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Abstract 

Suppression effect in multiple regression analysis may be more common in research than what is 

currently recognized. We have reviewed several literatures of interest which treats the concept 

and types of suppressor variables. Also, we have highlighted systematic ways to identify suppres-

sion effect in multiple regressions using statistics such as: R2, sum of squares, regression weight 

and comparing zero-order correlations with Variance Inflation Factor (VIF) respectively. We also 

establish that suppression effect is a function of multicollinearity; however, a suppressor variable 

should only be allowed in a regression analysis if its VIF is less than five (5). 
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1. Introduction 

When selecting a set of study variables, researchers frequently test correlations between the outcome variables 

(i.e. dependent variables) and theoretically relevant predictor variables (i.e. independent variables) [1]. In some 

instances, one or more of the predictor variables are uncorrelated with the outcome variable [2]. This situation 

poses the question of whether researchers’ multiple regression analysis should exclude independent variables 

that are not significantly correlated with the dependent variable [3]. 

Questions such as this are most times not given the supposed credit. In multiple regression equations, sup-

pressor variables increase the magnitude of regression coefficients associated with other independent variables 
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or set of variables [4]. A suppressor variable correlates significantly with other independent variables, and ac-

counts for or suppresses some outcome-irrelevant variations in such predictors as well as improving the overall 

predictive power of the model. Given this function, some prefer to call the suppressor variable an enhancer 

[5]. 

1.1. Stepwise Regression and Its Limitation 

Stepwise regression is a common technique used to eliminate variables when the relationship of each predictor 

variable with an outcome variable is tested separately for statistical significance. Predictor variables that are not 

significantly related to outcome variables are often eliminated at the bi-variate level. Bi-variate results obtained 

from stepwise selection, provide only partial information about the relationship between a predictor and an out-

come variable, and are an improper method for selecting variables for a multiple regression model. Some re-

searchers have reported that when a multiple regression model is incorporated with a predictor variable that is 

uncorrelated with the outcome variable in a bi-variate model, the uncorrelated predictor variable sometimes sig-

nificantly improved the explained variance [6]. Under such circumstances, the whole regression can be greater 

than the sum of parts [7]. Nevertheless, researchers often prematurely eliminate these variables during their va-

riable selection process based on the variable’s very low bi-variate correlation with the dependent (response) va-

riable. However, eliminating these uncorrelated variables will cause the researcher to underestimate some of the 

parameters, and this will lead to undermining the predictive power of the model and may yield regression equa-

tions with less predictability because stepwise regression is a handicap in variable selection for variables with 

multicollinearity [8]. 

1.2. Multicolinearity 

Collinearity is a linear association between two explanatory (predictor) variables. Two regressor variables are 

perfectly collinear if there is an exact linear relationship between the two. 

Multicollinearity: Multicollinearity refers to a situation in which two or more explanatory (predictor) va-

riables in a multiple regression model are related with each other and likewise related with the response variable. 

We have perfect multicollinearity if, for example as in the equation above, the correlation between two inde-

pendent variables is equal to 1 or −1. In practice, we rarely face perfect multicollinearity in a data set. More 
commonly, the issue of multicollinearity arises when there is an approximate linear relationship among two or 

more independent variables. 

In regression analysis, we look at the correlations between one or more input variables, or factors, and a re-

sponse to visualize the strength and direction of association between them. But in practice, the number of poten-

tial factors you may include in a regression model is limited only by your imagination and your capacity to ac-

tually gather the desired data of interest.  

1.3. Effect of Multicollinearity 

Multicollinearity practically inflates unnecessarily the standard errors of the coefficients. Whereas, increased 

standard errors in turn means that coefficients for some independent variables may be found not to be signifi-

cantly far from 0. In other words, by overinflating the standard errors, multicollinearity makes some variables 

statistically insignificant when they should be significant. Without multicollinearity (that is, with lower standard 

errors), those coefficients might be significant. 

1.4. Handling Multicollinearity 

A little bit of multicollinearity isn’t necessarily a huge problem. But severe multicollinearity is a major problem, 

because it theoretically shoots up the variance of the regression coefficients, making them unstable. The more 

variance they have, the more difficult it is to interpret the coefficients. Some things to be concerned about when 

multicollinearity is a factor in multiple regression analysis are outlined as: 

• A regression coefficient is not significant even though, in the real sense, that variable is highly correlated 

with Y. 

• When you add or delete a predictor variable, the regression coefficients changes dramatically. 

• Having a negative regression coefficient when the response should increase along with X. 
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• Having a positive regression coefficient when the response should decrease as X increases. One way to esti-

mate multicollinearity is the variance inflation factor (VIF), which assesses how much the variance of an es-

timated regression coefficient increases when predictors are correlated. If no factors are correlated, the VIFs 

will all be 1. If the variance inflation factor (VIF) is equal to 1 there is no multicollinearity among regressors, 

but if the VIF is greater than 1, the regressors may be moderately correlated. A VIF between 5 and 10 indi-

cates high correlation that may be problematic. And if the VIF goes above 10, it can be assumed that the re-

gression coefficients are poorly estimated due to multicollinearity which should be handled accordingly. If 

multicollinearity is a problem in a multiple model, that is, the variance inflation factor (VIF) for a predictor 

is near or above 5. The solution may be simply to: 

• Remove highly correlated predictors from the model: If there are one or more factors with a high VIF, 

one of the factors should be removed from the model. Because they supply redundant information, removing 

one of the correlated factors usually doesn’t drastically reduce the R-squared. However, instead of tagging 

multicollinearity as a disadvantage in multiple linear regressions, we are viewing it as an advantage in the 

sense that predictors act as suppressor variables in regression analysis leveraging on presence of multicoli-

nearity among independent variables because a predictor which shares zero order correlation with the re-

sponse variable can only be retained in the model if and only if it is significantly correlated with one or more 

predictor variables under study. Having studied the concept and effect of multicollinearity we can theoreti-

cally say that a suppressor variable should be allowed in a regression model if and only if the variance infla-

tion factor (VIF) is below 5, that is, if the strength of multicolinearity in the model does not account for ren-

dering other predictors redundant (less significant when they should be practically significant) [9]. 

1.5. Categories of Suppressor Variables 

Since the introduction of the concept of suppression, many authors have expanded the definition of these va-

riables (see for example, [5] [9] [10] [11] opined that the name “suppressor variable” may have a pejorative 

connotation because “suppression” sounds like “repression”. On the contrary, suppressor variables are actually 

advantageous because they improve the prediction of the criterion. In essence, these variables suppress irrele-

vant variance in the other predictor variable(s), thus indirectly allowing for a more concise estimate of the pre-

dictor-criterion relationship, even though the suppressor variable directly predicts none or almost none of the 

criterion variable’s variance 

There are four types of suppressor variables: the classic suppressor, the negative suppressor, the reciprocal 

suppressor, and the absolute and relative suppressor. We briefly introduce each type below.  

1.6. Classic Suppression  

Classic suppression in multiple regression analysis was originally introduced and was later demonstrated ma-

thematically. Although, there exist a zero-order correlation between a suppressor and an outcome variable (zero 

correlation), the prediction in the outcome variable increases when a suppressor variable is added to the equation 

simply because the suppressor variable is correlated with another predictor (or set of predictors) that are corre-

lated with the outcome (dependent) variable. In this case, the suppressor variable removes irrelevant predictive 

variance from the other predictor (or set of predictors) and increases the predictor’s regression weight, thus in-

creasing overall model predictability. Sometimes the suppressor variable may also receive nonzero regression 

weight with a negative sign. However, a variable is a suppressor only for those variables whose regression 

weights are increased. Thus, a suppressor is not defined by its own regression weight but rather by its effects on 

other variables in a regression system [4].  

Consider an example involving two predictor variables, 1X  and 2X .  

Here 
1

0.707106yxr = , 
2

0.0yxr = , and 
1 2

0.707106x xr = − . For these data, the beta weight 1β  for the first 

predictor, 1X , will equal: 
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The beta weight 2β  for the second predictor, 2X , will equal: 

( )( )
( )( ) ( )
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The coefficient of determination 2
R  for these equals: 

( )( ) ( )( )
( )( ) ( )( )

1 2

2

1 2

1.414213 0.707106 1.0 0.0

1.0 0.
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= +
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Thus, in this example, even though 2X  has a zero correlation with iY , the use of 2X  as part of prediction 

along with 1X  doubles the predictive efficacy of the predictors, yielding perfect prediction. 

1.7. Negative Suppressor 

Negative suppression was introduced and later explained mathematically by [4]. A negative suppressor works in 

a manner similar to that of a classic suppressor by removing irrelevant variance from a predictor (or set of pre-

dictors), increasing the predictor’s regression weight, and increasing overall predictability of the regression equ-

ation. The difference between these two types of suppressors is the negative suppressor’s positive zero-order 

correlation with other predictor variable(s) and with the outcome variable; however, when entered in multiple 

regressions, the negative suppressor has a negative beta weight [4].  

1.8. Reciprocal Suppressor 

Reciprocal suppression was introduced by [4]. Some authors have also called this concept suppressing con-

founders [1]. Here, both the predictor and the suppressor variable have a positive zero-order correlation with the 

outcome (response) variable but have a negative zero-order correlation with each other this part the regressors 

share is actually irrelevant to iY , that is; 1X  and 2X  having a negative zero-order correlation with each other. 

When iY  is regressed on these two variables, 1X  and 2X  will suppress some of their irrelevant information, 

increase the regression weight of each other making their regressor coefficients positive respectively, and thus 

improve model 2
R .  

1.9. Absolute/Relative Suppressor 

Absolute and relative suppression was originally introduced by [4] and further clarified by [12]. According to 

[12], absolute suppression is defined by the relationship between the predictor’s weight in bi-variate regression 

equation and its weight in multivariate equations. It exists whenever adding predictors increases the weight of 

the variable relative to its weight in the bi-variate equation. On the other hand, if the regression weight of a pre-

dictor variable increases when a new variable is added to a regression equation, but the increase is not beyond 

the respective weight of the predictor in the bi-variate mode, then the new variable is a relative suppressor [12]. 

Therefore, relative suppression is tested hierarchically, and the researcher must compare the standardized beta 

weights of the predictors (regressos) in the equation before and after the inclusion of the variable that may be a 

potential relative suppressor. Hence, relative suppression should be tested only when there are three or more 

predictors [12]. 
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1.10. How Common Are Suppressor Variable(s) in Multiple Regression? 

The use of suppressor variables in multiple regressions is more common than currently recognized [13] [14]. 

This lack of recognition may be as a result of the fact that suppressor variables are not necessarily a special cat-

egory of predictor (independent) variables; they can be any predictor (or independent) variable in a multiple re-

gression model, including variables for race/ethnicity, income, education, and self-worth [14]. Using a multiple 

regression model to predict the salary of administrators at educational institutions, [11] found that the variable 

for level of education attained acted as a suppressor variable. The variable for level of education had a close to 

zero (but positive) zero-order correlation with administrators’ salaries (dependent (response) variable) at both 

public and private institutions (r = 0.010 and 0.014 for public and private institutions respectively). However, 

the model’s regression coefficient associated with the level of education was not only statistically significant but 

was also negative. This finding prompted [11] to test the level of education variable for its suppression effect. 

He noted that at the bi-variate level, the level of education variable was weakly correlated with the dependent 

variable (salary) but was significantly correlated with other independent variables, including respondent’s age. 

To determine if level of education was a suppressor variable, [11] ran the regression model with and without the 

level of education variable included in the regression models predicting salary (dependent variable). In the mod-

el for public institutions, the addition of the level of education variable increased the (coefficient of multiple de-

termination) 2
R  from 0.26 to 0.28. In the model for private institutions that excluded the level of education va-

riable, the 2
R  was 0.22; the inclusion of the level of education variable increased the 2

R  to 0.36. [11] con-

cluded that the level of education was a suppressor variable in predicting salary of administrators for both public 

and private educational institutions [15].  

Similarly [16], the suppressor effect of a variable for cognitive ability was demonstrated by [17] in a study 

examining outcomes of medical rehabilitation among older adults. Specifically, the study examined the proba-

bility of a patient’s returning to independent living (i.e. living alone) versus living with others. [17] and col-

leagues noted that demographic variables for age and education became significant predictors of return to inde-

pendent living only when the model included the variable for cognitive ability. Although the authors concluded 

the cognitive ability variable produced a suppressive effect, they did not analyze the nature of suppression. 

Having reviewed relevant literatures as to the nature, implication, behavior and identification of suppressor 

variable(s) and its effect in multiple regression analysis validation and reporting of results, we can say to a rea-

sonable extent that the concept of suppression effect in multiple regression has for long been in existence but has 

not been in lime light due to the fact that suppressor variables are not necessarily a special category of predictor 

(independent) variable in regression analysis. However they can simply be referred to as any predictor or inde-

pendent variable that are not necessarily correlated with the outcome or response variable but linearly correlated 

with some or all the other predictors so to say. 

1.11. Identifying Suppressor Variable(s) 

As a result of the fact that researchers are in a perpetual search for substantive relationships between variables, 

they usually try to use predictors that they believe will be highly correlated with the response variable. For this 

reason, suppressor variables are usually not consciously sought out to be included in a regression equation. For-

tunately, suppressor variables can be incorporated into a study unknown to the researcher. In these situations, 

even variables that would not be considered theoretically reasonable as direct predictors have possibilities for 

suppressor effect [4]. 

Another complication in detecting suppressor variables is that they may simply be overlooked because of their 

low zero-order correlations or non-correlation with the response variable [10]. The definitions above pay partic-

ular attention to two indicators of a suppressor effect: beta (β) weights and correlations between the predictors. 

However, many researchers neglect either one or the other [18]. The emphasis here is that interpretation of either 

beta (β) weights alone or correlation coefficients (r) alone may lead to major oversights in data analysis which 

should be stated that “the thoughtful researcher should always interpret either (a) both the beta weights and the 

structure coefficients or (b) both the beta weights and the bi-variate correlations of the predictors with Y (re-

sponse)”. 

One final problem in detecting suppressor variables is the type of statistical analysis employed. The only 

analysis that has been discussed to this point is that of linear regression where the predictors are inter-correlated 

[16]. Knowledgeable researchers understand that all least squares analyses are in fact forms of the General Li-
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near Model. For example, [18] demonstrated that multiple linear regression subsumes all uni-variate parametric 

methods as special cases and that a uni-variate general linear model can be used for all uni-variate analyses. Ten 

years later, [18] demonstrated that canonical correlation analysis subsumes all parametric analyses, both uni-variate 

and multivariate, as special cases. Thus, it is not surprising that there is the possibility to obtain a suppressor ef-

fect in other forms of analysis. 

2. Methodology 

We undertook a review of science literatures and various databases to understand the concept of multicollinear-

ity and suppressor variables in regression analysis, again we went ahead to further examine the linkage between 

multicollinearity and suppression effect keeping in mind the supposed implication of multicollinearity in over or 

underestimating regression inferences . Next, we designed a sample study for the purpose of illustrating the set-

backs of refusing to allow a suppressor variable in a regression analysis without obtaining it variance inflation 

factor (VIF). 

Data Source and Type 

Solely for the purpose of illustration, in our investigation we employed the use of a simulated data from 

MINITAB (14) and Microsoft Excel (2007). These data is a 5 variable data, we have also assigned arbitrary 

names to the variables which include: Grain Yield, Plant Heading, Plant Height, Tiller Count and Panicle Length. 

A limitation of this analysis is that we have as a result of the fact that it is sometime nearly hard to have a set of 

data which has a zero order correlation between them, but having our objective in mind, that is, to show the li-

mitation of stepwise selection in been able to select a variable with zero or nearly zero order correlation with the 

response variable and to show that we cannot talk about suppression effect in analysis without talking about 

multicollinearity. Therefore we require a set of predictor variables that exhibit the basic nature of effect we in-

tend to show that is, independent variables that have near zero or very weak correlation with the outcome (de-

pendent) variable and other predictor variables that has a non-zero correlation with the response variable. We 

have ignored limitations that are inherent in the use of such data. Readers should ignore all implications of our 

findings, taking away from this exercise only the discussion that pertains to the limitation of stepwise selection 

and the advantage of multicollinearity as regards suppression effect. 

The statistical packages used for this study are R-Package 3.2.2, Stat-Graphics (version 17), Minitab (ver-

sion 14) and Microsoft Excel 2010. The choice of these packages is due to preference. 

3. Analysis and Results 

Quite a number of authors have proposed the understanding suppressor variables by evaluating regression 

weights [4] [12] [18] [19]. Instead of the regression weights, some researchers have preferred squared semipar-

tial correlation of the suppressor variable in evaluating suppressor effect of a variable [18] [20] [10]. In the cur-

rent study, we intend to show the limitation of stepwise selection and the advantage of multicollinearity in re-

gression analysis by evaluating the regressor weights and the general predictability of the regression model with 

VIF as a constraint. 

3.1. Hypothesis 

From the simulated data, we hypothesized that the Grain Yield of wheat if solely dependent on Plant Heading, 

Plant Height, Tiller Count and Panicle Length. Specifically, we examined the following hypothesis: 

• The grain yield of wheat depends on the plant heading; 

• The grain yield of wheat depends on plant height; 

• The grain yield of wheat depends on tiller count; 

• The grain yield of wheat depends on panicle length, 

3.2. Measures 

We picked five (5) variables from the simulated wheat grain yield data: 1) Grain yield; 2) Plant Heading; 3) 

Plant Height; 4) Tiller Count; 5) panicle Length. We treated plant heading, plant height, tiller count and panicle 

length as predictor (independent) variables while grain yield as response (dependent) variable. 
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4. Results 

The first step of analysis involves a Pearson zero order correlation of the five variables that is, Grain Yield, Plant 

Heading, Plant Height, Tiller Count and Panicle Length. From Table 1 below, we can clearly see that Grain 

Yield is remotely/weakly correlated with Tiller Count ( 0.001r = ) and Plant Height ( 0.039r = ), but it is signif-

icantly related with Plant Heading ( 0.591r = ) and Panicle Length ( 0.767r = ) respectively. From the zero order 

correlation result, we are able to see that just two out the four predictor variables are significantly correlated 

with the outcome (response) variable (that is, Plant Heading and Panicle Length). Therefore, we may just con-

clude that the variables to be selected should be Plant Heading and Panicle Length leaving out Plant Height and 

Tiller Count. 

4.1. Correlation 

The second analytic step is to clearly outline the correlated predictors. To this end, we check for multicollinear-

ity among these four independent (predictor) variables. Therefore, from Table 1, the zero order correlation val-

ues between the four independent variables are: 

• Plant Heading and Plant Height, Tiller Count, Panicle Length ( 0.093, 0.326,0.261r = − ); 

• Plant Height and Tiller Count and Panicle Length ( 0.007,0.174r = ); 

• Tiller Count and Panicle Length ( 0.179r = ). 

The third step involves assessment of Tiller Count as possible suppressor variable. Since Tiller Count is not 

significantly related with the outcome variable Grain Yield but the Tiller Count variable is significantly asso-

ciated with the other predictor variables (that is, Plant Heading, Plant Height and Panicle Length) and therefore 

this suggests Tiller Count as a potential suppressor variable.  

But before we go ahead to investigate the presence of suppression among the predictor variables, it is expe-

dient to employ the already existing methods of variable selection in regression analysis to get a clear picture of 

the potentially relevant variable(s) that will be suggested by the various methods of variable selection as it are so 

as to further buttress our point. 

4.2. Forward Selection 

Stepwise Regression: Grain Yield versus Plant Heading, Plant Height, Tiller Count and Panicle Length. Re-

sponse is Grain Yield on 4 predictors, with N = 50. From Table 2 above, the forward selection process selects 

the plant heading and panicle length variable at 0.05 (α) as the significant variables to be included in the model 

as suggested by the correlation result in Table 1 above with their corresponding p-values. 

4.3. Backward Elimination  

Stepwise Regression: Grain Yield versus Plant Heading, Plant Height, Tiller Count and Panicle Length. 

Response is Grain Yield on 4 predictors, with N = 50. 

From Table 3 above, the forward selection process selects the plant heading and panicle length variable at  

 
Table 1. Bi-variate zero order correlation. 

 Grain Yield Plant Heading Plant Height Tiller Count Panicle Length 

Grain Yield 1     

Plant Heading 0.5917 1    

P-Value 0.000     

Plant Height 0.0393 0.0936 1   

P-Value 0.786 0.518    

Tiller Count 0.0016 −0.3264 0.0070 1  

P-Value 0.991 0.021 0.961   

Panicle Length 0.7675 0.2618 0.1745 0.1792 1 

P-Value 0.000 0.066 0.225 0.213  
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0.05 (α) as the significant variables to be included in the model as suggested by the correlation result in Table 1 

above with their corresponding p-values. 

4.4. Stepwise Selection 

Stepwise Regression: Grain Yield versus Plant Heading, Plant Height, Tiller Count and Panicle Length. 

Response is Grain Yield on 4 predictors, with N = 50. 

From the three methods of variable selection (Tables 2-4) (that is, forward selection, backward elimination 

 
Table 2. Forward selection alpha-to-enter: 0.05(α). 

Step 1 2 

Constant 253.38 −95.54 

Panicle Length 0.807 0.691 

T-Value 8.30 8.76 

P-Value 0.000 0.000 

Plant Heading  0.406 

T-Value  5.59 

P-Value  0.000 

R-Sq 58.91 75.30 

R-Sq (Adj) 58.06 74.25 

 
Table 3. Backward elimination. alpha-to-remove: 0.05(α). 

Step 1 2 3 

Constant 144.30 155.43 −95.54 

Plant Heading 0.421 0.412 0.406 

T-Value 5.37 5.76 5.59 

P-Value 0.000 0.000 0.000 

Plant Height −1.11 −1.11  

T-Value −1.62 −1.64  

P-Value 0.112 0.108  

Tiller Count 0.4   

T-Value 0.31   

P-Value 0.759   

Panicle Length 0.704 0.711 0.691 

T-Value 8.50 9.06 8.76 

P-Value 0.000 0.000 0.000 

R-Sq 76.71 76.67 75.30 

R-Sq (Adj) 74.64 75.14 74.25 

 
Table 4. Alpha to enter and remove: 0.05(α). 

Step 1 2 

Constant 253.38 −95.54 

Panicle Length 0.807 0.691 

T-Value 8.30 8.76 

P-Value 0.000 0.000 

Plant Heading  0.406 

T-Value  5.59 

P-Value  0.000 

R-Sq 58.91 75.30 

R-Sq (Adj) 58.06 74.25 
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and stepwise selection) above, we are able to deduce that Plant Heading and Panicle Length are the potentially 

relevant variables to be included in the model as suggested by the three variable selection methods. But it is 

against this backdrop that we suggest the presence of a suppressor variable from the zero order correlation of the 

four predictor (independent) variables. We analyze having identified the existence of multicollinearity among 

the said predictor (independent) variables. To this end, we, therefore, identify Tiller Count as a potential sup-

pressor variable because of its significant correlation with other predictor (Plant Heading) which is said to be the 

presence of multicollinearity within the said variables. 

The fourth analytic step is to run a regression of the variables both in the bi-variate and multiple variable cas-

es to explicitly reveal the suppression effect of the Tiller Count variable as the potential classic suppressor in the 

regression model. 

4.5. Regression Analysis 

The Bi-variate Case 

Regression Analysis: Grain Yield versus Plant Heading  

The regression equation is 

Grain Yield 554 0.573 Plant Heading= +                           (1) 

( )35.0% 33.7%RSq RSq adj= =  

Regression Analysis: Grain Yield versus Plant Height  

The regression equation is 

Grain Yield 1153 0.37 Plant Height= +                            (2) 

( )0.2% 0.0%RSq RSq adj= =  

Regression Analysis: Grain Yield versus Tiller Count  

The regression equation is 

Grain Yield 1246 0.03 Tiller Count= +                            (3) 

( )0.0% 0.0%RSq RSq adj= =  

Regression Analysis: Grain Yield versus Panicle Length  

The regression equation is 

Grain Yield 253 0.807 Panicle Length= +                           (4) 

( )58.9% 58.1%RSq RSq adj= =  

Results obtained from Tables 5-12 that is; the regression analysis in the bi-variate cases shows that the sig-

nificant predictors among the four predictor variables are plant heading and panicle length. This is in agreement 

with the correlation result obtained in Table 1 and also the suggestions by the stepwise selection process. The 

next step is to carry out the regression analysis in the multiple variable cases. 

 
Table 5. Summary of regression coefficients. 

Predictor Coef SE Coef T-Value P-Value 

Constant 553.8 136.2 4.06 0.000 

Plant Heading 0.5727 0.1126 5.09 0.000 

 
Table 6. Analysis of variance. 

Source Df Sum of Squares Mean Square F-Ratio P-Value 

Regression 1 13,980 13,980 25.86 0.000 

Residual Error 48 25,948 541   

Total 49 4,939,928    
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Table 7. Summary of regression coefficients. 

Predictor Coef SE Coef T-Value P-Value 

Constant 1152.5 343.9 3.35 0.002 

Plant Height 0.368 1.346 0.27 0.786 

 
Table 8. Analysis of variance. 

Source Df Sum of Squares Mean Square F-Ratio P-Value 

Regression 1 61.9 61.9 0.07 0.786 

Residual Error 48 39,866.3 830.5   

Total 49 39,928.2    

 
Table 9. Summary of regression coefficients. 

Predictor Coef SE Coef T-Value P-Value 

Constant 1245.85 49.30 25.27 0.000 

Tiller Count 0.025 2.174 0.01 0.991 

 
Table 10. Analysis of variance. 

Source Df Sum of Squares Mean Square F-Ratio P-Value 

Regression 1 0.01 0.01 0.00 0.991 

Residual Error 48 39,928.1 831.8   

Total 49 39,928.2    

 
Table 11. Summary of regression coefficients. 

Predictor Coef SE Coef T-Value P-Value 

Constant 253.4 119.7 2.12 0.040 

Panicle Length 0.80689 0.09728 8.30 0.000 

 
Table 12. Analysis of variance. 

Source Df Sum of Squares Mean Square F-Ratio P-Value 

Regression 1 23,523 23,523 68.83 0.000 

Residual Error 48 16,405 342   

Total 49 39,928    

4.6. Multiple Variable Cases 

Regression Analysis: Grain Yield versus Plant Heading, Panicle Length  

The regression equation is 

Grain Yield 96 0.406 Plant Heading 0.691 Panicle Length= − + +                  (5) 

( )75.3% 74.3%Sq RSq adj= =  

Regression Analysis: Grain Yield versus Plant Heading, Tiller Count and Panicle Length 

The regression equation is 

Grain Yield 95 0.416 Plant Heading 0.38 Tiller Count 0.699 Panicle Length= + + +           (6) 

( )75.4%  74.7%RSq RSq adj= =  

From the four regression analyses in the bi-variate case, in model 1, we regressed our outcome variable Grain 
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Yield on the predictor variable Plant Heading was significant and accounted 33.7% of the variance in the out-

come variable. Plant Heading was positively associated with grain yield in the bi-variate correlation  

( 1 0.573, 5.09, 0.05t pβ = = < ). This implies that as Plant Heading increases by one unit Grain Yield increases 

by 57.3%. 

In model 2, Grain yield versus Plant Height which was insignificant as suggested by the correlation result in 

Table 1 and the stepwise process respectively. Plant Height accounts for only 0.0% of the variance in the out-

come variable ( 1 0.37, 0.27, 0.05t pβ = = > ). This suggests that the relationship between grain yield and plant 

height is negligible. 

In model 3, Grain Yield versus Tiller Count was insignificant as suggested by the correlation result in Table 1 

and the stepwise process respectively. Tiller Count and Grain Yield were not associated this does not account 

for any variability in the outcome variable ( 1 0.03%, 0.01, 0.05t pβ = = > ). This theoretically implies that there 

is no relationship at all between Grain Yield and Tiller Count. 

In model 4, Grain Yield versus Panicle Length was significant as expected and accounted for about 58.1% of 

the variance in the outcome variable. Panicle Length which was positively associated with Grain yield has 

( 1 0.807, 8.30, 0.05t pβ = = < ). This implies that Panicle Length increases by one unit Grain Yield increases by 

80.7%. 

4.6.1. Multicollinearity 

Multicollinearity in regression is viewed as more of disadvantage, as it practically inflates unnecessarily the 

standard errors of coefficients in regression. Having studied Variance Inflation Factor (VIF) we know that a VIF 

of 5 and above is not good for regression model because it might render other significant variables redundant. 

Therefore, from our equation in Table 13, we can see that Plant Heading and Panicle Length share the same VIF 

1.1 and 1.1 respectively as well as in Table 14, the analysis is very significant from the p-value column also in 

Table 15 containing the three variables Plant Heading, Tiller Count and Panicle Length the VIFs are 1.3, 1.2, 

and 1.2 respectively and was also significant from the p-value column in Table 16. The Tiller Count and Panicle  

 
Table 13. Summary of regression coefficients. 

Predictor Coef SE Coef T-Value P-Value VIF 

Constant −95.5 112.7 −0.85 0.401  

Plant Heading 0.40602 0.07270 5.59 0.000 1.1 

Panicle Length 0.69141 0.07896 8.76 0.000 1.1 

 
Table 14. Analysis of variance. 

Source Df Sum of Squares Mean Square F-Ratio P-Value 

Regression 2 30,068 15,034 71.66 0.000 

Residual Error 47 9860 210   

Total 49 39,928    

 
Table 15. Analysis of variance. 

Source Df Sum of Squares Mean Square F-Ratio P-Value 

Regression 3 30,089 10,030 46.89 0.000 

Residual Error 46 9840 214   

Total 49 39,928    

 
Table 16. Summary of regression coefficients. 

Predictor Coef SE Coef T-Value P-Value VIF 

Constant 94.6 119.3 0.89 0.376  

Plant Heading 0.41584 0.07984 5.21 0.000 1.3 

Tiller Count 0.381 1.219 0.31 0.756 1.2 

Panicle Length 0.69910 0.08331 8.21 0.000 1.2 
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Length variable have the same VIF that is to say Tiller Count in the model serves as a classic suppressor Panicle 

Length. However, having studied this effect we say that instead of viewing multicollinearity as a disadvantage 

we are viewing it as an advantage since suppressor variables leverage on multicollinaerity among variables to 

act. That is to say, suppression effect is a function of multicollinearity. Therefore to this end we say that a sup-

pressor variable should be allowed a place in a multiple regression model if its VIF is less than five (5). 

4.6.2. Classic Suppression 

Having identified Tiller Count as a suppressor variable, that is, Classic suppressor, from the correlation result in 

Table 1 we can now infer from the inclusion of Tiller Count Variable in the multiple regression model for Grain 

Yield versus Plant Heading, Tiller Count and Panicle Length was significant as argued and the suppressor varia-

ble has improved the Beta Weight (coefficient) of the predictor variable Plant Heading from (0.406 to 0.416, p < 

0.05) with that of Panicle Length from (0.691 to 0.699, p < 0.05) and has also improved the general predictabil-

ity of the model as a whole. 

Therefore from the above illustration we have been able to show a clear case of classic suppression in the re-

gression model for Grain Yield versus Plant Heading, Tiller Count and Panicle Length. 

4.6.3. Reciprocal Suppression 

The final analytic step is to check for reciprocal suppression effect in the overall model side by side classic sup-

pression. From the definition of reciprocal suppression; here, both the predictor variables (Tiller Count and Plant 

Heading) have a positive correlation with the outcome (response) variable but have a negative zero-order corre-

lation with each other. When the response variable is regressed on these two variables, they will suppress some 

of their irrelevant information, increase the regression weight of each other, and thus improve model 2
R . From 

our correlation result in Table 1 above, we can clearly see that Plant Heading and Tiller Count are negatively 

correlated which suggests the presence of a reciprocal suppression effect. Therefore haven satisfied the condi-

tion for a reciprocal suppression effect, the regression analysis for Grain Yield versus Plant Heading, Plant 

Height Tiller Count and Panicle Length shows the result as expected. That is, the Beta (regressor) weights for 

Plant Heading, Tiller Count and Panicle Length are positive, the weights were also improved accordingly by 

clearing out the outcome irrelevant variances for each other and improving the overall predictability of the mod-

el. 

4.7. Discussion 

In this section, we discuss some of the advantages of accurately identifying suppression effects and the benefits 

of using suppressor variables in multiple regression analysis. Using suppressor variables in multiple regressions 

will yield three positive outcomes: determining more accurate regression coefficients associated with indepen-

dent variables; improving overall predictive power of the model; and enhancing accuracy of theory building.  

First, the risks associated with excluding a relevant variable are much greater than the risks associated with 

including an irrelevant variable. The regression weight of an independent variable may change depending upon 

its correlation with other independent variables in the model. If a suppressor variable that should have been in 

the model is missing, that omission may substantially alter the results, including an underestimated regression 

coefficient of the suppressed variable, higher model error sum of squares, and lower predictive power of the 

model as it has been shown in the analysis above . An incomplete set of independent variables may not only un-

derestimate regression coefficients, but in some instances, will increase the probability of making a Type II error 

by failing to reject the null hypothesis when it is false. In contrast, although including irrelevant variables in a 

model can contribute to multi-collinearity and loss of degrees of freedom, those variables will not affect the pre-

dictive power of the model. Hence, the risk of excluding a relevant variable outweighs the risk of including an 

irrelevant variable. To avoid underestimating the regression coefficient of a particular independent variable, it is 

important to understand the nature of its relationship with other independent variables. The concept of suppres-

sion provokes researchers to think about the presence of outcome-irrelevant variation in an independent variable 

that may mask that variable’s genuine relationship with the outcome variable.  

Only when a predictor variable that is uncorrelated with other predictors is included in a multiple regression, 

will the regression weight of other predictor variables remain stable and not change. However, in most research, 

explanatory variables are inter-correlated, and regression coefficients are calculated after adjusting for all the 
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bi-variate correlations between independent variables. When a multiple regression model is altered by adding a 

variable that is uncorrelated with other predictor variables, the usual outcome is that the uncorrelated variable 

reduces the regression weight of the other predictor variable(s). The impact will be different if the added varia-

ble (or set of variables) is a suppressor variable. The suppressor variable will account for irrelevant predictive 

variance in some predictors and, therefore, will yield an increase in the regression weight of those predictors. 

Moreover, the regressor weight of the suppressor may improve, thus improving the overall predictive power of 

the model [6]. Suppression implies that the relationship between some independent variables of interest and the 

outcome variables are blurred because of outcome-irrelevant variance; the addition of suppressor variables 

clears or, purifies the outcome-irrelevant variation from the independent variables, thus revealing the true rela-

tionship between the independent and outcome variables. 

Our example using the simulated Wheat Grain Yield data illustrates that the regression weight may change 

substantially when potential suppressor variables are included in models. If the regression weights of included 

variables improve dramatically due to the presence of a variable that was insignificant at the bi-variate level, 

then one or more of the independent variables may be acting as a suppressor. In our example, the presence of 

Tiller Count improved the regressor weights of Plant Heading and Panicle Length. Also, Plant Heading and Til-

ler Count served as Reciprocal suppressors in the overall model thereby clearing out the outcome irrelevant va-

riance in each other thus improving the weights of each other. 
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