130 34.230 1.000 −0.026 0.147 34.990 1.000
P-SCAD −0.048 0.109 7.810 1.000 −0.036 0.097 6.080 1.000
CV-SCAD 0.000 0.095 7.810 1.000 0.001 0.096 6.080 1.000
P-LASSO −0.102 0.195 41.460 1.000 −0.113 0.164 43.310 1.000
CV-LASSO 0.141 0.111 41.460 1.000 0.127 0.116 43.310 1.000

b=1=
√

3
Oracle −0.014 0.090 3.000 1.000 −0.014 0.090 3.000 1.000
N-SIS 0.010 0.105 50.000 1.000 0.046 0.107 50.000 0.980
N-ISIS −0.817 0.077 46.400 1.000 −0.809 0.099 46.250 1.000
N-LASSO −0.445 0.202 39.290 1.000 −0.381 0.239 37.140 1.000
RCV-SIS 0.017 0.164 50.000 0.880 0.057 0.158 50.000 0.430
RCV-ISIS −0.002 0.122 22.225 0.970 0.113 0.161 22.445 0.150
RCV-LASSO −0.029 0.147 33.470 0.990 0.046 0.161 31.890 0.450
P-SCAD −0.036 0.096 6.110 1.000 −0.066 0.102 14.520 1.000
CV-SCAD 0.003 0.096 6.110 1.000 0.079 0.124 14.520 1.000
P-LASSO −0.097 0.171 39.290 1.000 −0.089 0.171 37.140 1.000
CV-LASSO 0.126 0.116 39.290 1.000 0.125 0.116 37.140 1.000

are comparable with the oracle estimator and much better than the naive estimators, especially
in the case when p�n. This coincides with our theoretical result. RCV improves dramatically
the naive (natural) method, no matter whether SIS or the lasso is used.

5.1.2. Example 2
We now consider model (18) with .n, p/= .200, 2000/ and ρ=0 and ρ=0:5. Moreover, we con-
sider three values of coefficients b = 2, b = 1 and b = 1=

√
3, corresponding to different levels

of signal-to-noise ratio
√

12,
√

3 and 1 for each case when ρ= 0. The results that are depicted
in Table 2 are based on 100 replications (the results for b = 1 are presented in Fig. 5 and have
been omitted from Table 2). The boxplots of all estimators for the case ρ= 0:5 and b = 1 are
shown in Fig. 5. They indicate that the RCV methods behave as well as the oracle, and much
better than the naive two-stage methods. Furthermore, the performance of the naive two-stage
method depends highly on the model selection technique. The one-step methods perform well
also, especially P-SCAD and CV-SCAD. P-LASSO and CV-LASSO behave slightly worse than
SCAD methods. These simulation results lend further support to our theoretical conclusions
in earlier sections.

To test the sensitivity of the RCV procedure to the model size ŝ and covariance structure
among predictors, additional simulations have been conducted and their results are summarized
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(a) (b)

Fig. 6. Sensitivity of model size ŝ on variance estimation for (a) ρD 0 and b D 1 and (b) ρD 0:5 and b D 1
(presented are the medians of naive and RCV two-stage estimators when nD200 and pD2000 among 100
replications): �, oracle; �, N-SIS; 4, N-LASSO; �, RCV-SIS; �, RCV-LASSO

(a) (b)

Fig. 7. Effect of covariance structure on variance estimation for (a) b D 1 and (b) b D 2 (presented are the
medians of naive and RCV two-stage estimators when n D 200 and p D 2000 among 100 replications for
various ρ): �, oracle; �, N-SIS; 4, N-LASSO; �, RCV-SIS; �, RCV-LASSO

in Figs 6 and 7. From Fig. 6, it is clear that the RCV method is insensitive to model size ŝ, as
explained before theorem 2. Fig. 7 shows that the RCV methods are also robust with respect to
the covariance structure. In contrast, N-LASSO always underestimates the variance.

To show the effectiveness of σ̂RCV in the construction of confidence intervals, we calculate
the coverage probability of the confidence interval (10) based on 10000 simulations. This was
conducted for β1, β2 and β3 with b= 1=

√
3, 1, 2 and ρ= 0 and ρ= 0:5. For brevity we present

only one specific case for β1 with b=1 in Table 3.
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Table 3. Simulation results for example 2 with n D 200, p D 2000 and b D 1: coverage
probability of confidence intervals of different levels for β1, based on 10000 replications

Method Coverage probabilities for the following values of ρ and confidence intervals:

ρ = 0 ρ = 0.5

80% 90% 95% 99% 80% 90% 95% 99%

Oracle 0.7967 0.8974 0.9476 0.9874 0.7931 0.9006 0.9483 0.9865
RCV 0.7919 0.8928 0.9435 0.9847 0.8042 0.9022 0.9518 0.9871

(a) (b)

Fig. 8. (a) Medians of various variance estimators when n D 400 and p D 1000 among 100 replications for
example 3 (�, oracle; �, N-SIS; 4, N-LASSO; �, RCV-SIS; �, RCV-LASSO; �, P-LASSO; Å, CV-LASSO)
and (b) medians of variance of missing variables of various model selection methods (�, oracle; �, SIS;
�, ISIS; 4, LASSO; �, RCV-SIS; �, RCV-ISIS; �, RCV-LASSO)

5.1.3. Example 3
We consider a more realistic model with 10 important predictors, detailed at the beginning of this
section. Since some non-vanishing coefficients are very small, no method can guarantee that all
relevant variables are chosen in the model selected, i.e. have a sure screening property. To quan-
tify the severity of missing relevant variables, we use the quantity variance of missing variables,
var.xT

S βS/=σ2, to measure, where S is the set of important variables that are not included in the
model selected and βS are their regression coefficients in the simulated model. For RCV methods,
the variance of missing variables is the average of the variances of missing variables for two halves
of the data. Fig. 8 summarizes the simulation results for .n, p/ = .400, 1000/, whereas Fig. 9
depicts the results for .n, p/= .400, 10000/ when the penalization methods are not easily accessi-
ble. The naive methods seriously underestimate the variance and are sensitive to the model selec-
tion tools, dimensionality and signal-to-noise ratio among others. In contrast, the RCV methods
are much more stable and only slightly overestimate the variance when the sure screening con-
dition is not satisfied. The one-step methods, especially plug-in methods, also perform well.
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(a) (b)

Fig. 9. (a) Medians of various variance estimators when n D 400 and p D 10000 among 100 replications
(�, oracle; �, N-SIS; �, N-ISIS; �, RCV-SIS; �, RCV-ISIS) and (b) medians of variance of missing variables
of various model selection tools (�, oracle; �, SIS; �, ISIS; �, RCV–SIS; �, RCV-ISIS)

Table 4. Estimated residual standard deviation and variance explained
by regression for naive two-stage and RCV methods for forecasting HPA
in San Francisco and Los Angeles

Model Results for San Francisco Results for Los Angeles
size

Naive RCV Variance Naive RCV Variance
explained explained

(%) (%)

2 0.5577 0.5563 76.92 0.5236 0.5255 88.68
3 0.5236 0.5536 79.83 0.4887 0.5214 90.23
5 0.5072 0.5179 81.40 0.4583 0.5210 91.56

10 0.4555 0.5057 85.67 0.4401 0.4995 92.56
15 0.3938 0.4730 89.79 0.3747 0.4794 94.86
20 0.3862 0.4749 90.66 0.3137 0.4596 96.57
30 0.3635 0.4735 92.58 0.2503 0.4621 98.05

5.2. Real data analysis
We now apply our proposed procedure to analyse recent house price data from 1996–2005. The
data set consists of 119 months of appreciation of the national house price index HPI, which
is defined as the percentage of monthly log-HPI changes in 381 core-based statistical areas
(CBSAs) in the USA. The goal is to forecast housing price appreciation (HPA) over those 381
CBSAs over the next several years. Housing prices are geographically dependent. They depend
also on macroeconomic variables. Their dependence on macroeconomic variables can be sum-
marized by the national HPA. Therefore, a reasonable model for predicting the next period HPA
in a given CBSA is
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Yt =β0 +βNXt−1,N +
381∑
i=1

βiXt−1,i + "t , .19/

where XN stands for the national HPA, {Xi}381
i=1 are the HPAs in those 381 CBSAs and " is a

random error independent of X. This is clearly a problem with the number of predictors more
than the number of covariates. However, conditional on the national HPA XN, it is reasonable
to expect that only the local neighbourhoods have non-negligible influence, but it is difficult
to predetermine those neighbourhoods. In other words, it is reasonable to expect that the coeffi-
cients {βi}381

i=1 are sparse.
Our primary interest is to estimate the residual variance σ2, which is the prediction error
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Fig. 10. Estimated standard deviation of benchmark one-step forecasts of HPA in San Francisco and Los
Angeles for various model sizes: (a) San Francisco, naive method; (b) San Francisco, RCV method; (c) Los
Angeles, naive method; (d) Los Angeles, RCV method
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of the benchmark model. We always keep the variables XN and X1, which is the lag 1 HPA of
the region to be predicted. We applied SCAD using the local linear approximation (Zou
and Li, 2008), which is the iteratively reweighted lasso, to estimate coefficients in model (19).
We summarize the result, σ̂, as a function of the selected model size s, to examine the sensitiv-
ity to the selected model size. Reported also is the percentage of variance explained, which is
defined as

R2 =1−RSS

/
119∑
t=1

.Yt − Ȳ /2,

where Ȳ is the sample average of the time series. For illustration, we focus only on one CBSA
in San Francisco and one in Los Angeles. The results are summarized in Table 4 and Fig. 10, in
which the naive two-stage method is also included for comparison.

First, as shown in Fig. 10, the influence of the naive method on the selected model size is much
larger than that of the RCV method. This is due to the spurious correlation as we discussed
before. The RCV estimate is reasonably stable, but it is also influenced by the selected model
size when it is large. This is understandable given the sample size of 119.

In the case of San Francisco, from Fig. 10(b), the RCV method suggests that the standard
deviation should be around 0.52%, which is reasonably stable for s in the range of 4–8. By
inspection of the solution path of the naive two-stage method, we see that, besides XN and
X1, first selected is the variable X306, which corresponds to CBSA San Jose–Sunnyvale–Santa
Clara (San Benito County and Santa Clara County). The variable X306 also enters both models
when s�3 in the RCV method. Therefore, we suggest that the model selected consists of at least
variables X1, X2 and X306. As expected, in the RCV method, the fourth selected variables are
not the same for the two split subsamples. The variance explained by regression takes 79.83%
of total variance.

Similar analysis can be applied to the Los Angeles case. Fig. 10(d) suggests that the standard
deviation should be around 0.50% (when s is between 7 and 10). From the solution path, we
suggest that the model selected consists of at least variables XN, X1 and X252, which corres-
ponds to CBSA Oxnard–Thousand Oaks–Ventura (Ventura County). The variance explained
by regression takes 90.23% of the total variance.

6. Discussion

Variance estimation is important and challenging for ultrahigh dimensional sparse regression.
One of the challenges is the spurious correlation: covariates can have high correlations with
the realized noise and hence are recruited to predict the noise. As a result, the naive (natural)
two-stage estimator seriously underestimates the variance. Its performance is very unstable and
depends largely on the model selection tool that is employed. The RCV method is proposed to
attenuate the influence of the effect of spurious variables. Both the asymptotic theory and the
empirical result show that the RCV estimator is the best among all estimators. It is accurate and
stable, and insensitive to the model selection tool and the size of the model selected. Therefore,
we may employ fast model selection tools like SIS for computational efficiency for the RCV
variance estimation. We also compare the RCV method with the direct plug-in method. When
choosing tuning parameters of a penalized likelihood method like the lasso, we suggest using a
more conservative cross-validation rather than aggressive BIC. However, the lasso method can
still yield a non-negligible bias for variance estimation in ultrahigh dimensional regression. The
SCAD method is almost as good as the RCV method, but it is computationally more expensive
than RCV-SIS.
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Appendix A: Notation and conditions

We first state the following assumptions, which are standard in the literatures of high dimensional statistical
learning. For convenience, define

φmin.m/= min
M:|M|�m

{
λmin

(
1
n

XT
MXM

)}

and

φmax.m/= max
M:|M|�m

{
λmax

(
1
n

XT
MXM

)}
,

where λmin.A/ and λmax.A/ denote the smallest and largest eigenvalues of a matrix A respectively.
For a vector v, we use the standard notation ‖v‖p = .Σi|vi|p/1=p and ‖v‖∞ =maxi{|vi|}. For a matrix B,

we use three different norms. ‖B‖2,∞ is defined in assumption 8 below; ‖B‖2 denotes the usual operator
norm, i.e. ‖B‖2 =max‖v‖2�1‖Bv‖2; ‖B‖∞ =maxi,j{|Bij|} is the usual sup-norm.

Assumption 1. The errors "1, . . . , "n are IID with zero mean and finite variance σ2 and independent of
the design matrix X.

Assumption 2. There is a constant λ0 > 0 and bn such that bn=n→ 0 such that P{φmin.bn/�λ0}= 1 for
all n.

Assumption 3. There is a constant L such that maxi,j |Xij| � L, where Xij is the .i, j/ element of the
design matrix X.

Assumption 4. E[exp.|"1|=a/]�b for some finite constants a, b> 0.

We have no intention to make the assumptions the weakest possible. For example, assumption 3 can be
relaxed to maxi,j |Xij|�L{log.n/}ξ for any ξ > 0 or further relaxation. The aim of assumptions 3 and 4 is
to guarantee that γ̂n in theorem 1 is of the order

√{ŝ log.p/=n}.
Theorem 1 still holds under the random design with the assumptions below.

Assumption 5. The random vectors x1, . . . , xn are IID and there is a constantα such that E[exp{.|Xij|=ρ/α}]
�L for all i and j and some constants α> 1, and ρ, L> 0, where Xij is the .i, j/th element of X.

Assumption 6. "1 satisfies the condition that E[exp{.|"1|=a/θ}] � b for some finite positive constants
a, b, θ > 0 and 1=α+1=θ �1, where α is defined by assumption 5.

For instance, when Xij and "i are sub-Gaussian (α= θ = 2) for each i and j, assumptions 5 and 6 are
satisfied.

The following assumption 7 is imposed for proving theorem 3. For fixed design matrix X, the corres-
ponding condition was also imposed in Meinshausen and Yu (2009) and some discussions of weaker
conditions were shown in Bickel et al. (2009).

Assumption 7. There are constants 0 <kmin � kmax <∞ such that

P.lim inf
n→∞

[φmin{s log.n/}]�kmin/=1,

and

P.lim sup
n→∞

[φmax.s+min{n, p}/�kmax]/=1:

The following two additional assumptions are stated for proving theorem 4. These conditions corres-
pond to conditions 4 and 5 in Fan and Lv (2011). Without loss of generality, assume that the true value
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β0 = .βT
01, βT

02/
T with each component of β01 non-zero and β02 = 0. Let X1 and X2 be the submatrices of

n×p design matrix X with columns corresponding to β01 and β02 respectively.

Assumption 8. There are constants 0 <c1, c2 <∞ such that

P

{
λmin

(
1
n

XT
1 X1

)
� c1

}
→1,

and

P

(∥∥∥∥ 1
n

XT
2 X1

∥∥∥∥
2,∞

� c2

)
→1,

as n→∞, where ‖B‖2,∞ =max‖v‖2�1 ‖Bv‖∞:

Assumption 9. Denote dn = 1
2 minj=1,:::,s |β0j|: Assume that dn � n−γ log.n/ with γ ∈ .0, 1

2 ]. Take λn ∝
n−.1−α0/=2 log.n/ and λn �dn, where α0 is defined in theorem 4.

Remark 3. The norm ‖B‖2,∞ is somewhat abstract. It can easily be shown that

‖B‖2,∞ � s‖B‖∞,

where s is the number of columns of B, which is a crude upper bound. Using this and the argument in the
proof of theorem 4, if

P

(∥∥∥∥ 1
n

XT
2 X1

∥∥∥∥
∞

� c3

)
→1

and λn �n−.1−3α0/=2 log.n/ and λn �dn, then the conclusion of theorem 4 holds.

A.1. Proof of theorem 1
Part (a) of theorem 1 follows the standard law of large numbers and central limit theorem. Now we prove
the second part under assumptions 1–4.

By assumption 2,

εTPM̂ε=εTXM̂.XT
M̂

XM̂/−1XT
M̂

ε� 1
λ0n

‖XT
M̂

ε‖2: .20/

Let Xj denote the jth column vector of the design matrix X. For a large constant c, consider the event
En ={max1�j�p |XT

j ε|� c
√{n log.p/}}: Under the event En, it follows from equation (20) that

εTPM̂ε� 1
λ0

ŝc2 log.p/:

Together with the fact n−1‖ε‖2 →σ2, we obtain

γ̂2
n =εTPM̂ε=εTε=OP{ŝ log.p/=n}:

Hence it suffices to show that P.En/→ 1 as n→∞ for some constant c. Observe that, by assumptions 3
and 4, for each j,

E|Xij"i|m �m!.La/mE[exp.|"1|=a/]� 1
2 m!.2ba2L2/.aL/m−2:

Using Bernstein’s inequality (e.g. lemma 2.2.11 of van der Vaart and Wellner (1996)), we have

P.EC
n /�P

[
max

1�j�p
|XT

j ε|� c
√{n log.p/}

]

�
p∑

j=1
P [|XT

j ε|� c
√{n log.p/}]

�2p exp
(

− c2n log.p/

2[2ba2L2 +aLc
√{n log.p/}]

)

=2 exp
(

log.p/

[
1− 1

4ba2L2c−2n−1 +2aLc−1
√{log.p/=n}

])
: .21/
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For sufficiently large c, we have 4ba2L2c−2n−1 +2aLc−1√log.p/=n<1 since log.p/=n is bounded. There-
fore, the power in equation (21) goes to −∞ as p→∞. It follows that P.En/=1−P.EC

n /→1.
Next we show that the second part of the theorem still holds under assumptions 5 and 6 instead of

assumptions 3 and 4. It is sufficient to verify that P.En/→1 as n→∞ for some constant c. The key step
is to establish the inequality

E[|Xij"i|m]� 1
2 m!{8.2+L+b/ρ2a2}.2ρa/m−2, .22/

for each j =1, . . . , p.
Note that

P.|XY |>t/�P.|X|>t1=α/+P.|Y |>t1−1=α/

for α> 1 and random variables X and Y. Thus, for any t �1 and each i and j,

P

(∣∣∣∣Xij

ρ

∣∣∣∣
∣∣∣∣"i

a

∣∣∣∣>t

)
�P

(∣∣∣∣Xij

ρ

∣∣∣∣>t1=α

)
+P

(∣∣∣∣"i

a

∣∣∣∣>t1−1=α

)
�Lexp.−t/+bexp.−tθ.1−1=α//

� .L+b/exp.−t/:

If X is a non-negative random variable with its distribution F.t/ and tail probability P.X>t/�C exp.−t/
for some constant C> 0 and each t �1, then by integration by parts

E

[
exp

(1
2

X
)]

=−
∫ ∞

0
exp

(x

2

)
d{1−F.x/}

=1+ 1
2

∫ ∞

0
{1−F.x/}exp

(x

2

)
dx

�1+ 1
2

∫ 1

0
exp

(x

2

)
dx+ 1

2

∫ ∞

1
C exp

(
−x

2

)
dx

�2+C:

As a result, it follows that, for each i and j,

E exp
(

1
2

∣∣∣∣Xij

ρ

∣∣∣∣
∣∣∣∣"i

a

∣∣∣∣
)

�2+L+b:

Thus, for each positive integer j and m�2,

E[|Xij"i|m]� .2ρa/mm! E

[
exp

(
1
2

∣∣∣∣Xij

ρ

∣∣∣∣
∣∣∣∣"i

a

∣∣∣∣
)]

� .2ρa/mm!.2+L+b/

= 1
2

m!{8.2+L+b/ρ2a2}.2ρa/m−2:

Theorem 1 is proved.

A.2. Proof of theorem 2
Define sequences of events An1 ={M0 ⊂M̂1}, An2 ={M0 ⊂M̂2} and An =An1 ∩An2. On the event An, we
have

σ̂2
1 =

ε.2/T.In=2 −P.2/

M̂1
/ε.2/

n=2− ŝ1

and

σ̂2
2 =

ε.1/T.In=2 −P.1/

M̂2
/ε.1/

n=2− ŝ2
,
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where ε.1/ and ε.2/ correspond to y.1/ and y.2/ respectively. Decompose now .n=2 − ŝ1/.σ̂
2
1 − σ2/ on the

event An as

. 1
2 n− ŝ1/.σ̂

2
1 −σ2/=ε.2/Tε.2/ − 1

2 nσ2 − .ε.2/TP.2/

M̂1
ε.2/ − ŝ1σ

2/:

We now prove that ε.2/TP.2/

M̂1
ε.2/ − ŝ1σ

2 =OP .
√

ŝ1/.
First, consider the quadratic form S =ξTPξ where P is a symmetric m×m matrix, ξ= .ξ1, . . . , ξm/T and

ξi .i= 1, . . . , m/ are IID. Assume that E[ξ1] = 0, E[ξ2
1 ] =σ2 and the fourth moment E[ξ4

1 ] <∞. Let Pij be
the .i, j/th element of the matrix P. Then,

E[S]=E

[
m∑

i=1
ξ2

i Pii

]
=σ2 tr.P/,

and

var.S/=E

[
m∑

i,j, l,k
ξiξjξlξkPijPlk

]
−σ4

(
m∑

i=1
Pii

)2

=E

[
m∑

i=1
ξ4

i P2
ii

]
+E

[
m∑

i=l �=j=k

ξ2
i ξ

2
j PijPlk

]
+E

[
m∑

i=k �=j=l

ξ2
i ξ

2
j PijPlk

]

+E

[
m∑

i=j �=l=k

ξ2
i ξ

2
l PijPlk

]
−σ4

(
m∑

i=1
Pii

)2

=E[ξ4
1 ]

(
m∑

i=1
P2

ii

)
+2σ4

(
m∑

i�=j

P2
ij

)
+σ4

(
m∑

i�=l

PiiPll

)
−σ4

(
m∑

i=1
Pii

)2

= .E[ξ4
1 ]−σ4/

(
m∑

i=1
P2

ii

)
+2σ4

(
m∑

i�=j

P2
ij

)

� .E[ξ4
1 ]+σ4/ tr.P2/,

where the last inequality holds since tr.P2/=Σm
i,jP

2
ij .

Observe that tr.P.2/

M̂1
/= tr{.P.2/

M̂1
/2}= ŝ1. Hence, on the event An1, we have

E[ε.2/TP.2/

M̂1
ε.2/|X.2/

M̂1
]= ŝ1σ

2,

and

var.ε.2/TP.2/

M̂1
ε.2/|X.2/

M̂1
/� .E["4]+σ4/ŝ1:

Using the Markov inequality, it follows that, under the event An1,

ε.2/TP.2/

M̂1
ε.2/ − ŝ1σ

2 =OP .
√

ŝ1/:

Combining with the assumptions ŝ1=n→P 0 and P.An1/→P 1, we obtain that

ε.2/TP.2/

M̂1
ε.2/ − ŝ1σ

2 =oP .
√

n/:

As a result,

. 1
2 n− ŝ1/.σ̂

2
1 −σ2/=ε.2/Tε.2/ − 1

2 nσ2 +oP .
√

n/:

Similarly, we conclude that

. 1
2 n− ŝ2/.σ̂

2
2 −σ2/=ε.1/Tε.1/ − 1

2 nσ2 +oP .
√

n/:

Therefore, using the last two results, we have

.σ̂2
RCV −σ2/

√
n=

√
n

n−2ŝ1

(
ε.2/Tε.2/ − 1

2
nσ2

)
+

√
n

n−2ŝ2

(
ε.1/Tε.1/ − 1

2
nσ2

)
+oP .1/

= 1√
n

n∑
i=1

."2
i −σ2/+oP .1/,
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which implies that

.σ̂2
RCV −σ2/

√
n

D→N.0, E["4]−σ4/:

The proof of theorem 2 is completed.
To prove theorem 3, we shall use the following lemma. The results were stated and proved in Meinshausen

and Yu (2009) and Bickel et al. (2009).

Lemma 1. Consider the lasso selector β̂L defined by equation (12) with λn. Under assumptions 1–4 and
7, for λn ∝σ

√
log.p/=n, there is a constant M> 0 such that, with probability tending to 1 for n→∞,

ŝL �Ms,

‖β̂L −β0‖1 �Mσs

√{
log.p/

n

}
,

and

‖X.β̂L −β0/‖2
2 �Mσ2s log.p/:

A.3. Proof of theorem 3
.n− ŝL/.σ̂2

L −σ2/ can be decomposed as

.n− ŝL/.σ̂2
L −σ2/= .εTε−nσ2/−2εTX.β̂L −β0/+‖X.β̂L −β0/‖2

2

=R1 +R2 +R3:

The classical central limit theorem yields R1 =OP .n1=2/. Note that

|R2|�2‖XTε‖∞‖β̂L −β0‖1:

By equation (21) and lemma 1, it follows that

|R2|=OP [
√{n log.p/}] OP{s

√
log.p/=n}=OP{s log.p/}:

In addition, by the third conclusion in lemma 1, |R3|=OP{s log.p/}. Therefore, the conclusion holds.

A.4. Proof of theorem 4
Let β̂

o = .β̂T
1 , 0T/T with β̂1 = .XT

1 X1/
−1XT

1 y be the oracle estimator. The key step is to show that, with prob-
ability tending to 1, the oracle estimator β̂

o
is a strictly local minimizer of Qn,λn .β/ defined by equation

(16). To prove it, by theorem 1 of Fan and Lv (2011), it suffices to show that, with probability tending
to 1, β̂

o
satisfies

XT
1 .y −Xβ̂

o
/−n ρ̃λn

.β̂1/=0, .23/

‖XT
2 .y −Xβ̂

o
/‖∞ <n ρ′

λn
.0+/, .24/

λmin

(
1
n

XT
1 X1

)
>κλn .β̂1/, .25/

where ρ̃λn
.β̂1/= .sgn.β̂1/ρ

′
λn

.|β̂1|/, . . . , sgn.β̂s/ρ
′
λn

.|β̂s|//T and κλn .β̂1/=maxj=1,:::,s{−ρ′′
λn

.|β̂j|/}:
Let ξ1 =XT

1 ε and ξ2 =XT
2 ε. Consider the events

An1 ={‖ξ1‖∞ �√
[n log.n/ log{log.n/}]}∩

{
λmin

(
1
n

XT
1 X1

)
� c1

}

and

An2 ={‖ξ2‖∞ �√
[nα0+1log{log.n/}]}∩

{∥∥∥∥ 1
n

XT
2 X1

∥∥∥∥
2,∞

� c2

}
:
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Observe that β̂1 = .XT
1 X1/

−1XT
1 y. Then, we obtain β̂1 −β01 = .XT

1 X1/
−1XT

1 ε and hence, under the event
An1,

‖β̂1 −β01‖∞ �‖β̂1 −β01‖2

�
∥∥∥∥

(
1
n

XT
1 X1

)−1 ∥∥∥∥
2

∥∥∥∥ 1
n

XT
1 ε

∥∥∥∥
2

�λmin

(
1
n

XT
1 X1

)−1 /√
s

∥∥∥∥ 1
n

XT
1 ε

∥∥∥∥
∞

� c
√

[log.n/ log{log.n/}=n1−α0 ]�λn,

for some constant c not depending on n. Note that, in the above inequalities, we use the facts s=O.nα0 /
and λn ∝n−.1−α0/=2 log.n/.

Since dn = 1
2 minj=1, :::,s |β0j|�n−γ log.n/ with γ ∈ .0, 1

2 ] and dn �λn, as addressed in assumption 9, we
have, under the event An1,

min
j=1,:::,s

|β̂j|� min
j=1,:::,s

|β0j|−‖β̂1 −β01‖∞

�2dn − c
√

[log.n/ log{log.n/}=n1−α0 ]
�dn �λn

for sufficiently large n. As a result, this leads to ρ̃λn
.β̂1/=0 and κλn .β̂1/=0 and hence implies that condi-

tions (23) and (25) hold under the event An1.
Now turn to prove the inequality (24). Under the event An1 ∩An2, we have∥∥∥∥ 1

n
XT

2 .y −Xβ̂
o
/

∥∥∥∥
∞

� 1
n

‖ξ2‖∞ + 1
n

‖XT
2 X1‖2,∞‖β̂1 −β01‖2 .26/

�√
[nα0−1 log{log.n/}]+ c2c

√
[log.n/ log{log.n/=n1−α0}]

∝λn.
√

log{log.n/}= log.n/+ c2c
√

[log{log.n/}= log.n/]/

� 1
2
λn <ρ′

λn
.0+/

for sufficiently large n. This shows that inequality (24) holds for sufficiently large n under the eventAn1 ∩An2.
By taking c=√

log{log.n/}, similar arguments to those for theorem 1 lead to

P.An1 ∩An2/→1

as n →∞. Thus, we have proven that β̂
o

is a strictly local minimizer of Qn,λn .β/ with large probability
tending to 1. Consequently, β̂SCAD = β̂

o
.

Now consider the asymptotic distribution of σ̂2
SCAD −σ2. Observe that β̂1 = .XT

1 X1/
−1XT

1 y. Under the
event An1 ∩An2,

σ̂2
SCAD −σ2 = 1

n− s
εT.In −PM0 /ε−σ2:

Hence, we have that

.σ̂2
SCAD −σ2/

√
n

D→N.0, E["4]−σ4/,

which also implies that σ̂2
SCAD −σ2 =OP .n−1=2/. The proof is complete.

A.5. Proof of results (4) and (5)
Let Φ.·/ and Fn−2.·/ be the cumulative distribution functions of the standard Gaussian and Student’s
t-distribution with n−2 degrees of freedom. For large u,

1−Fn−2.u/> 1−Φ.u/> exp.−u2/:
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Therefore, u = √
log.p=c/ satisfies Fn−2.u/ < Φ.u/ < 1 − c=p. The classical result that {ξnj}p

j=1 are IID
tn−2-distributions entails that

P{ sup
1�j�p

.ξnj/>u}=P [ sup
1�j�p

{Fn−2.ξnj/}>Fn−2.u/]

=1−{1−Fn−2.u/}p,

which, by the choice of u, is further bounded from below by

1− .1− c=p/p �1− exp.−c/:

Note that γnj = ξnj=.n−2+ ξ2
nj/

1=2 is strictly increasing. It follows that

P

{
sup

1�j�p

.γnj/>
u

.n−2+u2/1=2

}
=P

{
sup

1�j�p

.ξnj/>u

}
�1− exp.−c/:

Result (4) follows from the fact that, when u2 �n+2,
u

.n−2+u2/1=2
<

u√
.2n/

:

We now derive the limiting distribution (5). For each x> 0,

P [
√{2 log.p/}{ sup

1�j�p

.ξnj/−dp}<x]=P

[
sup

1�j�p

.ξnj/<dp + x√{2 log.p/}
]

=
{

1−
∞∫

dp+x=
√{2 log.p/}

fn−2.t/ dt

}p

:

Therefore, it suffices to show

p

∞∫
dp+x=

√{2 log.p/}

fn−2.t/dt → exp.−x/: .27/

Let ν =n−2. The following inequalities are helpful to verify the limit (27)

1√
.2π/

(
1
t

− 1
t3

)
exp

(
− t2

2

)
�

∫ ∞

t

φ.s/ds�
∫ ∞

t

fν.s/ds�C.ν/
1
t

ν

ν −1

(
1+ t2

ν

)−.ν−1/=2

, .28/

where

C.ν/=Γ
(

ν +1
2

)/√
.νπ/Γ

(
ν

2

)
:

Substituting t =dp +x=
√{2 log.p/} into the inequalities (28), it is easy to verify that, under the condition

log.p/=o.n1=2/,

exp.−x/+o.1/<p

∞∫
dp+x=

√{2 log.p/}

fν.t/dt< exp.−x/+o.1/:

This proves limit (27) and hence result (5).
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