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Variance Function Estimation in Regression:

The Effect of Estimating the Mean

Peter Hall R.J. Carroll
Department of Statistics Department of Statistics
Australian National University Texas A & M University
Canberra ACT 2601 College Station, TX 77843
Australia USA

SUMMARY

We consider estimation of a variance function g in regression problems. Such estima-

tion requires simultaneous estimation of the mean function f. We obtain sharp results on

the extent to which the smoothness of f influences best rates of convergence for estimating

g. For example, in nonparametric regression with two derivatives on g, "classical" rates

of convergence are possible if and only if the unknown 'I satisfies a Lipschitz condition

of order I or more. If a parametric model is known for g, then g may be estimated nd-

consistently if and only if f is Lipschitz of order or more. Optimal rates of convergence

are attained by kernel estimators.

I(eywords: Heteroscedasticity; Nonparanetric Regression; Rates of Convergence; Variance

Functions.



1. INTRODUCTION

Consider a heteroscedastic regression problem of the form

1' = fIxi) + ) 1  < i < , (1.1)

where the design variables zi may be either regularly or randomly spaced, and where

the fi's are independent with zero mean and unit variance. Estimation of the variance

function 9 is important in many contexts. Besides the classic need to estimate variance so

as to compute weighted least squares estimates of the mean function f, variance function

estimates are needed in quality control (Box & Ramirez, 1987); immunoassay (Butt, 1984);

prediction, where knowledge of g is required to supply confidence intervals for f (Carroll,

1987); calibration (Watters, Spiegelman & Carroll, 1987); and the estimation of detection

limits (Carroll, Davidson & Smith, 1987). These applications are discussed in detail by

Carroll & Ruppert (1988). In the present paper we provide a concise description of the

effect which not knowing f has on estimation of g.

The results are curious and unexpected. For example, if f is not known parametrically

but has at least half a derivative (i.e. satisfies a Lipschitz condition of order I or more),

then g can be estimated with an accuracy which would be optimal if f were completely

known. This result applies to problems where g is known parametrically, and also to

problems where g must be estimated nonparametrically. However, the result fails if f is

so rough that it does not have half a derivative. There, the roughness of f completely

determines the convergence rate if g has known parametric form, and influences the rate

if g is known nonparametrically. These remarks apply to optimal estimators of g, as well

as to kernel estimators. We show that kernel estimators achieve best possible rates of

convergence.

In more detail, the fastest achievable L 2 rate of convergence is

i ~~max'n-2, (v ;-), ... ) (1.2)
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if f has v, derivatives and 9 has v2 derivatives. If v > , this equals n- 2"2/( 2v2+2) and so

does not depend on vj. Rates in the case where g is known parametrically may be obtained

by taking v 2 = oo in (1.2), in which event (1.2) becomes max(n-I, n-4l1( 2vi +2)). The

latter equals n - 1 if V, > .

Section 2 presents these conclusions in detail for the case where design points xi in

(1.1) are regularly spaced. Section 3 outlines analogous results for the case of random

designs.

2. REGULAR DESIGN

2.1 Introduction. In this section we take the model to be

S Yi = f(i/n) + g(i/n)1, , 1 <i <n, (2.1)

where f and g are bounded functions on the interval [0,1], g 0 0, and C2, C2,... are

independent random variables with zero mean, unit variance and uniformly bounded fourth

moment. Given v > 0, write (v) for the largest integer strictly less than v. We say that

a function a, such as f or g,' is v-smooth if (i) derivatives a(), ... ,a((")) exist and are

bounded on [0,1]; and (ii) a( ( ) ) satisfies a Lipschitz condition of order v - (v) on [0,1]:

J((--a(("))(y)j 5Cjz - , af x, E10,1].

A function with k bounded derivatives on [0,1] is k-smooth.

In subsection 2.2 we show that if f is vl-smooth and g is v2-smooth, then kernel-

type estimators of g converge in mean square at rate max(n-22/(2v2+1) , n-4 v1/( 2 /1+'))

Subsection 2.3 demonstrates that if the errors ei are Gaussian then this rate is optimal, in

the sense that no estimator can converge to g more rapidly in mean square. Subsection 2.4

treats the case v2 = o0, which amounts to postulating a parametric model for g.

2.2 Kernel-type estimators. We begin by defining an analogue of a kernel sequencc

for regular designs. Suppose 0 < h < 1, and m > 0 is an integer. Let ck = ckt(h, m),
r a.



-, -0o < k < o, be constants satisfying

ckI [Ch, ck=O for IkICI , I1kCk=

(2.2)
and kkck=O forl<i<m,

where the constant C does not depend on h. Then EkIkIOIckI 1_ 2C0+2 h - * for each a > 0,

and Ekc _ 2C'h. The Ck'S may be constructed starting from a smooth function K,

vanishing outside the inter-val [-1,1] and satisfying f K(a)dx = 1, f xiK(x)dx = 0 for

1 < i < m. Minor adjustments to K, giving a new function KI say, ensure that at least

for small h, ck = hKI(hk) yields an appropriate sequence of constants. For example, if

m = 0 or 1, take K to be a bounded, continuous density, symmetric about the origin and

vanishing outside [-1,1]. Define (h) by (h)-' = khK(hk), so that Kc(h) --+ 1 as h - 0.

* Then Ck = r(h)hK(hk) satisfies gur conditions on ck.

Next we define an estimator of f. Suppose the data Yi, 1 < i < n, are generated

by model (2.1). If the mean function f is v1-smooth, choose a sequence of constants

aa= Ck(hi, (vi)) satisfying condition (2.2), and put

f(i/n) = kakyi+k , 0:5 i < n (2.3)

where Y is defined to be zero if j < 1 or j > n. Use linear interpolation on f(i/n) to

construct f(z) for general x E [0, 1]. -We show in Appendix (i) that if f is vz-smooth and

g..,. gis bounded, and if h, --+ 0 and nh- oo as n oo, then for each 0 < b < 2,

sup IEfx f f(x)I Of {(rhi)'11 (2.4)

sup varff(z)}= 0(h). (2.5)

Therefore the mean squared error of f satisfies

sup E{ff() f(X)} 2  O{hI + (nh, )-2I) ,(2.6)

which is minirrizd at O(n 2 vl/( 2 1+1)) by choosing h, to be of size n -2 (2 ' +) .

@
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Now we construct estimators of g. The estimated residuals are

J =i - ](i/n), < i < n.

Our hope is that f, will be close to the "true" residual, ri -, - f(i/n) = g(i/n)1ei.

(Define ri = fi = 0 if i < 1 or i > n.) Of course, r? admits the model type (2.1):

r? = g(i/n) + g(i/n)vbi, 1 <, n, (2.7)

where v7, =_ - I are independent and identically distributed with zero mean. If the ri's

were observable, we could estimate g from {r?} in exactly the same way that we estimated

f from {Y,}: assuming g to be v2-smooth, choose a sequence of constants bk ck(h 2 , (v2))

satisfying (2.2), and put

., . §(i/n) = Ekbkri+k I < i < n .

Construct (x) by linear interpolation. We see directly from (2.6) that if h2 - 0 and

nh 2 -- oo then

sup E{4(x) - g(z)} 2 = O{h 2 + (nh2 )- 2"2}. (2.8)* 6<z<1-6

Of course, § is not a realistic estimator, since the true residuals are not observable. If

A we replace true residuals by their estimates we obtain the practical estimator,

2

k(i/n) = brik , 1 <i < n. (2.9)

Construct 4(z) by linear interpolation. We show in Appendix (ii) that for each 0 <6b < I
2'

* sup E{4(x)-(X)}2=O[{h2 +(nh 2 )- 2") + {hi + (nh)-2,,1}21. (2.10)

The second term on the right-hand side of (2.10) distinguishes that expression from (2.8),

and is a consequence of our imperfect knowledge about f. Notice that it is the square of

I. the right-hand side of (2.6).



To optimize the rate at which the right-hand side of (2.10) converges to zero, choose

hi of size n-2 &',/(?I'j+ 3
) for i = 1 and 2. Then

sup E{ §(x) _-(X1 = Of max(n 2 v,/(2 &'2+1) , n - 4 &14 /( 2 v%+l)). (2.11)
6<Z<1-6

A necessary and sufficient condition for the term in v'2 here to dominate, is 4v,1 (2v,' + 1)

2v2 /(2v 2 + 1), or equivalently,

v3 ! v2/f{2(v2 +1)) (2.12)

Should this condition fail, the rate of convergence of to g is limited by smoothness (or

more correctly, lack of smoothness) of f, not by smoothness of g. On the other hand, if

* (2.12) holds then the rate of convergence of to g is determined by smoothness of g. Note

that v2 /f2(v 2 + 1)) < I- for all v2 > 0, and so condition (2.12) is assured if v2 I - that2 2

* is, if f has at least "half a derivative".

2.3 Optimal rates of convergence. Let C(v, B) denoted the class of v-smooth functions

a: [0, 1]--+R, such that sup ja(A 1I5B for 0 :5j (v) and

Ia((&v))(x) -,a()(~ : Bjr - y'(), all _-, y E [0, 1]

Write C+(v, B) for the set of a E C(v, B) with a > 0. We showed in Subsection 2.1 that if

f E C(v~i, B) and g E C+ (v2 , B), then we may construct a nonpararnetric estimator § of g

such that

sup E §(.T) _ g(X)J 2 = Of max(n 2 V2/(2V2+2) , n-4&,, /(2vI

for each 6 E (0, 1-). See (2.11). It is a simple matter to sharpen our proof of this result so

that it applies uniformly in f and g:

sup SUP Ef1 9{ (_T) _ g(X)) 2 = Ofmax(n 2
'2/(

2
9'2+1) , n 'i/(2i'i+1))

f EC(si,B),,EC+(z'2,B) 6<z<1 -6

0
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. 4

1~" *~We claim that this rate of convergence is best possible, in the following sense. If is any

nonparametric estimator of 9, if 0 < to < 1, and if the errors ei are Gaussian, then for

some C > 0 and all sufficiently large n,

Al sup E f§,{ (xo) - g(xo)) 2 > Cmax(n -2v:/(2iv+1), n -4& I/(2vi+I))
f Ee(&, ,B),9EC+(&,2,B)

(2.13)

This statement is a combination of two results, declaring that

SM. Cn - 2 "2/ ( 2~',,+ )  (2.14)

and
M, C-4,(2,I (2.15)

respectively. The first of these inequalities has a relatively simple proof, which we now

outline. Take f =- 0, so that we observe the "true" residuals ri - g(i/n)cij. The sequence

r,... , rn is sufficient for g. Therefore the problem is that of estimating g under model

(2.7) Techniques described by Stone (1980) are easily modified to produce the inequality

SUP E, -(Xo) _ g(Xo)} 2 > Cn-2V2( 2 V2+ )
gEC+(&,2,B)

where § is any nonparametric estimator of g based on ri,.... , r., and where f - 0. This

gives (2.14). Appendix (iii) presents a proof of (2.15).

2.4 Paramet ric model for variance. In some circumstances it is appropriate to consider

a parametric model for g, such as g(x) =exp(cx + d). As far as rates of convergence go,

this amounts to taking v2 = oo in the preceding work, as we now relate.

Suppose g has known parametric form. If f were available we could compute the

"true" residuals ri - Y - f(i/n), and from them compute an estimator § satisfying

:E{f(x) g(x)} O(n-1). More practically, assume f is vl-smooth and compute our

kernel-type estimator f, defined at (2.3). Calculate the estimated residuals fi = Y,-(i/n).

Since the constants ak in (2.3) vanish for Ikl Ch' (see (2.2)), we avoid "edge effects"

0.
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by using only t hose f i's with ChIf < i < n - Chi' Modify by (i) including only these

indices i, and (ii) replacing r, by fi. Call the new estimator . Then for each 0 < 6 <
2'

sup E{ (zT)-_g(X)} 2 = 0O[n-3 + f{hi + (nh )- 2 &, 12 ] .(2.16)

6<Z1.

This is an analogue of (2.10). To optimize the rate of convergence of the right-hand side,

choose h, to be of size n- 2 o, /( 2 &,,+]) , obtaining

sup E{4§(x) Of = max(n ,n-4V/ 2 V+)) (2.17)

This is just (2.11) with v2 = oo.

A necessary and sufficient condition for the n-3 term to dominate the right-hand side

of (2.17), is vi 2 this is just (2.12) with v2 = oo. If v, < 1, or equivalently if f has "less
212

than half a derivative", then estimation of even a parametric g is a nonparaxnetric problem

-Nwith nonpararnetric rates of convergence. When v, - f §{(x) _ g(X)} 2 = n-)

PS. 5'.although const ants C1 and C 2 in asymptotic formulae such as

E§--_ g(zT)} 2 - Ci (x)n-' , E{ §(x) _ g(X))2 -C 2 ()n-'

can differ. But when v', > 1, our imperfect knowledge about f vanishes from the asymp-

totics, and

E{ (z) _ g(X)} 2 = f{1 + o(1)}E{§(X) _ g(X)}2 = O(n-') (2.18)

N, as ni --+ oo. (This result has an analogue in the nonparametric case, when v, > zV2 /{2(V 2 +

1)1.)

* It is tedious to verify all these formulae in the general case, owing to the wide variety of

possible parametric models and associated estimators. We treat only the case g = g(x)

a2 (constant) on [0,11. Here, n i 1IEi<i<nr? and, with m denoting the smallest integer

* greater than Ch,
n-m+I n-m+2 n-m+1

9(n- 27n) E f? (n -2m)-1. E r? + +(-2m)- E f(i/n)

n-m +1

f - (i/n )} 2 + 2g I(na - 2m)-' E eif (i/n) - j(i/n))
i=MT



Writing Bi Ej(i/n) - f(i/n) for bias, and 9,, = (n - 2m)-Em<<nm+ir , we obtain

-+)2 <Cn 2 [(n2-J1 B2)2 + {IZm ake+k )2

i=m i=m

+ n-+ Bifi)2 +{Z+ Es(Ekkfi+k)} 2]

Now, IBI = O{(nh)- 2 ,) uniformly in m < i < n - m + 1, and so

E(§ ,m)2 = O[{h + (nh1 ) 2 ,}2] + o(n).

Results (2.16)-(2.18) follow from this formula.

The lower bound (2.13), this time with v2 = oo, continues to hold in parametric

* circumstances such as the one above. In fact, our proof of (2.13) in Appendix (iii) is

applicable to the parametric case.

3. RANDOM DESIGN

We now consider kernel regression estimators in the random design case. Let h be the

density of the design. Typically, when h is known it is relatively easy to show that the

L2 rate of convergence satisfies (1.2). We concentrate instead n the case of an unknown

design density. Under (2.12), we show that one can estimate the variance function g as

accurately as though f were known.

Observe independent pairs (Y, xi), I < i < n. The xi's have common density h, and

given {xi}, Y =f (xi) + g(xi) ei. The ei's are assumed to have mean zero, variance one.

and uniformly bounded fourth moments. Given v > 0, define (v) and "v-smoothness" as

in Subsection 2.1. Assume f is v1-smooth and g is v2-smooth, where v, > 0 and v2 > 0.

Suppose that, uniformly in a neighborhood of x 0 , the density d of x is {max(v,,V2 )}-

smooth and bounded away from zero and infinity. For j = 1,2, let K, be continuous

functions with support [-1, 1], integrating to one, uniformly Lipschitz continuous of order

one, and with i'th moment equal to zero for 1 < i < (vj). Let hia n-1/( 2 v'j +1) forj = 1,2.



aDefine

- 3j~d(x-) -(nh)' .',{(.k - x)/h.,}, d,,(x) -(,.,z,)- Z K, (z-, - ),.

k=1 kI

A kernel regression estimator of f is

(nh)-' Y YK{(xk --T)/hl)l,(x).

If the mean function f were known, a kernel regression estimator of g would be

n

(x) = (nh 2 ) -  _, - f(x,)) 2K 2{(_ - x)/h 2 }/d 2 (x).

If f is unknown, the natural analogue of § is

* 4.(T) -(nh 2)' X-,1 - f,(X,)} 2K 2{(_ - T)/h 2 )/ 2(X).
i=2

Classical results on kernel regression function estimation may be used to prove that

,[(x0) - g(x0)[ = 0,(n,-l(2"V+2)); this is the analogue of (2.8) for an optimal choice of

window size h2. In analogy with (2.11),

1(xo) - g(xo)l = O {max(n--2/(212+1), n -2,,/(2 ,',+))}. (3.1)

As in Section 2, a necessary and sufficient condition for the term in v2 here to dominate,

is vi > v2 /{2(v 2 + 1)). If this inequality is strict then § is asymptotically equivalent to

.a the "ideal" estimator §, in the sense that

I[(xo) - T(xo) = op(n-V2/( 2 &2+1)) (3.2)

To prove (3.2), first observe from Stute (1984) that

sup {Idj(x) - d(x)l} = o(n-&'// 2 vi+1) logn)
Iz- o<c

for some c > 0. From this it follows that

sup max fIh,(x) - d(x)l = O,(n-"l/(2 1+]) log n). (3.3)
lZ-Zol_< IC <i<
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Therefore to prove (3.2) it su~ffices to show~ that

max(IA.1, 1B.1) = o,(n-" /( 2 V2+41)) ,(3.4)

where

A,(nh2)1  f!~ ) (X,)) 2 K2 {f(_T, - -o/2

B,(nhz2F 1 E(x,)1ief,(x,) - f(xi)1K 2{(xi - z-o)/h 2 )

Appendix (iv) sketches a proof of (3.4).

The rate of convergence described by (3.1) is optimal. In fact, if the density d is

fixed, if C(v1 , B) and C+(v2 , B) are the function classes defined in Subsection 2.3 but with

interval [0,1] replaced by (-oo, oo), and if g is any nonparametric estimator of g, then for

some C >0,

lrn inf sup Pf, I I&(.To) - g(xo)I > C max(n- 12(21V2+2), n - 2 &,1/(21,1+1-))
n-o EC('1,B),9EC+(5' 2 ,B)

This is an analogue of (2.13), and has an almost identical proof.

All the results above have versions for parametric estimation of g, corresponding to

v2 = oo. In this circumstance we usually do not require parametric knowledge about the

design density d, since parametric estimation of g does not involve estimation of d. It is

usually sufficient to ask that d be z'1-smooth.

ACKNOWLEDGEMENT

The work of R.J. Carroll was supported by the U.S. Air Force Office of Scientific

Research and performed while visiting the Institute of Advanced Studies at the Australian

* National University.

Appendix (1): Proof of (2.4) and (2.5).

Sincefi is defined by inter-polation from f(i/n), it suffices to show that

sup [~j (i/n) - f (i/n)j Of 0(nhi)-i11 sup var{!(i/n)j = (h]). (A.1)
6A~in-6nn~i<n-6n



Observe from definition (2.3) and properties Of {ak) that

Ef(i'/) - f(i/a) = Ekk(l!-(l)")f(')~ + Okk)/n) - (')i/)

Nwhere 0 :5 Ok < 1 Since f is v1-smooth then If ((.,))(x) - f (0(Vilj : C, Ix - y

from which it follows that

IEf(i/n) - f(i/n)I :5 C1k~/)v)k lk/nhI"1(I')

= Cjn-'1EktkI1IakI 5 C2 (nhl1 -"

which gives the first part of (A.1). The second part follow s from

varif (iln)1 = I-akg{(i+ k)/n) :5 (sup g)IEa' = 0(hj).

Appendix (ii): Proof of (2.10).

Put Di = Ef(i/n) - f (i/n), A, = Ekakg{ (i + k)/n) }iE+k. Then j g(i/n)2c -i

DA - A,, so that (i/n) - g(i/rz) = r 1<,5 6 S,, where

Si -= r 1bjg{(i + l)/rz1(,c+I - 1), S2  Elb1D 2 1, S3  Ehb1A2+

S4 =--2Eh61 g{(i + 1)/n} I Dj+p~j+i 55 -2Ehbzg{ (i +1/n cjjj

56 2EbiDj+iAj+j.

It suffices to show that

*sup [f{ES, (i)1 2 + Var S, (z) Of h2 + (nh 2 ) 2 112 + h2 + (nh3 )- 4 v') (A.2)
bn<i<n-6n,1(i<

Observe" that E(S'I = 0 for j = 1,4 and 6; ID]I = 0{(nhi)-21}, byA-1); Z'IA2)

0(YEa') = 0(hj); and E(cA,) = aog(i/n) = 0(h1 ). Therefore E(S2 ) = jn)-j}

E(S3 ) O (h1 ) = E(Ss). Hence, each (ES,) 2 admts the bound claimed in (A.2). Trivially,

var(S1 ) = (Yb) (h2 ), v-ax(S 2 )= 0, var(S 4 ) = 0(Ebt = (h2 ). Furthermore,

E(.53) = h- 1 2E
2k, . . 1b 1 2ak, .. . ak4 [g{ (i + 11 + ki)/n}g{(i + 11 + k2 )/n}

x g{(i +12 + k3 )/rzjg{(i +12 +k 4 )/n}] E(4+l+kEi+l+k 2ci+12 +k 3 Ei+l2 +k 4 )

S
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The expectation on the right-hand side vaniishes unless either k, k2 and k3 =k 4; or

11 - 12= k3 - kj = k4- k;or 12 -12 = k-k = k3- k2. In the first case, all nonzero

terms except those corresponding to ki = k2 k = k4 , cancel perfectly from the difference

E(S2) - (ES3 )2 ; and in the second and third cases, once 11, 12, k1 and k2 are given, k3 and

k4 are completely determined. Therefore, since I0k 1< Cj hj,

var (53) 5 C2 (ETh, TEkjb, 1 ,Qak Y 1 
2

2j 1h 2 lb1bi, ~

O(h2).

Similar but simpler Ftrguments show thatviar (SS) I~~h) a S) Oh n 1 )2' .
Hence, each var(S,) admnits the bound claimed in (A.2).

Appendix (iii): Proof of (2.15).

We may assume that v, :5- and v"2  ! vj, for otherwise (2.15) follows from (2.14). For

simplicity we further suppose that B > 2. Let b be a nondegenerate, twice- differentiable

function on (-ce, oo) satisfying V'(z) =0 for x < 0 and x > 1, and sup Wtf'l :5 1. Fix cl > 0,

and write ml, m for integers such that mi cin 2 p, /(2&,, +1) , m 1 m < n and m1 m - n. Then

* m - cliI 2 i) nu 6- MI/ an .I1 Let 'l1,***,' bea sequence of 0's and

I 's, and defne f =f(.1,. . ., In) by

fS f{(i -1)mi + jl/n] = b1I.V(j/n~j) if 1 5i < m and 1 < i:5m, A.3
. f(x)=O ifx<Oorx>mjm/n.

* Write .7 for the set of all such Fs. Define constant functions go MI and g, _ 1 + CA6

4'where C2 #60, and let Q'=go, gi }. For large n, FgC(v', B) andQ C+ (V2 ,B).

W~e claim that if 0 < zo < 1 and § is a nonparaxnetric estimator of g,

SUP Ef,,{4(Xo)_-g(.To)) 2 > Cn-4 v1(2v,+]) ,(A.4)

fET,gaE9

where C > 0. It suffices to prove this result for estimators which are functions of Y for

i < mim. Let I I .. be independent Symmetric 0-1 variables, independent also of the
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f is. For these li's, write f for the (random) function defined as f at (A.3), and let J

denote the likelihood ratio rule for discriminating betlween the hy"potheses

Ho : YI = f*(i/n) + goznIi, H, : Y= f*(i/n) + jin1j

Define .1=0 if I (xo) - go(xo)I :5 J~(o) - gi(xo)I, and I1= otherwise. Write Pi, and Ei

for probability and expectation under Hi. Then

Sup Ef,q )-g(xo) } >)2 max E{f(&o) - gi (x o))'
fEYgF i= 1,2

2 (1c a)xfPo(j = 1),P 1 (j = 0)} ?ic 2 ) {P( =)+ 1 (j = 0))

C b~2 )2 {PO(j = 1) + p 3 (J = 0)}

by the optimality of the likelihood ratio rule. Therefore (A.4) will follow if we prove

liminf Fo(J = 1) > 0.(A5

Let (g, H) denote either (go, Ho) or (gl IHI). If k = (i - I)ml + j where 1 < i < m

and 1 < < ml, write E', for Y' and eii for Ek Assuming standard normal errors fi,, the

likelihood of H given Y,... , Y,,,~,, is proportional to

k()~" ?7/(exPi- 9~~ + exp[g'ZY,-6 (/n)1]

If H0 is true then

L(H) = g ??in/ ex(-

Il x [exp - !I(d, + 24Nj)g-J + exp{--(l - I,)(d, - 2d1Ni)g-']

where d, bEtk2(j/nb1 ) -d =c 2&P1+l fb02 , and Ni d- EOj/b~ is standard

normal. Therefore, using the symmetry of N~,

R =-2log{ L(HI)/L(Ho)) = m 1 m(I - gj1 + logg )2(g]' - )mD + OP(Mmb2 +m6)

where D E[{1I + exp(ld +di Ni)}-1(-d + di N)]. Note that

Ig-' _ 1jjiE1(,E?. _ 1)1 = OP{(M1M62)*} = -o_(rm6
2 ).

III11 I
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Choose c, so that D $0, let. C3 > 0 and put C2 =C3 sgn (D). Since 9i1 + C26 then

R _-_M1 M 2 C~{ up(l)) + MbC3 (DJI + o.,(1))

Choose C3 so small that c4 MC31DI - 2_2vj13 > 0. Then R s- C4 M6 -+~ oo, so that

Po(J = 1) -- 1, proving (A.5).

Appendix (iv): Sketch proof of ('3.4).

Let s(x) =-f(x)d(x) and Si,(x) =fj(x)ch,(z). Assume vi > v2/ {2(v 2 + 1)}, and put

2max(n -2 ' /(2m',+1), n -2v2/(2v2+1) )(log n)2 . Equation (3.4) will follow if IAn I = pt)

1B.1 = Op(tn)- Dropping the argument x,

fi- f = (Si. - .s)/d - (Si, - 8)(d1, - d)/(dd1 3 ) - s(di, - d)/(dd1 3 )

= (Si, - s)/d - (S, - s)(ii1 - d)/(dd1 ,) - s(i 1 , - d)/d 2

+s(d - d 2 (~i (A.6)

For An, note that

(j, _ f)2 < 10(p, _ 5s) 2 /d 2 + p, _ )2 (dl - )2/(d 1 )2 +(/) 2 (d1 , -2/J

This bounds An by the sum of three terms, say An,, An 2 and An 3. By (3.3), An 3 = O()

If we show that An, = ,tn) the same easily follows for An 2 by (3.3). Define

vi(2j) 2(nh)' Zff(x-k) - f (Xi)}Kl{(Xk - x)h)dx)

* t2(Xr) 2(nh)' E (k)'ejK{(xk - x)h)dx)
kvi

*V3(Xi) f f(xi){fdh (x,) - x) lx)

Since Yk - f (xi) = f )- f (xi) + x )ffkteAn! ni+Ai2+ n1whr

A 10 (n 62) I K2 f{(X - -To0Ib21Ivj(-Ti)

By (3.3) for the last and moment calculations for the first two, it is seen that each An11

0PG)
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To study Bn, split it into four terms Bn + B, 2 + B, 3 + Bn 4 based on (A.6). Using

(3.3), Bn 4 = OP((n). Since EBn3 = 0, one proves that Bn 3 = Op,) by showing that

var (B. 3 ) = O( 2), which is an easy calculation. For Bn 2 apply Cauchy-Schwarz, (3.3) and

the arguments used to bound An1, to show that Bn12 = O,(f,). This leaves us to study

BnI. Now Bn1 = B. 11 + Bn 1 2 + B. 1 3, where

~n

Bn1, = (nh2 )- 1 j g(zj)1EK 2 {(T,- xo)/h2)tA¢X)

Each of these random variables has mean zero and variance O(c2), completing the proof.
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