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INTRODUCTION

Monte Carlo methods are simulation algorithms to estimateraerical quantity in a
statistical model of a real system. These algorithms areut®d by computer programs.
Variance reduction techniques (VRT) are needed, even thoogputer speed has been
increasing dramatically, ever since the introduction ahpaters. This increased computer
power has stimulated simulation analysts to develop evee mealistic models, so that the net
result has not been faster execution of simulation experigye.g., some modern simulation
models need hours or days for a single 'run’ (one replicabioone scenario or combination
of simulation input values). Moreover there are some sitiartanodels that represent rare
events which have extremely small probabilities of ocaue, so even modern computer
would take 'for ever’ (centuries) to execute a single run—renienot that special VRT can
reduce theses excessively long runtimes to practical madgs.

Preliminaries

In this contribution the focus is to estimate a quantity
¢=E(H(Y)), 1)

whereH (Y) is the performance function driven by an input vectowith probability density
function f (y). To estimate through simulation, one generates a random saMpleith
i=1,...,Nfrom f(y), computes the sample functiéh(Y;), and the sample-average
estimator

A 1 N
IN = N-Z\H(YO'

This is called crude Monte Carlo sampling (CMC). The resglsample-average estimator is
an unbiased estimator fér Furthermore, abl gets large, laws of large numbers may be
invoked (assuming simple conditions) to verify that the peevaverage estimator
stochastically converges to the actual quantity to be edéich The efficiency of the estimator
is captured by its relative error (RE), i.e., the standardretivided by the mean:

RE= Var(ZN)/E(EN). Applying the Central Limit Theorem, one easily gets that

2)_qoRE< €, wherez,_gq, is the(1— a /2)™" quantile of the standard normal distribution
(typically one takesr = 0.05 s0z;_4/, = 1.96) if and only if

P(‘EN;£‘<5)>1—0{. 2)



When (2) holds, the estimator is said tode- a, €)-efficient.

To illustrate, consider the one-dimensional version of (1)

t= [hw)tay

Monte Carlo integration is a good way to estimate the valube@integral when the
dimension is much higher than one, but the concept is sélsdme. Monte Carlo integration
has become an important tool in financial engineering faripgi financial products such as
options, futures, and swaps (Glasserman, 2003). This Moattl® estimate samplés, ..., YN
independently fronf and calculates

- 1 N
IN= N ;h(Yi)~

Then/y is an unbiased estimator férand the standard error is

\/Var (In) = \/%Var(h(Y)) = \/%E(h(Y) —0)% = \/%/(h(y) —0)*f(y)dy.

Hence, the relative error (or efficiency) of the estimatqrisportional to ¥+/N. This is a

poor efficiency in case of high-dimensional problems wheeegeneration of a single output
vector is costly and consumes large computing time and me&T improve efficiency if
they indeed require smaller sample sizes. To be more spemfisider again the performance
measure (1), and assume that besides the CMC-estirfpgtar’VRT results in another
unbiased estimator, denotég, also based on a sampleMfindependent and identical
observations. The VRT-estimator is said to be statistigalbre efficient than the
CMC-estimator if

Var(fy,) < Var(fy).
Then one usually computes the reduction factor for the maga

Var(éy) — Var(Zy)

- x 100%
Var(/n)

Notice that this factor does not depend on the sampleNiZguppose that the reduction factor
is 100%, sor = 1— (Var(¢*)/Var(¢)), and suppose thél — a, )-efficiency is desired. The
required sample size for the CMC-estimatoNisgiven byz,_, ,RE = €, which holds iff

5282 ~ 1 ~ Z%_a/z A
Zi—a/z ar(/n) N ar((1) < 252 ar(/1)

The same reasoning holds for the VRT-estimator with a regusample siz8l*.
Consequently, the reduction in sample size becomes

N—-N* Var(f1) — Var(fj)
N Var(/1)

Y

which is the same reduction as for the variance.



Generating samples under a VRT consumes generally moreutentpne (exceptions are
antithetic and common random numbers; see next section fhmake a fair comparison
with CMC, the computing time should be incorporated wherssisg efficiency

improvement. Therefore, denote the required time to com@wby TM(EN) Then the effort

of an estimator may be defined to be the product of its variandets computing time:
EFFORT= Var x TM(¢n). Notice that the effort does not depend on the sample siteg if
computing time oN samples equalN times the computing time of a single sample. Then the
estimator@’,(, is called more efficient than estimatéy if the former requires less effort:

EFFORT(/}) < EFFORT/y).

Again, a reduction factor for the effort can be defined, angl @an analyze the reduction in
computer time needed to obtgih— a, €)-efficiency.

Estimating the Probability of Rare Events

An important class of statistical problems assesses pilaiesoof risky or undesirable events.
These problems have become an important issue in many fexdds)ples are found in
reliability systems (system failure), risk managementy@at-risk), financial engineering
(credit default), insurance (ruin), and telecommuniaafjacket loss); see Juneja and
Shahabuddin (2006); Rubino and Tuffin (2009). These problean be denoted in the format
of this contribution by assuming that a getontains all the risky or undesirable input vectors
y, so that (1) becomes

t=P(A) =P(Y € A) =E(Ia(Y)),

wherel is the indicator function of the sét(and thus in (LH = 14). The standard error of
the Monte Carlo estimator is easily computed a&(1 — ¢) /N. Hence, the relative error

becomes
re_ VIA-0 _/1-0)
(yN VIN

This equation implies that the sample size is inverse ptapwl to the target probability
when requiring a prespecified efficiency; for instance, t@mwi(95%,10%)-efficiency, the
sample size should b¢ > 3851 — /) /¢. This leads immediately to the main issue of this
contribution; namely << 1 soAis called a rare event. To illustrate, suppdse (Yi,...,Yn),
whereYj (j = 1,...,n) are identically and independently distributed (IID) withite mean

u1 = E(Y1) and standard deviatiom = +/Var(Y;). Denote their sum b®(Y) =Y, +---+ Y,
and let the rare event e= {S(Y) > n(u + &)} for a positived. A normal approximation
results fom =500 0 = 0.5,0 = 1 that/ ~ 2.5E-29. A (95%,10%)-efficient CMC-estimator
would need sample si2¢ ~ 1.5E+31; which is impossible to realize. For example, the
practical problem might require the daily simulation of afigial product for a period of two
years in which a single normal variate needs to be generatesipulated day. Fast
algorithms for normal variate generation on standard P@gire about 20 seconds for E+9
samples. This gives only E+5 vector sampteper second. Note that the number of calls of
the random number generator (RNG) is at Iédst n, which in our numerical example equals
7.5E+33; this number is large, but modern RNGs can meetéljisirement (LEcuyer, 2006).

3)

In conclusion, the desired level of efficiency of the CMC mastior for rare event problems
requires sample sizes that go far beyond available reseursnce, researchers have looked
for ways to reduce the variance of the estimator as much aslppes$or the same amount of
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sampling resources. Traditional VRTs are common randombeusy antithetic variates,
control variates, conditioning, stratified sampling angartance sampling (Law, 2007,
Rubinstein and Kroese, 2008). Modern VRTs include spittechniques, and quasi-Mont
Carlo sampling (Asmussen and Glynn, 2007; Glasserman,)2003

ANTITHETIC AND COMMON RANDOM NUMBERS

Consider again the problem of estimatifig E(H(Y)) defined in (1). Now lel; andY, be
two input samples generated frohfy). DenoteX; = H(Y;) withi=1,2. Then
¢ = (X1+ X2)/2 is an unbiased estimator 6fvith variance

Var({) = %, (Var(X1) + Var(X2) + 2Cou(X1,X2)) .
If X1, X2 would be independent (as is the case in CMC), therﬁé\)’avould be
%(Var(xl) + Var(Xz2)). Obviously, variance reduction is obtained if G&y, Xz) < 0. The
usual way to make this covariance negative is as follows. Mgher the uniform random
numberU is used for a particular purpose (for example, the secondcgetime) in generating
Y 1, use the antithetic number-1U for the same purpose to generdtg Becaus&) and
1—U have correlation coefficient1, it is to be expected that C¥, X2) < 0. This can be
formalized by the following technical conditions.

(). The sample vectof = (Y1,...,Ys) has componentg that are one-dimensional,
independent random variables with distribution functiBpghat are generated by the

inverse transformation method,; i.¥j,= ijl(Uj), forj=1,...,n
(b). The performance functiad is monotone.

Under these conditions, negative correlation can be pr{fRatinstein and Kroese, 2008). In
condition (a) the inverse transformation requirement careiplaced by the assumption that
all Yj-components are Gaussian: whén- N(u,0?), thenY = 2u —Y ~ N(i,0?), and
clearlyY andY are negatively correlated. This alternative assumptidypisally applied in
financial engineering for option pricing (Glasserman, 2003

The method of common random numbers (CRN) is often appligddntice, because
simulationists find it natural to compare alternative sys@nder ‘the same circumstances’;
for example, they compare different queueing disciplisesly as First-In-First-Out or FIFO,
Last-In-First-Out or LIFO, Shortest-Jobs-First or SJAhgghe same sampled arrival and
service times in the simulation.

To be more specific, léf be an input vector for two system performanggsi;(Y)) and
E(H2(Y)), and the performance quantity of interest is their diffeeen

¢ =E(Hy(Y)) —E(Ha(Y)).
To estimate/, two choices produce an unbiased estimator:

1. Generate one sequence of IID input vectors. .., Yy, and estimaté by

B = 5 3, (FalYD) — Ha(Y).



2. Generate two independent IID sequences of input vemﬁ?s. . .,Yﬁll), and

Y(lz), .. .,Yf\lz), and estimaté by
A 1 N 1 1 N 2
0 =5 HYY) = Z 3 Ha(Y(?).
PR TP

The first method is the CRN method, and is intuitively preddvecause it reduces variability:
var(\\") < Var(/%)).

To prove this inequality, denob§ = H;(Y;). Then/ = X1 — Xo is an unbiased estimator 6f
with variance )

Var(¢) = Var(Xy) + Var(Xz) —2Cov X1, X2). 4)
If X; andX, are independent (as is the case in the second method), thieec@mes
Var(X1) + Var(X2). Hence, variance reduction is obtained if C&y, X2) > 0 in (4). This
requirement is precisely the opposite of what was needentithatic variates. To force the
covariance to become positive through CRN, the uniformeamdumbet) used for a
particular purpose in generating, is used for the same purpose to genekgieThis can be
formalized by the technical conditions completely analogtw those for antithetic variates.

CRN is often applied not only because it seems 'fair’ but #lecause CRN is the default in
many simulation software systems; e.g., Arena comparérelift scenarios using the same
seed—unless, the programmer explicitly selects diffeseptls to initialize the various
sampling processes (arrival process, service time at watios 1, etc.) for different
scenarios. Detailed examples are given in Law (2007), pp-358!.

So while the simulation programmers need to invest littkegegffort to implement CRN, the
comparisons of various scenarios may be expected to be rocueate; i.e., the what-if or
sensitivity analysis gives estimators with reduced vasn However, some applications may
require estimates of the absolute (instead of the relatasgonses; i.e., instead of sensitivity
analysis the analysis aims at prediction or interpolatromfthe observed responses for the
scenarios that have already been simulated. In these appitis, CRN may give worse
predictions; also see Chen, Ankenman, and Nelson (2010).

The analysis of simulation experiments with CRN should gyobe (4), which compares only
two scenarios. The simplest extension is to compare a fixeaf ¢égay)k scenarios using (4)
combined with the Bonferroni inequality so that the typerberate does not exceed (say)
i.e., in each comparison of two scenarios the vaius replaced byr /mwherem denotes the
number of comparisons (e.g., if &llscenarios are compared, then= k(k—1)/2). Multiple
comparison and ranking techniques are discussed in Chatksans (2009).

However, the number of interesting scenarios may be not fixadvance; e.g., the scenarios
differ in one or more quantitative inputs (e.g., arrivalspenumber of servers) and the
optimal input combination is wanted. In such situationgression analysis is useful; i.e., the
regression model is then a metamodel that enables valigagmsitivity analysis, and
optimization of the simulation model; see Kleijnen (200B)e estimated regression
coefficients (regression parameters) may have smalleaan@es if CRN is used—because of
arguments based on (4)—except for the intercept (or thethnaean’ in Analysis of Variance



or ANOVA terminology). Consequently, CRN is not attractimeorediction, but it is in
sensitivity analysis and optimization.

A better metamodel for prediction may be a Kriging or Gaus$ieocess model, assuming the
scenarios correspond with combinations of quantitatipelis; e.g., the scenarios represent
different traffic rates in a queuing simulation. Kriging ihgs that the correlation between the
responses of different scenarios decreases with the deststween the corresponding input
combinations; i.e., the Gaussian process is stationasijj(t€n, 2008). In random simulation
(unlike deterministic simulation, which is popular in engering) the Kriging metamodel also
requires the estimation of the correlations between thdrisic’ noises of different scenarios
caused by the use of random numbédrsee Chen, Ankenman, and Nelson (2010).

An important issue in the implementation of Antithetics &N is synchronization, which is
a controlling mechanism to ensure that the same randonbl@siare generated by the same
random numbers from the random number generator. As an dgaoomsider comparing a
single-server queu@l /Gl /1 with a two-server systei@l /Gl /2. The two systems have
statistically similar arrivals and service times, but tiregke server works twice as fast. The
performance measure is the expected waiting time per cesttwinich is conjectured to be
less in the two-server system). In a simulation study, thedimulation models with CRN
should have the same arrival variates, and the same sénvieerariates. Suppose that

A1, Ay, ... are the consecutive interarrival times in a simulation rithe G1 /Gl /1 model, and
S1,S, ... are their associated service-time requirements. Thehgiodrresponding
simulation run of the&1 /Gl /2 model, these same values are used for the consecutive
interarrival times, and their associated service timesdton, Sadowski, and Sturrock
(2007); Law (2007).

Antithetic and common random numbers can be combined. Dipgimal combination is the
goal of the Schruben-Margolin strategy; i.e., some blodkscenarios use CRN, whereas
other blocks use antithetic variates, etc.; see Song and(@607).

CONTROL VARIATES

Suppose thatt is an unbiased estimator 6fn the estimation problem (1); for examp(@js
the arrival time in a queueing simulation. A random variabie called a control variate faf
if it is correlated with/ and its expectatiop is known. The linear control random variable

¢(a) is defined as A A
t(a)=Lt—-a(C—y),

wherea is a scalar parameter. It is easy to prove that the variané@ofis minimized by

P Cov(/,C)
Var(C) -
The resulting minimal variance is
Var(i(a*)) = (1 - pgc) Var(f), (5)

wherep;. denotes the correlation coefficient betwdeandC. Since Coy/,C) is unknown,
the optimal control coefficiend* must be estimated from the simulation. Estimating both
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Cov(/,C) and VaKC) means that linear regression analysis is applied to estiatat
Estimation ofa* implies that the variance reduction becomes smaller thasu@gests, and
that the estimator may become biased. The method can bg essihded to multiple control
variables (Rubinstein and Marcus, 1985).

A well-known application of control variates is pricing osfan options. The payoff of an
Asian call option is given by

H(Y) = max(o, % ivj _ K),
P

whereYj = Sit n, the expiration dat& is discretized inta time units K is the strike price,
and§ is the asset price at tintewhich follows a geometric Brownian motion. Lebe the
interest rate; then the price of the option becomes

(=E(e"TH(Y)).

As control variate may b€ = e~'T max(0, St — K) whose expectation is readily available
from the Black-Scholes formula. Alternative control véemareSr, or % >1SiT/n-

CONDITIONING

The method of conditional Monte-Carlo is based on the folhgabasic probability formulas.
Let X andZ be two arbitrary random variables, then

E(E(X|2)) =E(X) and VafX)=E(Var(X|2))+ Var(E(X|2)). (6)
Because the last two terms are both nonnegative, variadoetien is obvious:
Var(E(X|Z)) < Var(X).
The same reasoning holds for the original problem (1),rsgXi= H(Y). Also Z is allowed
to be a vector variable. These formulas are used in a simualatiperiment as follows. The

vectorZ is simulated, and the conditional expectatos E(H(Y)|Z) is computed.
Repeating thidN times gives the conditional Monte-Carlo estimator

&:%iq

A typical example is a level-crossing probability of a ramdoumber of variables:

ezp(élvj >b),

whereYi, Yo, ... are |lID positive random variableR,is a nonnegative integer-valued random
variable, independent of thg variables, and is some specified constant. Such problems are
of interest in insurance risk models for assessing aggeedaim distributions (Glasserman,
2003). CMC can be improved by conditioning on the valu®d&dr which level crossing

occurs. To be more specific, denote the event of interest Bp/ = E(Ia(Y)). Define

;
M:min<r:lej >b).

Assume that the distribution af can be easily sampled, and that the distributioR &f
known and numerically available (for instance, PoissomerTit is easy to generate a value of
M. Suppose thatl = m. ThenE(Ia(Y)|M = m) = P(R> m), which can be easily computed.
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STRATIFIED SAMPLING

Recall the original estimation problefn= E(H(Y)), and its crude Monte Carlo estimatéy.
Suppose now that there is some finite random variZlibking values fron{zs, ..., zy}, say,
such that

(). the probabilitiep; = P(Z = z) are known;
(ii). foreachi=1,... ,m, itis easy to sample from the conditional distributionyogiven
Z=1z.

Because o
t=E(E(H(Y))) = ; PE(H(Y)[Z=13),

the stratified sampling estimator 6Mmay be

m 1Ni

N :i;piﬁij;H(Y”)’

whereN; 11D samplesYii, ..., Yin; are generated from the conditional distributionYofiven
Z =z, such thatN; + - - - + Ny, = N. Notice that the estimator is unbiased. To assess its
variance, denote the conditional variance of the perfonaastimator by

0? = Var(H(Y)|Z = z). The variance of the stratified sampling estimator is theemgby

m 22
Pi G

Var(%5) = N

Because of (6) N
Var(H(¥)) 2 Var(H(Y)|2) = 5 po?.

Selecting proportional strata sample sikgs= p;N gives variance reduction:

R m 52 1 R
var(fy) = § P9 < SVar(H(Y)) = Var().
i=
It can be shown that the strata sample sidethat minimize this variance are
Pi Gi
Yit1Pjioj’

see Rubinstein and Kroese (2008). A practical problem isttigastandard deviatiors are
usually unknown, so these variances are estimated by pihst (Stratified sampling is used in
financial engineering to get variance reductions in proBlsaocth as value-at-risk, and pricing
path-dependent options (Glasserman, 2003).

IMPORTANCE SAMPLING

The idea of importance sampling is explained best in casstwhating the probability of an
eventA. The underlying sample space(i®,.7) for which A € .%, and the probability
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measureP on this space is given by the specific simulation model. Imaitation experiment
for estimatingP(A), the CMC estimator would béy = zi’\'zllg), Wherelgl), . I&N) are 11D
indicator functions of everA generated undé?. On average in only one out of B(A)
generated samples the evémccurs, and thus for rare events (WhB(@\) is extremely
small) this procedure fails. Suppose that there is an @temprobability measur@* on the
same(Q,.#) such that (i)A occurs much more often, and (F)is absolutely continuous with
respect tdP*, meaning

VFe.Z :P(F)>0= P*(F)>0.
Then according to the Radon-Nikodym theorem, it holds theitet is a measurable functitn
on Q such that/- dP= J- LdP* for all F € .#. The functionlL is called likelihood ratio and
usually written ag. = dP/dP*; the alternative probability measuré is said to be the
importance sampling probability measure, or the changeeafsure. Thus, by weighting the
occurrencep of eventA with the associated likelihood ratio, simulation underc¢hange of
measure yields an unbiased importance sampling estimator

< () )
= LW
2

More importantly, variance reduction is obtained when th@ge of measure has been
chosen properly, as will be explained below. Importancemig has been applied
successfully in a variety of simulation areas, such as sigtahoperations research, statistics,
Bayesian statistics, econometrics, finance, systemsgyipee Rubino and Tuffin (2009).
This section will show that the main issue in importance dargsimulation is the question
which change of measure to consider. The choice is very migifigm dependent, however,
and unfortunately, it is difficult to prevent gross missfieation of the change of measupg,
particularly in multiple dimensions.

Exponential change of measure

As an illustration, consider the problem of estimating #neel-crossing probability
lh=P(Ay) with Ay={Y1+---4+Y,>na}, (7

whereYi,..., Y, are 1ID random variables with finite mean= E(Y) < a and with a
light-tailed PDFf(y,Vv), in whichv denotes a parameter vector, such as mean and variance of
a normal density. It is well-known from Cramér’s Theoreratth(A,) — 0 exponentially fast
asn — oo. Suppose that under the importance sampling probabiligsoe the random
variablesys, ..., Y, remain 11D, but with an exponentially tilted PDF (also cdllexponentially
twisted), with tilting factort:

=T f(y, )e‘ydy'
Thus, in the importance sampling simulations Yeesamples are generated fraiaty, v).
Because of the I1ID assumption, the likelihood ratio becomes

L(Ya,o n ft Yk, = exp(ny(t) —t zvk) ®)
with @(t) = log [ f(y,v)e¥dy. Variance reduction is obtained if
Var () < Var(fn) < Var(#}) < Var(ly)
e E[(DY<E((R)] & E[(aL(M.....Y0)? < E[(18)?)-




Because of (8), it is easy to show that the variance is mirgthfert = (¢/)~1(a). In that case
the importance sampling estimator is logarithmically &ffit (also called asymptotically
optimal; see Rubino and Tuffin (2009; Chapter 4)):

_ logE[(F)?
n—e  logE /)]

Y

where the subscrigtmeans that the underlying probability is the change of measu
Asymptotic optimality implies that REy;) grows subexponentially as— o, whereas for
CMC the relative error grows exponentially (see (3)).

The cross-entropy method

A general heuristic for constructing an importance sangpdilgorithm is to consider only a
parameterized family of changes of measures. Considen agaiblem (1), with PDF

f = f(y,v) wherev is the parameter vector. Thus, @tbe all feasible parameter vectors for
f. For anyf € O, the change of measuRgy induces the (single-run) importance sampling

estimator P (YY)
- dpP B v
lg=H(Y) ap; (Y)=H(Y) Y.0)

The optimal change of measure is found by variance mininozaince the estimators are
unbiased, it suffices to minimize the second moment:

f(Y,
itva) |

Generally, this problem is hard. A successful approachssdan cross-entropy

minimization as explained in Rubinstein and Kroese (20B#kt, consider the optimal
change of measure, resulting in a zero-variance estimator:

dePt(y) — w (9)

mins|(HOY

This change of measure is not implementable as it requireslikaige of the unknown
guantity/. The cross-entropy method finBg by minimizing the Kullback-Leibler distance
(or cross-entropy) within the class of feasible changesedsure:

. pt
gngn 2(dPP dPy),
where the cross-entropy is defined by

Z(dPPL dPy) = EOPt[mg (%(Y))] - E\,[%(Y) log (ddps:tm)].

Substituting expression (9), and canceling constant tamddactors, the equivalent
cross-entropy problem becomes

maxEy[H(Y)logdPs(Y)].

6O
There are several ways to solve this stochastic optimizgioblem. The original description
of the cross-entropy method for such problems proposedie #te stochastic counterpart
iteratively, see Rubinstein and Kroese (2004). This apprtes been applied successfully to
a variety of estimation and rare-event problems.
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State-dependent importance sampling

The importance sampling algorithms described above wesedan a static change of
measure; i.e, the samples are generated by a fixed alterstdiistical law; see (8). In specific
problems, such as (7), the static importance sampling ithgoryields an efficient estimator.
However, for many problems it is known that efficient estionatrequire an adaptive or
state-dependent importance sampling algorithm (Junej&saahabudding, 2006). To
illustrate this concept, consider again the problem ohesting the level-crossing probability
(7). TheY-variables are called jumps of a random wék),._,, defined byS = 0, and for
k>1:5= z‘j(:le = S_1+ Yk. Under a state-dependent change of measure, the next jump
Yir1 might be generated from a PCOiRy|k+ 1, S,); i.e., it depends on jump time+ 1 and
current stateés,. Hence, under the change of measure, the prd&$s , becomes an
inhomogeneous Markov chain. Given a generated sequénce, Y,, the associated
likelihood ratio is TRy
(Y, v
LW = T ks &

The next question is: Which time-state dependent PDFs dhmmuthosen for this kind of
change of measure? The criterion could be (i) variance nimaition, (ii) cross-entropy
minimization, or (iii) efficiency.

(). A small set of rare-event problems are suited to findaed zero-variance approximate
importance sampling algorithms, notably level-crossirgbpems with Gaussian jumps,
reliability problems, and certain Markov chains problesee L'Ecuyer et al. (2010).

(ii). A cross-entropy minimization is applied after eachte, for determining the PDF of
the next jump (Ridder and Taimre, 2009). The result is thagmihe level-crossing at
time n can be reached from stafgjust by following the natural drift, no change of
measure is applied. Otherwise, the next jump is drawn froexaonentially tilted PDF
with tilting factort = (¢/)~((an—S)/(n—Kk)). This would be the static solution given
before when starting at timle= 0. This approach gives logarithmic efficiency.

(iif). The method developed by Dupuis and Wang (2007) carsithe rare-event problem as
an optimal control problem in a differential game. Applyithgnamic programming
techniques while using large-deviations expressionsatitieors develop logarithmically
efficient importance sampling algorithms. This approachka@lso for rare events in
Jackson networks (Dupuis, Sezer, and Wang, 2007).

Markov chains

Many practical estimation problems in statistical systéeng., reliability, production,
inventory, queueing, communications) can be reformulated Markov model to estimate a
quantity/ = P(Y1 € ). Let{Y{:t=0,1,...} denote a discrete-time Markov chain with a
state space?” with transition probabilitiep(x,y); # C £ is a subset of states, afds a
stopping time. A typical example is a system of highly releafomponents where the
response of interest is the probability of a break down oftfstem.

Assume that the importance sampling is restricted to ates probability measurd®" such
that the Markov chain property is preserved with transipoobabilitiesp*(x,y) satisfying

p(x,y) >0 < p*(x,y) > 0.
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This constraint ensures the absolute continuity conditiamthermore, assuming that the
initial distribution remains unchanged, the likelihootioaf a simulated path of the chain
becomes simply

P(Yt,Yti1)

l_L P*(Ye,Yei1)

Thus, it suffices to find the importance-sampling transipoobabilitiesp*(x,y). Considering
these probabilities as parameters, the method of crosspsris most convenient; Ridder
(2010) gives sufficient conditions to guarantee asymptgitanality. However, many realistic
systems are modeled by Markov chains with millions of traoss, which causes several
difficulties: the dimensionality of the parameter space,dhnger of degeneracy of the
estimation, and numerical underflow in the computationse&s approaches are proposed to
reduce the parameter space in the cross-entropy metho@teaBd Nicola, 2002; Kaynar
and Ridder, 2010).

Another approach to importance sampling in Markov chains@pmates the zero-variance
probability measur®°Pt, It is known that thisP°Ptimplies transition probabilities of the form

y(y)
y(x)’

wherey(x) = P(Y1 € #|Yo = X). As these quantities are unknown (and in fact the subject of
interest), these zero-variance transition probabiliteasnot be implemented. However,
approximations of thg(x) probabilities may be considered (L'Ecuyer et al., 2010)dén
certain conditions this approach leads to strong efficieri¢iie importance sampling

estimator.

PP (x,y) = p(X,Y)

SPLITTING

The splitting method may handle rare-event probabilitinestion. Unlike importance
sampling, the probability laws remain unchanged, but 4 tirithe rare event is constructed by
splitting (cloning) favorable trajectories, and termingtunfavorable trajectories. This idea
may be explained as follows. Consider a discrete-time Madkain{Y; :t=0,1,...} ona
state space?’. Suppose that the chain has a regeneration state 0y aset of failure states
7, and a starting statg). The response of interest is the probability that the chamd
before0. More formally, if T denotes the stopping time

=inf{t: Y e 0UZ#},

then
(=P(YT€ZF).

The initial stateyg ¢ 0U.%# may have either some initial distribution, or be fixed andwno
The assumption is thdtis so small that CMC in impractical. Suppose that the stadees|s
partitioned into sets according to

X DO DZD D Am=7, (10)

with 0 € 27\ Z1. Usually these sets are defined through an importance ampti 2™ — R,
such that for eack, Zx = {y: @(y) > Lx} for certain leveld ; <Ly < --- <Ly, with
©®(0) = Lo < L1. Now define stopping timek and associated everig by

Tk =inf{t: X(t) e 0U Zk}; Ax={YT, € Zk}.
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Because of (10), clearlyy D Ay D --- D An=A={Y1 € Z}. Thus the rare-event
probability¢ = P(A) can be decomposed as a telescoping product:

{= - _1).
P(A1) kELP(Ak|Ak 1)

To estimate/, one might estimate all conditional probabilitie§Ac|Ac 1) separately (say) by
Y/, which gives the product estimator

m
0 = Ek, (11)
I

where/; estimated?(Aq). The splitting method implements the following algorithan f
constructing théy estimators in a way that the product estimator is unbiasethd initial
stage k= 0), runNp independent trajectories of the chain starting at thealhstiateyy. Each
trajectory is run until either it enterg or it returns td0, whatever come first. Ld®; be the
number of “successful” trajectories; i.e., trajectorieattreach?; before0. Then set

(1= R1/No. Consider stagk > 1, and suppose th&; trajectories have entered sgf in

entrance state‘é(lk) eees Ygf() (not necessarily distinct). Replicate (clone) these statetil a
sample of sizé&\x has been obtained. From each of these states, run a trgjettbe chain,
independently of the others. Each trajectory is run untilesiit entersZy ., or it returns ta0,
whatever come first. L&, 1 be the number of successful trajectories, i.e., trajegsdfiat
reach.Zy 1 before0. Then sety,1 = R¢.1/Nk. This procedure is continued until all
trajectories have entered eith&r or returned td.

Recently this form of the splitting method has attractedt@fanterest (see the reference list
in Rubino and Tuffin (2009; Chapter 3)), both from a theoadtpoint of view analyzing the
efficiency, and from a practical point of view describing el applications. The analysis
shows that the product estimator (11) is unbiased. Furtbexnthe analysis of the efficiency
of the splitting technique depends on the implementatiq@ap$electing the levels, (b) the
splitting (cloning) of successful trajectories, and (@ termination of unsuccessful
trajectories. Generally, the problem of solving theseassaptimally is like choosing an
optimal change of measure in importance sampling. In faegrband Dupuis (2008)
discusses this relationship when the model satisfies a tegations principle.

Concerning issue (c), the standard splitting techniqueiteates a trajectory that returns to the
regeneration stat® or—in case of an importance function—when the trajectatg back to
level L. This approach, however, may be inefficient for trajectotiat start already at a high
level L. Therefore, there are several adaptations such as tranc¢atEcuyer, Demers, and
Tuffin, 2007), RESTART (Villen-Altamirano, and Villen-Admirano, 1994), and Russian
roulette principle (Melas, 1997).

Concerning issue (b), there are numerous ways to cloneeztoay that has entered the next
level, but the two ways implemented mostly are (i) fixed dffand (ii) fixed splitting. Fixed
effort means that the sample siZdsare predetermined, and thus each offRentrance
states at sefy is clonedcy = |Nk/Rx| times. The remainindlkmodry clones are selected
randomly. An alternative is to drai times at random (with replacement) from tRe
available entrance states. Fixed splitting means thatgdlitéirsg factorscy are predetermined,
and each of th& entrance states at s, is clonedcy times to give sample siZey = cRy.
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For a certain class of models, Glasserman et al. (1999) leagnstinat fixed splitting gives
asymptotic optimality (ag — 0) when the number of leveta~ —In(¢) /2, with setsZ such
thatP(Ax|A«_1) are all equal (namely, roughly equaléo?) and splitting factors such that
ckP(Ax11|A«) = 1. However, sincé and theP (A, 1|/Ax) are unknown in practice, this result
can only be approximated. Moreover, one should take intowattdhe amount of work or
computing time in the analysis; for example, Lagnoux (2af¥ermines the optimal setting
under a budget constraint of the expected total computing.ti

Application to counting

Recently, counting problems have attracted the interesteotheoretical computer science and
the operations research communities. A standard countotggm is model counting, or
#SAT: how many assignments to boolean variables satisfyendioolean formula consisting
of a conjunction of clauses? The related classical decioblem is: does there exist a true
assignment of the formula? Because exact counting is irtipadde due to the exponential
increase in memory and running times, attention shiftegpfy@imate counting—notably by
applying randomized algorithms. In this randomized sgttihe counting problem is
equivalent to rare event simulation: l&tf* be the set of all solutions of the problem, whose
number|.Z2™*| is unknown and the subject of study. Assume that there igyalaet of points

Z D Z* with two properties:

1. the number of points2’| is known;

2. itis easy to generate uniformly points 2.

Because |%*‘
| 27| = |27,
| 2|
it suffices to estimate 2]
= = P(U S ‘%‘*)7
| 2]

whereU is the uniform random vector oft”". Typically ¢ is extremely small, and thus rare
event techniques are required. Splitting techniques wiéihkdv chain Monte Carlo (MCMC)
simulations have been developed in Botev and Kroese (20@BIRabinstein (2010) to handle
such counting problems.

QUASI MONTE-CARLO

Suppose that the performance functldnn (1) is defined on thd-dimensional unit
hypercubg0,1)9, and the problem is to compute its expectation with respettte: uniform
distribution:

¢ —E(H(U)) :/[Ol)dH(u)du.

As was shown in the introduction, the variance of the CMOmtbriNm using a sample size
N x mequalso?/(N x m), where

0% = H?(u) du— ¢2.
[0,1)
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LetPy = {us,...,un} C [0,1)¢ be a deterministic point set that is constructed accordiray t
guasi-Monte Carlo rule with low discrepancy, such as adattule (Korobov), or a digital net
(Sobol’, Faure, Niederreiter); see Lemieux (2006). Thesgivonte Carlo approximation df
would be

N
H(uj).
jZl (uj)

This deterministic approach is transformed into Monte €aiinulation by applying a
randomization of the point set. A simple randomization tegbe is the random shift:
generaten [ID random vectory; € [0, 1)4,i=1,...,m, and compute the quasi-Monte Carlo
approximations

N
fi =S H(uj+vi modd).
2

Then the randomized quasi-Monte Carlo estimator using kasigeN x mis defined by

@Z%éa

The scrambling technique is based on permuting the digitiseo€oordinates;.. Other
techniques of randomizing quasi-Monte Carlo point setdem®used. The main property is
that when the performance functibhis sufficiently smooth, these randomized quasi-Monte
Carlo methods give considerable variance reduction (Lexpi2006).
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