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Abstract
I-vector extraction and Probabilistic Linear Discriminant Anal-
ysis (PLDA) has become the state-of-the-art configuration for
speaker verification. Recently, Gaussian-PLDA has been im-
proved by a preliminary length normalization of i-vectors.
This normalization, known to increase the Gaussianity of the
i-vector distribution, also improves performance of systems
based on standard Linear Discriminant Analysis (LDA) and
”two-covariance model” scoring. But this technique follows
a standardization of the i-vectors (centering and whitening i-
vectors based on the first and second order moments of the
development data). We propose in this paper two techniques
of normalization based on total, between- and within-speaker
variance spectra 1. These ”spectral” techniques both normalize
the i-vectors length for Gaussianity, but the first adapts the i-
vectors representation to a speaker recognition system based on
LDA and two-covariance scoring when the second adapts it to a
Gaussian-PLDA model. Significant performance improvements
are demonstrated on the male and female telephone portion of
NIST SRE 2010.
Index Terms: i-vectors, probabilistic linear discriminant anal-
ysis, speaker recognition.

1. Introduction
Based on Factor Analysis (FA), the Total Variability space
framework has become a new standard for speaker verification
systems. Total Variability space provides a compact represen-
tation of speech sessions, so called i-vectors, that carries out
the classification task into a low dimensional factor space rather
than in the GMM-super-vector space. By nature, the Total Vari-
ability space contains the overall between-utterance variability
and it is ultimately the role of intersession compensation meth-
ods to define how speakers are discriminated from one another
in this subspace.

The initial i-vector speaker recognition system developed
by Dehak et al.[1, 2] enhanced discrimination in Total Variabil-
ity space by reducing the dimension of i-vectors using standard
Linear Discriminant Analysis (LDA) and Within-Class Covari-
ance Normalization (WCCN). Classification was performed by
using a cosine kernel. Later, normalized and weighted versions

1We speak of “variance-spectra” by analogy with the spectrum of a
matrix, i.e. the set of its eigenvalues.

of LDA have been proposed [3] to address the issue of unbal-
anced development data.

Since generative models have been introduced, i-vectors are
seen as an observation from a probabilistic model, ignoring their
extraction mechanism. The two-covariance model introduced
in the speaker recognition field by N. Brummer et al. [4] pro-
poses an efficient alternative to existing scoring. This generative
model is a particular case of Probabilistic Linear Discriminant
Analysis (PLDA), itself a special case of Factor Analysis (FA)
[5] as it considers a single component. Gaussian-PLDA (G-
PLDA) assumes Gaussian priors of both channel and speaker
factors. Introduced in [6], Heavy-tailed version of PLDA (HT-
PLDA) replaces Gaussian distributions with Student-t distribu-
tions and was shown to substantially improve the performance.

Recently it has been shown [7, 8] that preliminary stan-
dardization and length normalization of i-vectors (normaliz-
ing centered and scaled i-vectors by their magnitude) signifi-
cantly improves performance of Gaussian-based systems like
two-covariance scoring [9], Mahalanobis Scoring [8] or Gaus-
sian PLDA [7]. In particular, Gaussian-PLDA preceded by a
standardization and length normalization compares very favor-
ably with the Heavy Tailed version of PLDA [7]. This work
deals with the length normalization step.

Once norms of all the i-vectors are equal, the representation
space becomes a spherical surface of finite volume. In this con-
text, we propose two normalization techniques based on total,
between- and within-speaker distributions of development data.
The first one is adapted to a speaker recognition system based
on LDA and two-covariance scoring. This normalization aims
at enhancing the optimization criterion of LDA. The second one
is adapted to a Gaussian-PLDA model. It moves data towards
an appropriate starting point in the optimization landscape of
Gaussian-PLDA.

Next two sections give first a description of the i-vector
paradigm then describe LDA, PLDA and two-covariance mod-
els. Section 4 describes the two ”variance-spectra based nor-
malization” techniques after presenting a simple visualization
tool dedicated to the analysis of development dataset before and
after transform. Section 5 analyses the behaviour of these tech-
niques on the telephone portion of NIST SRE 2010.
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2. I-vector paradigm
The i-vector approach has become state of the art in the field of
speaker verification [1, 2]. In this approach, an i-vector extrac-
tor converts a sequence of acoustic vectors into a single low-
dimensional vector representing the whole speech utterance.
The speaker- and session-dependent super-vector s of concate-
nated Gaussian Mixture Model (GMM) means is assumed to
obey a linear model (Factor Analysis) of the form:

s = m + Tw (1)

where m is the mean super-vector of the Universal Background
Model (UBM), T is the low-rank variability matrix obtained
from a large dataset by MAP estimation [10] and the standard-
normally distributed latent variable w is the resulting i-vector.

3. I-vectors recognition systems
To improve comparison of i-vectors in a speaker verification
trial, dimensionality reduction techniques, like Linear Discrimi-
nant Analysis (LDA) [1, 2, 9], can be applied. I-vectors can also
be seen as observations from a probabilistic generative model
(two-covariance model [4], Probabilistic Linear Discriminant
Analysis [5, 6]). In the following, these dimension reduction
techniques and generative models used in our experiments are
described.

3.1. Linear Discriminant Analysis

Standard Linear Discriminant Analysis (LDA) is a technique
for dimensionality reduction that projects the data onto a sub-
space which satisfies the requirement of maximizing between-
class variance and minimizing within class variance. The LDA
optimization problem (finding a basis of this subspace) can be
defined according to the following ratio:

J (v) =
vtBv

vtWv
(2)

where B is the between-speaker covariance matrix and W the
within-speaker covariance matrix defined by:

B =

S∑
s=1

ns

n
(ys − µ) (ys − µ)t (3)

W =
1

n

S∑
s=1

ns∑
i=1

(ws
i − ys) (w

s
i − ys)

t (4)

where ns is the number of utterances for speaker s, n is the
total number of utterances, ws

i are the i-vectors of sessions of
speaker s, ys is the mean of all the i-vectors of speaker s and µ
represents the overall mean of the training dataset.

This ratio of Equation 2 is often referred to as the Rayleigh
coefficient for space direction v. The optimal subspace is com-
prised by the first eigenvectors (those with highest eigenvalues)
of W−1B.

In the speaker recognition domain, it turned out that better
performance were achieved [1, 2] by replacing B and W with
the scatter-matrices:

SB =

S∑
s=1

(ys − µ) (ys − µ)t (5)

SW =

S∑
s=1

1

ns

ns∑
i=1

(ws
i − ys) (w

s
i − ys)

t (6)

Unlike B and W, these matrices do not take into ac-
count prior of each speaker, i.e. the amount of utterances per
speaker training sample. In the following, we refer to LDAB,W

(resp. LDASB,SW ) for linear discriminant analysis based on the
Rayleigh coefficient computed with B and W (resp. SB and
SW).

3.2. Probabilistic Linear Discriminant Analysis

3.2.1. PLDA Model

Introduced in [5], the Gaussian Probabilistic Linear Discrimi-
nant Analysis (PLDA) is a generative i-vector model which as-
sumes that each p-dimensional i-vector w of a speaker s can be
decomposed as:

w = µ+ Φys + Γz + ε (7)

This model comprises two parts: (i) the component µ + Φys

which depends only on the speaker, (ii) the noise component
Γz + ε which is different for every session and represents
within-speaker noise. Matrix Φ is rectangular, with rvoices
columns (rvoices < p) providing a basis for a speaker subspace,
usually called “eigenvoices“. Likewise, Γ is rectangular, with
rchannels columns providing a basis for a channel subspace,
usually called “eigenchannels“. Standard normal priors are as-
sumed for ys and z. Lastly the residual term ε is assumed to be
Gaussian with zero mean and diagonal covariance Σ.

The particular case of rchannels = p (full-dimensional ma-
trix Γ) is equivalent to the version of the PLDA proposed in [6]:
the eigenchannels are removed from Equation 7 and the residual
noise is assumed to have a full covariance matrix. The PLDA
model becomes:

w = µ+ Φys + ε (8)

where Φ is a p×r matrix (r < p) and ε a p-dimensional vector
with a full covariance matrix.

3.2.2. PLDA scoring

After estimation of the PLDA meta-parameters, the speaker ver-
ification score given two i-vectors w1 and w2 is the likelihood-
ratio described by Equation 9, where the hypothesis θtar states
that inputs w1 and w2 are from the same speaker and the hy-
pothesis θnon states they are from different speakers.

score = log
P (w1,w2|θtar)

P (w1,w2|θnon)
(9)

As proposed by S.Prince [5, 11], the generative Equation 7 un-
der assumption θtar looks like:

[
w1

w2

]
=

[
µ
µ

]
+

[
Φ Γ 0
Φ 0 Γ

] y
z1

z2

+

[
ε1
ε2

]
(10)

and under assumption θnon:

[
w1

w2

]
=

[
µ
µ

]
+

[
Φ 0 Γ 0
0 Φ 0 Γ

] y1

y2

z1

z2

+[ ε1ε2
]

(11)
For the Gaussian-PLDA case, all the marginal likelihoods

are Gaussian and the score 9 can be evaluated analytically [11].
The final expressions do not include the hidden variables. Nu-
merator of Equation 9 is equal to:
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N
([

w1

w2

]
;

[
µ
µ

]
,

[
ΦΦt+ΓΓt+Σ ΦΦt

ΦΦt ΦΦt+ΓΓt+Σ

])
(12)

and denominator to:

N
([

w1

w2

]
;

[
µ
µ

]
,

[
ΦΦt+ΓΓt+Σ 0

0 ΦΦt+ΓΓt+Σ

])
(13)

3.3. The two-covariance model

Described in [4, 12], the two-covariance model can be seen as a
particular case of the Probabilistic Linear Discriminant Anal-
ysis [13]. It consists of a simple linear-Gaussian generative
model in which an i-vector w of a speaker s can be decomposed
in:

w = ys + ε (14)

where the speaker model ys is a vector of the same dimension-
ality as an i-vector, ε is Gaussian noise and

P (ys) = N (µ,B) , (15)

P (w|ys) = N (ys,W) . (16)

N denotes the normal distribution, µ represents the overall
mean of the training dataset, B and W are the between- and
within-speaker covariance matrices defined in Equations 3, 4.

Under assumptions (15)(16), the score from Equation 9 can
be expressed as:

s =

∫
N (w1|y,W)N (w2|y,W)N (y|µ, B) dy∏

i=1,2

∫
N (wi|y,W)N (y|µ, B) dy

(17)

The explicit solution of (17) is given in [4].

4. I-vector normalizations
In the following, we call ”normalization” any transformation
that projects i-vectors onto the surface area of the p-dimensional
sphere of radius 1, and ”length normalization” the straight divi-
sion of i-vectors by their Euclidean norm. In the last paragraphs
of this section, we propose two variance-spectra based normal-
ization techniques, one for LDA system and the other for PLDA
system. First, we introduce a visualization tool intended to bet-
ter analyze the spectral distributions of a dataset.

4.1. Spectral graph

Given an i-vector dataset expressed in a given basis, we call
”spectral graph” a visualization of the total and related speaker,
session variabilities across the space dimensions.
To proceed, matrices B and W of Equation 3 and 4 are com-
puted. The total covariance matrix is equal to B + W. The
spectral graph displays the three series diag(B+W), diag(B)
and diag(W), which contain the proportion of total, speaker
and session variance per dimension.

Figure 1 shows the spectral graph of female development
dataset described in section 5, in the eigenvector basis of to-
tal covariance matrix 2. Dimension of the i-vector space is
p = 600. Note that the ”total” curve is just the eigenvalue

2Here and in the following, only female dataset spectral graphs are
shown, since it turned out that all the male dataset graphs are almost
identical.

Figure 1: Spectral graph of female development data (before
any transformation). For the 600 dimensions (x axis), the y
axis shows the total, speaker and session parts of variance.
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spectrum of total covariance matrix but the two others are not
eigenvalue spectra of B and W (their eigenvectors basis are
generally distinct). It is of interest to analyze this graph:

• the total covariance matrix is far from the identity ma-
trix: its eigenvalue spectrum is not flat, though Fac-
tor Analysis-Total Variability assumes that i-vectors are
standard-normally distributed;

• the speaker spectrum is highly correlated with the total
spectrum. As FA-Total Variability ignores the speaker
information, the latent variable seems to induce a bias
into the training sample;

• the session spectrum is flatter, thus less correlated with
other spectra.

4.2. Length normalization

Proposed in [7, 8], the length normalization (scaling the i-
vectors by their magnitude) is intended to make them more
Gaussian. It can be shown3 that, in a p high-dimensional space,
the spherical surface of radius 1 is the maximal density shell of
a normal distribution of covariance matrix p−1I. As a result,
length normalization combats bad modelling assumptions, but
also dataset shift between development and trial i-vectors.
However, two points caught our attention:

• Length normalization is preceded by a standardization
(centering and whitening) based on he first and second
order moments of the development data, It could be of
interest to explore other normalizations based on total,
speaker or noise covariance of the training dataset. We
call ”variance-spectra based normalization” such nor-
malizations.

• In the current framework, normalization is applied previ-
ously to a discriminative technique, here LDA or PLDA.
We propose to apply normalizations to transform the de-
velopment and trial i-vector representations in such a
way they better fit assumptions of the following discrim-
inant techniques.

3http://ontopo.wordpress.com/2009/03/10/reasoning-in-higher-
dimensions-measure/
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Figure 2 displays the spectral graph of female development
dataset, in the eigenvector basis of total covariance matrix, after
length normalization. We observe that this technique does not
modify spectral distributions. We present below two variance-
spectra based normalizations suitable for LDA and PLDA re-
spectively.

Figure 2: Spectral graph of female development data after ap-
plication of length normalization.
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4.3. Variance-spectra based normalization for LDA

LDA assumes that it exists a subspace of significantly high
speaker variability and low noise variability. Thus projecting
the data onto this subspace would improve speaker discrimina-
tion.

There is usually no optimal solution to the LDA problem,
i.e. finding axes simultaneously maximizing the speaker
variance and minimizing the session variance. The aim of a
variance-spectra based normalization before LDA is to increase
the Rayleigh quotient on the surface of the sphere in such a
way that the dataset moves towards the optimal solution. We
presented in Interspeech 2011 [8] an algorithm intended to
prepare i-vectors for scoring. Given a training dataset T , the
algorithm is:

Algorithm for training dataset

for i = 1 to nb iterations
Compute mean µi and total covariance matrix Σi of T

For each w of T : w← Σ
− 1

2
i (w − µi)∥∥Σ− 1

2
i (w − µi)

∥∥

Σ
− 1

2
i can be computed using a singular value decomposition.

For each test vector of an evaluation set the same algorithm
is applied, but with the successive parameters µi and Σi

computed on the training dataset.

Algorithm for test vectors

Given a test vector w,

for i = 1 to nb iterations: w← Σ
− 1

2
i (w − µi)∥∥Σ− 1

2
i (w − µi)

∥∥
In each iteration, i-vectors of the training dataset are standard-
ized then length normalized. With only one iteration, the al-
gorithm is just a standardization followed by normalization, al-
ready used in current i-vector based systems [7, 8].

We showed empirically in [8] that this algorithm makes the
global mean µi tending to 0 and the covariance matrix Σi to
p−1I (the identity matrix divided by the dimension p of the To-
tal Variability space). Note that this algorithm is stationary after
several iterations.

Figure 3: Spectral graph of female development data, in the
eigenvector basis of B, after 3 iterations of variance-spectra
based normalization (Eigen Factor Radial).
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Figure 3 displays the spectral graph of female development
data, in the eigenvector basis of B, after 3 iterations of this
variance-spectra based normalization. The convergence of Σ
to p−1I is almost totally achieved. After this normalization,
speaker and session variances are complementary and therefore
the first eigenvectors of B contain a major proportion of speaker
variability and a minor proportion of session variability.
This fact can be demonstrated. As Σ is approximately equal
to p−1I and Σ = B + W, each eigenvector v of B for an
eigenvalue λ verifies almost exactly:

Wv =
(
p−1 − λ

)
v (18)

Thus v is an eigenvector of W for the eigenvalue
(
p−1 − λ

)
.

Accordingly, sum of B and W eigenvalues for each axis is
equal to p−1.

Therefore the first eigenvectors of B are the solution of the
LDAB,W optimization problem of Equation 2. As a same or-
thogonal basis contains speaker and session principal subspaces
(often called eigenvoices and eigenchannels) and as i-vectors lie
on a sphere, we call EigenFactors Radial (EFR) this variance-
spectra based normalization technique.
It is worth noting that after EFR, retaining the r first dimensions
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of the eigenvector basis of B becomes equivalent to removing
the (p− r) first dimensions of W. This involves that LDA after
normalization is equivalent to Nuisance Attribute Projection4.

4.4. Variance-spectra based normalization for PLDA

4.4.1. Method

Considering a normalization of i-vectors that would be adapted
to PLDA modeling, we raise the following issue: once all i-
vectors lie on a spherical surface, it is difficult to estimate the
within-class covariance matrix. To depict this fact, Figure 4
shows a two-dimensional example: i-vectors of three speakers
lie on a circle, with a good level of isolation between classes.
The arrows indicate the first principal axis (1D) of session vari-
ability for each speaker and the central red arrows indicate the
first principal axis of W. Estimating the principal axis of the

Figure 4: Two-dimensional example of session variability onto
a spherical surface. I-vectors of three speakers are shown. All
i-vectors are of norm 1. Arrows indicate the first principal ses-
sion axis of each speaker. Central red arrows indicate the first
principal axis of W.
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session variability over all speakers by the mean of the three
axes gives a poorly accurate result. More generally, it can be
questioned to base a generative model on an overall linear es-
timation of session covariances meanwhile data lie on a spher-
ical surface. Facing this fact, the most appropriate alternative
seems to apply a transformation which keeps data on the non-
linear surface for Gaussianity, but without any principal direc-
tions of session variability nor without dependences between
directions. Thus, to have a spherical within-class covariance
matrix (a spherical matrix is a matrix σ2I).

Finding a way to conciliate length normalization and
spherical noise matrix is greatly facilitated by the previous
variance-spectra based normalization. Based on the fact that
the EFR normalization makes Σ tending to p−1I, which is
spherical, we propose to carry out a similar algorithm, by
replacing Σ with W. The algorithm becomes:

4Details on Nuisance Attribute Projection (NAP) can be found in
[14].

Algorithm for training dataset

for i = 1 to nb iterations
Compute mean µi and within-class cov. matrix Wi of T

For each w of T : w← W
− 1

2
i (w − µi)∥∥W− 1

2
i (w − µi)

∥∥
For each test vector of an evaluation, the same algorithm is

applied, with the successive parameters µi and Wi computed
on the training dataset.

Algorithm for test vectors

Given a test vector w,

for i = 1 to nb iterations: w← W
− 1

2
i (w − µi)∥∥W− 1

2
i (w − µi)

∥∥
We call Spherical Nuisance normalization this technique,

because the combined session and residual nuisances have a
spherical covariance matrix 5.

Figure 5: Spectral graph of female development data, in the
eigenvector basis of B, after application of 3 iterations of Spher-
ical Nuisance normalization.
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Figure 5 displays the spectral graph of female development
data, in the eigenvector basis of B, after 3 iterations of this al-
gorithm. The W spectrum is almost exactly flat. As not shown
in Figure 5, W is also close to be diagonal. Note that since W
tends to a matrix σ2I (σ scalar) this algorithm is stationary after
some iterations.
The main point here is that the energy of the B-spectrum has
been maintained. Less than 200 axes contain a major propor-
tion of the speaker variability. The part of speaker variance in
the total variance even increased (from 41% to 50% for the male
dataset and 40% to 47% for the female dataset).

4.4.2. PLDA initialization

PLDA meta-parameters are estimated through an iterative Ex-
pectation Maximization (EM) algorithm. In the absence of any

5The case of isotropic noise ε ∼ N
(
0, σ2I

)
is referred to as ”ho-

moscedastic residuals model” [15].
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other information, speaker and channel matrices Φ and Σ of
Equation 7 are randomly initialized. After the above algorithm,
it can be taken advantage of the new representation to initialize
the PLDA matrices. To proceed, development and evaluation
data are expressed in the eigenvector basis of B (each vector is
multiplied by the B eigenvector matrix sorted by decreasing or-
der of eigenvalues). In this basis, which is the one of Figure 5,
the r first dimensions contain the principal speaker variability.
Hence, the speaker matrix is initialized with:

Φ =

[
Ir,r

0p−r,r

]
(19)

where Ir,r is the r × r identity matrix and 0p−r,r is the (p −
r)× r null matrix.

Γ matrix is initialized by the Cholesky decomposition of
W, so that W = ΓΓt. By this way, the estimation algorithm
is initialized at an meaningful starting point in the optimization
landscape of the PLDA EM-algorithm. PLDA will refine this
model by distributing speaker variabilities in the subspace and
normalizing anisotropic nuisances.

5. Experiments and results
5.1. Experimental setup

All our experiments were carried out on the extended-core
telephone-telephone condition (i.e., condition 5) from the NIST
SRE 2010 evaluation. For all our experiments, we have used
the i-vectors provided by Brno University of Technology (BUT)
[16].

5.2. Voice Activity Detection

Speech/silence segmentation is performed by BUT Hungarian
phoneme recognizer [17], where all phoneme classes are linked
to the speech class. More details on VAD are provided in [18].

5.3. Feature Extraction

We use MFCC 19 + energy augmented with their delta and dou-
ble delta coefficients, making 60 dimensional feature vectors.

The analysis window has 20 ms with shift of 10 ms. First
we remove silence frames according to VAD and after that
we apply short-time cepstral mean and variance normalization
which uses a window of 300 frames.

5.4. GMM UBM Training

One gender-independent UBM was represented as a full covari-
ance 2048-component GMM. It was trained on the 7823 fe-
male and 7779 male segments balanced over the telephone/tel-
mic/interview channels from NIST SRE 2004, 2005, 2006 and
2008 data. The variance flooring was used in each iteration of
EM algorithm during the UBM training [16].

5.5. I-vector Extractor Training

Gender-dependent i-vector extractor was trained on the follow-
ing telephone data: NIST SRE 2004, 2005, 2006, Switchboard
II Phases 2 and 3, Switchboard Cellular Parts 1 and 2, Fisher
English Parts 1 and 2 giving 9627 female speakers in 45195
segments of speech, and 6989 male speakers in 33645 segments
of speech (both after VAD). The results are reported with 600
dimensional i-vectors.

5.6. LDA and PLDA Training

The gender-dependent training lists for two-covariance, LDA
and PLDA are from sessions of NIST SRE 2004, 2005, 2006,
Switchboard II Phases 2 and 3 and Switchboard Cellular Parts 1
and 2, telephone only, nominal length higher than 180 seconds.
No minimum amount of utterances per speaker has been stated.
This gives 21475 sessions of 1575 speakers for male, 27155
sessions of 2012 speakers for female.

5.7. Results

Tables 1, 2, 3 give comparison result for the core extended
condition 5 (telephone-telephone) from the NIST SRE 2010
evaluation, between systems based on three techniques: two-
covariance scoring, LDA followed by two-covariance scoring
and PLDA, in terms of Equal Error Rate (EER) and normalized
minimum Decision Cost Functions (DCF) for the two operating
points as defined by NIST for the SRE 2010 evaluations.

5.7.1. Two-covariance scoring

Table 1 compares performance of two-covariance scoring
(Equation 17) applied without any transformation of the initial
data and after a simple length normalization (without any stan-
dardization or other spectral technique) of both development
and evaluation data. Length normalization involves a great en-
hancement of performance for both genders. Data become more
suitable for a scoring based on the two-covariance model.

Table 1: Comparison of two-covariance scoring without and
with length normalization of i-vectors for the core extended
condition 5 (tel-tel) from the NIST SRE 2010 evaluation, in
terms of EER and minDCF.

male female
EER DCF EER DCF

2cov 4.47 0.44 4.75 0.48
length-norm + 2cov 1.38 0.34 2.34 0.44

5.7.2. LDA and two-covariance scoring

Table 2 shows the performance of LDA systems, all followed by
two-covariance scoring. LDA based on Sb and Sw (LDASB,SW )
or based on B and W (LDAB,W), are applied after either
length normalization or n iterations of variance-spectra based
normalization (EFRnorm n iter). For all systems, the best LDA
dimension reduction is dim = 80.

Compared to Table 1, both LDA techniques improve per-
formance in terms of EER and minDCF. Standardization before
normalization (EFRnorm 1 iter.) enhances performance for fe-
male evaluation but not for male evaluation. Two iterations of
standardization and normalization (EFRnorm 2 iter.) achieve
the best performance for male and female evaluation, but only
if LDA based on B and W is carried out. Beyond two itera-
tions, performance are stationary.
These experiments show that standardization and i-vector rep-
resentation after two iterations, which is adapted to LDA based
on B and W, is the most robust of these LDA-based systems.

162



Table 2: Comparison of five systems based on LDA for the
core extended condition 5 (tel-tel) from the NIST SRE 2010
evaluation, in terms of EER and minDCF. All systems use two-
covariance scoring.

male female
EER DCF EER DCF

length-norm LDASB,SW
1.27 0.31 2.27 0.38

EFRnorm 1 iter. LDASB,SW
1.36 0.33 2.29 0.39

EFRnorm 1 iter. LDAB,W 1.36 0.30 1.89 0.35
EFRnorm 2 iter. LDASB,SW

1.30 0.32 2.30 0.39
EFRnorm 2 iter. LDAB,W 1.27 0.31 1.89 0.35

5.7.3. PLDA

First row of Table 3 presents the results of the baseline
Gaussian-PLDA model (according to Equation 7) following a
length normalization. The rank of the speaker-matrix Φ is 80
and the rank of the channel-matrix Γ is 600 (full-dimension).
For the male evaluation, 100 iterations of the EM algorithm
have been required to achieve optimum performance. For the
female evaluation, this value increased to 300 iterations. As
the speaker and channel matrices of the PLDA are randomly
initialized, performance of the system are subject to a variabil-
ity. Therefore, the displayed values are the mean performance
yielded by repeating 10 times the same experiment. For male
evaluation, EERs vary in the range of 1.15 to 1.33 and minD-
CFs from 0.31 to 0.34. For female evaluation, EERs vary in the
range of 1.78 to 1.86 and minDCFs from 0.34 to 0.35.

Table 3: Comparison of three systems based on PLDA for the
core extended condition 5 (tel-tel) from the NIST SRE 2010
evaluation, in terms of EER and minDCF.

male female
EER DCF EER DCF

length-norm + G-PLDA 1.22 0.32 1.81 0.34
EFRnorm 2 iter. + G-PLDA 1.27 0.35 1.94 0.35
SphNnorm + G-PLDA 1.08 0.31 1.77 0.34
SphNnorm + G-PLDA init. 1.04 0.29 1.73 0.33

Second row of Table 3 gives the mean result of the best
Gaussian PLDA system following standardization and length-
normalization (EFR): two iterations of these normalization have
been required and the optimal ranks of Φ and Γ are 80 and 600.
Compared to first row (a single length-normalization), no im-
provement of performance is observed.
Third row of Table 3 shows results of the same Gaussian PLDA
system following two iterations of Spherical Nuisance normal-
ization for both development and evaluation data. As before,
the rank of speaker-matrix Φ is 80 and the rank of channel-
matrix Γ is 600. For both genders, 100 iterations of the PLDA
algorithm have been required to achieve optimum performance.
Speaker and channel matrices are randomly initialized and the
displayed values are the mean performance yielded by repeating
10 times the same experiment. For male evaluation, EERs vary
in the range of 1.04 to 1.13 and minDCFs from 0.29 to 0.32.
For female evaluation, EERs vary in the range of 1.73 to 1.84
and minDCFs from 0.33 to 0.34. The preliminary Spherical

Nuisance normalization improves mean performance for both
genders, in terms of EER and minDCF.

Fourth row of Table 3 shows results of the same Gaussian
PLDA system following two iterations of Spherical Nuisance
normalization. Here, speaker and channel matrices have been
initialized with the procedure described in paragraph 4.4.2. As
before, the rank of speaker-matrix Φ is 80 and the rank of
channel-matrix Γ is 600. For the male evaluation, only 10 it-
erations of the EM algorithm have been required to achieve op-
timum performance, and only 2 iterations for the female eval-
uation. Beyond, performances are almost stationary for both
genders. However, when performing only one iteration of EM,
the system yields slightly worse EERs: 1.15% for male evalua-
tion and 1.75% for female evaluation. This result shows that the
PLDA modelling remains necessary to optimize i-vector based
speaker recognition engines.

The Spherical Nuisance normalization preliminary applied
makes the PLDA algorithm quickly converge to an optimiza-
tion point which yields significant gain of performance, com-
pared to baseline. In rows two and three of Table 3, two it-
erations of Spherical Nuisance normalization are performed.
When performing only one iteration, performance are slightly
worse (EER of 1.10% for male evaluation, 1.81% for female
evaluation) but increasing the number of iterations doesn’t im-
prove much as it seems that this algorithm converges after 2 or
3 iterations. It achieves a relative improvement of the PLDA
system of 14.8%-point on the EER for the male evaluation,
and of 4.76%-point for the female evaluation. Note that with
Lnorm+G-PLDA system (first row of Table 3), an equivalent
initialization of speaker and channel matrices does not improve
the performance of this system.

6. Conclusion
This paper presented two i-vector normalization techniques
based on variance-spectra of training dataset. Those normal-
izations aim at adapting the i-vector representation to a speaker
discriminative system.

In the case of Linear Discriminant Analysis followed by
two-covariance scoring, we show that the preliminary algorithm
of standardization and length-normalization can be iterated to
enhance the optimization criterion of LDA and makes the i-
vector distribution more Gaussian. We also suggest the best
within- and between-covariance matrices to use.
In the case of Probabilistic Linear Discriminant Analysis, the
lower-bound maximization EM algorithm is dependent of the
initial representation of data, i.e. algorithm converges to a local
maximum-likelihood point in the optimization landscape of the
PLDA. In this context, Spherical Nuisance normalization, also
an iterative algorithm, moves data from a local optimum to a
better one in a different part of the parameter space.

We show that after performing two iterations of Spherical
Nuisance normalization and initializing the PLDA matrices ac-
cording to the new i-vector representation, our system achieves
optimum performance after only a reduced number of EM it-
erations (between 2 and 10). Nevertheless, EM estimation of
the PLDA parameters remains necessary as the system yields
slightly worse performance when running only one iteration of
EM (1.15% EER for male evaluation and 1.75% EER for female
evaluation).

While conducting this work, we observed that, after apply-
ing two iterations of Spherical Nuisance normalization, remov-
ing the channel matrix from the PLDA model (channel rank of
Γ = 0) and keeping only a diagonal noise covariance matrix

163



does not degrade the best performance reported in this paper.
After Spherical Nuisance normalization, the simplest speaker-
factor analysis model (low rank speaker subspace and diagonal
noise covariance matrix) is able to optimize the performance of
our i-vector-based speaker recognition engine. This needs to be
analyzed and clarified by future investigations.

The spectral graph of initial development data is a sim-
ple and useful visualization tool for speaker recognition. We
observed that the spectral distributions in regard to the latent
speaker variable may differ from an i-vector extraction config-
uration to another so as the performance gap between speaker
recognition systems (LDA, PLDA, ...). Analysing this graph
can help to assess the adequacy of an i-vector extraction config-
uration to these speaker recognition systems.
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