
Variance Shadow Maps

Andrew Lauritzen, RapidMind

Copyright © NVIDIA Corporation 2004

Overview of Shadow Mapping

Introduced by Williams in 1978

Advantages compared to shadow volumes:

Cost less sensitive to geometric complexity

Can be queried at arbitrary locations

Often easier to implement

Disadvantages:

Aliasing

Copyright © NVIDIA Corporation 2004

Shadow Mapping Algorithm

Render scene from light’s point of view

Store depth of each pixel

When shading a surface:

Transform surface point into light coordinates

Compare current surface depth to stored depth

If depth > stored depth, the pixel is in shadow;

otherwise the pixel is lit

Copyright © NVIDIA Corporation 2004

Aliasing Artifacts

Magnification artifacts

Copyright © NVIDIA Corporation 2004

Aliasing Artifacts

Minification artifacts

Typically encountered when

viewed from a distance

Produces ugly and

distracting “swimming”

effect along shadow edges

Copyright © NVIDIA Corporation 2004

Aliasing Artifacts

Anisotropic artifacts

A mix of minification and magnification

Encountered at shallow angles

Copyright © NVIDIA Corporation 2004

Solutions?

Also encountered with colour textures

Reduce aliasing by hardware filtering
Magnification artifacts => linear interpolation

Minification artifacts => trilinear, mipmapping

Anisotropic artifacts => anisotropic filtering

Copyright © NVIDIA Corporation 2004

Solutions?

Can we apply these to shadow maps?

Not at the moment

Interpolating depths is incorrect

Gives depth < average(occluder_depth)

Want average(depth < occluder_depth)

Copyright © NVIDIA Corporation 2004

Percentage Closer Filtering

Proposed by Reeves et al. in 1987

Filter result of the depth comparison

Sample surrounding shadow map pixels

Do a depth comparison for each pixel

Percentage lit is the percentage of pixels that

pass the depth comparison (i.e. are “closer”

than the nearest occluder)

NVIDIA hardware support for bilinear PCF

Good results, but can be expensive!

Copyright © NVIDIA Corporation 2004

Occluder Distribution

Really want a cumulative distribution function (CDF)

of a set of depths

F(t) = P(x≤t)

F(t) is the probability that a fragment at distance “t” from

the light is in shadow

t

F(t)

0

1

t

f(t)

Copyright © NVIDIA Corporation 2004

Deep Shadow Maps

Lokovic and Veach, in 2000

Per-pixel piecewise linear function

No hardware filtering

Complex reconstruction

Copyright © NVIDIA Corporation 2004

Occluder Distribution

A representation that filters linearly?

Allows us to utilize hardware filtering

Idea: Moments of distribution function!

E(x) is the mean, E(x2), E(x3), etc.

Linear in distribution

Copyright © NVIDIA Corporation 2004

Variance Shadow Maps

Store depth squared as well as depth

Gives E(x) and E(x2) where x is the depth of the

nearest occluder

Use the moments to approximate the fraction of

the distribution that is more distant than the

surface point being shaded

Copyright © NVIDIA Corporation 2004

Variance Shadow Maps

We want to find P(x≥t)

We have the mean, and can find variance:

μ = E(x)

σ2 = E(x2) – E(x)2

Cannot compute CDF exactly

Chebyshev’s Inequality states:

Copyright © NVIDIA Corporation 2004

Variance Shadow Maps

Inequality only gives an upper bound

Becomes equality in the case of single planar

occluder and receiver

In a small neighbourhood, an occluder and

receiver will have constant depth and thus pmax

will provide a close approximation to p

So just use pmax for rendering

Copyright © NVIDIA Corporation 2004

Implementation
// Call the parent light shader
light_contrib & dir_to_light & dist_to_light & n_dot_l =

spot_light_shader(surf_position, surf_normal);

// Transform the surface position into light space and project
ShAttrib4f surf_light = light_view_projection | surface_position;
ShTexCoord2f tex_coord = 0.5 * surf_light(0,1)/surf_light(3) + 0.5;

// Query the shadow map
ShAttrib2f moments = shadow_map(tex_coord);

// Standard shadow map comparison
ShAttrib1f lit_factor = (dist_to_light <= moments(0));

// Variance shadow mapping
ShAttrib1f E_x2 = moments(1);
ShAttrib1f Ex_2 = moments(0) * moments(0);
ShAttrib1f variance = E_x2 - Ex_2;
ShAttrib1f m_d = moments(0) - dist_to_light;
ShAttrib1f p_max = variance / (variance + m_d * m_d);

// Attenuate the light contribution as necessary
light_contrib *= max(lit_factor, p_max);

Copyright © NVIDIA Corporation 2004

Mipmapping Results

Shadow Map Variance Shadow Map

Copyright © NVIDIA Corporation 2004

Anisotropic Filtering Results

Shadow Map

Bilinear PCF

Variance Shadow Map

Copyright © NVIDIA Corporation 2004

Variance Shadow Maps

Can we do more?

Our shadow maps can be arbitrarily filtered now

Pre-filter shadow map using a Gaussian blur

Equivalent to percentage closer filtering

Separable convolution => O(n) on kernel size

Much faster than PCF complexity of O(n2)

Copyright © NVIDIA Corporation 2004

Gaussian Blur Results

SM PCF 5x5 Bil.PCF 5x5 VSM

Copyright © NVIDIA Corporation 2004

Super-sampling

Generate more samples and filter

Render large shadow map and down-sample

Or simply use texture LOD bias

Tiled rendering of a huge shadow map

Render 4 tiles at 4096x4096 each

Down-sample to a single texture

Gives an anti-aliased 4096x4096 shadow map

Copyright © NVIDIA Corporation 2004

Multi-sampling

Simply enable multi-sampling while rendering the

shadow map

Support is dependent on chosen texture format

More of this later…

Notes on gamma correction

Hardware might “gamma correct” the samples

This is incorrect for non-colour data!

Ideally we want to turn this “feature” off…

Copyright © NVIDIA Corporation 2004

Other Fun Stuff

Orthogonal to projection-warping techniques

Perspective shadow maps (PSM)

Trapezoidal shadow maps (TSM)

Copyright © NVIDIA Corporation 2004

Demo

Copyright © NVIDIA Corporation 2004

Texture Formats

Ideal texture format:

Renderable

Two components

High precision

Supports filtering (anisotropic, mipmapping)

Supports multisampling

Copyright © NVIDIA Corporation 2004

Depth and Shadow Formats

+/- Indirectly renderable

- Single-component

- Often highly non-uniform precision

- Do not support arbitrary linear filtering

Mipmapping, trilinear, anisotropic, etc.

- Do not support multisampling

Not the way to go…

Copyright © NVIDIA Corporation 2004

Floating-point Formats

No renderable two-component formats!

4x fp16

+ NVIDIA GeForce 6/7 supports filtering!

+/- Average precision

+/- Some hardware supports multisampling

4x fp32

+ Great precision

- No filtering on current hardware

- No multisampling on current hardware

Probably the best current options

Copyright © NVIDIA Corporation 2004

Fixed-point Formats

8-bit formats?
- Poor precision makes these unusable

2x 16-bit (i.e. G16R16)
+ Two component

+ Often supports filtering

+/- Renderable on some hardware

+/- Acceptable precision (at least as good as fp16)

+/- Some hardware supports multisampling

Dreaming:
2x 32-bit filterable fixed point format?

Copyright © NVIDIA Corporation 2004

Texture Format Summary

Floating-point formats probably the best

Ideally we want filterable fp32

16-bit fixed-point formats could work too

Dependent on what hardware supports

Copyright © NVIDIA Corporation 2004

Numerical Stability

Recall the computation of variance:

σ2 = E(x2) – E(x)2

Highly numerically unstable!

Recall Chebyshev’s Inequality:

Can be a problem when fragment is near occluder

Need a high-precision texture format

Copyright © NVIDIA Corporation 2004

Ways to Improve Stability

Can use any distance metric that we want

Post-projection “depth” (z) is a bad choice

Use a linear metric, ex. distance to camera

When using floating-point formats

Rescale the numeric range to fall in [-1, 1]

Gets an extra bit of precision from the sign

Copyright © NVIDIA Corporation 2004

Ways to Improve Stability

Four-component floating-point formats

Store extra precision in extra components

Must still filter linearly!!!

Example encoding:

Example decoding:

ShAttrib2f moments = (...);
ShOutputAttrib4f output;
const float factor = 64.0f; // Try to gain 6 more bits
output(0,1) = frac(moments * factor) / factor;
output(2,3) = moments - output(0,1);

ShAttrib4f input = shadow_map(tex_coord);
ShAttrib2f moments = input(0,1) + input(2,3);

Copyright © NVIDIA Corporation 2004

Ways to Improve Stability

Use a 32-bit per component floating-point texture!

We’ve had no precision problems with fp32

Copyright © NVIDIA Corporation 2004

Notes on Shadow Bias

Biasing depth comparison usually required
Proportional to slope of polygon (glPolygonOffset)

Scene dependent and error-prone

Not required for variance shadow maps!
If (t – μ) ~ 0 then pmax ~ 1

May want to bias variance very slightly
For numeric stability reasons

This is neither slope nor scene dependent!

Copyright © NVIDIA Corporation 2004

How Fast?

GeForce 6800GT @ 1024x768

0

50

100

150

200

250

300

350

400

Shadow

Map

Bil.PCF

1x1

VSM PCF 3x3 Bil.PCF

3x3

VSM 3x3

fr
a
m

e
s
/s

e
c

128x128

256x256

512x512

1024x1024

Copyright © NVIDIA Corporation 2004

How Fast?

Fix shadow map at 512x512

0

50

100

150

200

250

300

350

400

450

500

Shadow

Map

Bil.PCF 1x1 VSM PCF 3x3 Bil.PCF 3x3 VSM 3x3

fr
a
m

e
s
/s

e
c

640x480

800x600

1024x768

1280x960

Copyright © NVIDIA Corporation 2004

Light Bleeding

pmax works in many situations, but not all

When σ2 is large, can get “light bleeding” :

Copyright © NVIDIA Corporation 2004

Ways to Reduce Light Bleeding

Lower depth complexity in light space

Ex. Use variance shadow maps for the sun, not headlights

Construct scenes with this artifact in mind

Control attenuation ranges carefully

Use ambient or multiple lights

Contrast will be lessened

Use static lights

Moving lights makes the projection obvious

Use smaller filter regions

Artifact is only as large as the filter region

Copyright © NVIDIA Corporation 2004

Ultimate Solutions

Find a higher-order inequality?

Fast, programmable hardware filtering?

Combine with percentage closer soft shadows

Randima Fernando (NVIDIA), 2005

Cheap, perceptually-correct soft shadows?

Lots of potentially fruitful hybrid techniques!

Copyright © NVIDIA Corporation 2004

Conclusion

Introduced a simple solution to many forms

of shadow map aliasing

Implemented easily on modern hardware

Compares favourably in both performance

and quality to existing techniques

Copyright © NVIDIA Corporation 2004

For More Information…

Donnelly and Lauritzen, Variance Shadow Maps,

ACM Symposium on Interactive 3D Graphics and

Games 2006

http://www.punkuser.net/vsm/

Questions?

http://www.punkuser.net/vsm/

Copyright © NVIDIA Corporation 2004

The Source for GPU Programming

	Variance Shadow Maps
	Overview of Shadow Mapping
	Shadow Mapping Algorithm
	Aliasing Artifacts
	Aliasing Artifacts
	Aliasing Artifacts
	Solutions?
	Solutions?
	Percentage Closer Filtering
	Occluder Distribution
	Deep Shadow Maps
	Occluder Distribution
	Variance Shadow Maps
	Variance Shadow Maps
	Variance Shadow Maps
	Implementation
	Mipmapping Results
	Anisotropic Filtering Results
	Variance Shadow Maps
	Gaussian Blur Results
	Super-sampling
	Multi-sampling
	Other Fun Stuff
	Demo
	Texture Formats
	Depth and Shadow Formats
	Floating-point Formats
	Fixed-point Formats
	Texture Format Summary
	Numerical Stability
	Ways to Improve Stability
	Ways to Improve Stability
	Ways to Improve Stability
	Notes on Shadow Bias
	How Fast?
	How Fast?
	Light Bleeding
	Ways to Reduce Light Bleeding
	Ultimate Solutions
	Conclusion
	For More Information…
	The Source for GPU Programming

