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Abstract

The most common way to sample from a probability distribution is to use Markov
Chain Monte Carlo methods. One can find many diffusions with the target distribution
as equilibrium measure, so that the state of the diffusion after a long time provides a good
sample from that distribution. One naturally wants to choose the best algorithm. One way
to do this is to consider a reversible diffusion, and add to it an antisymmetric drift which
preserves the invariant measure. We prove that, in general, adding an antisymmetric drift
reduces the asymptotic variance, and provide some extensions of this result.
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1 Introduction

Sampling directly from a probability distribution is often infeasible in practice, in particular
when the distribution is only known up to a multiplicative constant. Markov Chain Monte Carlo
(MCMC) methods are popular for obtaining samples from a target probability π, see e.g. [3, 9].
The idea is to construct a Markov chain or Markov process (Xt), whose invariant distribution
is π. Under reasonable assumptions (“ergodicity”), the distribution of (Xt) converges to π, so
that, for t large enough, Xt provides a good sample of π. It is natural that one would prefer the
dynamics that attain the desired equilibrium distribution as fast as possible. There are several
ways to measure how good an algorithm is: mixing time, spectral gap, asymptotic variance...
Hence, comparing the performance of different algorithms also depends on the criterion used.

The discrete case has been extensively studied in the literature, see e.g. [4, 7, 17, 18, 19, 20].
In general, one can choose reversible or non-reversible algorithms. The latter usually enjoy a
faster convergence to equilibrium, but are more challenging to study. More specifically, of special
interest to us is the scheme of modifying a given reversible process by a suitable antisymmetric
perturbation so that the equilibrium is preserved, but the convergence is accelerated. All
evidence points to this strategy always providing a better algorithm, be it in the discrete case
[5] or in the continuous one [10, 11, 12]. In the continuous setting, the performance is understood
in terms of the spectral gap of the generator of the diffusion. Our goal in this paper is to show
that perturbing a diffusion by an antisymmetric drift also reduces the asymptotic variance. Let
us note that the recent paper [24] provides a similar result in terms of large deviations, with
a corollary for the asymptotic variance. However, the setting is limited to the d-dimensional
torus, and some details seem to be lacking in the proof.
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Let us informally introduce our setting. Let U be a given energy function and π the proba-
bility with density proportional to e−U(x). If one is interested in sampling from π, then a usually
used diffusion is the time reversible Langevin equation with π as equilibrium measure

dXt =
√

2 dWt − ∇U(Xt) dt, (1)

where (Wt) is a Brownian motion. Perturbing the reversible diffusion (1) by adding an anti-
symmetric drift term results in

dXt =
√

2 dWt − ∇U(Xt) dt + C(Xt) dt, (2)

where the vector field C is weighted divergence-free with respect to π, i.e., div(Ce−U) = 0. This
ensures that the non-reversible diffusion (2) also has equilibrium π. That there are many ways
to choose such a perturbation C, such as taking C = Q∇U for an antisymmetric matrix Q.
Note that, in any case, it is unnecessary to know the normalization constant for π.

Let −L (we use the sign convention to make L positive) denote the infinitesimal generator
of (1). More precisely,

L = −∆ + ∇U · ∇
on, say, C∞

c , the space of infinitely differentiable functions with compact support. Informally,
one may recover that π is invariant by noticing that the adjoint operator is L∗f = −∆f −
div(f∇U), so that L∗π = 0. This process is reversible, which amounts to saying that L is
symmetric in L

2(π), the space of square-integrable complex functions with respect to π. On
the other hand, the generator of the modified equation is given by −LC , where

LC = L − C · ∇.

It has the adjoint L∗
Cf = L∗f + div(fC). Hence, to ensure that the diffusion (2) also has π

as its invariant measure, it is necessary to assume that L∗
Cπ = 0, i.e., div(Ce−U) = 0. In [11]

(see also [10]), the spectral gap of these operators is employed as a measurement of the rate of
convergence of these algorithms. It is shown therein that LC has a larger spectral gap than L,
which is just a way to say that the irreversible algorithm performs better than the reversible
one.

Essentially, the spectral gap measures the exponential rate in the convergence of the distri-
bution of (Xt) to π. We are interested here in comparing these algorithms in terms of asymptotic
variance, which rather measures the speed of convergence of the average of f(Xt) to the mean
∫

f dπ. Without dwelling on the technical details, which will be tackled in Section 3.2, let us
explain our results, and the motivation for the next section. Assume that (Xt)t≥0 is an ergodic
Markov process with equilibrium measure π. Let L

2(π) be the space of functions which are
square-integrable with respect to π, with inner product 〈·, ·〉π. Denote by −G the generator of
(Xt) in L

2(π), with domain D. Take f ∈ L
2(π) and assume that there is a solution h ∈ D to

the Poisson equation
Gh = f. (3)

Then a central limit theorem holds:

√
t
(

1

t

∫ t

0
f(Xs) ds −

∫

f dπ
)

(d)→ N(0, σ2(f))

where
σ2(f) = 2〈f, h〉π (4)
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is called the asymptotic variance (associated with f). This explains why the asymptotic variance
is a natural gauge of the efficiency of the MCMC algorithm. We refer the readers to [2] or
Chapter 2 of [14] for a more detailed discussion.

The main goal of the present study is to prove that, in the sense of asymptotic variance, the
irreversible diffusion (2) converges to equilibrium faster than (1). More precisely, if σ2

C(f) and
σ2

0(f) denote the corresponding asymptotic variances, we will show that, under mild conditions,

σ2
C(f) ≤ σ2

0(f). (5)

The precise results are Theorem 3.2 and 3.7. From (3) and (4), this amounts to proving that

〈L−1
C f, f〉π ≤ 〈L−1f, f〉π, (6)

and that is merely a result on operators. For this reason, the paper will be organized as follows.
In Section 2, we will provide conditions on some operators for (6) to hold. In Section 3, we show
that, under mild conditions, the diffusions (1) and (2) are well-behaved, that the CLT holds,
and that their generators enjoy properties that ensure (6). In short, we prove (5), i.e. that the
irreversible diffusion (2) converges to π faster than the reversible one (1). We study first the
case of diffusions on Rd, and then on a compact Riemannian manifold. Section 4 provides some
extension of our main results: we characterize the cases of equality in (5), study the worst-case
analysis, and finally the behavior of σ2

C(f) when the amplitude of the drift grows, as is done in
[6, 12]. Concluding remarks are offered in Section 5.

2 General results

2.1 Spectral theorem

We will rely extensively on the spectral theorem, so let us recall some of its features that we will
use. For the results and definitions, see Chapter VIII in [23]. Consider a complex Hilbert space
H with an inner product 〈·, ·〉, and a self-adjoint operator T with domain D. Let σ(T ) ⊂ R be
its spectrum. Then the following hold.

1. For any z ∈ C\R, we can define the resolvent (I − zT )−1, which is a bounded operator
on H.

2. More generally, for any bounded Borel function φ : σ(T ) → C, one can define the bounded
operator φ(T ), and φ 7→ φ(T ) is an algebra homomorphism.

3. For any v ∈ H, there exists a Borel measure µv, called the spectral measure associated
with v, such that for any bounded Borel function φ : σ(T ) → C,

〈v, φ(T )(v)〉 =
∫

σ(T )
φ(s) µv(ds).

In particular µv(σ(T )) = 〈v, v〉.
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2.2 Statement of the main inequality

Recall from the introduction that, informally, we want to prove (6). We shall establish this
inequality under the general assumptions (G1), (G2) and (G3) below. It is worth noticing
that this result says that, formally, adding an antisymmetric perturbation to an reversible
Markov process decreases the asymptotic variance. It however relies on fine properties of the
generators, which are usually hard to check. Hence, we feel that a general result concerning
Markov processes would be a mere technicality with no actual application. Instead, we shall
devote Section 3 to proving that, under mild assumptions on U and C, the generators of the
diffusions (1) and (2) do enjoy properties (G1), (G2) and (G3), so that the result applies.

We obviously want to consider real functions. Hence, we fix a real Hilbert space H with an
inner product 〈·, ·〉. Take S to be an (unbounded) operator on H with domain D, A be another
operator whose domain contains D, and let SA = S + A (with domain D). We assume the
following throughout this section.

(G1) S is symmetric and positive, and A is antisymmetric;

(G2) S is a bijection from D onto H with a bounded inverse;

(G3) SA and S−A are bijections from D onto H.

We shall prove the following.

Theorem 2.1. Assume (G1), (G2) and (G3). Then, for any f ∈ H,

〈S−1
A f, f〉 ≤ 〈S−1f, f〉.

The proof of this result is essentially the simple computation shown in Section 2.4. The
goal of our assumptions, however, is to obtain nice properties for some operators, as presented
in the next section, which allow to rigorously justify that computation.

As mentioned, we want to consider real functions. However, the spectrum of our operators
will lie in the complex plane, and we will thus need to use complex functions. We then consider
HC the complexification of H, with inner product still written 〈·, ·〉, see e.g. [6]. Unlike in this
reference though, we take the inner product to be sesquilinear on the left, so as to have the
same convention as in [23]. Clearly, we may write H ⊂ HC, and all the operators S, SA, S−1,
S−1

A and V (defined below) send H to H.

2.3 Preparation

According to the assumptions, S−1 is a well-defined bounded operator from HC onto D, which
is symmetric and positive, as S is. Hence, it has a unique symmetric bounded square root
V = S−1/2. We define R = V (HC) to be the range of V . Notice that V (R) = S−1(HC) = D, so
that, to summarize, we have the following operators:

• S is a symmetric bijection from D onto HC;

• S−1 is a bounded self-adjoint bijection from HC onto D;

• V is a bounded self-adjoint bijection from HC onto R;

• the restriction of V to R is a bijection onto D.
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In particular, D ⊂ R, so that R is dense in HC. An easy consequence of these properties is also
that, when f ∈ R, then g = V SV f is well-defined, and

V g = V V SV f = S−1SV f = V f

so that, since V is a bijection,
V SV f = f, f ∈ R. (7)

This is essentially saying that V commutes with any operator that commutes with S−1, so with
S.

Now, it makes sense to define
B = iV AV

with domain R. As we mentioned, R is dense in HC, so B is a densely-defined unbounded
operator on HC. Moreover, since V is symmetric and A antisymmetric,

B∗ ⊃ −i(V )∗A∗(V )∗ ⊃ −iV (−A)V = B,

so that B is symmetric. The main reason for (G3) is that it allows to prove the much stronger
following result.

Lemma 2.2. The operator B is essentially self-adjoint.

Proof. We just saw that B is symmetric, so all we need to check is that the range Ran(B ± i) of
B±i is dense, see the corollary to Theorem VIII.3 in [23]. Let us first prove that Ran(B+i) ⊃ R.
Fix g ∈ R. Computing SV (−ig) provides a well-defined element of HC, and since SA is onto
HC, there exists a h ∈ D such that SAh = SV (−ig). We are finally allowed to define f = V Sh.
Now we have (B + i)f = i(V AV f + f), and

V AV f = V (SA − S)V f

= V SAV f − V SV f

= V SAV V Jh − f

= V SAh − f

= V SV (−ig) − f

= −ig − f,

where we use (7) twice. We conclude that (B + i)f = i(−ig − f + f) = g.
Similarly, we can check that Ran(B−i) ⊃ R, by considering h ∈ D such that S−Ah = SV (ig)

instead. This is possible since S−A is onto HC. The same computation shows that

V AV f = f − ig,

provided we write this time A = S − S−A, so finally (B − i)f = g, and the result follows.

Now, we want to give a formula for S−1
A = (S + A)−1. Informally, we may write

(S + A)−1 =
(

S1/2(I + S−1/2AS−1/2)S1/2
)−1

= S−1/2(I + V AV )−1S−1/2 = V (I − iB)−1V.

There are two issues in this computation: first S1/2 is not a very pleasant object; and secondly
(I − iB)−1 is not defined. However, this second point can be dealt with as follows. Consider
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the closure of B, which we still denote B. It has domain R, the closure of R for the norm
‖ · ‖ + ‖B · ‖, and is self-adjoint by Lemma 2.2. Hence, by the spectral theorem, the resolvent
(I − iB)−1 is well-defined, and it is a bounded operator on HC. For the first point, note that we
actually do not need to talk about S1/2: since SA is invertible by assumption, we just have to
check that the suggested formula provides a (left- or right-) inverse for SA, which we do below.

Lemma 2.3. We have the equality

S−1
A = V (I − iB)−1V.

Proof. As mentioned, this is just simple algebra. Compute, for f ∈ D,

V (I − iB)−1V SAf = V (I − iB)−1V (S + A)V V Sf

= V (I − iB)−1(V SV + V AV )V Sf

= V (I − iB)−1(I − iB)V Sf

= V V Sf

= f,

where all the calculations are justified by the domain assumptions and (7). This shows that
V (I − iB)−1V is the left-inverse, so the inverse of SA.

2.4 Main computation

Let us now end the proof of Theorem 2.1. The essential point is the following computation.
Informally, it only relies on (G1). Assumptions (G2) and (G3) allow to obtain the results of
the earlier sections, which rigorously justify this computation.

Let f ∈ H (not HC) and g = V f . Let µg be the spectral measure of B associated with g.
Using Lemma 2.3 and the spectral theorem, we may thus compute

〈S−1
A f, f〉 = 〈V (I − iB)−1V f, f〉

= 〈(I − iB)−1g, g〉

=
∫

σ(B)

1

1 − iy
µg(dy)

=
∫

σ(B)

1 + iy

1 + y2
µg(dy)

=
∫

σ(B)

1

1 + y2
µg(dy),

where the last inequality is justified by the fact that we consider real quantities, or alternatively
that µg is symmetric. Finally,

∫

σ(B)

1

1 + y2
µg(dy) ≤

∫

σ(B)
1 µg(dy) = µg(σ(B)) = 〈g, g〉 = 〈V f, V f〉 = 〈S−1f, f〉.

Theorem 2.1 follows.
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3 Two examples of diffusion processes

3.1 Assumptions

We shall now apply the results obtained in the previous section to the generators of the diffusions
(1) and (2) on a space M . We will consider two specific cases: either M = R

d, or M is a smooth
compact connected d-dimensional Riemannian manifold. We will make the natural following
assumptions.

(A1) U : M → R is C2 and C : M → M is C1;

(A2)
∫

M e−U(x) dx < ∞;

(A3) div(Ce−U) = 0.

To simplify, in the manifold case, we will even assume

(A1’) U : M → R and C : M → M are smooth.

The first two conditions (A1) / (A1’) and (A2) are just natural regularity and integrability
assumptions. As we mentioned, (A3) is needed for π to be invariant in (2). In the compact
manifold case, there is no issue with explosion of the diffusion, or boundedness of the functions
considered, and that is all we shall assume. On Rd, we will need certain growth conditions on
U and C.

Let us introduce some common notations. We denote, as in the introduction, L2(π) as the
space of complex functions on M which are square-integrable with respect to π. It is a Hilbert
space endowed with the inner product

〈f, g〉π =
∫

M
fg dπ,

and norm denoted by ‖ · ‖π. For k ∈ N ∪ {∞}, let Ck
c be the space of k-times differentiable

functions with compact support. For m ≥ 0, we define the weighted Sobolev space H
m(π) as

the completion of C∞
c with respect to the norm induced by the inner product

〈f, g〉Hm(π) =
∑

|a|≤m

〈∂af, ∂ag〉π.

Alternatively, on Rd, it can be defined as the subspace of functions whose m first derivatives
(in the distributional sense) are in L

2(π), by Meyers-Serrin theorem. Let 1 be the constant
function equal to 1. For any subspace X of L2(π), we set

X0 =
{

f ∈ X,
∫

f dπ = 0
}

= X ∩ 1
⊥

the subspace of X of functions with zero mean. Finally, we say that an unbounded operator T
has a spectral gap if the real part of all the values in its spectrum are bounded away from 0 (so
in particular T −1 is well-defined and bounded).

Finally, let us define the operators

L = −∆ + ∇U · ∇ (8)
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and
LC = L − C · ∇. (9)

These formulas a priori only define distributions. If the domain is well-chosen, we will see
that we are actually able to consider them as operators on L

2(π). In any case, note that, by
integration by parts, we always have that, for f, g ∈ C∞

c ,

〈Lf, g〉π = 〈∇f, ∇g〉π = 〈f, Lg〉π (10)

and
〈C · ∇f, g〉π = −〈f, C · ∇g〉π, (11)

where the last computation uses (A3).

3.2 Central limit theorem

As should be clear from Section 2, so as to apply Theorem 2.1, we need precise properties
of operators, the operators in question being the generators of (1) and (2). However, what
do we mean by generator here? In general, a Markov process (Xt) is associated with a C0-
semigroup (Pt) via Ptf(x) = Ex(f(Xt)), though the precise definitions of these terms and the
corresponding results are far from canonical. In any case, the Hilbert structure that we wish to
use, in view of Section 2, is not clear here. Following Chapter 2 in [14], let us shortly explain
how this is done. We shall employ here the definitions of [25] and [26].

Take E a complete separable metric space, and (Pt) a conservative Feller-Dynkin semigroup
on C0, the space of continuous functions vanishing at infinity. From this, one can define a strong
Markov process with transition function (Pt), see Chapter III in [25]. Let us also assume that
π is an invariant probability, i.e. that

∫

Ptf(x) π(dx) =
∫

f(x) π(dx)

for all f ∈ C0 and t ≥ 0. Then

‖Ptf‖2
π =

∫

(Ptf(x))2 π(dx) ≤
∫

Ptf
2(x) π(dx) =

∫

f 2(x) π(dx) = ‖f‖2
π,

so that it is a contraction for the ‖ · ‖π norm. Since C0 is dense in L
2(π) (say, because it is

dense in the usual L2(dx)), then Pt can be extended to a contraction on the whole of L2(π).
Then, as a semigroup on L

2(π), (Pt) is strongly continuous: for ε > 0 and f ∈ L
2(π), take g

in C0 such that ‖f − g‖π ≤ ε, and t > 0 such that ‖Psg − g‖∞ ≤ ε for s ≤ t, what is possible
since (Pt) is strongly continuous on C0. Then, for s ≤ t,

‖Psf − f‖π ≤ ‖Psf − Psg‖π + ‖Psg − g‖π + ‖g − f‖π

≤ ‖f − g‖π + ‖Psg − g‖∞ + ε

≤ 3ε,

so that (Pt) is strongly continuous on L
2(π). Hence, we can define its generator G, with domain

D(G), the set of f ∈ L
2(π) such that (Ptf − f)/t → g in L

2(π) for some g ∈ L
2(π). This is

what we mean when we talk about generators on L
2(π).
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Now, assume additionally that π is ergodic, in that the shift invariant σ-field is trivial.
Then, there is a CLT: for any real f ∈ L

2(π)0 such that there exists a solution h ∈ D(G) to
the Poisson equation −Gh = f ,

t−1/2
∫ t

0
f(Xs) ds

converges under Pπ to a centered Gaussian variable with variance σ2(f) = 2〈f, h〉π. Note that
we assume that f ∈ L

2(π)0, i.e. that it has mean 0, which clearly does not make any difference,
but circumvents too heavy notation.

With a couple differences, this result can be found in the following references.

• At the beginning of Chapter 2 in [14]. The authors assume that (Pt) is strongly continuous
on L

2(π), which, as we saw, is unnecessary; moreover, one readily checks from the proof
that the additional domain assumptions are not needed here.

• In Theorem 2.1 of [2]. The spaces called B and B0 therein are the same since we already
assume that (Pt) is strongly continuous on C0. Moreover, the result is given for t = n ∈ N,
but readily extends for continuous t, since n−1/2

∫ n+1
n f(Xs) → 0 in L

2(π).

3.3 On Rd

3.3.1 Assumptions and results

Let us first consider the case of a diffusion on R
d. As mentioned, we shall make the following

extra growth assumptions on U and C:

(A4) for all ε > 0, there is a cε > 0 such that

|C · ∇U | + |D2U | ≤ ε|∇U |2 + cε,

where D2U is the Hessian matrix of U and | · | is any norm;

(A5) there is a constant K such that

|C| ≤ K(|∇U | + 1);

(A6) as x → ∞,
|∇U(x)| → ∞.

The assumption (A5) tells us that the perturbation is not too large compared to the drift.
In particular, it is verified in the case when C = Q∇U where Q is a skew-symmetric matrix.
These assumptions ensure that the generators have nice properties, which will allow to apply
the results from Theorem 2.1. The first result concerns the well-posedness of (2), and properties
of its generator, which apply in particular to (1). This is merely a compilation from results in
the literature.

Theorem 3.1. Assume (A1), (A2), (A3) , (A4), (A5). Then the following hold.

1. Equation (2) has a unique strong solution, and this solution is not explosive.

2. The measure π is its unique invariant distribution.

9



3. The generator of (2) on L
2(π) is −LC , with domain H

2(π).

Our main result deals with the fact that adding an antisymmetric drift reduces the asymp-
totic variance, as made precise in the following result. Once again, we assume without loss of
generality that f has mean 0.

Theorem 3.2. Assume (A1), (A2), (A3), (A4), (A5), (A6). Then LC is onto L
2(π)0,

and for f ∈ L
2(π)0 and h ∈ H

2(π) such that LCh = f , the CLT holds:

t−1/2
∫ t

0
f(Xs) ds

converges to a centered normal variable with variance σ2
C(f), where

σ2
C(f) = 2〈f, h〉π.

Additionally, adding an antisymmetric drift reduces the asymptotic variance, in that

σ2
C(f) ≤ σ2

0(f)

for all f ∈ L
2(π)0.

3.3.2 Proof of Theorem 3.1

To begin with, let us check that LC , as defined by Equation (9) on H
2(π), does define an element

of L2(π). For f ∈ H
2(π), we have ∆f ∈ L

2(π), but we would also like (∇U + C) · ∇f ∈ L
2(π),

and it is not clear what this last condition means, or how it depends on C. It turns out that
this condition is redundant, provided that (A5) holds, along with a weak form of (A4), namely
that

|∆U | ≤ a|∇U |2 + b (12)

for some a < 1 and b ≥ 0. This is a modification of Lemma 2.1 in [15], which can be found
in Lemma 7.1 in [16]. We give a proof since this is a central point and that it is short in this
L

2(π) setting.

Lemma 3.3. Assume (12) for some a < 1 and b ≥ 0. Then the map φ 7→ |∇U |φ is bounded
from H

1(π) to L
2(π). In particular, L is bounded from H

2(π) to L
2(π), and so are C · ∇ and

LC if (A5) holds.

Proof. Since C∞
c is dense is H

2(π), it suffices to prove the result for φ ∈ C∞
c . Fix ε > 0 such

that a+ε < 1. By integration by parts, Cauchy-Schwartz inequality, and |xy| ≤ (x2/ε+εy2)/2,
we have

‖|∇U |φ‖2
π = −

∫

φ2∇U · ∇e−U dx

=
∫

div
(

φ2∇U
)

e−U dx

=
∫

2φ∇φ · ∇U dπ +
∫

∆Uφ2 dπ

≤ 2
∫

φ|∇φ||∇U | dπ +
∫

(a|∇U |2 + b)φ2 dπ

≤ 1

ε
‖∇φ‖2

π + (a + ε)‖φ|∇U |‖2
π + b‖φ‖2

π,

whence the first part of the result follows after rearranging. The statement for L follows readily,
and the result for LC follows by assumption (A5).
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Speaking about L and LC as operators on L
2(π) with domain H

2(π) thus makes sense. To
obtain more properties of these operators, let us first mention that our assumptions (A1), . . . ,
(A5) are exactly those of Section 7 in [16]. Theorem 7.4 and Remark 7.6 therein tell that

1. −LC is the generator of a C0-semigroup (Tt);

2. (Tt) is strongly Feller;

3. π is its unique invariant measure.

In particular, since 1 ∈ H
2(π), we have d

dt
Tt1 = TtLC1 = 0, so that Tt1 = T01 = 1 in L

2(π).
In particular, as a C0-semigroup, (Tt) is conservative. By standard constructions, see Chapter
III in [25] and V in [26], this provides a (non-explosive) Markov process with generator −LC ,
which is itself a solution to (2).

To wrap up the proof of Theorem 3.1, note, to begin with, that the existence and uniqueness
of a strong solution to (2), maybe up to some explosion time, is clearly just the local Lipschitz
continuity of the coefficients, see Theorem 3.1 in [13]. By uniqueness, this solution has the same
properties as the (weak) one that we just constructed, namely that there is no explosion and
that its transition semigroup is (Tt). In particular, π is its unique invariant measure, and the
generator of (Tt) on L

2(π) is −LC .

3.3.3 Proof of Theorem 3.2

Now, to prove Theorem 3.2, we will obviously use Theorem 2.1, and to this end, we need
spectral properties of the generator. Recall (10) and (11) and note that, since C∞

c is dense in
H

2(π), and that L and C · ∇ are bounded from H
2(π) to L

2(π) by Lemma 3.3, then these
equalities extends to f, g ∈ H

2(π), i.e.

〈Lf, g〉π = 〈∇f, ∇g〉π = 〈f, Lg〉π, 〈C · ∇f, g〉π = −〈f, C · ∇g〉π, f, g ∈ H
2(π). (13)

Hence, L is symmetric and C · ∇ is antisymmetric on H
2(π). Let us give more properties of L

in the following result.

Lemma 3.4. Assume (A1), (A2), (A3), (A4), (A5), (A6). Then L is self-adjoint and
positive, has a purely discrete spectrum consisting of eigenvalues and a complete set of eigen-
functions.

Proof. It is well-known and easy to check that L is unitarily equivalent to the Schrödinger
operator S = −∆ + V , where

V =
1

4
|∇V |2 − 1

2
∆U

on L
2(dx), via the transformation T : f 7→ e−U/2f . To be precise, consider L and S with

domain C2
c . Then T is a unitary transformation from L

2(π) onto L
2(dx), T (C2

c ) = C2
c and

L = T −1ST on C2
c . Hence, (the closure of) L and S have the same spectral properties, see e.g.

Section 73 in [1].
Now, as mentioned in the proof of Theorem 7.4 in [16], C∞

c is a core for (L,H2(π)). Since
C∞

c ⊂ C2
c ⊂ H

2(π), then C2
c is also a core, so the closure of (L, C2

c ) is our operator (L,H2(π)).
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On the other end, the closure (S,D) of (S, C2
c ) is clearly S “defined as a sum of quadratic

forms”, in the terminology of [21], see Example 4 p. 181 therein. But (A5) and (A6) imply1

that V (x) → ∞ as x → ∞. Theorem XIII.67 in [22] thus ensures that (S,D) has a purely
discrete spectrum and a complete set of eigenfunctions. By unitary equivalence, so does L.

Without loss of generality, we will assume that our functions have mean zero. This is
possible, since by symmetry, we have that 〈Lf,1〉π = 〈f, L1〉π = 〈f, 0〉π = 0 for all f ∈ H

2(π),
and similarly for C ·∇ and thus LC . We may thus consider our operators as operators on L

2(π)0

with domain H
2(π)0. We summarize their properties in the following result.

Lemma 3.5. As operators on L
2(π)0 with domain H

2(π)0,

• L is self-adjoint, positive, and has a spectral gap;

• C · ∇ is antisymmetric;

• LC is closed and has a spectral gap.

Proof. For the first point, since 〈Lf, f〉π = ‖∇f‖2
π for f ∈ H

2(π), then the kernel of L consists
of constant functions. As an operator on H

2(π), 0 is thus a simple eigenvalue of L. From
Lemma 3.4, as an operator on H

2(π)0, L has thus a spectral gap. Now, the second point of
the result is just (13). As for the third point, it is the main result, Theorem 1, of [11], that we
mentioned in the introduction: when L has a spectral gap, then so does LC (and the gap is even
larger). The closedness is just because it is the generator of a strongly continuous semigroup
on its natural domain.

To conclude, note that the spectral gap property implies that L and L±C are bijections from
H

2(π)0 onto a dense subset of L2(π)0 with bounded inverse. But since they are closed, they
even are onto L

2(π)0, see p. 209 in [27]. Hence, (G1), (G2) and (G3) hold with H the space
of real functions of L2(π)0, D the space of real functions of H2(π)0, S = L and A = −C · ∇,
so that Theorem 2.1 can be applied. For the CLT, we just need to check that π is ergodic,
which is equivalent to the fact just proved that 0 is a simple eigenvalue of LC on L

2(π), see
Proposition 2.2 in [2].

3.4 On a compact manifold

3.4.1 Assumptions and results

In this section, we consider the diffusions (1) and (2) on M , a smooth d-dimensional connected
compact Riemannian manifold. For the precise meaning of these SDEs, we refer to Chapter 5
in [13]. We will for simplicity assume that U and C are smooth. Let us define the space

W
2(π) =

{

f ∈ H
1(π), Lf ∈ L

2(π)
}

.

Since C is bounded, we do not need a result like Lemma 3.3, and our operators L, C · ∇ and
LC make sense as unbounded operators on L

2(π), with domain W
2(π). We will once again give

two results, the first concerning the behavior of the diffusions, the second one being the main
result about reducing asymptotic variance.

1Equivalently, we could have also directly assumed that V (x) → ∞, but we would rather keep the most
simple assumptions.
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Theorem 3.6. Assume (A1’), (A2), (A3). Then the following hold.

1. Equation (2) has a unique strong solution.

2. The measure π is its unique invariant distribution.

3. The generator of (1) on L
2(π) is given by −L, with domain W

2(π).

4. The generator of (2) on L
2(π) has a domain containing W

2(π), and is equal to −LC on
W

2(π).

Note that, unlike Theorem 3.1, we cannot precisely identify the domain of the perturbed
diffusion (2), but only say that it contains W

2(π), which is more than sufficient for all intents
and purposes. Our main result is the following.

Theorem 3.7. Assume (A1’), (A2), (A3). Then LC is onto L
2(π)0, and for f ∈ L

2(π)0

and h ∈ H
2(π) such that LCh = f , the CLT holds:

t−1/2
∫ t

0
f(Xs) ds

converges to a centered normal variable with variance σ2
C(f), where

σ2
C(f) = 2〈f, h〉π.

Additionally, adding an antisymmetric drift reduces the asymptotic variance, in that

σ2
C(f) ≤ σ2

0(f)

for all f ∈ L
2(π)0.

3.4.2 Proof of Theorem 3.6

As in Section 3.3.3, (10) and (11) can be extended by density, and we have

〈Lf, g〉π = 〈∇f, ∇g〉π = 〈f, Lg〉π, f, g ∈ W
2(π) (14)

and
〈C · ∇f, g〉π = −〈f, C · ∇g〉π, f, g ∈ H

1(π). (15)

Let us summarize more properties of L in the following result.

Lemma 3.8. The operator L, with domain W
2(π), is self-adjoint and positive. It has a purely

discrete spectrum consisting of eigenvalues. It is the generator of the heat semigroup (Tt) on
L

2(π).

Proof. The first two parts are Theorem 4.6 and 10.13 in [8], and the last one is a direct conse-
quence of Exercises 4.41 and 4.43 therein.

This allows us to get the generator of our diffusions and complete the proof of Theorem 3.6.
To begin with, the first two parts of the result are just Theorem 1.1 and Prop 4.5 in Chapter
5 of [13]. Let (G, D(G)) and (GC , D(GC)) be the generators of (1) and (2) on L

2(π). Clearly
(see still [13]), C∞ ⊂ D(G), C∞ ⊂ D(GC), and G = L, GC = LC on C∞. By density of C∞ in
L

2(π), the semigroup of G is (Tt) and thus has domain W
2(π) on L

2(π), by Lemma 3.8. Now,
D(GC) is closed for the norm ‖ · ‖GC

:= ‖ · ‖π + ‖GC · ‖π, so contains in particular the closure
of C∞ for this norm. But ‖ · ‖GC

is weaker than ‖ · ‖π, and C∞ is dense in W
2(π) for the ‖ · ‖π

norm, so in particular, W2(π) ⊂ D(GC).
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3.4.3 Proof of Theorem 3.7

As in Section 3.3.3, (14) and (15) imply that our operators take values in L
2(π)0. As for Lemma

3.5, L, as an unbounded operator on L
2(π)0 with domain W

2(π)0 is thus positive, self-adjoint,
and has a spectral gap. Hence, it is a bijection from W

2(π)0 onto L
2(π)0. However, we cannot

say the same for LC , since we would need to prove that it is closed on W
2(π)0 and has a

spectral gap. The first point is not clear, while the second one would require to adapt the proof
of Theorem 1 in [11]. We shall instead use a workaround and change the spaces and inner
products we consider. So let us consider H

1(π)0 as a Hilbert space with inner product

[f, g] = 〈∇f, ∇g〉π.

Note that the first equality of (14) can be extended by density, so that

[f, g] = 〈Lf, g〉π, f ∈ W
2(π)0, g ∈ H

1(π)0. (16)

In particular,
[f, f ] ≥ λ〈f, f〉π, f ∈ W

2(π)0

where λ > 0 is the smallest eigenvalue of L on W
2(π)0. Still by density, this last inequality holds

for f, g ∈ H
1(π)0, so that the norm induced by [·, ·] and the usual H1(π) norm are equivalent,

and H
1(π)0 with the [·, ·] inner product is a Hilbert space.

As we just noticed, L is a bijection from W
2(π)0 to L

2(π)0, and in particular T = iL−1C · ∇
is well-defined as an operator on H

1(π)0. It has the following properties.

Lemma 3.9. The operator T is bounded and self-adjoint on (H1(π)0, [·, ·]).

Proof. For f, g ∈ H
1(π)0, we readily have from (15) and (16), since Tf, Tg ∈ W

2(π)0,

[Tf, g] = −i〈C · ∇f, g〉π = i〈f, C · ∇g〉π = 〈f, LTg〉π = [f, Tg].

Now, take

m = max

(

sup
x∈M

|C(x)|, ‖L−1‖π

)

.

Then, by (16) again,

[Tf, Tf ] = 〈C · ∇f, L−1C · ∇f〉π

≤ ‖C · ∇f‖π‖L−1C · ∇f‖π

≤ m3‖∇f‖2
π

= m3[f, f ].

Therefore, T is bounded. Alternatively, one may just invoke the Hellinger-Toeplitz theorem.

In particular, by the spectral theorem, we may define the resolvent (I − L−1C · ∇)−1 =
(I + iT )−1 on H

1
0. It enjoys the following property.

Lemma 3.10. The operator L − C · ∇ is a bijection from W
2(π)0 to L

2(π)0, with inverse
(I + iT )−1L−1.
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Proof. To begin with, note that (I + iT )−1L−1 is well-defined on L
2(π)0. On the other hand,

one may write, on W
2(π)0,

(L − C · ∇) = L(I − L−1C · ∇) = L(I + iT )

and the result follows.

This allows to conclude as for the proof of Theorem 3.2. Let us however give an easier
version of the computation of Section 2.4, using the [·, ·] inner product. Consider L and LC

as bijections from W
2(π)0 to L

2(π)0. Let f ∈ L
2(π)0 be real and g = L−1f . By the spectral

theorem for bounded operators, namely T in (H2(π)0, [·, ·]), we can define µg, the spectral
measure of T associated with g. Then

σ2
C(f) = 2〈L−1

C f, f〉π

= 2〈(I + iT )−1L−1f, f〉π

= 2〈(I + iT )−1g, Lg〉π

= 2
[

(I + iT )−1g, g
]

= 2
∫

σ(T )

1

1 + iy
µg(dy)

= 2
∫

σ(T )

1

1 + y2
µg(dy)

≤ 2
∫

σ(T )
1 µg(dy)

= 2[g, g] = 2〈f, L−1f〉π = σ2
0(f).

Note that this avoids using Theorem 2.1, and provides a slightly different formula for the
asymptotic variances.

4 Extensions

Let us now still consider the diffusions (1) and (2) on M = Rd or a compact Riemannian
manifold under the assumptions of Theorem 3.2 or 3.7. We have shown in the previous sections
that these assumptions ensure that, for any f ∈ L

2(π)0,

σ2
C(f) = 2

∫

σ(B)

1

1 + y2
µg(dy) ≤ 2

∫

σ(B)
1 µg(dy) = 2‖g‖2

π = 2‖L−1/2f‖2
π = σ2

0(f), (17)

where B = iL−1/2(C · ∇)L−1/2, g = L−1/2f , and µg is the spectral measure of B associated
with the vector g. In this section, we will use Formula (17) to derive more detailed results
concerning the variance reduction. Because of the last remark in Section 3.4.3, we could also
formulate them slightly differently in the compact manifold case. However, we shall only use
Formula (17) since it works on both Rd and a compact manifold.

4.1 Equality

Let us first give a condition for equality in (17).
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Corollary 4.1. Under the assumptions of Theorem 3.2 (resp. Theorem 3.7), we have σ2
C(f) =

σ2
0(f) if and only if f ∈ L(Ker(C ·∇)). In particular, σ2

C(f) < σ2
0(f) for all nonzero f ∈ L

2(π)0

when C · ∇ is injective on H
2(π)0 (resp. W

2(π)0).

Proof. From (17), σ2
C(f) = σ2

0(f) if and only if µg puts all its mass at zero, which means, by
definition (see [23]), that g ∈ Ker(B), i.e. C · ∇L−1f = 0, whence the first part follows. The
second part only uses that L−1 has range H

2(π)0 (resp. W
2(π)0).

Therefore, one would prefer a C such that Ker(C · ∇) = {0}, even more considering the
following results. However, we do not know how to find such a C, or even if one necessarily
exists.

4.2 Worst-case analysis

A direct consequence of Theorems 3.2 and 3.7 is the worst-case analysis comparison

sup
‖f‖π=1

σ2
C(f) ≤ sup

‖f‖π=1
σ2

0(f), (18)

where the sup is over the real f ∈ L
2(π)0. Now, recall from (17) that σ2

0(f) = 2〈L−1f, f〉π,
so that the RHS of (18) is 2‖L−1‖π. Since L is self-adjoint on H

2(π)0 from Lemmas 3.4 and
3.8, then ‖L−1‖π = 1/λ, where λ is the smallest eigenvalue of L. The following result provides
a condition such that the irreversible algorithm performs strictly better than the reversible
algorithm in the worst possible situation. It is worth mentioning that this result is similar to
Theorem 1 in [11].

Theorem 4.2. Under the assumptions of Theorem 3.2 or 3.7, if

Ker(L − λ) ∩ Ker(C · ∇) = {0},

then

sup
‖f‖π=1

σ2
C(f) < sup

‖f‖π=1
σ2

0(f) =
2

λ
. (19)

Proof. Assume that there is equality in (19), and recall that σ2
C(f) = 2〈L−1

C f, f〉π. Then there
is a normalized sequence (fn) of real functions in L

2(π)0 such that

〈L−1
C fn, fn〉π → 1

λ
. (20)

From Lemmas 3.4 and 3.8, L has a purely discrete spectrum with a complete family of eigen-
values, so that λ > 0 is an eigenvalue of L, Ker(L−λ) is finite-dimensional, and for some δ > 0,
the spectrum of L restricted to Ker(L − λ)⊥ is bounded below by λ + δ. In particular

∥

∥

∥L−1
| Ker(L−λ)⊥

∥

∥

∥

π
≤ 1

λ + δ
.
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Let us write fn = f 1
n + f 2

n, with f 1
n ∈ Ker(L − λ) and f 2

n ∈ Ker(L − λ)⊥. Since L−1 is
self-adjoint, and by the preceding remark, we have

〈L−1fn, fn〉π = 〈L−1f 1
n, f 1

n〉π + 〈L−1f 2
n, f 2

n〉π + 2〈L−1f 1
n, f 2

n〉π

=
1

λ
‖f 1

n‖2
π + 〈L−1f 2

n, f 2
n〉π +

2

λ
〈f 1

n, f 2
n〉π

=
1

λ
‖f 1

n‖2
π + 〈L−1f 2

n, f 2
n〉π

≤ 1

λ
‖f 1

n‖2
π +

1

λ + δ
‖f 2

n‖2
π

=
1

λ
‖f 1

n‖2
π +

1

λ + δ
(1 − ‖f 1

n‖2
π).

But, on the other hand,
〈L−1fn, fn〉π ≥ 〈L−1

C fn, fn〉π

by our main results, so that

1

λ
‖f 1

n‖2
π +

1

λ + δ
(1 − ‖f 1

n‖2
π) ≥ 〈L−1

C fn, fn〉π. (21)

Now, since Ker(L − λ) is finite-dimensional and (f 1
n) is bounded, (f 1

n) converges up to some
subsequence, which we do not write. Then, (20) and (21) imply that necessarily ‖f 1

n‖π → 1, so
that f 2

n → 0, and fn itself converges to some nonzero

f = lim f 1
n ∈ Ker(L − λ).

Passing to the limit in (20) finally implies that

〈L−1
C f, f〉π =

1

λ
.

Hence, σ2
C(f) = σ2

0(f). By Corollary 4.1, this means L−1f = f/λ ∈ Ker(C · ∇). Hence,
f ∈ Ker(C · ∇) ∩ Ker(L − λ), which is not allowed by assumption.

4.3 Growing Perturbation

Let us conclude with a result concerning the limiting behavior of the asymptotic variance
as the magnitude of the perturbation goes to infinity. The idea of growing perturbation in
diffusion acceleration goes back at least to [10]. In [6], the behavior of the spectral gap of the
Laplace-Beltrami operator on a compact Riemannian manifold, perturbed by a growing drift,
is investigated; see also [12]. Define here P to be the projection on Ker B. By “growing drift”,
we mean that we will consider the behavior of σ2

kC(f) as k → ∞.

Theorem 4.3. For any f ∈ L
2(π), σ2

kC(f) is decreasing in k and

lim
k→∞

σ2
kC(f) = 2‖P L−1/2f‖2.

In particular, if Ker(C · ∇) = {0}, then we can push the asymptotic variance to 0, in that

lim
k→∞

σ2
kC(f) = 0.

If B has a spectral gap, then the asymptotic variance goes uniformly to 0, i.e.,

lim
k→∞

sup
‖f‖π=1

σ2
kC(f) = 0.
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It is worth contrasting this result with those of [6, 10, 12]. In [10], it is shown that the spectral
gap does not need to be increasing in k, and that the smallest spectral gap can be attained
for some finite k. In [12], antisymmetric perturbations of the Laplace-Beltrami operator on the
torus are considered, and the authors prove that the spectral gap as a finite limit as k → +∞,
but can be made arbitrarily close to 0 for well-chosen C. In [6], the limit of the spectral gap as
k → +∞ is investigated, and shown to be infinite, except if a very strict condition is verified.
We ignore whether the condition that B has a spectral gap in our result is restrictive.

Proof. Note first that the results of Theorem 3.2 and 3.7 obviously apply to kC. By (17), we
have that

σ2
kC(f) = 2

∫

σ(B)

1

1 + k2y2
µg(dy)

with g = L−1/2f . Hence, by bounded convergence,

lim
k→∞

σ2
kC(f) = 2µg({0}),

and µg({0}), by definition, is just the squared norm of the projection of g on Ker B, i.e. of
P g = P L−1/2f . Since L−1/2 is injective, B is injective if and only if C · ∇ is, and hence the
second part of the result follows. Finally, if B has a spectral gap, then µg has no mass in a
neighborhood of 0, say [−δ, δ], so that

σ2
kC(f) = 2

∫

σ(A)

1

1 + k2y2
µg(dy)

≤ 2

1 + k2δ2

∫

1 µg(dy)

=
2

1 + k2δ2
‖g‖2

π

≤ 2

1 + k2δ2
‖L−1/2‖2

π‖f‖2
π,

and the last part of the statement follows.

5 Conclusion

Our results mainly provide qualitative information on the asymptotic variance, with less quan-
titative information due to the difficulty encountered in the manipulation of spectral measures.
Of course, within the family of all possible choices of C (with unit norm, say), one would like
the one that gives the smaller asymptotic variance, and maybe even the value of this lower
bound. The theoretical existence and practical construction of such a perturbation C would of
course be of great interest. In a similar direction, the results of Section 4 show that a C with
Ker(C · ∇) = {0} is preferable. As mentioned, we do not know if such a C always exists, and,
even more to the point, if it can be constructed. The same goes for finding a B with a spectral
gap as in Theorem 4.3.

In the case of an Ornstein-Uhlenbeck process, where U is quadratic, it is reasonable to only
consider C of the form Q∇U , for an antisymmetric matrix Q. The existence of a best C of
this type is then obvious, and it would be interesting to get a closed form for it. However, one
cannot have Ker(C · ∇) = {0}, so that σ2

kC(f) has a positive limit as k → +∞. A closed form
for this limit might shed some light on the open questions considered above.
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