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Abstract We prove that a multiple of a log contract prices a variance swap, un-
der arbitrary exponential Lévy dynamics, stochastically time-changed by an arbitrary
continuous clock having arbitrary correlation with the driving Lévy process, subject
to integrability conditions. We solve for the multiplier, which depends only on the
Lévy process, not on the clock. In the case of an arbitrary continuous underlying re-
turns process, the multiplier is 2, which recovers the standard no-jump variance swap
pricing formula. In the presence of negatively skewed jump risk, however, we prove
that the multiplier exceeds 2, which agrees with calibrations of time-changed Lévy
processes to equity options data. Moreover, we show that discrete sampling increases
variance swap values, under an independence condition; so if the commonly quoted
multiple 2 undervalues the continuously sampled variance, then it undervalues even
more the discretely sampled variance. Our valuations admit enforcement, in some
cases, by hedging strategies which perfectly replicate variance swaps by holding log
contracts and trading the underlying.
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1 Introduction

A variance swap (VS) contract on an underlying price process pays (to the long party)
at expiry a floating leg equal to the realized variance over the swap’s fixed life, where
realized variance with continuous sampling is defined as the quadratic variation of
the underlying log price, and realized variance with discrete sampling is defined as
the sum of squared increments of the underlying log price, typically at daily intervals.
In exchange, the long party pays at expiry a fixed leg, set such that the VS has zero
cost of entry. Hence, a VS amounts to a forward contract on realized variance.

VS contracts trade over-the-counter on stock indices; they also trade on single
stocks (with capped payouts), and to a much lesser extent, on exchange rates and
commodity futures. Highly liquid, VS contracts on stock indices now have bid-offer
spreads narrower than those of at-the-money options. The VS has become the stan-
dard instrument for taking views on future realized volatility and managing volatility
exposure.

1.1 The ND approach

Options were first listed in the United States in 1973, just as the Black–Merton–
Scholes (BMS) breakthrough for valuing options first appeared in print. For VS
contracts, the corresponding breakthrough, which we designate as the ND theory
(for “Neuberger/Dupire” or “No Discontinuity”), arose in the early 1990s, first in a
working paper by Neuberger [15, 16], and then independently in a published article
by Dupire [10, 11]. VS contracts began trading sporadically shortly thereafter, and
achieved prominence in the late 1990s.

Compared to earlier efforts, the BMS option pricing formula has the advantage
that it does not depend on the expected rate of return of the underlying asset. Analo-
gously, the ND approach for VS pricing has the advantage that the ND formula does
not depend on the level and dynamics of the instantaneous variance rate. The BMS
formula values a vanilla option relative to the underlying asset (whose price incorpo-
rates the relevant information about expected returns); analogously, the ND approach
values a continuously sampled VS relative to a co-terminal log contract (whose price
incorporates the relevant information about variance dynamics), where a log contract
written on an underlying F is defined to pay − log(FT /F0) at its fixed maturity T .

Specifically, the ND theory shows that for a continuously sampled VS on any un-
derlying price process with continuous paths, the fair fixed payment is simply twice
the forward price of the log contract. Applying an insight from Breeden and Litzen-
berger [1], Dupire [10, 11] first indicated that this forward price can be obtained from
co-terminal option prices at all strikes, and Carr and Madan [5] published the first
explicit formula.

In 2003, the CBOE adopted a discrete implementation of this formula to revise its
construction of the VIX (volatility index), a widely quoted indicator of the options-
implied expectation of short-term S&P500 realized volatility. With justification rest-
ing entirely on the ND theory, the VIX is constructed as an estimate of twice the
forward price of a 30-day log contract, quoted as an annualized volatility. For the
decade preceding its 2003 revision, VIX had been obtained instead from an estimate
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of at-the-money BMS implied volatility, reflecting the prominence of the BMS model
during this period. The 2003 switch to a VS synthesized using ND theory gave tacit
recognition to the rising significance of the VS market and of the ND approach to VS
pricing.

The justly celebrated ND theory, however, makes a no-jump assumption, which is
restrictive especially in light of recent market events. The ND formula for VS valu-
ation, somewhat model-free in that it holds for all continuous underlying price pro-
cesses, is not completely model-free, as it can misprice VS contracts on underlying
processes which jump.

The ND theory’s applicability can be questioned in regard to its no-jump assump-
tion, or in regard to its implications.

In regard to the former, the sharp moves experienced recently by all asset classes
suggest that the ND no-jump assumption does not apply in today’s markets. More-
over, even prior to the events of 2008, empirical studies concluded that option pricing
models which permit jumps outperform those that assume no jumps.

In regard to the latter, the implications of ND theory can be tested in markets where
one has both liquid VS quotes and accurate estimates of log contract prices. In such
instances, for example the Eurostoxx or the S&P500, one can observe whether VS
contracts are quoted at twice the estimated forward price of log contracts. Anecdotal
evidence and the available historical data confirm that market participants indeed
often observe discrepancies between market VS quotes and the ND value.

1.2 Parametric approaches

Notwithstanding the widespread adoption of the nonparametric ND approach, an al-
ternative line of research prices VS contracts using parametric models for the underly-
ing dynamics, typically allowing for stochastic volatility and/or jumps. For example,
under CGMY dynamics for the underlying log returns, Carr et al. [4] find pricing for-
mulas for VS contracts and other volatility derivatives, in terms of the CGMY model’s
parameters. Under Black–Scholes, Heston, Merton, and Bates dynamics, Broadie and
Jain [2] find pricing formulas in terms of the respective models’ parameters.

Continuous parametric models inherit the drawbacks of ND theory: a disputable
assumption of no jumps, and a disputable conclusion that values a continuously sam-
pled VS at exactly two times a log contract. Moreover, calibrations of models having
finitely many parameters may be unable to achieve consistency with a full set of
option price observations.

Parametric jump models do have the ability to reconcile the discrepancy between
log contract and VS prices; and parametric models allow computation of the (typi-
cally small, by [2]) effect of discrete sampling. However, they are subject to model
risk. Misspecification or miscalibration of, for instance, a jump arrival rate process
will generally result in erroneous VS pricing. Averse to this model risk, market par-
ticipants have resisted parametric approaches to VS pricing.

1.3 Our approach

By introducing jumps in the underlying asset price, we generalize the ND theory of
VS pricing. Indeed we value a VS on a general exponential Lévy process, stochasti-
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cally time-changed by an arbitrary unspecified continuous integrable clock. The driv-
ing Lévy process X can have jumps of finite or infinite activity, while the clock and X

can have mutual dependence and correlation. Our framework includes the ND pric-
ing theory’s full scope (all positive continuous underlying prices) as the special case
in which X is Brownian motion. In our more general setting of time-changed Lévy
processes (TCLP), we prove that a multiple of the log contract still prices the VS.
We prove, however, that the correct multiplier is not 2 but rather a constant that de-
pends on the characteristics of X—and only X. The multiplier is invariant to the time
change.

Our approach makes the following contributions.
First is realism. We introduce empirically relevant jumps into the nonparamet-

ric ND theory. Simultaneously, we introduce empirically relevant stochastic clocks
into Lévy processes, such as the CGMY and Merton models analyzed in some of
the parametric VS literature. Stochastic clocks can generate empirical features of
stock returns, such as stochastic volatility, stochastic jump arrival rates, and volatility
clustering—features missing in pure Lévy models such as CGMY and Merton. More-
over, we allow leverage effects to arise from dependence between the clock and the
Lévy driver, or from skewed jump distributions. The resulting processes are capable
of achieving consistency with observed option skews at both long and short horizons.

Second is robustness. We extend to a setting with jumps the robustness of the ND
approach to VS pricing. By declining to specify and estimate the dynamics of the
clock that generates stochastic variance and jump arrival rates, we decline to price
the VS in terms of a full set of estimated parameters. Instead we price the VS in
terms of observable European option prices, using relationships valid irrespective of
the time change. We thereby avoid the model risk of misspecifying or miscalibrating
the unobservable instantaneous variance and jump-intensity processes. A possible
application is to price variance swaps, given vanilla option prices; a modeler who
calibrates (imperfectly) a time-changed Lévy process to vanilla option prices can,
using our results, discard the calibrated (or miscalibrated) time-change parameters,
and replace them with the observable price of a log contract. Although the modeler’s
results will not be robust to erroneous calibration of the Lévy process, they will be
robust to erroneous calibration of the time change.

Third is the capability to reconcile the prices of VS and log contracts. In markets
where a discrepancy exists between an observable VS quote and two times the log
contract valuation, the ND theory provides no mechanism to explain the observed dis-
parity. In contrast, via choice of the driving Lévy process, our TCLP framework can
achieve consistency with observations of both VS and log contracts. A possible ap-
plication is to calibrate a time-changed Lévy process, given vanilla option prices and
given variance swaps; a modeler who observes both log contract prices and variance
swap quotes can, by our results, take their ratio to derive an “implied” multiplier and
hence an identifying restriction on the parameters of the Lévy process, facilitating
the estimation of those parameters. In this setting, a related application is to examine
whether time-changed Lévy dynamics prevail in the given market; an implied multi-
plier that varies significantly across expiries or across time would lead to rejection of
all time-changed Lévy dynamics in that market.

Fourth is the capability to quantify the bias of ND-style VS valuations, and to ex-
plain the sign of that bias in terms of jump skewness. Using empirically calibrated
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TCLPs, we compute multipliers in the presence of jump risk, and find that they typi-
cally exceed the ND multiplier 2. In this setting, the VIX (modulo strike-discreteness
effects) and other ND-style VS valuations therefore underestimate the risk-neutral
expectation of continuously sampled realized variance. Relating this bias to jump
skewness, we show that a Lévy process has a multiplier exceeding 2 if and only if its
Lévy measure has negative skewness, in a sense that we define.

Fifth is the capability to enforce our valuations, in some cases, by hedging strate-
gies which perfectly replicate VS payoffs by holding log contracts and trading fu-
tures.

Sixth is the extension of nonparametric pricing to discretely sampled VS con-
tracts. In practice, VS contracts specify discrete sampling, but the VS pricing lit-
erature mainly addresses continuously sampled variance. An exception is Broadie
and Jain [2] which computes discretely sampled VS values, in terms of parameters
of four models. We complement this by developing nonparametric results (for gen-
eral TCLPs, under an independence condition), including lower bounds on the VS
discrete-sampling premium in terms of log contract prices, instead of model parame-
ters. Our lower bounds on this premium are nonnegative. Hence if ND theory under-
values the continuously sampled VS, then in this setting it undervalues even more the
discretely sampled VS.

The body of this paper is organized as follows. Section 2 introduces and charac-
terizes the multiplier of a Lévy process. Section 3 proves that the fair fixed payment
on the VS is just the multiplier times the forward price of the log contract, where
the multiplier depends only on the driving Lévy process, not on the time change.
Section 4 gives examples of multiplier formulas; and for some TCLP’s calibrated to
options data, it computes multipliers which exceed 2 (hence VS prices which exceed
ND valuations); and it relates this phenomenon to negative skewness. Section 5 en-
forces our valuations, in some cases, by hedging strategies which perfectly replicate
the VS by holding log contracts and trading futures. Section 6 analyzes the impact of
discrete sampling. Section 7 computes the multipliers implied by empirical variance
swap data. Section 8 concludes.

2 The multiplier

We work on a filtered probability space (Ω, F , {Fu}u≥0,P) satisfying the usual con-
ditions. Let brackets [·] denote quadratic variation.

Proposition 2.1 Let L be a Lévy process with Lévy measure ν and Brownian vari-
ance σ 2. Then

E[L]1 = σ 2 +
∫

x2 dν(x) ∈ [0,∞].

Moreover, E[L]1 < ∞ if and only if EL2
1 < ∞.

Proof We have

[L]1 = σ 2 +
∑

0<u≤1

(�Lu)
2.
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Sato [19] Propositions 19.2 and 19.5, applied for each m > 0 to the restriction of ν to
{x : 1/m < |x| < m}, together with monotone convergence as m → ∞, imply that

E[L]1 = σ 2 +
∫

x2 dν(x).

So we get

E[L]1 < ∞ ⇐⇒
∫

x2 dν(x) < ∞ ⇐⇒ EL2
1 < ∞,

where the last step is by Sato [19] Corollary 25.8 and the fact that∫
|x|<1 x2 dν(x) < ∞. �

The following corollary is immediate.

Corollary 2.2 If E[L]1 < ∞, then E|L1| < ∞.

Let us define the multiplier of a returns-driving process.

Definition 2.3 (Returns-driving process) A returns-driving process is a nonconstant
Lévy process X such that EeX1 < ∞ and E[X]1 < ∞.

Definition 2.4 (Multiplier) Define the multiplier of a returns-driving process X by

QX := E[X]1

log EeX1 − EX1
.

Proposition 2.5 For any returns-driving process X, the multiplier exists and satisfies

0 < QX = VarX1

log EeX1 − EX1
= κ ′′

X(0)

κX(1) − κ ′
X(0)

,

where κX(z) := log EezX1 denotes the cumulant-generating function of X, and
primes denote right derivatives.

Proof The multiplier is well defined and positive because EeX1 > eEX1 by convexity
of exp and nonconstancy of X. Define the martingale Mu := Xu −uEX1. The middle
formula for QX follows from rewriting the numerator as

E[X]1 = E[M]1 = EM2
1 = VarX1,

where the middle equality is by, for instance, Protter [17] Corollary II.6.3. The final
formula for QX follows from the existence of κX on [0,1]. �

Proposition 2.6 Let X be a returns-driving process with generating triplet (σ 2, ν, γ ).
Then

QX = σ 2 + ∫
x2ν (dx)

σ 2/2 + ∫
(ex − 1 − x)ν (dx)

.
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Proof Sato [19] Theorem 25.17 implies that

log EeX1 = σ 2/2 +
∫ (

ex − 1 − x1|x|≤1
)
ν (dx) + γ

(and that the integral is finite). Sato [19] Example 25.12 implies that

−EX1 = −γ −
∫

|x|≥1
xν (dx)

(and that the integral is finite). Summing gives the denominator of QX . Proposi-
tion 2.1 gives the numerator. �

3 Variance swaps and log contracts

This section’s assumptions will apply throughout the remainder of this paper.
Fix a time horizon T > 0. Let the interest rate be a deterministic right-continuous

function r such that
∫ T

0 |rs |ds < ∞. Let

Rt :=
∫ t

0
rs ds.

Let F denote a positive underlying T -expiry forward or futures price process, and let

Yt := log(Ft/F0)

denote the log return on F . Let

F ∗
t := Fte

Rt−RT

denote the corresponding underlying spot price, and

Y ∗
t := log(F ∗

t /F ∗
0 ) = Yt + Rt

denote the log return on F ∗. Define the T -expiry log contract to pay at time T

−YT ,

where the sign convention conveniently makes log contracts have nonnegative value.
Define the (floating leg of a continuously sampled) variance swap on F to pay

[Y ]T
at time T . Assume that

Yt = X̄τt , (3.1)

where

X̄u := Xu − u log EeX1 (3.2)
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for some returns-driving process X in the sense of Definition 2.3, and where the time
change {

τt : t ∈ [0, T ]}
is a continuous increasing family of stopping times. We do not assume independence
of X and τ .

Financially, we regard X, indexed by “business” time, as a “driving” or “back-
ground” Lévy process, which induces the drift-adjusted process X̄ such that eX̄ is a
martingale. We regard τ as an unspecified stochastic clock that maps calendar time
t to business time τt . The resulting {Fτt }-adapted process Y can exhibit stochastic
volatility, stochastic jump-intensity, volatility clustering, and “leverage” effects, the
latter via skewed jump distributions, or via correlation of X and τ .

Assume that P is a martingale measure for log contracts and variance swaps; in
particular, assume that the T -expiry log contract and continuously sampled variance
swap have respective time 0 values e−RT E(−YT ) and e−RT E[Y ]T , if finite.

Proposition 3.1 (Variance swap valuation) If EτT < ∞, then

E[Y ]T = QXE(−YT ).

The multiplier QX does not depend on the time change.

Proof The definition of QX and the equality [X] = [X̄] imply that the Lévy process
[X̄]u + QXX̄u is a martingale. Because EτT < ∞, we have, by Wald’s first equation
in continuous time [13],

E
([X̄]τT

+ QXX̄τT

) = 0.

Moreover E[X̄]τT
< ∞, again by Wald’s first equation, so

E[X̄]τT
= QXE(−X̄τT

).

Finally, the continuity of τ implies [Y ]T = [X̄]τT
, by Jacod [14] Theorem 10.17. �

Hence the variance swap value e−RT E[Y ]T equals QX times the log contract value
e−RT E(−YT ). Equivalently, restated in terms of forward-settled payments, the vari-
ance swap fixed payment’s fair level E[Y ]T equals QX times the log contract’s for-
ward price E(−YT ).

The multiplier QX depends only on the characteristics of the driving Lévy process.
It does not depend on the time change.

Likewise, for the spot underlying, the (floating leg of a continuously sampled)
variance swap on F ∗ can be defined to pay [Y ∗]T . However, [Y ] = [Y ∗] because
Y ∗ − Y = R has finite variation and no jumps. Therefore, no distinction exists be-
tween (continuously sampled) variance swaps on futures and spot. We have estab-
lished the following

Corollary 3.2 (Variance swap valuation, on spot underlying) Assume EτT < ∞.
Then

E[Y ∗]T = QXE(−YT ).
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4 Multiplier calculations

In the following examples of returns-driving processes X, we need not specify the
“drift” component of X, because passing to X̄ via (3.2) resets the drift anyway, to
make eX̄ a martingale.

We emphasize that each example’s scope includes a family of log returns processes
Yt = X̄τt , because the time change τ is general and unspecified. Without modeling
the stochastic clock τ , Proposition 3.1 prices the variance swap payoff [Y ]T in each
case.

4.1 Example: Time-changed Brownian motion

Let X be Brownian motion. Then

QX = E[X]1

log EeX1 − EX1
= 1

1/2
= 2.

This multiplier prices variance swaps on all positive continuous local martingales,
because their log return dynamics are all generated by time changes of drift-adjusted
Brownian motion:

Proposition 4.1 Let S be a positive continuous local martingale relative to a fil-
tration {Gt }t≥0. If E[logS]T < ∞ and [logS]∞ = ∞, then there exist a filtration
F := {Fu}u≥0, an F-Brownian motion W , and a continuous F-time change τ with
EτT < ∞, such that log(St/S0) = Wτt − τt/2.

Proof We have

d logSt = 1

St

dSt − 1

2S2
t

d[S]t = 1

St

dSt − 1

2
d[logS]t ;

hence

Mt :=
∫ t

0

1

St

dSt = log(St/S0) + 1

2

[
log(S·/S0)

]
t

is a continuous local martingale. Define the time change τt := [M]t = [log(S·/S0)]t .
Let Au := inf{t : [M]t ≥ u} and Fu := GAu . By Dambis [7] and Dubins and Schwarz
[9], Wu := MAu is an F-Brownian motion, and τ is an F-time change, and Wτt = Mt .
Hence log(St/S0) = Wτt − τt/2 as claimed. �

The assumption that [logS]∞ = ∞ can be removed by enlargement of the proba-
bility space; see for example Revuz and Yor [18] Theorem V.1.7. Consequently, our
Proposition 3.1 includes as a special case the classical price equivalence of a vari-
ance swap and 2 log contracts, for all continuous underlying log returns processes,
because all such dynamics arise via (3.1) and (3.2) from some Brownian X, accord-
ing to Proposition 4.1. Proposition 3.1 extends the classical result by allowing general
time changes of general Lévy processes X.
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4.2 Time-changed Lévy processes with jumps

In Table 1, we solve for the multipliers of various Lévy processes with jumps. For
the background Lévy process, we choose the following examples: a two-jump-size
process, the Kou double exponential, the Merton lognormal, the (extended) CGMY,
the variance gamma, and the normal inverse Gaussian.

4.3 Impact of skewness

In Table 1, the approximations of QX for the two-jump, Kou, Merton, and NIG mod-
els exhibit a common theme: increasing up-jump sizes (by increasing c1 or 1/a1 or μ

or β , respectively) has the leading-order effect of decreasing the multiplier, whereas
increasing down-jump sizes (by increasing |c2| or 1/a2 or decreasing μ or β) has
the leading-order effect of increasing the multiplier. Likewise, in the CGMY model,
taking larger up-jumps via (G,M) = (B,b), where B > b, gives a smaller multi-
plier than taking larger down-jumps by swapping (G,M) = (b,B). A similar theme
emerged in the analysis of the Bates model by Broadie and Jain [2], who found a
negative leading-order relationship between the Bates mean jump size parameter and
the spread between VS and log contract values.

This asymmetry can be explained as follows. Under any of those dynamics,

−2 log(FT /F0) =
∫ T

0+
−2

Ft−
dFt + 1

2

∫ T

0+
2

F 2
t−

d[F ]ct

+
∑

0<t≤T

(
−2� logFt − −2

Ft−
�Ft

)

=
∫ T

0+
−2

Ft−
dFt + [Y ]T +

∑
0<t≤T

(
2

Ft−
�Ft − 2�Yt − (�Yt )

2
)

,

(4.1)

where [F ]c denotes the continuous part of the quadratic variation. So 2 log con-
tract payoffs, together with the zero-expectation profit/loss from dynamically holding
2/Ft− futures, replicate

[Y ]T +
∑

0<t≤T

(
2e�Yt − 2 − 2�Yt − (�Yt )

2) ≈ [Y ]T +
∑

0<t≤T

1

3
(�Yt )

3. (4.2)

Therefore, in the presence of up-jumps (�Yt > 0), the intuition is that we expect
2E(− logFT /F0) > E[Y ]T , and hence the 2 should be decreased in order to achieve
equality, whereas in the presence of down-jumps (�Yt < 0), the inequality is re-
versed, and hence the 2 should be increased.

The calculations (4.1) and (4.2) resemble closely the jump analysis by Derman
et al. [8], but the conclusion differs, because Derman et al. consider contracts which
define the realized variance of a jump to be (�Ft/Ft−)2 instead of (� logFt)

2, which
affects the leading (cubic) term.

Motivated by (4.2) and Proposition 2.6, we define a relevant notion of skewness.
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Definition 4.2 (Exponential skewness) For a Lévy measure ν such that

∫
|x|>1

exν (dx) < ∞ and
∫

|x|>1
x2ν (dx) < ∞,

define the exponential skewness of ν by

6
∫ (

ex − 1 − x − x2/2
)
ν (dx). (4.3)

Rewriting exponential skewness as
∫
(x3 + x4/4 + x5/20 + · · · )ν (dx) shows that

the leading term of exponential skewness equals the third moment of the Lévy mea-
sure.

The connection between exponential skewness and the multiplier is as follows.

Proposition 4.3 For any returns-driving process X with Lévy measure ν, we have
QX > 2 if and only if ν has negative exponential skewness.

Proof By (4.3), exponential skewness is negative if and only if

σ 2/2 +
∫ (

ex − 1 − x
)
ν (dx) < σ 2/2 +

∫ (
x2/2

)
ν (dx),

where σ 2 denotes the Brownian variance of X. By Proposition 2.6, this is equivalent
to QX > 2. �

In this sense, negatively skewed exponential Lévy processes have multipliers
greater than 2.

4.4 Multipliers of empirically calibrated processes

Carr et al. [3] calibrate various time-changed Lévy processes to data. In Table 2, we
compute the multipliers associated with the parameter estimates.

In each case, the time change is by a CIR process. We do not report the esti-
mated parameters of the time changes, because the multiplier depends only on the
driving Lévy process. The multipliers implicit in the Carr et al. data fall in the
range 2.15 ± 0.06, except for two observations near 2.40. Using a multiplier of 2 (or
smaller) in the presence of jumps would in most cases underestimate the expectation
of quadratic variation by 5 to 10 percent, and in two cases by around 20 percent.

5 Perfect hedging

In some cases, our valuation results are enforceable (assuming frictionless markets)
by perfect hedging strategies which hold log contracts statically and trade futures
dynamically.
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Table 2 Carr et al. [3] calibration, using 4 cross-sections of S&P500 options data in 2000

Lévy driver Data Lévy parameters Multiplier

CGMY Mar Cn/Cp = 0.2883,G = 0.697,M = 22.0, Yp = −3.65, Yn = 1.45 2.43

VG Mar G = 7.33,M = 32.4 2.17

NIG Mar α = 96.4, β = −92.0 2.21

CGMY Jun Cn/Cp = 0.0526,G = 0.423,M = 24.6, Yp = −4.51, Yn = 1.67 2.37

VG Jun G = 11.0,M = 30.1 2.10

NIG Jun α = 69.7, β = −62.1 2.12

CGMY Sep Cn/Cp = 0.0676,G = 1.64,M = 16.9, Yp = −2.90, Yn = 1.54 2.17

VG Sep G = 12.4,M = 33.6 2.09

NIG Sep α = 99.8, β = −91.1 2.11

CGMY Dec Cn/Cp = 0.0855,G = 3.68,M = 52.9, Yp = −2.12, Yn = 1.22 2.13

VG Dec G = 11.7,M = 42.7 2.10

NIG Dec α = 274.8, β = −265.4 2.10

5.1 One jump size

Consider the case that X has one possible jump size c = 0, and zero Brownian part.
In other words, X is c times a simple Poisson process with drift. By Proposition 2.6,
the multiple

QX = c2

ec − 1 − c

of a log contract prices the variance swap. Proposition 5.1 shows, moreover, that this
valuation is enforceable by the following hedging strategy: Hold QX log contracts
statically, together with eRt−RT QX/Ft− futures dynamically (and storing the result-
ing profits/losses in

∫ t

0 QX/Fu− dFu bonds) for each t ∈ (0, T ), producing a final
portfolio value equal to the variance payoff [Y ]T .

Proposition 5.1 Let X have zero Brownian part and Lévy measure ν = δc, where
c ∈ R \ {0}. Then

QX log(F0/FT ) +
∫ T

0

QX

Ft−
dFt = [Y ]T . (5.1)

Proof We are given

X̄u = mu + cNu,

where N is a Poisson process and m is a constant that we need not specify. Re-
indexing by calendar time, we have

Yt = mτt + cÑt , (5.2)

where Ñt := Nτt . By Itô’s rule, the futures price Ft = F0 exp(Yt ) satisfies

dFt = mFt− dτt + (
ec − 1

)
Ft− dÑt . (5.3)
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Combining (5.2) and (5.3),

−QX d logFt + QX

Ft−
dFt = QX

(
ec − c − 1

)
dÑt = c2 dÑt ,

which implies (5.1). �

5.2 Two jump sizes, piecewise constant paths

Consider the case that X has two possible jump sizes c1 > 0 and c2 < 0, zero
Brownian part, and piecewise constant paths. In other words, X has Lévy measure

p1δc1 + p2δc2, (5.4)

where

p1 := 1 − ec2

ec1 − ec2
, p2 := ec1 − 1

ec1 − ec2
, (5.5)

producing paths (of X, Y , and F ) which are constant between jumps. This means that
X is a linear combination of two simple Poisson processes with drift.

By Proposition 2.6, the multiple

QX = p1c
2
1 + p2c

2
2

p1(ec1 − 1 − c1) + p2(ec2 − 1 − c2)
= c2

1(e
c2 − 1) − c2

2(e
c1 − 1)

c2(ec1 − 1) − c1(ec2 − 1)

of a log contract prices the variance swap. Proposition 5.2 shows, moreover, that this
valuation is enforceable by the following hedging strategy: Hold QX log contracts
statically, together with eRt−RT qX/Ft− futures dynamically (and storing the resulting
profits/losses in

∫ t

0 qX/Fu− dFu bonds) for each t ∈ (0, T ), where

qX := c1c2(c1 − c2)

c2(ec1 − 1) − c1(ec2 − 1)
,

producing a final portfolio value equal to the variance payoff [Y ]T .

Proposition 5.2 Let X have zero Brownian part and Lévy measure (5.4), (5.5). Then

QX log(F0/FT ) +
∫ T

0

qX

Ft−
dFt = [Y ]T . (5.6)

Proof We have

X̄u = c1N
1
u + c2N

2
u,

where N1 and N2 are independent Poisson processes. Re-indexing by calendar time,
we have

Yt = c1Ñ
1
t + c2Ñ

2
t , (5.7)
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where Ñ
j
t := N

j
τt for j = 1,2. By Itô’s rule, the futures’ price Ft = F0 exp(Yt ) satis-

fies

dFt = (
ec1 − 1

)
Ft− dÑ1

t + (
ec2 − 1

)
Ft− dÑ2

t . (5.8)

Combining (5.7) and (5.8),

−QX d logFt + qX

Ft−
dFt =

∑
j=1,2

(
qXecj − qX − QXcj

)
dÑ

j
t = c2

1 dÑ1
t + c2

2 dÑ2
t ,

which implies (5.6). �

6 Discrete sampling

Consider an arbitrary sequence of fixed sampling times

0 = t0 < t1 < · · · < tN = T .

For n = 0, . . . ,N − 1 and any stochastic process Z, write

�nZ := Ztn+1 − Ztn .

Define the (unannualized) payoffs of (the floating leg of) a discretely sampled vari-
ance swap on futures F and on spot F ∗ to be, respectively,

VT :=
N−1∑
n=0

(�nY )2,

V ∗
T :=

N−1∑
n=0

(�nY
∗)2 =

N−1∑
n=0

(�nY + �nR)2.

Unlike the continuous-sampling payoffs which satisfy [Y ] = [Y ∗], the discrete-sam-
pling payoffs VT and V ∗

T are not generally equal.
Still working under Sect. 3 framework, let E(·|τ) denote expectation conditional

on the σ -algebra generated by {τt : t ≤ T }. The following formula links the discretely
sampled variance swap value EV ∗

T back to the continuously sampled variance swap
value E[Y ∗]T , which is already understood via Corollary 3.2. In this section (and
not in any other section), our results assume independence of X and τ .

Proposition 6.1 (Discrete variance swap on spot underlying: Valuation) Assume that
EτT < ∞ and that τ and X are independent. Then

EV ∗
T = E[Y ∗]T +

N−1∑
n=0

(E�nY
∗)2 +

N−1∑
n=0

Var
(
E(�nY

∗|τ)
)
. (6.1)
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The last term has the explicit form

N−1∑
n=0

Var
(
E(�nY

∗|τ)
) = (EX1)

2
E

N−1∑
n=0

(�nτ)2 −
N−1∑
n=0

(E�nY)2. (6.2)

Proof By the finiteness of EτT and the Lévy, strong Markov and martingale proper-
ties of

Lu := Xu − EXu = Xu − uEX1,

Wald’s first equation implies that for t ∈ [0, T ],
Mt := Lτt = Yt − τtEX1

is a martingale. Then for each n, abbreviating the �n notation as �, we have

E
(
�[Y ∗]) = E

(
�[Y ]) = E

(
�[M]) = E(�M)2 = E

(
�Y − (�τ)EX1

)2
, (6.3)

where the second equality is because Yt − Mt = τtEX1 has finite variation and no
jumps, and the third equality follows from Protter [17] Corollary II.6.3 on p. 73. By
the independence condition,

E(�Y |τ) = (�τ)EX1, (6.4)

which implies that (6.3) becomes

E
(
�[Y ∗]) = E

(
�Y − E(�Y |τ)

)2

= E
(
Var(�Y |τ)

)
= Var(�Y) − Var

(
E(�Y |τ)

)

= E(�Y ∗)2 − (E�Y ∗)2 − Var
(
E(�Y ∗|τ)

)

by the nonrandomness of Y − Y ∗. Summing from n = 0 to N − 1 proves (6.1).
By (6.4), Var(E(�Y |τ)) = E(�τEX1)

2 − (E�Y)2, which proves (6.2). �

Corollary 6.2 (Discrete variance swap on spot underlying: Lower bound) Under the
assumptions of Proposition 6.1, we have

EV ∗
T ≥ E[Y ∗]T +

N−1∑
n=0

(EY ∗
tn+1

− EY ∗
tn
)2. (6.5)

The lower bound is observable via the prices of log contracts at expiries t1, . . . , tN .
Equality holds if the time change τ is nonrandom.

Proof This follows from (6.1) and Var(E(�Y ∗|τ)) ≥ 0, with equality if τ is nonran-
dom. �
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Proposition 6.3 (Discrete variance swap on futures) By deleting all instances of stars
(∗) in their statements, Proposition 6.1 and Corollary 6.2 apply to discretely sampled
variance swaps on futures.

Proof The proofs still stand after deleting all instances of stars. �

Under the Black–Scholes and Merton jump-diffusion models, Broadie and Jain [2]
found that discrete sampling does theoretically increase variance swap values. We re-
gard those models as instances of exponential Lévy processes under a nonrandom
clock; hence (6.5) holds with equality, thereby expressing the discrete-sampling pre-
mium in terms of log contract prices.

More generally, Corollary 6.2 implies that for general exponential Lévy pro-
cesses time-changed by independent stochastic clocks, the discrete-sampling pre-
mium EV ∗

T − E[Y ∗]T is still nonnegative and bounded below in terms of log contract
prices. So if the commonly quoted multiple 2 undervalues the continuously sampled
variance swap (as suggested by the data in Sect. 4.4), then in this setting, the multiple
2 furthermore undervalues the discretely sampled variance swap.

7 Multiplier estimates from S&P variance swap data

Whereas Sect. 4.4 estimated multipliers from empirically calibrated parameters of
the Lévy measure, this section estimates multipliers from empirical observations of
variance swap quotes and log contract valuations, by taking the ratio of the former
and the latter. As suggested by a referee, nonconstancy of this ratio in empirical data
would be evidence against the family of time-changed Lévy processes for modeling
the dynamics underlying that data set.

From a major broker-dealer, we obtained daily closing quotes on variance swaps
on the S&P500 index with fixed times to expiry of 2, 3, 6, 12, and 24 months. To
avoid the effect of weekday patterns on the dynamics estimation, we sampled the
data weekly on every Wednesday. When Wednesday was a holiday, we used the most
recent observation before the holiday. The data contain 682 weekly observations for
each series, from January 10, 1996 to January 28, 2009.

To construct log contract valuations at the corresponding dates and times to expiry,
we use option valuation data, expressed in terms of implied volatility. Specifically, we
retrieve the daily closing bid and ask quotes on the S&P500 index options from Op-
tionMetrics, and we apply the following filters. First, we retain only options quotes
with strictly positive bids and with times to expiry of no fewer than seven calen-
dar days. Second, we retain only the expiries for which we can obtain valid implied
volatilities for at least 10 strikes at that expiry, where our implied volatility calculation
uses option values obtained from the mid-market price at each available strike, dis-
count factors obtained from the Eurodollar LIBOR and swap rates (via Bloomberg),
and the underlying forward price obtained as the option-implied forward index level
which best reconciles call and put prices via put-call parity.

The above filtering yields 169,669 implied volatilities over the 682 days of our
sample period. Each date contains three to ten expiries, with an average of about eight.
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The expiries range from the minimum requirement of seven days up to about three
years. Within each date and expiry, the number of strikes ranges from the minimum
requirement of 10 up to 150, with an average of 31 strikes per expiry.

To value the log contract for each date t and expiry T , we integrate squared im-
plied volatility IV2, regarded as a function of log-strike k = log(K/Ft ) across all
k ∈ R, with weightings given by the normal distribution function Φ , evaluated at the
standardized log-strike m(k), i.e.,

Et log(Ft/FT ) = T − t

2

∫ ∞

−∞
IV2(k)dΦ

(
m(k)

)
,

m(k) := k

IV(k)
√

T − t
+ IV(k)

√
T − t

2
. (7.1)

See Gatheral [12, Chap. 11, (11.5)] for a derivation of this representation of the log
contract valuation.

To evaluate (7.1) numerically, we interpolate and extrapolate from the available
strike data, producing IV estimates at all log-strikes k on a fine and extensive grid.
Specifically, we use linear interpolation and flat extrapolation, as used also in [6]. The
interpolation generates IV2 linearly between all pairs of adjacent available strikes.
The flat extrapolation assigns IV2 at all strikes below the lowest (respectively, above
the highest) available strike to be equal to the IV2 at the lowest (respectively, highest)
available strike. Results from three alternative schemes, including a sloping extrapo-
lation, are qualitatively similar and are available upon request.

After computing the log contract valuation at each option expiry T , we perform
linear (in T ) interpolation on the expected-variance term structure
T �→ Et log(Ft/FT ), to obtain the log contract valuation at times to expiry of 2,
3, 6, 12, and 24 months, corresponding to the variance swap data.

We calculate the ratio of the variance swap quote to the log contract value. By
Proposition 3.1, this “implied multiplier” should be constant across times and expiries
if the underlying dynamics belong to the family of all time-changed Lévy processes.
In Table 3 and Fig. 1, however, we observe variations of the ratio, which was mostly
greater than 2.0 in the early part of the sample, but turned smaller than 2.0 in the more
recent part of the sample. These variations suggest that time-changed Lévy processes
of the form (3.1) may not fully describe the dynamics of S&P500 returns.

8 Conclusion

Assuming continuous underlying price paths, the standard theory shows that a vari-
ance swap has the same value as two log contracts on the underlying. This valua-
tion formula provides a standard reference point for volatility traders, and forms the
basis of widely quoted volatility indicators such as the VIX, VXN, and VSTOXX.
However, the continuity assumption is empirically rejected in equity markets. This
motivates our analysis of jump processes.

We generalize the underlying dynamics to arbitrary time-changed exponential
Lévy processes (under integrability conditions), where the background Lévy pro-
cess may have jumps of arbitrary distribution, and where the stochastic time change,
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Table 3 Ratio of variance swap quote to log contract value for S&P500

Subsample Time to expiry (months)

2 3 6 12 24

Full sample Mean 2.01 1.99 2.02 2.07 2.10

N = 682 St dev 0.09 0.09 0.09 0.11 0.13

1997–1999 Mean 2.06 2.07 2.10 2.17 2.20

N = 156 St dev 0.09 0.08 0.08 0.10 0.09

2000–2002 Mean 2.05 2.01 2.06 2.15 2.19

N = 157 St dev 0.06 0.05 0.05 0.06 0.08

2003–2005 Mean 1.97 1.93 1.93 1.98 2.01

N = 156 St dev 0.06 0.05 0.05 0.06 0.08

2006–2008 Mean 1.96 1.95 1.95 1.97 1.96

N = 157 St dev 0.06 0.06 0.04 0.03 0.05

The full sample runs from 2006 January 10 to 2009 January 28. Subsampling of three-year periods shows
ratios greater than 2.0 in the early part, but smaller than 2.0 in the later part

Fig. 1 Ratio of variance swap quote to log contract value for S&P500. The solid line in each panel plots
the time series of VS/LC, the ratio of the variance swap quote to the log contract value, for the S&P500.
In the absence of jump risk, this ratio would be 2.0
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an arbitrary continuous clock, may have arbitrary dependence or correlation with the
Lévy process. This allows stochastic volatility, stochastic jump-intensity, volatility
clustering, and leverage effects.

We prove that a multiple of the log contract still prices the variance swap. The
multiplier, not necessarily 2 in this general setting, depends only on the characteristics
of the driving Lévy process, not on the time change.

We calculate explicitly the multiplier for various examples of driving Lévy pro-
cesses. We recover the standard no-jump valuation formula as a special case, because
all positive continuous martingales are time changes of driftless geometric Brownian
motion, which has multiplier 2. We then solve for jump dynamics, including time
changes of CGMY, VG, NIG, Kou, Merton, and fixed-jump-size processes.

We observe that increasing the sizes of up-jumps tends to decrease the multiplier,
whereas increasing the sizes of down-jumps tends to increase the multiplier. More
precisely, we show that the multiplier exceeds 2 if and only if the jumps have negative
exponential skewness in a sense that we define. We compute, moreover, the multipli-
ers associated with published empirical calibrations of time-changed Lévy processes,
and obtain results in the range 2.1 to 2.4, which is consistent with negatively skewed
jump risk.

We show that in some cases of one or two possible jump sizes, our valuations
admit enforcement by hedging strategies which perfectly replicate the variance swap
payoff by holding log contracts statically and trading the underlying dynamically.

We prove that discrete sampling increases variance swap values, under an indepen-
dence condition. So if the commonly quoted multiple 2 undervalues the continuously
sampled variance swap (as suggested by the multiplier estimates of greater than 2.1),
then in this setting, the multiple 2 undervalues, furthermore, the discretely sampled
variance swap.

Finally we compute the ratio of variance swap quotes to log contract valuations in
S&P500 data, and we observe variations in this ratio, across time and expiry.

Acknowledgements We thank Tom Bielecki and two anonymous referees for helpful comments.

References

1. Breeden, D., Litzenberger, R.: Prices of state contingent claims implicit in options prices. J. Bus. 51,
621–651 (1978)

2. Broadie, M., Jain, A.: The effect of jumps and discrete sampling on volatility and variance swaps. Int.
J. Theor. Appl. Finance 11, 761–797 (2008)

3. Carr, P., Geman, H., Madan, D., Yor, M.: Stochastic volatility for Lévy processes. Math. Finance 13,
345–382 (2003)

4. Carr, P., Geman, H., Madan, D., Yor, M.: Pricing options on realized variance. Finance Stoch. 9,
453–475 (2005)

5. Carr, P., Madan, D.: Towards a theory of volatility trading. In: Jarrow, R. (ed.) Volatility, pp. 417–427.
Risk Publications, London (1998)

6. Carr, P., Wu, L.: Variance risk premia. Rev. Financ. Stud. 22, 1311–1341 (2009)
7. Dambis, K.E.: On the decomposition of continuous submartingales. Theory Probab. Appl. 10, 401–

410 (1965)
8. Derman, E., Demeterfi, K., Kamal, M., Zou, J.: A guide to volatility and variance swaps. J. Deriv. 6,

9–32 (1999)



Variance swaps on time-changed Lévy processes

9. Dubins, L.E., Schwarz, G.: On continuous martingales. Proc. Natl. Acad. Sci. USA 53, 913–916
(1965)

10. Dupire, B.: Arbitrage Pricing with Stochastic Volatility. Société Générale, Paris (1992)
11. Dupire, B.: Model art. Risk 6(9), 118–124 (1993)
12. Gatheral, J.: The Volatility Surface: A Practitioner’s Guide. Wiley, New York (2006)
13. Hall, W.J.: On Wald’s equations in continuous time. J. Appl. Probab. 7, 59–68 (1970)
14. Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics, vol. 714.

Springer, Berlin (1979)
15. Neuberger, A.: Volatility trading. London Business School, Working Paper (1990)
16. Neuberger, A.: The log contract. J. Portf. Manag. 20, 74–80 (1994)
17. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)
18. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)
19. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cam-

bridge (1999)


	Variance swaps on time-changed Lévy processes
	Abstract
	Introduction
	The ND approach
	Parametric approaches
	Our approach

	The multiplier
	Variance swaps and log contracts
	Multiplier calculations
	Example: Time-changed Brownian motion
	Time-changed Lévy processes with jumps
	Impact of skewness
	Multipliers of empirically calibrated processes

	Perfect hedging
	One jump size
	Two jump sizes, piecewise constant paths

	Discrete sampling
	Multiplier estimates from S&P variance swap data
	Conclusion
	Acknowledgements
	References


