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Abstract

We present variance reduction methods for Monte Carlo simula-
tions to evaluate European and Asian options in the context of multi-
scale stochastic volatility models. European option price approxima-
tions, obtained from singular and regular perturbation analysis [J.P.
Fouque, G. Papanicolaou, R. Sircar and K. Solna: Multiscale Stochas-
tic Volatility Asymptotics, SIAM Journal on Multiscale Modeling and
Simulation 2(1), 2003], are used in important sampling techniques,
and their efficiencies are compared. Then we investigate the problem
of pricing arithmetic average Asian options (AAOs) by Monte Carlo
simulations. A two-step strategy is proposed to reduce the variance
where geometric average Asian options (GAOs) are used as control
variates. Due to the lack of analytical formulas for GAOs, it is then
necessary to consider efficient Monte Carlo methods to estimate the
unbiased means of GAOs. The second step consists in deriving for-
mulas for approximated prices based on perturbation techniques, and
in computing GAOs by using importance sampling. Numerical results
illustrate the efficiency of our method.
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1 Introduction

Monte Carlo methods are natural and essential tools in computational fi-
nance. Examples include pricing and hedging financial instruments with
complex structure or high dimensionality [10]. This paper addresses the is-
sue of variance reduction for Monte Carlo methods for a class of multi-factor
stochastic volatility models.

In the first part of this paper, we investigate an application of importance
sampling to variance reduction in evaluating European options by Monte
Carlo methods. Under one-factor stochastic volatility model, Fouque and
Tullie [9] proposed to use approximations of European option prices ob-
tained from singular perturbation expansions for the importance sampling
techniques. They demonstrated that the first order correction term added to
the zeroth order (or homogenized) option price approximation dramatically
reduce the variance. However, recent empirical studies document that at
least two-factor stochastic volatility models with well-separated characteris-
tic time scales are necessary to capture stylized facts like the observed kur-
tosis, fatter tailed return distributions, long memory effect, and the shape of
term structure of implied volatilities. We refer to [1], [3] and [11] for detailed
discussions. Therefore, this motivates an extension to apply importance sam-
pling in the context of two-factor stochastic volatility models. Fouque et al.
[8] used a combination of singular and regular perturbation expansions to de-
rive price approximations of European options. We shall apply their results
to important sampling.

The second part of this paper explores variance reduction methods for
Asian options. Asian options are known as path dependent options whose
payoff depends on the average stock price and a fixed or floating strike price
during a specific period of time before maturity. Here we only consider con-
tinuous average stock prices in time either arithmetically or geometrically.
An arithmetic average Asian option will be abbreviated as AAO and likewise
an geometric average Asian option will be GAO. Using Monte Carlo simu-
lations to evaluate Asian option prices has been an important approach in
parallel to PDE approaches [4, 5, 14]. Under the Black-Scholes model, un-
derlying risky assets are assumed to follow log-normal distributions. Among
many variance reduction estimators for arithmetic average Asian options,
Boyle et al [2] showed that the control variate estimators derived from the
geometric mean perform best. It is noted that close-form solutions exist for
GAOs under constant volatility such that the unbiased control variance esti-
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mator can be calculated easily. When the volatility is randomly fluctuating,
there is no analytic solution for GAO in general. To estimate unbiased prices
of GAOs, we consider importance sampling by applying the first order price
approximations obtained from the analysis of singular and regular pertur-
bations. As a consequence, we propose a two-step strategy which combines
a control variate estimator and importance sampling to reduce variance for
AAOs.

The organization of the paper is as follows. A class of two-factor stochas-
tic volatility models is introduced in Section 2. Section 3 includes a brief
review of importance sampling for diffusion processes, an application of per-
turbation analysis to European option prices, and some numerical demon-
strations. A two-stage variance reduction for Asian options is discussed in
Section 4, in which a combination of control variates for AAO and importance
sampling for GAO, and some numerical simulations are presented.

2 Multifactor Stochastic Volatility Models and

Option Prices

Following [8], we consider a family of two-factor stochastic volatility mod-
els (St, Yt, Zt), where St is the underlying price, Yt evolves as an Ornstein-
Uhlenbeck (OU) process, as a prototype of an ergodic diffusion, and Zt follows
another diffusion process. Under the pricing risk-neutral probability measure
IP ?, our model is described by the following equations:

dSt = rStdt + σtStdW
(0)
t , (1)

σt = f(Yt, Zt),

dYt =
(

α(mf − Yt) − νf

√
2α Λf(Yt, Zt)

)

dt

+νf

√
2α
(

ρ1dW
(0)
t +

√

1 − ρ2
1 dW

(1)
t

)

,

dZt =
(

δ(ms − Zt) − νs

√
2δ Λs(Yt, Zt)

)

dt

+νs

√
2δ
(

ρ2dW
(0)
t + ρ12dW

(1)
t +

√

1 − ρ2
2 − ρ2

12 dW
(2)
t

)

,

where
(

W
(0)
t , W

(1)
t , W

(2)
t

)

are independent standard Brownian motions, and

the instant correlation coefficients ρ1, ρ2, and ρ12 satisfy ρ2
1 < 1 and ρ2

2+ρ2
12 <

1 respectively. The stock price St has a constant rate of return equal to

3



the constant risk-free interest rate r (under risk-neutral), and the random
volatility σt depending on the two volatility factors Yt and Zt. The risk
neutral probability measure IP ? is determined by the combined market prices
of volatility risk Λf and Λs which we assume to be bounded and independent
of the stock price S. The joint process (St, Yt, Zt) is Markovian. Without
Λf (resp. Λs) the driving volatility process Yt (resp. Zt) is mean-reverting
around its long run mean mf (resp. ms), with a rate of mean reversion α > 0
(resp. δ > 0) or a time scale 1/α (resp. 1/δ), and a “vol-vol” νf

√
2α (resp.

νs

√
2δ) corresponding to a long run standard deviation νf (resp. νs). Here

we choose to write OU processes with long run distributions N (mf , ν
2
f ) and

N (ms, ν
2
s ) as prototypes of more general ergodic diffusions. The volatility

function f(y, z) in (1) is assumed to be smooth in z, bounded and bounded
away from 0 (0 < c1 ≤ f ≤ c2). The two stochastic volatility factors Yt and
Zt are differentiated by their intrinsic time scales. The first factor Yt is fast
mean-reverting on a short time scale 1/α, and the second factor Zt is slowly
varying on a long time scale 1/δ. In other words we assume that these time
scales are separated: α−1 < 1 < δ−1. In this paper we will use an asymptotic
theory in the regime where α → ∞, δ → 0, in order to compute option prices
by Monte Carlo simulations for finite values of α and δ.

The payoff of an European option is a function H(ST ) of the stock price
at the expire date. Using the Markov property, the no-arbitrage price of this
option is obtained as the conditional expectation of the discounted payoff
given the current stock price and driving volatility levels:

P (t, x, y, z) = IE?
{

e−r(T−t)H(ST ) | St = x, Yt = y, Zt = z
}

.

Payoffs of Asian options, as mentioned before, are functions of fixed strike
K, floating strike ST , and a time average of stock prices. For example, the
price at time t of an Asian call option is given by

IE?
{

e−r(T−t)(AT − ST − K)+ | Ft

}

, (2)

where (Ft) denotes the filtration generated by the process (St, Yt, Zt). The
random variable AT can be the arithmetic average

AT =
1

T

∫ T

0
Stdt,

in which case the option is called an arithmetic average Asian option (AAO),
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or the geometric average

AT = exp

(

1

T

∫ T

0
ln Stdt

)

.

in which case the option is called a geometric average Asian option (GAO).

3 Importance Sampling for European Options

To simplify the notations, we present the stochastic volatility model in (1)
in a vector form as follows

dVt = b(t, Vt)dt + a(t, Vt)dηt, (3)

where we set

v =







x
y
z





 , Vt =







St

Yt

Zt





 , ηt =









W
(0)
t

W
(1)
t

W
(2)
t









,

we define the drift

b(t, v) =







rx

α(mf − y) − νf

√
2α Λf (y, z)

δ(ms − z) − νs

√
2δ Λs(y, z)





 ,

and the diffusion matrix

a(t, v) =









f(y, z)x 0 0

νf

√
2α ρ1 νf

√
2α
√

1 − ρ2
1 0

νs

√
2δ ρ2 νs

√
2δ ρ12 νs

√
2δ
√

1 − ρ2
2 − ρ2

12









.

The price P (t, x, y, z) of an European option at time t is given by

P (t, v) = IE?
{

e−r(T−t)H(ST ) | Vt = v
}

. (4)

A basic Monte Carlo approximation for the price (6) is based on calculating
the sample mean

P (t, x, y, z) ≈ 1

N

N
∑

k=1

e−r(T−t)H(S
(k)
T ), (5)
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where N is the total number of independent realizations of the process, and
S

(k)
T denotes the terminal value of the stock in the k-th trajectory. Importance

sampling techniques consist in changing the weights of these realizations in
order to reduce the variance of the estimator (10).

Under classical integrability conditions on the function h(t, v), the process

Qt = exp
({∫ t

0
h(s, Vs)dηs +

1

2

∫ t

0
||h(s, Vs)||2ds

})

,

is a martingale, and the Radon-Nikodyn derivative

dĨP

dIP ? = (QT )−1

defines a new probability ĨP equivalent to IP ?. By Girsanov Theorem, under
this new measure ĨP , the process (η̃t) defined by

η̃t = ηt +
∫ t

0
h(s, Vs)ds,

is a standard Brownian motion. The option price P can be written under ĨP
as

P (t, v) = ĨE
{

e−r(T−t)H(ST )QT | Vt = v
}

, (6)

where

QT = exp

({

∫ T

0
h(s, Vs)dη̃s −

1

2

∫ T

0
||h(s, Vs)||2ds

})

, (7)

and the dynamics of our model becomes

dVt = (b(t, Vt) − a(t, Vt)h(t, Vt)) dt + a(t, Vt)dη̃t. (8)

Applying Ito’s formula to P (t, Vt)Qt, it is a straightforward computation to
obtain

H(VT )QT = P (t, v) +
∫ T

t
Qs (a′ ∇P + P h) (s, Vs) · dη̃s,

where a′ denotes the transpose of a and the gradient is with respect to the
variable v. Therefore the variance of the payoff H(VT )QT in (6) is simply

VarĨP (H(VT )QT ) = ĨE

{

∫ T

t
Q2

s||a′∇P + P h||2ds

}

.

6



Indeed, if the quantity P to be computed was known, one could obtain a
zero variance by choosing

h = − 1

P
(a′ ∇P ) . (9)

Our strategy is to use in (9) known approximations to the exact value P .
Then the Monte Carlo simulations are done under the new measure ĨP :

P (t, x, y, z) ≈ 1

N

N
∑

k=1

e−r(T−t)H(S
(k)
T )Q

(k)
T , (10)

where N is the total number of simulations, and S
(k)
T and Q

(k)
T denote the

final value of the k-th realized trajectory (8) and weight (7) respectively.

3.1 Vanilla European Option Price Approximations

We give here a brief review of the main result in [8] from the perturbation
theory for European options under multiscale stochastic volatility models
presented in (1). We introduce ε = 1/α and assume parameters ε and δ are
relatively small, 0 < ε, δ � 1. Denote by P ε,δ the price of a European option
with payoff function H , and apply the Feynman-Kac formula to (4). Then
P ε,δ(t, x, y, z) solves the three-dimensional partial differential equation

Lε,δP ε,δ = 0,

P ε,δ(T, x, y, z) = H(x),

where we define the partial differential operator Lε,δ by

Lε,δ =
1

ε
L0 +

1√
ε
L1 + LBS +

√
δM1 + δM2 +

√

δ

ε
M3,

with each component operator given by:

L0 = ν2
f

∂2

∂y2
+ (mf − y)

∂

∂y
, (11)

L1 = νf

√
2

(

ρ1xf(y, z)
∂2

∂x∂y
− Λf(y, z)

∂

∂y

)

, (12)

LBS(f(y, z)) =
∂

∂t
+

1

2
f 2(y, z)x2 ∂2

∂x2
+ r(x

∂

∂x
− ·), (13)
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M1 = νs

√
2

(

ρ2xf(y, z)
∂2

∂x∂z
− Λs(y, z)

∂

∂z

)

, (14)

M2 = ν2
s

∂2

∂z2
+ (ms − z)

∂

∂z
, (15)

M3 = 2νfνs

(

ρ1ρ2 + ρ12

√

1 − ρ2
1

)

∂2

∂y∂z
. (16)

By using a combination of singular and regular perturbations the following
pointwise price approximation is derived in [8]

P ε,δ(t, x, y, z) ≈ P̃ (t, x, z),

where

P̃ = PBS (17)

+ (T − t)

(

V0
∂

∂σ
+ V1x

∂2

∂x∂σ
+ V2x

2 ∂2

∂x2
+ V3x

∂

∂x

(

x2 ∂2

∂x2

))

PBS ,

with an accuracy of order (ε| log ε| + δ) for call options. The leading order
price PBS(t, x; σ̄(z)) is independent of the y variable and is the homogenized
price which solves the Black-Scholes equation

LBS(σ(z))PBS = 0,

PBS(T, x; σ̄(z)) = H(x).

Here the z-dependent effective volatility σ(z) is defined by

σ2(z) = 〈f 2(·, z)〉, (18)

where the brackets denote the average with respect to the invariant distri-
bution N (mf , ν

2
f ) of the fast factor (Yt). The parameters (V0, V1, V2, V3) are

given by

V0 = −νs

√
δ√

2
〈Λs〉σ′, (19)

V1 =
ρ2νs

√
δ√

2
〈f〉σ′, (20)

V2 =
νf

√
ε√

2

〈

Λf
∂φ

∂y

〉

, (21)

V3 = −ρ1νf

√
ε√

2

〈

f
φ

∂y

〉

, (22)
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where σ′ denotes the derivative of σ̄, and the function φ(y, z) is a solution of
the Poisson equation

L0φ(y, z) = f 2(y, z) − σ2(z).

The parameters V0 and V1 (resp. V2 and V3) are small of order
√

ε (resp.√
δ). The parameters V0 and V2 reflects the effect of the market prices of

volatility risk. The parameters V1 and V3 are proportional to the correlation
coefficients ρ2 and ρ1 respectively. In [8], these parameters are calibrated
using the observed implied volatilities. In the present work, the model (1)
will be fully specified, and these parameters are computed using the formulas
above.

3.2 Numerical Simulations

We consider vanilla European call options as examples for Monte Carlo sim-
ulations. From (17), we use successively PBS and P̃ as prior information on
the true option price P in (4), and we compare the efficiency of variance
reduction by importance sampling. By taking H(x) = (x−K)+, the leading
order term PBS is given by the Black-Scholes formula

PBS(t, x; σ̄(z)) = xN (d1(x, z)) − Ke−r(T−t)N (d2(x, z)), (23)

where

d1(x, z) =
ln(x/K) + (r + 1

2
σ2(z))(T − t)

σ(z)
√

T − t
,

d2(x, z) = d1(x, z) − σ(z)
√

T − t,

N (d) =
1√
2π

∫ d

−∞
e−u2/2du.

The correction in (17) is then obtained by computing the Greeks

∂PBS

∂σ
, x

∂2PBS

∂x∂σ
, x2 ∂2PBS

∂x2
, x

∂

∂x

(

x2 ∂2PBS

∂x2

)

.

Our numerical experiments consist of substituting the approximations PBS

or P̃ into (9), and compare their efficiency in reducing the variance of Monte
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Table 1: Parameters used in the two-factor stochastic volatility model (1).

r mf ms νf νs ρ1 ρ2 ρ12 Λf λs f(y, z)
10% -0.8 -0.8 0.5 0.8 -0.2 -0.2 0 0 0 exp(y + z)

Carlo simulations. We start with the homogenized price PBS which leads to

h(t, x, y, z) =
−1

PBS(t, x; σ̄(z))
a′ ∇PBS(t, x; σ̄(z))

=
−1

PBS(t, x; σ̄(z))











f(y, z)x
ρ1νf

√
2√

ε
ρ2νs

√
2δ

0 νf

√
2√
ε

√

1 − ρ2
1 ρ12νs

√
2δ

0 0 νs

√
2δ
√

1 − ρ2
2 − ρ2

12

















∂PBS

∂x
∂PBS

∂y
∂PBS

∂z







=
−∂PBS

∂x

PBS(t, x; σ̄(z))







f(y, z)x
0
0





− νs

√
2δ

σ′(z)∂PBS

∂σ

PBS(t, x; σ̄(z))









ρ2

ρ12
√

1 − ρ2
2 − ρ2

12









,

where we have used that PBS does not depend on y. The Vega is given by

∂PBS

∂σ
= x

√
T − tN ′(d1(x, z)).

Likewise we construct a function h̃ by using the higher order approximation
P̃ . Since we are only interested in terms of order less than or equal to

√
ε or√

δ, we shall drop any higher order terms, and obtain

h̃(t, x, y, z) =
−∂P̃

∂x

P̃ (t, x, z)







f(y, z)x
0
0





−
√

2δ
σ′(z)∂PBS

∂σ

PBS(t, x; σ̄(z))









ρ2

ρ12
√

1 − ρ2
2 − ρ2

12









Relevant parameters and functions for this model are chosen as in Table
1. The price computations will be done with various values of the time scale
parameters α and δ given in Table 3.

There is a total of N = 5000 sample paths in (10), simulated based on
the discretization of the diffusion process Vt using an Euler scheme [10] with
time step ∆t = 0.005.

The other values (initials conditions and option parameters) are given in
Table 2.
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Table 2: Initial conditions and call option parameters.

$S0 Y0 Z0 $K T years
55 -1 -1 50 1

Table 3: Comparison of simulated option prices and their variances for var-
ious values of α and δ; P MC is obtained by basic Monte Carlo simulation,
PBS is computed by (23), P̃ by (17), P IS(PBS) and P IS(P̃ ) are computed
by Monte Carlo simulations using importance sampling with PBS and P̃
respectively (means are shown in parenthesis next to the variances).

α δ P MC PBS P̃ P IS(PBS) P IS(P̃ )
100 0.01 0.024114 (10.93) 10.779 11.069 0.004006 (11.13) 0.000986 (11.03)
50 0.05 0.022995 (11.03) 10.779 11.208 0.000703 (11.03) 0.000698 (10.99)
20 0.1 0.022596 (11.09) 10.779 11.449 0.002161 (11.09) 0.001284 (11.00)
5 1 0.032745 (11.50) 10.779 12.20 0.003841 (12.03) 0.002435 (11.60)

The results presented in Table 3 generalize those presented in [9] in the
case of only the fast factor to the case of two factors, fast and slow. One can
observe the significant variance reduction from the plain Monte Carlo sim-
ulation P MC to the important sampling simulations P IS(PBS) and P IS(P̃ ).
This reduction is indeed drastic in the regime (α large, δ small) where the
approximation P̃ is very efficient, but it is also significant in the regime where
the time scales are not so well-separated (α = 5, δ = 1 for instance).

4 Two-Step Variance Reduction for Asian Op-

tions

From the definition of arithmetic average Asian options in (2), it is convenient
to introduce the running sum process It =

∫ t
0 Sudu or, in its differential form,

dIt = Stdt, (24)

such that the joint dynamics (St, Yt, Zt, It) is Markovian. Under the risk-
neutral probability measure IP ? the price of an arithmetic average Asian call
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option is given by

P (t, x, y, z, I) = E∗
{

e−r(T−t)
(

IT

T
− ST − K

)+

| St = x, Yt = y, Zt = z, It = I

}

.(25)

We will use this type of options as typical examples when we discuss the
variance reduction of Monte Carlo simulations in Section 4.3.

A basic Monte Carlo simulation consists in generating N independent
trajectories governed by equations (1) and (24), and averaging the discounted
payoffs to obtain the approximation

P ≈ P MC =
e−r(T−t)

N

N
∑

k=1





I
(k)
T

T
− S

(k)
T − K





+

. (26)

Since the dynamics of (St, Yt, Zt, It) is simply a special case of (3), one would
apply importance sampling to reduce variance of P MC in (26) by approxi-
mated price of P in (25). Unlike the case of European options considered in
Section 3, the approximated prices of AAOs obtained in [5] do not have close-
form solutions. Consequently, one has to rely on numerical PDE solutions
to evaluate price approximations along each trajectory of Monte Carlo sim-
ulations. We remark that this strategy implies tremendous computational
efforts so that it is not proper to apply directly the importance sampling
to evaluate AAOs. This drawback therefore motivates our investigation of
a two-step variance reduction strategy by combining control variates and
importance sampling.

4.1 Control Variates for Arithmetic Average Asian Op-

tions

In the case of constant volatility, Boyle et al. [2] proposed a variance re-
duction method for arithmetic average Asian option prices (AAOs) based
on using geometric average Asian options (GAOs) as control variates. The
control variate estimator P CV is defined by

P CV 4
= P MC + λ(P̂G − PG), (27)

where P̂G is an unbiased Monte Carlo estimator of the GAO price denoted by
PG, computed using the same run as for P MC. The company price PG, i.e. the
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counterpart geometric average Asian option, has an analytic solution. The
parameter λ is chosen to minimize the sample variance. For Asian options, λ
is often chosen equal to -1. The methodology described above performs very
well among other variance reduction methods [2].

Within the context of stochastic volatility, for example our two-factor
model (1), there no longer exist close-form solutions for GAOs. In order
to proceed with the control variates method described above, we propose
to evaluate GAOs by Monte Carlo simulations using the variance reduction
technique presented and tested in the previous section for European options.

The price of a geometric average Asian call option PG is defined by

PG(t, v, L) = IE?

{

e−r(T−t)
(

exp
(

LT

T

)

− ST − K
)+

| Vt = v, Lt = L

}

, (28)

where the dynamics Vt = (St, Yt, Zt) follows (1), and the additional running
sum process (Lt) is given by

dLt = ln St dt. (29)

In Section 3, we have shown an application of importance sampling for pric-
ing European options under two-factor stochastic volatility, in which the
existence of explicit formulas for approximated European option prices are
crucial. Recently, Wong and Cheung [13] derived first-order approximated
GAO prices under one fast mean-reverting stochastic volatility model. In
the Appendix we generalize their results to two-factor models including an
additional slowly time varying mean-reverting process. We derive first-order
price approximations for GAOs which admit close-form solutions. We will
use those price approximations as prior knowledge of the true GAO prices
such that the importance sampling technique can be applied efficiently.

4.2 Importance Sampling for Geometric Average Asian

Options

We consider the pricing problem of GAOs given in (28). The dynamics of
our model consist of (St, Yt, Zt, Lt) whose transpose is denoted by Ṽt. The
vector form of the dynamics can be represented as

dṼt =
(

b(t, Ṽt) − a(t, Ṽt)h(t, Ṽt)
)

dt + a(t, Ṽt)dη̃t. (30)
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where we set

ṽ =











x
y
z
L











, b(t, ṽ) =













rx

α(mf − y) − νf

√
2α Λf

δ(ms − z) − νs

√
2δΛs

ln x













, ηt =













W
(0)
t

W
(1)
t

W
(2)
t

0













,

η̃t = ηt +
∫ t

0
h(s, Ṽs)ds

and the (degenerated) diffusion matrix is

a(t, v) =















f(y, z)x 0 0 0

νf

√
2α ρ1 νf

√
2α
√

1 − ρ2
1 0 0

νs

√
2δρ2 νs

√
2δρ12 νs

√
2δ
√

1 − ρ2
2 − ρ2

12 0

0 0 0 0















.

The importance sampling argument follows the same lines as in Section 3,
except for the construction of a deterministic function

h(t, ṽ) = − 1

PG(t, ṽ)
a′∇̃PG(t, ṽ), (31)

where the gradient ∇̃ is taken with respect to (x, y, z, L). Again, the GAO
price PG in (31) is unknown, and we will use asymptotic price approximations
given in the following section.

4.3 Two-Step Strategy and Numerical Simulations

To limit the length of this paper, we only choose geometric average Asian
call options with fixed strikes as examples to demonstrate the efficiency on
importance sampling variance reduction methods. We derive the first order
price approximation of GAO in the Appendix A based on a combination of
singular and regular perturbation analysis and the result is as follows:

PG(t, x, y, z, L) ≈ P̃G(t, x, z, L),

where

P̃G = P fix
0 − (T − t)

√
2V0

∂P fix
0

∂σ
+ (T + t)V1x

∂2P fix
0

∂x∂σ
(32)

−(T − t)2

2
V2

∂P fix
0

∂x
+

(T − t)3

3
(V2 − V3)

∂2P fix
0

∂x2
+

(T − t)4

4
V3

∂3P fix
0

∂x3
.
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The zero order term P fix
0 (t, x, L; σ̄) satisfies the homogenized Black-Schols

type formula:

P fix
0 (t, x, L; σ̄) (33)

= exp

(

L − t ln x

T
+ ln x + R(t, T, z)

)

N (d1(x, z, L)) − Ke−r(T−t)N (d2(x, z, L)),

where

R(t, T, z) =

(

r − σ̄2

2

)

(T − t)2

2T
+ σ̄2 (T − t)3

6T 2
− r(T − t),

d1(x, z, L) =
T ln(x/K) + L − t ln x + (r − σ̄2/2)(T − t)2/2 + σ̄2 (T−t)3

3T

σ̄
√

(T−t)3

3

d2(x, z, L) = d1(x, z, L) − σ̄

√

(T − t)3

3T 2

The Vega of GAO is equal to

∂P fix
0

∂σ
=

T − t

3
σx2 ∂2P fix

0

∂x2
− T − t

6
σx

∂P fix
0

∂x
.

Substituting the approximation (32) into (31), we get

h̃G(t, x, z, L)

=
−∂P̃G

∂x

P̃G(t, x, z, L)











f(y, z)x
0
0
0











− νs

√
2δ

σ̄(z)
∂P fix

0

∂σ

P fix
0 (t, x, z, L)













ρ2

ρ12
√

1 − ρ2
2 − ρ2

12

0













.

We present numerical results from Monte Carlo simulations to evaluate fixed-
strike GAO prices in this section. Parameters in our model are shown in Table
4. The other values (initials conditions and option parameters) are given in
Table 5. The sample paths in (30) are simulated based on the discretization
of the diffusion process Vt using an Euler scheme with time step ∆t = 0.005
and the number of total paths are 5000. The price computations will be done
with various values of the time scale parameters α and δ given in Table 6.

We now consider the control variates for AAOs with the same parameters
given in Tables 4 and 5. Fixing the time scale parameters α = 75 and
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Table 4: Parameters used in the two-factor stochastic volatility model (1).

r mf ms νf νs ρ1 ρ2 ρ12 Λf λs f(y, z)
10% -0.8 -0.6 0.7 1 -0.2 -0.2 0 0 0 exp(y + z)

Table 5: Initial conditions and Asian call option parameters.

$S0 Y0 Z0 L0 $K T years
100 -1 -0.5 110 0 1

Table 6: Comparison of simulated option prices and their variances for var-
ious values of α and δ; P MC is obtained by basic Monte Carlo simulation
and P IS

G (P̃G) are computed by Monte Carlo simulations using importance
sampling with P̃G (means are shown in parenthesis next to the variances).

α δ P MC
G P IS

G (P̃G)
100 0.05 0.048341 (7.97) 0.006334 (7.76)
75 0.1 0.043363 (7.57) 0.007707 (7.46)
50 0.5 0.051290 (7.45) 0.009676 (7.17)
25 1 0.058433 (7.31) 0.014814 (6.96)
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δ = 0.1, we first compute the unbiased price, PG, of the counterpart GAO,
then use it in (27) as a control variate. Figures 1 presents the result of
Monte Carlo simulations as a function of realizations. The dash (or blue)
line indicates sample means of the basic Monte Carlo with respect to the
number of simulations. The solid (or green) line indicates the Monte Carlo
using control variates with an unbiased estimator PG, which is computed
separately from the importance sampling. In Figure 1 we illustrate with an
AAO that the combination of control variates using GAOs computed with
importance sampling provides a great improvement on variance reduction
compare to the basic Monte Carlo. The variance is reduced from (1.5411)10−4

to (1.6201)10−6 with sample means 8.4604 and 8.4965, respectively. These
Monte Carlo simulations are done by choosing the time step equal to 0.005,
and with 5000 realizations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

2

3

4

5

6

7

8

9

Number of realizations

P
ric

es basic Monte Carlo
Control Variates with importance sampling

Figure 1: Mone Carlo simulations for the price of an arithmetic average Asian
option. Rates of mean-reversion are chosen as α = 75 and δ = 0.1.
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5 Conclusion

Under the context of multi-factor stochastic volatility model, two types of
derivative pricing problems, namely European options and Asian options,
are dealt by Monte Carlo simulations. The first set of numerical experi-
ments demonstrates that importance sampling methods significantly reduce
variances of Monte Carlo European option estimators. In particular, the
price approximations used in importance sampling are obtained from a com-
bination of singular and regular perturbation analysis detailed in [8]. The
analysis is done under the assumption of the appearance of large and small
time scales in the stochastic volatility models. However, even Monte Carlo
simulations are done in the regime where time scales are not well separated,
we still observe gains on the variance reduction. This illustrates the robust-
ness of these price approximations. The second set of numerical experiments
deals with Asian options. We propose a two-step variance reduction strategy
which combines the control variates and importance sampling. Both meth-
ods can be applied seperately and hence increase the flexibility to implement
the algorithm. Moreover we derive the first order price approximations for
geometric average Asian call options with fixed strikes, which play an essen-
tial role in obtaining the unbiased estimator used for arithemetic average call
Asian option control variates. Other type of geometric Asian option price
approximations are considered in our following work [6]. In the end, we re-
mark that, although numerical simulations are done in two-factor stochastic
volatility models, it is perceived that the same approach can be used in high
dimensional problems such as taking stochastic interest rate into account.

A First-Order Price Approximations of GAOs

with Fixed Srtikes

We perform an asymptotic analysis for the pricing problems of geometric
average Asian options under multiscale stochastic volatility model defined
in (1). The derivation for price approximations of the prices of GAOs with
floating strikes, their accuracy results, and calibration are detailed in [6].
Denote by P ε,δ the price of GAO and apply the Feynman-Kac formula to (28),
then P ε,δ(t, x, y, z, L) solves a four-dimensional partial differential equation

Lε,δ
L P ε,δ = 0,
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P ε,δ(T, x, y, z, L) = (exp(L/T ) − K)+ ,

where we denote the partial differential operator Lε,δ
L by

Lε,δ
L =

1

ε
L0 +

1√
ε
L1 + LL +

√
δM1 + δM2 +

√

δ

ε
M3,

with each component as given in (11 - 16) except

LL(f(y, z)) = LBS(f(y, z)) + ln x
∂

∂L

By the change of variables

x̂ = L − t ln x and ẑ = ln x,

a modified PDE is obtained




1

ε
L0 +

1√
ε
L̂1 + L2 +

√
δM̂1 + δM2 +

√

δ

ε
M3



P ε,δ = 0, (34)

P ε,δ(T, x̂, y, z, ẑ) = (exp((x̂ + T ẑ)/T ) − K)+ ,

where

L̂1 = νf

√
2

[

ρ1f(y, z)

(

∂

∂ẑ
− t

∂

∂x̂

)

∂

∂y
− Λf(y, z)

∂

∂y

]

,

L2(f(y, z)) =
∂

∂t
+

f 2(y, z)

2

(

∂

∂ẑ
− t

∂

∂x̂

)2

+

(

r − f 2(y, z)

2

)(

∂

∂ẑ
− t

∂

∂x̂

)

− r·,

M̂1 = νs

√
2

(

ρ2f(y, z)

(

∂

∂ẑ
− t

∂

∂x̂

)

∂

∂z
− Λs(y, z)

∂

∂z

)

,

We consider an asymptotic expansion in powers of
√

δ

P ε,δ(t, x̂, y, z, ẑ) = P ε
0 (t, x̂, y, z, ẑ) +

√
δP ε

1 (t, x̂, y, z, ẑ) + δP2(t, x̂, y, z, ẑ) + · · ·

and substitute this into (34) such that

0 =

(

1

ε
L0 +

1√
ε
L̂1 + L2

)

P ε
0

+
√

δ

((

1

ε
L0 +

1√
ε
L̂1 + L2

)

P ε
1 + M̂1P

ε
0 +

1√
ε
M3P

ε
0

)

+ · · ·
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is deduced. We find that the leading order term P ε
0 solves the singular per-

turbation problem with an additional z-dependent variable,
(

1

ε
L0 +

1√
ε
L̂1 + L2

)

P ε
0 = 0

with the terminal condition P ε
0 (T, x̂, y, z, ẑ) = (exp((x̂ + T ẑ)/T ) − K)+ . Per-

forming the singular perturbation detailed in [13], the following approxima-
tion is obtained

P ε
0 ≈ P0(t, x̂, z, ẑ) + P̃1,0(t, x̂, z, ẑ), (35)

where the leading order term P0(t, x̂, z, ẑ) solves

〈L2〉P0 = 0, (36)

P0(T, x, z, ẑ) = (exp((x̂ + T ẑ)/T ) − K)+ ,

and P̃1,0(t, x̂, z, ẑ) ≡ √
εP1,0(t, x̂, z, ẑ) solves

〈L2〉P̃1,0(t, x, z, L) = (37)

−V2

(

(T − t)2 ∂2

∂x̂2
− (T − t)

∂

∂x̂

)

P0 − V3

(

(T − t)3 ∂3

∂x̂3
− (T − t)2 ∂2

∂x̂2

)

P0,

P̃1,0(T, x, z, ẑ) = 0.

The small parameters V2 and V3 are given as in (21) and (22). In fact, there
exist explicit solutions in terms of (x, z, L) for these two PDEs:

1. P0, given in (33), is the price of GAO with fixed strike under the effec-
tive volatility σ̄(z).

2. P̃1,0(t, x, z, L) = − (T−t)2

2
V2

∂P fix
0

∂x
+ (T−t)3

3
(V2 − V3)

∂2P fix
0

∂x2 + (T−t)4

4
V3

∂3P fix
0

∂x3 .

Next, we consider the expansion of P ε
1 (t, x̂, y, z, ẑ), which solves

(

1

ε
L0 +

1√
ε
L̂1 + L2

)

P ε
1 = −

(

M̂1 +
M3√

ε

)

P ε
0 (38)

with a zero terminal condition. Similarly, we look for an expansion of the
following form

P ε
1 (t, x̂, y, z, ẑ) = P0,1(t, x̂, y, z, ẑ)+

√
εP1,1(t, x̂, y, z, ẑ)+εP2,1(t, x̂, y, z, ẑ)+· · · .
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Substituting this expansion into the PDE (38) and using the expansion (35),
it follows that P0,1, P1,1, and P2,1 solve the following PDEs

L0P0,1 = 0,

L̂1P0,1 + L0P1,1 = −M3P0 = 0,

L2P0,1 + L̂1P1,1 + L0P2,1 = −M̂1P0.

Following a similar argument, we conclude that P0,1 and P1,1 are independent
of the variable y, and P0,1 solves

〈L2〉P0,1 = −〈M̂1〉P0,

where the homogenized partial differential operator 〈M̂1〉 is written as

〈M̂1〉 = νs

√
2

(

ρ2〈f(y, z)〉
(

∂

∂ẑ
− t

∂

∂x̂

)

∂

∂z
− 〈Λs(y, z)〉 ∂

∂z

)

.

Using the homogeneous property of the solution P0

∂nP0

∂ẑn
= T n ∂nP0

∂x̂n
,

we simplify

〈M̂1〉P0 = (T − t)νs

√
2ρ2〈f(y, z)〉σ̄′(z)

∂2P0

∂x̂∂σ
− νs

√
2〈Λs(y, z)〉σ̄′(z)

∂P0

∂σ
,

where the Vega of P0 in terms of x̂, y, z, and ẑ is

∂P fix
0

∂σ
=

(T − t)3

3
σ

∂2P fix
0

∂x̂2
− (T − t)2

2
σ

∂P fix
0

∂σ
.

Since the differential operators with respect to x̂ commute with the operator
〈L2〉, and P fix

0 itself is an homogeneous solution to (36), by Theorem 3.2 in
[13], it is easy to obtain the following explicit solution

P0,1 =
T 2 − t2

2
νs

√
2ρ2〈f〉σ̄′(z)

∂2P0

∂x̂∂σ
+ (T − t)νs

√
2〈Λs〉σ̄′(z)

∂P0

∂σ
,

or, in terms of (t, x, z, L) with the definition P̃0,1 =
√

δP0,1,

P̃0,1 = (T + t)xV1
∂2P0

∂x∂σ
− (T − t)

√
2V0

∂P0

∂σ
, (39)
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where V0 and V1 are the same as in (19) and (20).
Remark: To obtain an accuracy result of the approximation

P ε,δ
G (t, x, y, z, L) ≈ P̃G(t, x, y, z, L) = P fix

0 + P̃1,0 + P̃0,1,

one needs to regularize the payoff, and consider the corresponding residuals
by calculating higher order derivatives of P fix

0 with respect to x̂ and ẑ; then
one estimates the upper bound of the residuals. We refer to our ongoing
work [6] for details, and we present the main result here.

For any given point t < T , x ∈ R+, and (y, z, L) ∈ R3, the accuracy of
the approximation for fixed strike Asian call options is given by

∣

∣

∣P ε,δ
G (t, x, y, z, L) − P̃G(t, x, z, L)

∣

∣

∣ ≤ C max{ε, δ,
√

εδ}.

for all 0 < δ < δ̄ and 0 < ε < ε̄. Other types of GAO such as floating strike
and the issue of calibration are also discussed in [6].
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