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INTRODUCTION

Monte Carlo methods are simulation algorithms to estimate anumerical quantity in a
statistical model of a real system. These algorithms are executed by computer programs.
Variance reduction techniques (VRT) are needed, even though computer speed has been
increasing dramatically, ever since the introduction of computers. This increased computer
power has stimulated simulation analysts to develop ever more realistic models, so that the net
result has not been faster execution of simulation experiments; e.g., some modern simulation
models need hours or days for a single ’run’ (one replicationof one scenario or combination
of simulation input values). Moreover there are some simulation models that represent rare
events which have extremely small probabilities of occurrence), so even modern computer
would take ’for ever’ (centuries) to execute a single run—were it not that special VRT can
reduce theses excessively long runtimes to practical magnitudes.

Preliminaries

In this contribution the focus is to estimate a quantity

ℓ = E(H(Y)), (1)

whereH(Y) is the performance function driven by an input vectorY with probability density
function f (y). To estimateℓ through simulation, one generates a random sampleYi with
i = 1, . . . ,N from f (y), computes the sample functionH(Yi), and the sample-average
estimator

ℓ̂N =
1
N

N

∑
i=1

H(Yi).

This is called crude Monte Carlo sampling (CMC). The resulting sample-average estimator is
an unbiased estimator forℓ. Furthermore, asN gets large, laws of large numbers may be
invoked (assuming simple conditions) to verify that the sample-average estimator
stochastically converges to the actual quantity to be estimated. The efficiency of the estimator
is captured by its relative error (RE), i.e., the standard error divided by the mean:

RE=
√

Var(ℓ̂N)/E(ℓ̂N). Applying the Central Limit Theorem, one easily gets that

z1−α/2RE< ε, wherez1−α/2 is the(1−α/2)th quantile of the standard normal distribution
(typically one takesα = 0.05 soz1−α/2 = 1.96) if and only if

P
(
∣

∣

∣

ℓ̂N − ℓ

ℓ

∣

∣

∣
< ε

)

> 1−α. (2)
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When (2) holds, the estimator is said to be(1−α,ε)-efficient.

To illustrate, consider the one-dimensional version of (1):

ℓ =

∫

h(y) f (y)dy.

Monte Carlo integration is a good way to estimate the value ofthe integral when the
dimension is much higher than one, but the concept is still the same. Monte Carlo integration
has become an important tool in financial engineering for pricing financial products such as
options, futures, and swaps (Glasserman, 2003). This MonteCarlo estimate samplesY1, . . . ,YN

independently fromf and calculates

ℓ̂N =
1
N

N

∑
i=1

h(Yi).

Thenℓ̂N is an unbiased estimator forℓ, and the standard error is

√

Var
(

ℓ̂N
)

=

√

1
N

Var(h(Y)) =

√

1
N

E (h(Y)− ℓ)2 =

√

1
N

∫

(h(y)− ℓ)2 f (y)dy.

Hence, the relative error (or efficiency) of the estimator isproportional to 1/
√

N. This is a
poor efficiency in case of high-dimensional problems where the generation of a single output
vector is costly and consumes large computing time and memory. VRT improve efficiency if
they indeed require smaller sample sizes. To be more specific, consider again the performance
measure (1), and assume that besides the CMC-estimatorℓ̂N, a VRT results in another
unbiased estimator, denotedℓ̂∗N, also based on a sample ofN independent and identical
observations. The VRT-estimator is said to be statistically more efficient than the
CMC-estimator if

Var(ℓ̂∗N) < Var(ℓ̂N).

Then one usually computes the reduction factor for the variance:

Var(ℓ̂N)−Var(ℓ̂∗N)

Var(ℓ̂N)
× 100%.

Notice that this factor does not depend on the sample sizeN. Suppose that the reduction factor
is 100r%, sor = 1− (Var(ℓ̂∗)/Var(ℓ̂)), and suppose that(1−α,ε)-efficiency is desired. The
required sample size for the CMC-estimator isN, given byz1−α/2RE= ε, which holds iff

ℓ2ε2

z2
1−α/2

= Var(ℓ̂N) =
1
N

Var(ℓ̂1) ⇔ N =
z2
1−α/2

ℓ2ε2 Var(ℓ̂1).

The same reasoning holds for the VRT-estimator with a required sample sizeN∗.
Consequently, the reduction in sample size becomes

N−N∗

N
=

Var(ℓ̂1)−Var(ℓ̂∗1)

Var(ℓ̂1)
= r,

which is the same reduction as for the variance.
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Generating samples under a VRT consumes generally more computer time (exceptions are
antithetic and common random numbers; see next section). Thus to make a fair comparison
with CMC, the computing time should be incorporated when assessing efficiency
improvement. Therefore, denote the required time to compute ℓ̂N by TM(ℓ̂N). Then the effort
of an estimator may be defined to be the product of its varianceand its computing time:
EFFORT= Var×TM(ℓ̂N). Notice that the effort does not depend on the sample size, ifthe
computing time ofN samples equalsN times the computing time of a single sample. Then the
estimatorℓ̂∗N is called more efficient than estimatorℓ̂N if the former requires less effort:

EFFORT(ℓ̂∗N) < EFFORT(ℓ̂N).

Again, a reduction factor for the effort can be defined, and one can analyze the reduction in
computer time needed to obtain(1−α,ε)-efficiency.

Estimating the Probability of Rare Events

An important class of statistical problems assesses probabilities of risky or undesirable events.
These problems have become an important issue in many fields;examples are found in
reliability systems (system failure), risk management (value-at-risk), financial engineering
(credit default), insurance (ruin), and telecommunication (packet loss); see Juneja and
Shahabuddin (2006); Rubino and Tuffin (2009). These problems can be denoted in the format
of this contribution by assuming that a setA contains all the risky or undesirable input vectors
y, so that (1) becomes

ℓ = P(A) = P(Y ∈ A) = E(IA(Y)),

whereIA is the indicator function of the setA (and thus in (1)H = IA). The standard error of
the Monte Carlo estimator is easily computed as

√

ℓ(1− ℓ)/N. Hence, the relative error
becomes

RE=

√

ℓ(1− ℓ)

ℓ
√

N
=

√

(1− ℓ)√
ℓN

. (3)

This equation implies that the sample size is inverse proportional to the target probabilityℓ
when requiring a prespecified efficiency; for instance, to obtain (95%,10%)-efficiency, the
sample size should beN ≥ 385(1− ℓ)/ℓ. This leads immediately to the main issue of this
contribution; namelyℓ << 1 soA is called a rare event. To illustrate, supposeY = (Y1, . . . ,Yn),
whereYj ( j = 1, . . . ,n) are identically and independently distributed (IID) withfinite mean
µ = E(Y1) and standard deviationσ =

√

Var(Y1). Denote their sum byS(Y) = Y1 + · · ·+Yn,
and let the rare event beA = {S(Y) > n(µ +δ )} for a positiveδ . A normal approximation
results forn = 500,δ = 0.5,σ = 1 thatℓ ≈ 2.5E-29. A (95%,10%)-efficient CMC-estimator
would need sample sizeN ≈ 1.5E+31; which is impossible to realize. For example, the
practical problem might require the daily simulation of a financial product for a period of two
years in which a single normal variate needs to be generated per simulated day. Fast
algorithms for normal variate generation on standard PCs require about 20 seconds for E+9
samples. This gives only E+5 vector samplesY per second. Note that the number of calls of
the random number generator (RNG) is at leastN×n, which in our numerical example equals
7.5E+33; this number is large, but modern RNGs can meet this requirement (L’Ecuyer, 2006).

In conclusion, the desired level of efficiency of the CMC estimator for rare event problems
requires sample sizes that go far beyond available resources. Hence, researchers have looked
for ways to reduce the variance of the estimator as much as possible for the same amount of
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sampling resources. Traditional VRTs are common random numbers, antithetic variates,
control variates, conditioning, stratified sampling and importance sampling (Law, 2007;
Rubinstein and Kroese, 2008). Modern VRTs include splitting techniques, and quasi-Mont
Carlo sampling (Asmussen and Glynn, 2007; Glasserman, 2003).

ANTITHETIC AND COMMON RANDOM NUMBERS

Consider again the problem of estimatingℓ = E(H(Y)) defined in (1). Now letY1 andY2 be
two input samples generated fromf (y). DenoteXi = H(Yi) with i = 1,2. Then
ℓ̂ = (X1+X2)/2 is an unbiased estimator ofℓ with variance

Var(ℓ̂) =
1
4

(

Var(X1)+Var(X2)+2Cov(X1,X2)
)

.

If X1,X2 would be independent (as is the case in CMC), then Var(ℓ̂) would be
1
4(Var(X1)+Var(X2)). Obviously, variance reduction is obtained if Cov(X1,X2) < 0. The
usual way to make this covariance negative is as follows. Whenever the uniform random
numberU is used for a particular purpose (for example, the second service time) in generating
Y1, use the antithetic number 1−U for the same purpose to generateY2. BecauseU and
1−U have correlation coefficient−1, it is to be expected that Cov(X1,X2) < 0. This can be
formalized by the following technical conditions.

(a). The sample vectorY = (Y1, . . . ,Yn) has componentsYj that are one-dimensional,
independent random variables with distribution functionsFj that are generated by the
inverse transformation method; i.e.,Yj = F−1

j (U j), for j = 1, . . . ,n.

(b). The performance functionH is monotone.

Under these conditions, negative correlation can be proved(Rubinstein and Kroese, 2008). In
condition (a) the inverse transformation requirement can be replaced by the assumption that
all Yj -components are Gaussian: whenY ∼ N(µ,σ2), thenỸ = 2µ −Y ∼ N(µ,σ2), and
clearlyY andỸ are negatively correlated. This alternative assumption istypically applied in
financial engineering for option pricing (Glasserman, 2003).

The method of common random numbers (CRN) is often applied inpractice, because
simulationists find it natural to compare alternative systems under ‘the same circumstances’;
for example, they compare different queueing disciplines (such as First-In-First-Out or FIFO,
Last-In-First-Out or LIFO, Shortest-Jobs-First or SJF) using the same sampled arrival and
service times in the simulation.

To be more specific, letY be an input vector for two system performancesE(H1(Y)) and
E(H2(Y)), and the performance quantity of interest is their difference

ℓ = E(H1(Y))−E(H2(Y)).

To estimateℓ, two choices produce an unbiased estimator:

1. Generate one sequence of IID input vectorsY1, . . . ,YN, and estimateℓ by

ℓ̂
(1)
N =

1
N

N

∑
i=1

(H1(Yi)−H2(Yi)) .
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2. Generate two independent IID sequences of input vectorsY(1)
1 , . . . ,Y(1)

N , and

Y(2)
1 , . . . ,Y(2)

N , and estimateℓ by

ℓ̂
(2)
N =

1
N

N

∑
i=1

H1(Y
(1)
i )− 1

N

N

∑
i=1

H2(Y
(2)
i ).

The first method is the CRN method, and is intuitively prefered because it reduces variability:

Var(ℓ̂(1)
N ) < Var(ℓ̂(2)

N ).

To prove this inequality, denoteXi = Hi(Yi). Thenℓ̂ = X1−X2 is an unbiased estimator ofℓ
with variance

Var(ℓ̂) = Var(X1)+Var(X2)−2Cov(X1,X2). (4)

If X1 andX2 are independent (as is the case in the second method), then (4) becomes
Var(X1)+Var(X2). Hence, variance reduction is obtained if Cov(X1,X2) > 0 in (4). This
requirement is precisely the opposite of what was needed in antithetic variates. To force the
covariance to become positive through CRN, the uniform random numberU used for a
particular purpose in generatingY1, is used for the same purpose to generateY2. This can be
formalized by the technical conditions completely analogous to those for antithetic variates.

CRN is often applied not only because it seems ’fair’ but alsobecause CRN is the default in
many simulation software systems; e.g., Arena compares different scenarios using the same
seed—unless, the programmer explicitly selects differentseeds to initialize the various
sampling processes (arrival process, service time at work station 1, etc.) for different
scenarios. Detailed examples are given in Law (2007), pp. 582-594.

So while the simulation programmers need to invest little extra effort to implement CRN, the
comparisons of various scenarios may be expected to be more accurate; i.e., the what-if or
sensitivity analysis gives estimators with reduced variances. However, some applications may
require estimates of the absolute (instead of the relative)responses; i.e., instead of sensitivity
analysis the analysis aims at prediction or interpolation from the observed responses for the
scenarios that have already been simulated. In these applications, CRN may give worse
predictions; also see Chen, Ankenman, and Nelson (2010).

The analysis of simulation experiments with CRN should go beyond (4), which compares only
two scenarios. The simplest extension is to compare a fixed set of (say)k scenarios using (4)
combined with the Bonferroni inequality so that the type-I error rate does not exceed (say)α;
i.e., in each comparison of two scenarios the valueα is replaced byα/m wherem denotes the
number of comparisons (e.g., if allk scenarios are compared, thenm= k(k−1)/2). Multiple
comparison and ranking techniques are discussed in Chick and Gans (2009).

However, the number of interesting scenarios may be not fixedin advance; e.g., the scenarios
differ in one or more quantitative inputs (e.g., arrival speed, number of servers) and the
optimal input combination is wanted. In such situations, regression analysis is useful; i.e., the
regression model is then a metamodel that enables validation, sensitivity analysis, and
optimization of the simulation model; see Kleijnen (2008).The estimated regression
coefficients (regression parameters) may have smaller variances if CRN is used—because of
arguments based on (4)—except for the intercept (or the ’grand mean’ in Analysis of Variance
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or ANOVA terminology). Consequently, CRN is not attractivein prediction, but it is in
sensitivity analysis and optimization.

A better metamodel for prediction may be a Kriging or Gaussian Process model, assuming the
scenarios correspond with combinations of quantitative inputs; e.g., the scenarios represent
different traffic rates in a queuing simulation. Kriging implies that the correlation between the
responses of different scenarios decreases with the distance between the corresponding input
combinations; i.e., the Gaussian process is stationary (Kleijnen, 2008). In random simulation
(unlike deterministic simulation, which is popular in engineering) the Kriging metamodel also
requires the estimation of the correlations between the ’intrinsic’ noises of different scenarios
caused by the use of random numbersU ; see Chen, Ankenman, and Nelson (2010).

An important issue in the implementation of Antithetics andCRN is synchronization, which is
a controlling mechanism to ensure that the same random variables are generated by the same
random numbers from the random number generator. As an example, consider comparing a
single-server queueGI/GI/1 with a two-server systemGI/GI/2. The two systems have
statistically similar arrivals and service times, but the single server works twice as fast. The
performance measure is the expected waiting time per customer (which is conjectured to be
less in the two-server system). In a simulation study, the two simulation models with CRN
should have the same arrival variates, and the same service-time variates. Suppose that
A1,A2, . . . are the consecutive interarrival times in a simulation run of theGI/GI/1 model, and
S1,S2, . . . are their associated service-time requirements. Then, in the corresponding
simulation run of theGI/GI/2 model, these same values are used for the consecutive
interarrival times, and their associated service times; see Kelton, Sadowski, and Sturrock
(2007); Law (2007).

Antithetic and common random numbers can be combined. Theiroptimal combination is the
goal of the Schruben-Margolin strategy; i.e., some blocks of scenarios use CRN, whereas
other blocks use antithetic variates, etc.; see Song and Chiu (2007).

CONTROL VARIATES

Suppose that̂ℓ is an unbiased estimator ofℓ in the estimation problem (1); for example,C is
the arrival time in a queueing simulation. A random variableC is called a control variate for̂ℓ
if it is correlated withℓ̂ and its expectationγ is known. The linear control random variable
ℓ̂(α) is defined as

ℓ̂(α) = ℓ̂−α(C− γ),

whereα is a scalar parameter. It is easy to prove that the variance ofℓ̂(α) is minimized by

α∗ = −Cov(ℓ̂,C)

Var(C)
.

The resulting minimal variance is

Var(ℓ̂(α∗)) =
(

1−ρ2
ℓ̂C

)

Var(ℓ̂), (5)

whereρℓ̂C denotes the correlation coefficient betweenℓ̂ andC. Since Cov(ℓ̂,C) is unknown,
the optimal control coefficientα∗ must be estimated from the simulation. Estimating both
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Cov(ℓ̂,C) and Var(C) means that linear regression analysis is applied to estimateα∗ .
Estimation ofα∗ implies that the variance reduction becomes smaller than (5) suggests, and
that the estimator may become biased. The method can be easily extended to multiple control
variables (Rubinstein and Marcus, 1985).

A well-known application of control variates is pricing of Asian options. The payoff of an
Asian call option is given by

H(Y) = max
(

0,
1
n

n

∑
j=1

Yj −K
)

,

whereYj = SjT/n, the expiration dateT is discretized inton time units,K is the strike price,
andSt is the asset price at timet, which follows a geometric Brownian motion. Letr be the
interest rate; then the price of the option becomes

ℓ = E
(

e−rT H(Y)
)

.

As control variate may beC = e−rT max(0,ST −K) whose expectation is readily available
from the Black-Scholes formula. Alternative control variates areST , or 1

n ∑n
j=1SjT/n.

CONDITIONING

The method of conditional Monte-Carlo is based on the following basic probability formulas.
Let X andZ be two arbitrary random variables, then

E(E(X|Z)) = E(X) and Var(X) = E(Var(X|Z))+Var(E(X|Z)). (6)

Because the last two terms are both nonnegative, variance reduction is obvious:

Var(E(X|Z)) ≤ Var(X).

The same reasoning holds for the original problem (1), settingX = H(Y). Also Z is allowed
to be a vector variable. These formulas are used in a simulation experiment as follows. The
vectorZ is simulated, and the conditional expectationC = E(H(Y)|Z) is computed.
Repeating thisN times gives the conditional Monte-Carlo estimator

ℓ̂∗N =
1
N

N

∑
i=1

Ci .

A typical example is a level-crossing probability of a random number of variables:

ℓ = P
( R

∑
j=1

Yj > b
)

,

whereY1,Y2, . . . are IID positive random variables,R is a nonnegative integer-valued random
variable, independent of theYj variables, andb is some specified constant. Such problems are
of interest in insurance risk models for assessing aggregate claim distributions (Glasserman,
2003). CMC can be improved by conditioning on the value ofR for which level crossing
occurs. To be more specific, denote the event of interest byA, soℓ = E(IA(Y)). Define

M = min
(

r :
r

∑
j=1

Yj > b
)

.

Assume that the distribution ofY can be easily sampled, and that the distribution ofR is
known and numerically available (for instance, Poisson). Then it is easy to generate a value of
M. Suppose thatM = m. ThenE(IA(Y)|M = m) = P(R≥ m), which can be easily computed.
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STRATIFIED SAMPLING

Recall the original estimation problemℓ = E(H(Y)), and its crude Monte Carlo estimatorℓ̂N.
Suppose now that there is some finite random variableZ taking values from{z1, . . . ,zm}, say,
such that

(i). the probabilitiespi = P(Z = zi) are known;

(ii). for eachi = 1, . . . ,m, it is easy to sample from the conditional distribution ofY given
Z = zi .

Because

ℓ = E(E(H(Y))) =
m

∑
i=1

piE(H(Y)|Z = zi),

the stratified sampling estimator ofℓ may be

ℓ̂∗N =
m

∑
i=1

pi
1
Ni

Ni

∑
j=1

H(Yi j ),

whereNi IID samplesYi1, . . . ,YiNi are generated from the conditional distribution ofY given
Z = zi , such thatN1 + · · ·+Nm = N. Notice that the estimator is unbiased. To assess its
variance, denote the conditional variance of the performance estimator by
σ2

i = Var(H(Y)|Z = zi). The variance of the stratified sampling estimator is then given by

Var(ℓ̂∗N) =
m

∑
i=1

p2
i σ2

i

Ni
.

Because of (6)

Var(H(Y)) ≥ Var(H(Y)|Z) =
m

∑
i=1

piσ2
i .

Selecting proportional strata sample sizesNi = piN gives variance reduction:

Var(ℓ̂∗N) =
m

∑
i=1

piσ2
i

N
≤ 1

N
Var(H(Y)) = Var(ℓ̂N).

It can be shown that the strata sample sizesNi that minimize this variance are

Ni = N
piσi

∑m
j=1 p jσ j

;

see Rubinstein and Kroese (2008). A practical problem is that the standard deviationsσi are
usually unknown, so these variances are estimated by pilot runs. Stratified sampling is used in
financial engineering to get variance reductions in problems such as value-at-risk, and pricing
path-dependent options (Glasserman, 2003).

IMPORTANCE SAMPLING

The idea of importance sampling is explained best in case of estimating the probability of an
eventA. The underlying sample space is(Ω,F ) for whichA∈ F , and the probability
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measureP on this space is given by the specific simulation model. In a simulation experiment
for estimatingP(A), the CMC estimator would bêℓN = ∑N

i=1 I (i)
A , whereI (1)

A , . . . , I (N)
A are IID

indicator functions of eventA generated underP. On average in only one out of 1/P(A)
generated samples the eventA occurs, and thus for rare events (whereP(A) is extremely
small) this procedure fails. Suppose that there is an alternative probability measureP∗ on the
same(Ω,F ) such that (i)A occurs much more often, and (ii)P is absolutely continuous with
respect toP∗, meaning

∀F ∈ F : P(F) > 0 ⇒ P∗(F) > 0.

Then according to the Radon-Nikodym theorem, it holds that there is a measurable functionL
on Ω such that

∫

F dP=
∫

F LdP∗ for all F ∈ F . The functionL is called likelihood ratio and
usually written asL = dP/dP∗; the alternative probability measureP∗ is said to be the
importance sampling probability measure, or the change of measure. Thus, by weighting the
occurrenceIA of eventA with the associated likelihood ratio, simulation under thechange of
measure yields an unbiased importance sampling estimator

ℓ̂∗N =
N

∑
i=1

L(i)I (i)
A .

More importantly, variance reduction is obtained when the change of measure has been
chosen properly, as will be explained below. Importance sampling has been applied
successfully in a variety of simulation areas, such as stochastic operations research, statistics,
Bayesian statistics, econometrics, finance, systems biology; see Rubino and Tuffin (2009).
This section will show that the main issue in importance sampling simulation is the question
which change of measure to consider. The choice is very much problem dependent, however,
and unfortunately, it is difficult to prevent gross misspecification of the change of measureP∗,
particularly in multiple dimensions.

Exponential change of measure

As an illustration, consider the problem of estimating the level-crossing probability

ℓn = P(An) with An = {Y1 + · · ·+Yn > na}, (7)

whereY1, . . . ,Yn are IID random variables with finite meanµ = E(Y) < a and with a
light-tailed PDFf (y,v), in whichv denotes a parameter vector, such as mean and variance of
a normal density. It is well-known from Cramér’s Theorem thatP(An) → 0 exponentially fast
asn→ ∞. Suppose that under the importance sampling probability measure the random
variablesY1, . . . ,Yn remain IID, but with an exponentially tilted PDF (also called exponentially
twisted), with tilting factort:

ft(y,v) =
f (y,v)ety

∫

f (y,v)etydy
.

Thus, in the importance sampling simulations theYk-samples are generated fromft(y,v).
Because of the IID assumption, the likelihood ratio becomes

L(Y1, . . . ,Yn) =
n

∏
k=1

f (Yk,v)

ft(Yk,v)
= exp

(

nψ(t)− t
n

∑
k=1

Yk

)

, (8)

with ψ(t) = log
∫

f (y,v)etydy. Variance reduction is obtained if

Vart(ℓ̂
∗
N) ≤ Var(ℓ̂N) ⇔ Vart(ℓ̂

∗
1) ≤ Var(ℓ̂1)

⇔ Et [(ℓ̂
∗
1)

2] ≤ E[(ℓ̂1)
2] ⇔ Et [(IAL(Y1, . . . ,Yn))

2] ≤ E[(IA)2].
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Because of (8), it is easy to show that the variance is minimized fort = (ψ ′)−1(a). In that case
the importance sampling estimator is logarithmically efficient (also called asymptotically
optimal; see Rubino and Tuffin (2009; Chapter 4)):

lim
n→∞

logEt [(ℓ̂
∗
N)2]

logEt [ℓ̂∗N]
= 2,

where the subscriptt means that the underlying probability is the change of measure.
Asymptotic optimality implies that RE(ℓ̂∗N) grows subexponentially asn→ ∞, whereas for
CMC the relative error grows exponentially (see (3)).

The cross-entropy method

A general heuristic for constructing an importance sampling algorithm is to consider only a
parameterized family of changes of measures. Consider again problem (1), with PDF
f = f (y,v) wherev is the parameter vector. Thus, letΘ be all feasible parameter vectors for
f . For anyθ ∈ Θ, the change of measurePθ induces the (single-run) importance sampling
estimator

ℓ̂∗θ = H(Y)
dP
dPθ

(Y) = H(Y)
f (Y,v)

f (Y,θ)
.

The optimal change of measure is found by variance minimization. Since the estimators are
unbiased, it suffices to minimize the second moment:

min
θ∈Θ

Eθ

[(

H(Y)
f (Y,v)

f (Y,θ)

)2]

.

Generally, this problem is hard. A successful approach is based on cross-entropy
minimization as explained in Rubinstein and Kroese (2004).First, consider the optimal
change of measure, resulting in a zero-variance estimator:

dPopt(Y) =
H(Y)dP(Y)

ℓ
. (9)

This change of measure is not implementable as it requires knowledge of the unknown
quantityℓ. The cross-entropy method findsPθ by minimizing the Kullback-Leibler distance
(or cross-entropy) within the class of feasible changes of measure:

min
θ∈Θ

D(dPopt,dPθ ),

where the cross-entropy is defined by

D(dPopt,dPθ ) = Eopt
[

log
(dPopt

dPθ
(Y)

)]

= Ev

[dPopt

dP
(Y) log

(dPopt

dPθ
(Y)

)]

.

Substituting expression (9), and canceling constant termsand factors, the equivalent
cross-entropy problem becomes

max
θ∈Θ

Ev[H(Y) logdPθ (Y)].

There are several ways to solve this stochastic optimization problem. The original description
of the cross-entropy method for such problems proposes to solve the stochastic counterpart
iteratively, see Rubinstein and Kroese (2004). This approach has been applied successfully to
a variety of estimation and rare-event problems.
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State-dependent importance sampling

The importance sampling algorithms described above were based on a static change of
measure; i.e, the samples are generated by a fixed alternative statistical law; see (8). In specific
problems, such as (7), the static importance sampling algorithm yields an efficient estimator.
However, for many problems it is known that efficient estimators require an adaptive or
state-dependent importance sampling algorithm (Juneja and Shahabudding, 2006). To
illustrate this concept, consider again the problem of estimating the level-crossing probability
(7). TheYk-variables are called jumps of a random walk(Sk)

n
k=0, defined byS0 = 0, and for

k≥ 1: Sk = ∑k
j=1Yj = Sk−1+Yk. Under a state-dependent change of measure, the next jump

Yk+1 might be generated from a PDFf (y|k+1,Sk); i.e., it depends on jump timek+1 and
current stateSk. Hence, under the change of measure, the process(Sk)

n
k=0 becomes an

inhomogeneous Markov chain. Given a generated sequenceY1, . . . ,Yn, the associated
likelihood ratio is

L(Y1, . . . ,Yn) =
n

∏
k=1

f (Yk,v)

f (Yk|k,Sk−1)
.

The next question is: Which time-state dependent PDFs should be chosen for this kind of
change of measure? The criterion could be (i) variance minimization, (ii) cross-entropy
minimization, or (iii) efficiency.

(i). A small set of rare-event problems are suited to find so-called zero-variance approximate
importance sampling algorithms, notably level-crossing problems with Gaussian jumps,
reliability problems, and certain Markov chains problems;see L’Ecuyer et al. (2010).

(ii). A cross-entropy minimization is applied after each stateSk for determining the PDF of
the next jump (Ridder and Taimre, 2009). The result is that when the level-crossing at
timen can be reached from stateSk just by following the natural drift, no change of
measure is applied. Otherwise, the next jump is drawn from anexponentially tilted PDF
with tilting factor t = (ψ ′)−1((an−Sk)/(n−k)). This would be the static solution given
before when starting at timek = 0. This approach gives logarithmic efficiency.

(iii). The method developed by Dupuis and Wang (2007) considers the rare-event problem as
an optimal control problem in a differential game. Applyingdynamic programming
techniques while using large-deviations expressions, theauthors develop logarithmically
efficient importance sampling algorithms. This approach works also for rare events in
Jackson networks (Dupuis, Sezer, and Wang, 2007).

Markov chains

Many practical estimation problems in statistical systems(e.g., reliability, production,
inventory, queueing, communications) can be reformulatedas a Markov model to estimate a
quantityℓ = P(YT ∈ F ). Let {Yt : t = 0,1, . . .} denote a discrete-time Markov chain with a
state spaceX with transition probabilitiesp(x,y); F ⊂ X is a subset of states, andT is a
stopping time. A typical example is a system of highly reliable components where the
response of interest is the probability of a break down of thesystem.

Assume that the importance sampling is restricted to alternative probability measuresP∗ such
that the Markov chain property is preserved with transitionprobabilitiesp∗(x,y) satisfying

p(x,y) > 0 ⇔ p∗(x,y) > 0.

11



This constraint ensures the absolute continuity condition. Furthermore, assuming that the
initial distribution remains unchanged, the likelihood ratio of a simulated path of the chain
becomes simply

L =
T−1

∏
t=0

p(Yt ,Yt+1)

p∗(Yt,Yt+1)
.

Thus, it suffices to find the importance-sampling transition-probabilitiesp∗(x,y). Considering
these probabilities as parameters, the method of cross-entropy is most convenient; Ridder
(2010) gives sufficient conditions to guarantee asymptoticoptimality. However, many realistic
systems are modeled by Markov chains with millions of transitions, which causes several
difficulties: the dimensionality of the parameter space, the danger of degeneracy of the
estimation, and numerical underflow in the computations. Several approaches are proposed to
reduce the parameter space in the cross-entropy method (de Boer and Nicola, 2002; Kaynar
and Ridder, 2010).

Another approach to importance sampling in Markov chains approximates the zero-variance
probability measurePopt. It is known that thisPopt implies transition probabilities of the form

popt(x,y) = p(x,y)
γ(y)

γ(x)
,

whereγ(x) = P(YT ∈ F |Y0 = x). As these quantities are unknown (and in fact the subject of
interest), these zero-variance transition probabilitiescannot be implemented. However,
approximations of theγ(x) probabilities may be considered (L’Ecuyer et al., 2010). Under
certain conditions this approach leads to strong efficiencyof the importance sampling
estimator.

SPLITTING

The splitting method may handle rare-event probability estimation. Unlike importance
sampling, the probability laws remain unchanged, but a drift to the rare event is constructed by
splitting (cloning) favorable trajectories, and terminating unfavorable trajectories. This idea
may be explained as follows. Consider a discrete-time Markov chain{Yt : t = 0,1, . . .} on a
state spaceX . Suppose that the chain has a regeneration state or set0, a set of failure states
F , and a starting statey0. The response of interest is the probability that the chain hits F

before0. More formally, ifT denotes the stopping time

T = inf{t : Yt ∈ 0∪F},
then

ℓ = P(YT ∈ F ).

The initial statey0 6∈ 0∪F may have either some initial distribution, or be fixed and known.
The assumption is thatℓ is so small that CMC in impractical. Suppose that the state space is
partitioned into sets according to

X ⊃ X1 ⊃ X2 ⊃ ·· · ⊃ Xm = F , (10)

with 0 ∈ X \X1. Usually these sets are defined through an importance functionφ : X → R,
such that for eachk, Xk = {y : φ(y) ≥ Lk} for certain levelsL1 ≤ L2 ≤ ·· · ≤ Lm, with
φ(0) = L0 < L1. Now define stopping timesTk and associated eventsAk by

Tk = inf{t : X(t) ∈ 0∪Xk}; Ak = {YTk ∈ Xk}.
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Because of (10), clearlyA1 ⊃ A2 ⊃ ·· · ⊃ Am = A = {YT ∈ F}. Thus the rare-event
probabilityℓ = P(A) can be decomposed as a telescoping product:

ℓ = P(A1)
m

∏
k=2

P(Ak|Ak−1).

To estimateℓ, one might estimate all conditional probabilitiesP(Ak|Ak−1) separately (say) by
ℓ̂k, which gives the product estimator

ℓ̂∗ =
m

∏
k=1

ℓ̂k, (11)

whereℓ̂1 estimatesP(A1). The splitting method implements the following algorithm for
constructing thêℓk estimators in a way that the product estimator is unbiased. In the initial
stage (k = 0), runN0 independent trajectories of the chain starting at the initial statey0. Each
trajectory is run until either it entersX1 or it returns to0, whatever come first. LetR1 be the
number of “successful” trajectories; i.e., trajectories that reachX1 before0. Then set
ℓ̂1 = R1/N0. Consider stagek≥ 1, and suppose thatRk trajectories have entered setXk in

entrance statesY(k)
1 , . . . ,Y(k)

Rk
(not necessarily distinct). Replicate (clone) these states, until a

sample of sizeNk has been obtained. From each of these states, run a trajectory of the chain,
independently of the others. Each trajectory is run until either it entersXk+1 or it returns to0,
whatever come first. LetRk+1 be the number of successful trajectories, i.e., trajectories that
reachXk+1 before0. Then set̂ℓk+1 = Rk+1/Nk. This procedure is continued until all
trajectories have entered eitherF or returned to0.

Recently this form of the splitting method has attracted a lot of interest (see the reference list
in Rubino and Tuffin (2009; Chapter 3)), both from a theoretical point of view analyzing the
efficiency, and from a practical point of view describing several applications. The analysis
shows that the product estimator (11) is unbiased. Furthermore, the analysis of the efficiency
of the splitting technique depends on the implementation of(a) selecting the levels, (b) the
splitting (cloning) of successful trajectories, and (c) the termination of unsuccessful
trajectories. Generally, the problem of solving these issues optimally is like choosing an
optimal change of measure in importance sampling. In fact, Dean and Dupuis (2008)
discusses this relationship when the model satisfies a largedeviations principle.

Concerning issue (c), the standard splitting technique terminates a trajectory that returns to the
regeneration state0, or—in case of an importance function—when the trajectory falls back to
levelL0. This approach, however, may be inefficient for trajectories that start already at a high
levelLk. Therefore, there are several adaptations such as truncation (L’Ecuyer, Demers, and
Tuffin, 2007), RESTART (Villen-Altamirano, and Villen-Altamirano, 1994), and Russian
roulette principle (Melas, 1997).

Concerning issue (b), there are numerous ways to clone a trajectory that has entered the next
level, but the two ways implemented mostly are (i) fixed effort, and (ii) fixed splitting. Fixed
effort means that the sample sizesNk are predetermined, and thus each of theRk entrance
states at setXk is clonedck = ⌊Nk/Rk⌋ times. The remainingNkmodRk clones are selected
randomly. An alternative is to drawNk times at random (with replacement) from theRk

available entrance states. Fixed splitting means that the splitting factorsck are predetermined,
and each of theRk entrance states at setXk is clonedck times to give sample sizeNk = ckRk.
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For a certain class of models, Glasserman et al. (1999) has shown that fixed splitting gives
asymptotic optimality (asℓ → 0) when the number of levelsm≈− ln(ℓ)/2, with setsXk such
thatP(Ak|Ak−1) are all equal (namely, roughly equal toe−2) and splitting factors such that
ckP(Ak+1|Ak) = 1. However, sinceℓ and theP(Ak+1|Ak) are unknown in practice, this result
can only be approximated. Moreover, one should take into account the amount of work or
computing time in the analysis; for example, Lagnoux (2006)determines the optimal setting
under a budget constraint of the expected total computing time.

Application to counting

Recently, counting problems have attracted the interest ofthe theoretical computer science and
the operations research communities. A standard counting problem is model counting, or
#SAT: how many assignments to boolean variables satisfy a given boolean formula consisting
of a conjunction of clauses? The related classical decisionproblem is: does there exist a true
assignment of the formula? Because exact counting is impracticable due to the exponential
increase in memory and running times, attention shifted to approximate counting—notably by
applying randomized algorithms. In this randomized setting, the counting problem is
equivalent to rare event simulation: letX ∗ be the set of all solutions of the problem, whose
number|X ∗| is unknown and the subject of study. Assume that there is a larger set of points
X ⊃ X ∗ with two properties:

1. the number of points|X | is known;

2. it is easy to generate uniformly pointsx ∈ X .

Because

|X ∗| = |X ∗|
|X | |X |,

it suffices to estimate

ℓ =
|X ∗|
|X | = P(U ∈ X

∗),

whereU is the uniform random vector onX . Typically ℓ is extremely small, and thus rare
event techniques are required. Splitting techniques with Markov chain Monte Carlo (MCMC)
simulations have been developed in Botev and Kroese (2008) and Rubinstein (2010) to handle
such counting problems.

QUASI MONTE-CARLO

Suppose that the performance functionH in (1) is defined on thed-dimensional unit
hypercube[0,1)d, and the problem is to compute its expectation with respect to the uniform
distribution:

ℓ = E(H(U)) =
∫

[0,1)d
H(u)du.

As was shown in the introduction, the variance of the CMC estimatorℓ̂Nm using a sample size
N×m equalsσ2/(N×m), where

σ2 =

∫

[0,1)d
H2(u)du− ℓ2.
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Let PN = {u1, . . . ,uN} ⊂ [0,1)d be a deterministic point set that is constructed according to a
quasi-Monte Carlo rule with low discrepancy, such as a lattice rule (Korobov), or a digital net
(Sobol’, Faure, Niederreiter); see Lemieux (2006). The quasi-Monte Carlo approximation ofℓ
would be

N

∑
j=1

H(u j).

This deterministic approach is transformed into Monte Carlo simulation by applying a
randomization of the point set. A simple randomization technique is the random shift:
generatem IID random vectorsvi ∈ [0,1)d, i = 1, . . . ,m, and compute the quasi-Monte Carlo
approximations

ℓ̂i =
N

∑
j=1

H(u j +vi mod1).

Then the randomized quasi-Monte Carlo estimator using sample sizeN×m is defined by

ℓ̂∗ =
1
m

m

∑
i=1

ℓ̂i.

The scrambling technique is based on permuting the digits ofthe coordinatesu j ·. Other
techniques of randomizing quasi-Monte Carlo point sets areless used. The main property is
that when the performance functionH is sufficiently smooth, these randomized quasi-Monte
Carlo methods give considerable variance reduction (Lemieux, 2006).
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