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Abstract

Background: As large-scale studies of gene expression with multiple sources of biological and technical variation
become widely adopted, characterizing these drivers of variation becomes essential to understanding disease biology
and regulatory genetics.

Results: We describe a statistical and visualization framework, variancePartition, to prioritize drivers of variation based
on a genome-wide summary, and identify genes that deviate from the genome-wide trend. Using a linear mixed
model, variancePartition quantifies variation in each expression trait attributable to differences in disease status, sex,
cell or tissue type, ancestry, genetic background, experimental stimulus, or technical variables. Analysis of four
large-scale transcriptome profiling datasets illustrates that variancePartition recovers striking patterns of biological
and technical variation that are reproducible across multiple datasets.

Conclusions: Our open source software, variancePartition, enables rapid interpretation of complex gene expression
studies as well as other high-throughput genomics assays. variancePartition is available from Bioconductor:
http://bioconductor.org/packages/variancePartition.
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Background
High-throughput genomics assays have revolutionized

our understanding of the molecular etiology of human

disease, molecular biology of cell lineage and genetic reg-

ulation of gene expression. Transcriptome profiling in

particular has been widely applied to detect variation

in transcript levels attributable to differences in disease

state, cell type or regulatory genetics. As transcriptome

profiling studies have expanded in size and scope, they

have grown increasingly complex and consider multiple

sources of biological and technical variation. Recent stud-

ies have simultaneously considered multiple dimensions

of variation to understand the impact of cell type [1], tis-

sue type [2], brain region [3], experimental stimuli [4],

time duration following stimulus [5] or ancestry [1, 4, 6]

on the genetic regulation of gene expression. More studies

are including a disease axis, for example to characterize

the role of regulatory genetics on late onset Alzheimer’s

disease in multiple brain regions [7].
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The fundamental challenge in the analysis of complex

datasets is to quantify and interpret the contribution of

multiple sources of variation. Indeed the most pressing

questions concern the relationship between these sources

of variation. How does cell or tissue type affect the genetic

regulation of gene expression, and does it vary by ancestry

[1, 2]? What is the relative contribution of experimental

stimulus versus regulatory genetics to variation in gene

expression [5]? Is technical variability of RNA-seq low

enough to study regulatory genetics and disease biology,

and what are the major drivers of this technical variabil-

ity [2, 8, 9]? A rich understanding of complex datasets

requires answering these questions with both a genome-

wide summary and gene-level resolution.

Standard computational workflows employ principal

components analysis [10] and hierarchical clustering [11]

to summarize genome-wide expression patterns, and

differential expression [12–16] to perform gene-level

analyses. Recently, statistical methods that decompose

variation in gene expression into the variance attributable

to multiple variables in the experimental design have

yielded valuable insight into the biological and techni-

cal components driving expression variation [8, 17–22].
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Moreover, linear mixed models have been widely used in

the analysis and interpretation of genome-wide associa-

tion studies [23–28].

The linear mixed model is uniquely suited to inter-

preting drivers of variation in complex gene expres-

sion studies. Yet the lack of a convenient workflow and

scalable implementation for analysis and visualization

have prevented wider application of this rich statisti-

cal framework. Applying this analysis framework to gene

expression data currently requires particular expertise in

regression modeling, computational statistics, the R pro-

gramming language and data visualization. Even then,

the time required to implement the analysis is often

prohibitive.

As gene expression datasets become more complex, the

analysis and interpretation of the data is becoming the

rate-limiting step. We have developed the variancePar-

tition software and workflow to facilitate rapid analysis

and improve interpretation of complex gene expression

datasets. The software and workflow enables any ana-

lyst to perform a sophisticated analysis and visualize the

results in hours using a few lines of R code. variancePar-

tition leverages the power of the linear mixed model

[29–31] to jointly quantify the contribution of multiple

sources of variation in high-throughput genomics studies.

In applications to transcriptome profiling, varianceParti-

tion fits a linear mixed model for each gene and partitions

the total variance into the fraction attributable to each

aspect of the study design, plus the residual variation.

Because it is built on the first principles of the linear

mixed model, variancePartition has well characterized

theoretical properties [29–31] and accurately estimates

the variance fractions even for complex experimental

designs where the standard ANOVA method is either

inaccurate or not applicable. Moreover, variancePartition

gives strong interpretations about the drivers of expres-

sion variation, and we demonstrate that these findings are

reproducible across multiple datasets.

Here we apply variancePartition to four well-

characterized gene expression studies to demonstrate

how the workflow facilitates interpretation of drivers

of expression variation in complex study designs with

multiple dimensions of variation. We illustrate how vari-

ancePartition enables rapid interpretation of the drivers

of expression variation in these complex datasets.

Implementation
Overview of the software

The variancePartition R package implements a computa-

tional workflow (Fig. 1) that is complementary to standard

analyses and provides particular insight into datasets with

multiple dimensions of variation. variancePartition pro-

vides a user-friendly, parallelized interface for genome-

wide analysis and publication quality visualizations to

examine the results. Because the variance fractions are

simple to describe and interpret, variancePartition can

give particular insight into how each dimension of vari-

ation contributes to transcriptional variability. A typical

variancePartition analysis comprises: 1) fitting a linear

mixed model to quantify the contribution of each dimen-

sion of variation to each gene, 2) visualizing the results,

and 3) integrating additional data about each gene to

interpret drivers of this variation. The variancePartition

workflow requires only a few lines of R code for pre-

processing, analysis and visualization and this enables

rapid interpretation of complex datasets.

The variancePartition software is implemented in R

and is optimized for genome-wide analysis of large-

scale transcriptome profiling datasets. variancePartition

uses the packages lme4 [29] foreach [32], iterators [33]

and doParallel [34] to efficiently fit a linear mixed

model for each gene in parallel on a multicore machine

with a small memory footprint. The precision weights

from limma/voom [15] are seamlessly incorporated

into the analysis workflow. Built-in publication quality

visualizations are implemented in ggplot2 [35]. The vari-

ancePartition software including extensive documenta-

tion is available from http://bioconductor.org/packages/

variancePartition and is compatible with Bioconductor ≥

v3.2 for R ≥ v3.2.

Linear mixedmodel framework

variancePartition summarizes the contribution of each

variable in terms of the fraction of variation explained

(FVE). While the concept of FVE is widely applied to uni-

variate regression by reporting the R2 value from a simple

linear model, variancePartition extends FVE to applica-

tions with complex study designs with multiple variables

of interest. The linear mixed model framework of vari-

ancePartition allows multiple dimensions of variation to

be considered jointly in a single model and accommo-

dates discrete variables with a large number of categories.

This analysis has a similar motivation as the standard

ANOVA method. Yet the linear mixed model framework

has several statistical and practical advantages that make

it more accurate and generally applicable to complex study

designs with multiple dimensions of variation (Additional

file 1).

Each gene is analyzed separately using the linear mixed

model [29–31]

y =
∑

j

Xjβj +
∑

k

Zkαk + ε (1)

αk ∼ N (0, σ 2
αk

) (2)

ε ∼ N (0, σ 2
ε ) (3)

where y is the expression of a single gene across all sam-

ples, Xj is the matrix of jth fixed effect with coefficients

http://bioconductor.org/packages/variancePartition
http://bioconductor.org/packages/variancePartition
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Fig. 1 Analysis workflow of gene expression data and meta-data. Standard analysis consists of interpreting gene expression data with respect to
variables in the metadata using genome-wide analysis such as a principal components analysis and b hierarchical clustering, and gene-level
analysis such as c differential expression. The variancePartition workflow uses a rich statistical framework in the form of a linear mixed model and
produces gene-level results and a genome-wide summary to simultaneously interpret gene expression data in the context of multiple variables in
the metadata. The workflow produces d gene-level results quantifying the contribution of each metadata variable to the variation in expression of
each gene, and e a violin plot to summarize the genome-wide trend and rank the total contribution of each variable. f The gene-level results can be
used to identify genes that show high expression variation across individuals (i.e. gene385) or tissue (i.e. gene644). Furthermore, variancePartition
facilitates examination of specific genes, and integrating external data enables further interpretation of the drivers of expression variation

βj,Zk is the matrix corresponding to the kth random

effect with coefficients αk drawn from a normal distribu-

tion with variance σ 2
αk
. The noise term, ε, is drawn from

a normal distribution with variance σ 2
ε . All parameters

are estimated with maximum likelihood [29] as simu-

lations under a range of experimental designs indicate

that this approach gives the most accurate FVE estimates

(Additional file 1: Figures S1–S4).

Variance terms for the fixed effects are computed using

the post hoc calculation

σ̂ 2
βj

= var(Xjβ̂j). (4)

The total variance is

σ̂ 2
Total =

∑

j

σ̂ 2
βj

+
∑

k

σ̂ 2
αk

+ σ̂ 2
ε (5)

so that the fraction of variance explained by the jth fixed

effect is

σ̂ 2
βj

/σ̂ 2
Total, (6)

by the kth random effect is

σ̂ 2
αk

/σ̂ 2
Total, (7)

and the residual variance is

σ̂ 2
ε /σ̂ 2

Total. (8)

In the standard application of variancePartition, these

fractions sum to 1 and are always positive by definition.

Moreover, the fraction of variation is also interpretable in

terms of intra-class correlation, a metric used to assess

biological and technical reproducibility [31, 36]. Each

gene is processed separately so that only visualization

and reporting of genome-wide summary statistics use the

results from multiple genes.

Parameter estimation

The formulation of the linear mixed model is very gen-

eral and includes as special cases models where only

fixed effects or only random effects are used. When only

fixed effects are used, this model corresponds to a fixed

effects analysis of variance (ANOVA) where parameters
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can be estimated with ordinary least squares. When ran-

dom effects are specified, the variance terms can be esti-

mated with maximum likelihood or restricted maximum

likelihood (REML) [37]. Since REML does not directly

estimate parameters for fixed effects, these coefficients are

estimated after the fact by plugging in estimates for the

variance components [29].

We focus on the most general case (i.e. mixed

models) that includes both fixed and random effects.

In this case parameters can be estimated with max-

imum likelihood. Maximum likelihood estimates are

used exclusively in the main text and are the default

in the variancePartition software when random effects

are specified because this method performs best in

simulations.

Relationship to existing methods

The fixed effects ANOVA model has been widely applied

for decades to decompose variance into multiple compo-

nents of variation [38]. Yet this approach is often inade-

quate to address the questions that are posed by complex

gene expression datasets.

The linear mixed model used by variancePartition

has three distinct advantages compared to ANOVA.

First, by placing a Gaussian prior on variables mod-

eled as random effects, the linear mixed model more

accurately estimates the fraction of variance explained.

Even as the number of categories in a discrete vari-

able increases, the linear mixed model still produces

accurate estimates because the prior shrinks the esti-

mate for each category towards the zero. Conversely,

the fixed effects ANOVA is fit with a linear regres-

sion model using ordinary least squares. This method

is known to suffer from overfitting and over-estimates

the variance fractions for variables with many cate-

gories. These properties are well established [31, 38, 39]

and are consistent with our simulation study (Additional

file 1).

Second, the linear mixed model can decompose vari-

ance into multiple components in situations where the

fixed effects ANOVA cannot be applied because the

design matrix is degenerate (i.e. singular). This situation

is very common for the types of question of relevant

to complex gene expression studies. For example, sex

and ancestry are invariant properties of an individual, so

jointly analyzing variation across these 3 dimensions of

variation involves a degenerate design matrix. In cases

like these, the linear mixed model can accurately esti-

mate the desired variance fractions (Additional file 1),

while ANOVA will fail to estimate any of these val-

ues because the parameters are not identifiable. Thus

ANOVA is inadequate for the type of analysis we per-

formed here with variancePartition using linear mixed

model.

Finally, the linear mixed model can quantify how varia-

tion attributable to one aspect of the study design depends

on another, such as the case of cross-individual expression

variation depending on tissue/cell type. ANOVA does not

have this capability.

Interpretation of percent variance explained

The percent variance explained can be interpreted as

the intra-class correlation (ICC). Consider the simplest

example of the ith sample from the kth individual

yi,k = µ + αk + εi,k (9)

αk ∼ N (0, σ 2
α ) (10)

εi,k ∼ N (0, σ 2
ε ) (11)

with only an intercept term, one random effect corre-

sponding to individual, and an error term. In this case ICC

corresponds to the correlation between two samples from

the same individual. This value is equal to the fraction of

variance explained by individual. For example, consider

the correlation between samples from the same individual:

ICC = cor(y1,k , y2,k) (12)

= cor(µ + αk + ε1,k ,µ + αk + ε2,k) (13)

=
cov(µ + αk + ε1,k ,µ + αk + ε2,k)

√

var(µ + αk + ε1,k)var(µ + αk + ε2,k)
(14)

=
cov(αk ,αk)

σ 2
α + σ 2

ε

(15)

=
σ 2

α

σ 2
α + σ 2

ε

(16)

The correlation between samples from different

individuals is:

= cor(y1,1, y1,2) (17)

= cor(µ + α1 + ε1,1,µ + α2 + ε1,2) (18)

=
cov(α1,α2)

σ 2
α + σ 2

ε

(19)

=
0

σ 2
α + σ 2

ε

(20)

= 0 (21)

This interpretation in terms of fraction of variation

explained (FVE) naturally generalizes to multiple vari-

ance components [31]. See Additional file 1 for more

details.

Variation across individual within subsets of the data

The linear mixed model underlying variancePartition

allows the effect of one variable to depend on the value of

another variable. Statistically, this is called a varying coef-

ficient model [31]. This analysis examines the expression

variation across individuals within multiple cell types, or
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another subset of the data. A given sample is only from

one cell type, so this analysis asks a question about a sub-

set of the data. The data is implicitly divided into subsets

based on cell type and variation explained by individual is

evaluated within each subset. This subsetting means that

the variance fractions no longer sum to 1, but the model

still allows ranking of dimensions of variation based on

genome-wide contribution to variance and enables analy-

sis of gene-level results. See the Additional file 1 for more

details.

Modeling measurement error in RNA-seq data

Uncertainty in the measurement of RNA-seq data can

be modeled with observation-level precision weights that

model the relationship between expression magnitude

and sampling variance [15]. variancePartition naturally

incorporates these precision weights to create a het-

eroskedastic linear mixed model [29] that can explicitly

account from the measurement uncertainty due to the

finite count nature of RNA-seq data.

Let the precision wi denote the inverse of the variance

of the observation yi for the ith observation. The preci-

sions can be used to re-weight the samples in a regression

to account for the variation in the uncertainty about

each observation. Weighting by the precision upweights

samples with low measurement error and down weights

samples with high measurement error. Denoting the vec-

tor of precision weights for a single gene across all samples

as w, the model is fit by weighting the residual variance

from equation (8)

ε ∼ N (0, diag(w)σ 2
ε ). (22)

These weights are estimated using limma/voom [15] in

a preprocessing step and are then incorporated into the

variancePartition analysis.

Results
Analysis of GEUVADIS RNA-seq dataset

Consider 660 RNA-seq experiments from the GEUVADIS

study [6, 8] of lymphoblastoid cell lines from 462 indi-

viduals of 5 ancestries and 2 sexes sequenced across 7

laboratories. For a single gene, the total variance can be

partitioned into the contributions of these components of

variation plus residual variance:

σ 2
Total = σ 2

Individual + σ 2
Lab + σ 2

Ancestry + σ 2
Sex + σ 2

ε . (23)

The contribution of each driver of variation can be inter-

preted based on the fraction of total variation it explains.

Thus the fraction of variance due to variation across

individuals is

σ 2
Individual/σ

2
Total, (24)

and the fractions from all components of variation sum

to 1.

Applying variancePartition to the GEUVADIS [6, 8]

dataset illustrates how the method can decouple bio-

logical and technical variation, and further decompose

biological variation into multiple components. Expression

variation across individuals, ancestries and sexes is bio-

logical, variation across the labs where the samples were

sequenced comprise technical artifacts, while the residual

variation remains uncharacterized. Results from repre-

sentative genes illustrate how variancePartition identifies

genes where the majority of variation in expression is

explained by a single variable such as individual or sex,

while variation in other genes is driven by multiple vari-

ables (Fig. 2a). Since the variance fractions sum to 1 for

each gene, it is simple to compare results across genes

and across sources of variation. Visualizing these results

genome-wide illustrates that variation across individuals

is the major source of expression variation and explains a

median of 55.1% of variance genome-wide (Fig. 2b). The

median variance explained by laboratory (6.8%), ancestry

(4.9%) and sex (0%) is substantially smaller. We note that

the variance explained by individual increases to 63.8%

when ancestry is removed from the analysis since ances-

try is a biological property of each individual (Additional

file 1: Figure S5).

Yet particular genes show substantial deviation from

the genome-wide trend. This is particularly noticeable for

sex, where of the 51 genes for which sex explains more

that 10% variance 46 are on the X or Y chromosomes.

For example, variation across sex explains 98% variance in

UTY on the Y chromosome (Fig. 2c). While differential

expression measures the differences in mean expression

between the sexes, variancePartition measures the vari-

ance within and between each sex. This analysis indicates

that variation across sexes explains very little variation

genome-wide, but has a strong effect on a small number of

genes.

Integrating additional data with gene-level results from

variancePartition can give a clear interpretation of the

drivers of variation. For example, 91.1% of variation in

CCDC85B is explained by variation across laboratory.

This gene has a very high GC content of 70.9% and

is consistent with the genome-wide pattern where the

degree of variation across laboratories is positively cor-

related with GC content (Fig. 2d). While technical vari-

ation in RNA-seq is known to depend on GC content

[8, 9], variancePartition gives a clear illustration of how

the effect of technical artifacts varies substantially across

genes. Moreover, this analysis can be used to identify

other correlates underlying technical issues in expression

variation.

In addition, variancePartition gives a strong interpre-

tation to genes whose expression varies across individ-

uals by relating the gene-level results to cis-regulatory

variation. For example, the fact that 90.6% of variation
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Fig. 2 Analysis of GEUVADIS dataset identifies drivers of expression variation. a Total variance for each gene is partitioned into the fraction attributable
to each dimension of variation in the study. b Violin and box plots of percent variation in gene expression explained by each variable. Three
representative genes and their major sources of variation are indicated. c Boxplot of UTY expression stratified by sex. d Boxplot of CCDC85B
expression stratified by lab. Inset shows scatter plot of percent GC content versus percent variance explained by lab. Red line indicates linear
regression line with coefficient of determination and p-value shown. e Boxplot of ZNF470 expression stratified by individual for a subset of
individuals with at least 1 technical replicate. Inset illustrates a cis-eQTL for ZNF470 where expression is stratified by genotype at rs2904239.
f Probability of each gene having a cis-eQTL plotted against the percent variance explained by individual. Dashed lines indicate the genome-wide
average probability (i.e. 18% of genes have a detected eQTL in this dataset), and curves indicate logistic regression smoothed probabilities as a
function of the percent variance explained by individual. Points indicate a sliding window average of the probability of genes in each window
having a cis-eQTL. Window size is 200 genes with an overlap of 100 genes between windows. The p-value indicates the probability that a more
extreme coefficient relating the eQTL probability to percent variation explained by individual is observed under the null hypothesis

in ZNF470 is explained by individual suggests that this

variation is driven by genetics, and, in fact, ZNF470 has a

cis-eQTL (Fig. 2e). This observation is also seen genome-

wide, as genes with a greater fraction of variation across

individuals have a significantly higher probability of hav-

ing a cis-eQTL detected in this study (Fig. 2f). This

analysis explicitly demonstrates how expression variation

across individuals is driven by cis-regulatory variation.

Analysis of SEQC RNA-seq dataset

The Sequencing Quality Control (SEQC) project [9] eval-

uated the technical reproducibility of RNA-seq data by

sequencing the same 4 RNA samples at 6 laboratories,

using 108 total library constructions and up to 8 lanes

on each of 11 Illumina HiSeq 2000 flowcells for a total

of 1580 RNA-seq experiments. The goal of the study was

to determine the degree to which these technical factors

explain variation in gene expression measurements. This

complex dataset has multiple levels of variation and vari-

ancePartition provides a rigorous statistical framework to

quantify and interpret these sources of variation in a single

analysis.

As expected, variation across the 4 RNA samples is

the major axis of variation, explaining a median of 87.5%

of variation in expression (Fig. 3a). But the real inter-

est is in the sources of technical variability. The fact
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Fig. 3 Analysis of Sequencing Quality Control (SEQC) dataset decouples sources of technical variation. a Violin and box plots of percent variation in
gene expression explained by each variable. b Boxplot of percent variance explained by RNA sample for human genes and External RNA Controls
Consortium (ERCC) spike-in controls. P-value is from one-sided Mann-Whitney test. c Scatter plot of percent GC content and percent variance
explained by laboratory. Red line indicates linear regression line with regression coefficient, coefficient of determination and p-value shown

that the technical variables laboratory (2.93%), library

(2.55%), flowcell (0.0057%), and lane (0.0000000038%)

explain a small fraction of the total variation indicate

that these RNA-seq experiments were highly reproducible

genome-wide. Interpreting these values in terms of the

intra-class correlation indicates that two experiments

from the sample RNA sample but which differ in all

other aspects of the study design are highly correlated

(median 87.5%). Conversely, two experiments from the

same lane, but different RNA samples, etc, show negligi-

ble correlation as is expected when technical variation is

low.

Analysis and visualization with variancePartition suc-

cinctly illustrates that while variation across laboratories

and library constructions is not negligible, it is small

compared with the magnitude of biological variation for

the large majority of genes. Moreover, variation across

flowcells and lanes is very small in this dataset. Thus

variancePartition illustrates that RNA-seq data is highly

reproducible genome-wide with a small subset of genes

showing large technical artifacts.

However, there are notable deviations from these

genome-wide trends. First, there are a set of transcripts

that show little variation between the 4 RNA samples and,

in fact, these correspond to spike-in synthetic RNA added

to each sample at a standardized concentration to act as

controls having equal abundance in all experiments [40].

As expected, spike-in transcripts show significantly less

variation across the 4 RNA samples than human genes

(Fig. 3b). Second, although technical effects are low for

most genes, a small number of genes show high variation

across laboratories and library constructions. In fact, the

fraction of variation across laboratories correlates with

the GC content of each gene (Fig. 3c), and recapitulates

the known role of GC content with reproducibility of

RNA-seq data [8, 41–43].

Analysis of ImmVar microarray dataset

The Immune Variation (ImmVar) project assayed gene

expression in CD14+CD16− monocytes and CD4+ T-

cells on the Affymetrix Human Gene 1.0 ST Array plat-

form in order to characterize the role of cell type in

genetic regulation of gene expression [1]. Analysis of

398 individuals with data from both cell types reveals

that multiple variables contribute to expression varia-

tion in this dataset (Fig. 4a). Since variancePartition

reports the contribution of each variable while simul-

taneously correcting for all other values, it is appar-

ent that the variation across cell types is the strongest

biological driver of variation (16.4%) followed by vari-

ation across individuals (5.6%). Although cell type has

a smaller median effect than batch, it is notable that

cell type explains > 50% of the variation for 4,591

genes. The observation that batch and cell type are

the strongest drivers of variation is largely consistent

with results from principal components analysis (PCA)

(Fig. 4b). We note that the relationship between varian-

cePartition and PCA depends on both the fraction of

expression variation explained by a particular variable

across all genes as well as the dimension of the vari-

able. While variation across the 2 cell types explains less

expression variation than variation across the 6 batches,

the first principal component separates samples by cell

type because this variable spans a lower-dimensional

space.

Meanwhile, sex drives expression variation in a small

number of genes, while the age of each individual has

a negligible effect. We note that despite the large batch

effect observed in this dataset, the biological varia-

tion across cell type, individual and sex are still large

enough to make meaningful conclusions about cell-

specific regulatory genetics when this technical effect is

accounted for [1].
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Fig. 4 Analysis of ImmVar dataset interprets multiple dimensions of expression variation. a Violin and box plots of percent variation in gene
expression explained by each variable. b Principal components analysis of gene expression with experiments colored by batch. c Total variance for
each gene is partitioned into the fraction attributable to each dimension of variation in the study design. d Expression of UTY stratified by sex.
e Expression of TLR4 stratified by cell type. f Expression of GSTM1 stratified by individual. g Scatter plot of percent GC content and percent variance
explained by batch. Red line indicates linear regression line with regression coefficient, coefficient of determination and p-value shown. h Results
from variancePartition analysis allowing the contribution of individual to vary in each cell type. i Probability of each gene having a cis-eQTL plotted
against the percent variance explained by individual within each cell type. Dashed lines indicate the genome-wide average probability, and curves
indicate logistic regression smoothed probabilities as a function of the percent variance explained by individual within each cell type. Points
indicate a sliding window average of the probability of genes in each window having a cis-eQTL. Window size is 200 genes with an overlap of 100
genes between windows. The p-value indicates the probability that a more extreme coefficient relating the eQTL probability to percent variation
explained by individual is observed under the null hypothesis
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Moreover, variancePartition identifies genes that vary

along different aspects of the study design (Fig. 4c), and

visualization of a subset of these genes illustrates the

strong expression differences when stratified by sex, cell

type and individual (Fig. 4d–f). variancePartition enables

further interpretation of the batch effect because it gives

results at a gene-level resolution. The samples were pro-

cessed in 6 technical batches and this axis of variation

explains a median of 29.4% of total variation, indicat-

ing a large technical effect. Consistent with other anal-

yses, the fraction of variation explained by batch at

the gene-level is positively correlated with GC content

(Fig. 4g).

By leveraging the flexibility of the linear mixed model,

variancePartition can quantify the variation across indi-

viduals within each cell type. Since the variance is ana-

lyzed within multiple subsets of the data and each sample

is only in a single subset, the total variation explained no

longer sums to 1 as it does for standard application of vari-

ancePartition. Yet the results allow ranking of dimensions

of variation based on genome-wide contribution to vari-

ance and enables analysis of gene-level results (Additional

file 1). This analysis uses the fact that 34 individuals within

monocytes have at least 1 technical replicate, while 41

individuals within T-cells have at least 1 technical repli-

cate.

The variation across individuals within T-cells (median

33.2%) and monocytes (median 16.4%) is substantially

larger than when the two cell types were combined

(Fig. 4h). The fact that the contribution of individual

varies between cell types is consistent with cell-specific

regulatory genetics [1]. Finally, the fraction of varia-

tion explained by individual within each cell type at the

gene-level is directly related to the probability of each

gene having cis-eQTL within the corresponding cell type

(Fig. 4i).

Analysis of GTEx RNA-seq dataset

Application of variancePartition to post mortem RNA-seq

data of multiple tissues tissues from the GTEx Consor-

tium [2] decouples the influence of multiple biological

and technical drivers of expression variation. We ana-

lyzed 489 experiments from 103 individuals in 4 tis-

sues (blood, blood vessel, skin and adipose tissue) in

order to restrict the analysis to tissues with RNA-seq

data for most individuals (Additional file 1: Table S1).

Variation across tissues is the major source of varia-

tion (median 37.4%) while the technical variables expres-

sion batch (2.9%), ischemic time (1.2%), RNA isolation

batch (0.4%), and RIN (0.2%) have a moderate effect

on expression variation genome-wide (Fig. 5a). Variation

across expression batches is correlated with GC content

but to a lesser degree that other datasets (Additional

file 1: Figure S6). Cumulatively, these technical variables

explain only 4.7% of the total expression variation.

Concerns about reliability of RNA-seq data from post

mortem samples has been raised due to the potential

effects of RNA degradation following cell death [44, 45].

variancePartition analysis indicates that variation in

ischemic time has as relatively small effect genome-wide

and the fraction of variance it explains is comparable to

technical effects, yet the effect varies substantially across

genes.

The flexibility of the linear mixed model framework

allows variancePartition to analyze cross-individual vari-

ation within each tissue. We note again that since the

variance is analyzed within multiple subsets of the data,

the total variation explained no longer sums to 1 here.

While variation across individuals explains only a median

of 2.3% of variation when all tissues types are considered

together, there is substantial variation across individuals

within each tissue separately (Fig. 5b). Cross-individual

variation is highest in blood (median 60.3%), while skin

(36.5%), blood vessel (22.5%), and adipose tissue (17.7%)

exhibit lower cross-individual variation. The fraction of

variation explained by individual within each tissue is

directly related to the probability of each gene having a

cis-eQTL within the corresponding tissue (Fig. 5c). This

association is not as strong as in other datasets likely due

to the smaller number of individuals and to the relatively

small fraction of variation across individuals in adipose

tissue.

At the gene-level, variancePartition can prioritize genes

based on multiple criteria. For examples, GLMP exhibits

higher variation across individuals within blood but low

variation in skin (Fig. 5d). This is consistent of a tissue-

specific regulatory variation, and, in fact, the cis-eQTL

rs2296374 influences gene expression in blood but not in

skin (Fig. 5e).

Discussion
As the scope of gene expression studies continues to

expand, the need to quantify and interpret multiple

drivers of expression variation is becoming essential. Here

we present variancePartition, a publicly available soft-

ware package that leverages the power of the linear mixed

model to quantify the contribution of multiple sources of

variation in complex gene expression datasets. For each

gene, this analysis partitions the total expression variance

into the fraction attributable to each aspect of the study

design. A variancePartition analysis gives a genome-wide

summary of the drivers of variation, but also produces

gene-level results to identify genes that deviate from the

genome-wide trend.

The fraction of expression variation is easily inter-

pretable across genes, drivers of variation and datasets.

Thus variancePartition produces a more detailed and

quantitative genome-wide overview than the standard
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Fig. 5 Analysis of GTEx dataset identifies drivers of expression variation at multiple levels. a Violin and box plots of percent variation in gene
expression explained by each variable. b Results from variancePartition analysis allowing the contribution of individual to vary in each tissue.
c Probability of each gene having a cis-eQTL plotted against the percent variance explained by individual within each tissue. Dashed lines indicate
the genome-wide average probability, and curves indicate logistic regression smoothed probabilities as a function of the percent variance
explained by individual within each tissue. The p-value indicates the probability that a more extreme coefficient relating the eQTL probability to
percent variation explained by individual is observed under the null hypothesis. d Fraction of variation in GLMP explained by each source of
variation. e GLMP has a cis-eQTL active in blood but not skin

principal components analysis (PCA) [10] and hierarchi-

cal clustering (HC) [11] approaches. PCA and HC focus

on the major axis of variation, and they overlook the sec-

ondary drivers of variation that can be well characterized

with variancePartition. Moreover, the gene-level results

from variancePartition indicate genes that deviate from

the genome-wide trend and integration with additional

data can enable a further interpretation. While PCA and

HC do not give gene-level results, differential expression

(DE) analysis reports gene-level fold change and corre-

sponding p-value for each aspect of the study design. Yet

DE analysis does not produce a clear genome-wide sum-

mary, and the fold change and p-values are not easily

comparable across multiple drivers of variation.

Analysis of publicly available gene expression studies

demonstrate that variancePartition recovers striking pat-

terns of biological and technical variation that are repro-

ducible across multiple datasets. At a genome-wide level,

expression variation across individuals and cell types is

large enough to overcome the technical variation of tran-

scriptome profiling. Yet at the gene-level there is sub-

stantial deviation from the genome-wide trend due to

a range of biological and technical factors. By quan-

tifying the variance attributable to each aspect of the

study design, variancePartition facilitates the interpreta-

tion of these gene-level effects in the context of addi-

tional information.We demonstrate reproducible findings

that cross-individual variation is driven by cis-eQTL’s and
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technical variation across laboratories associated with GC

content. Moreover, variation across individuals and the

relationship to cis-eQTL’s depend on the cell or tissue

type.

Conclusions
The variancePartition workflow and implementation

makes the rich linear mixed model framework easily

applicable for interpreting drivers of variation in complex

gene expression data. variancePartition provides a gen-

eral statistical and visualization framework for studying

drivers of variation in RNA-seq datasets in many types

of high-throughput genomic assays including RNA-seq

(gene-, exon- and isoform-level quantification, splicing

efficiency), protein quantification, metabolite quantifica-

tion, metagenomic assays, methylation arrays and epige-

nomic sequencing assays. Although we have focused here

on large-scale studies, variancePartition analysis has given

valuable insight into RNA-seq datasets with as few as

20 samples. The variancePartition software is an open

source R package and is freely available on Bioconductor.

The software can easily be applied to RNA-seq quan-

tifications from featureCounts [46], HTSeq [47], kallisto

[48], sailfish [49], salmon [50], RSEM [51] and cufflinks

[52] which have been processed in R with limma/voom

[15], DESeq2 [16], tximport [53] and ballgown [54]. The

software provides a user-friendly interface for analy-

sis and visualization with extensive documentation, and

will enable routine application to a range of genomics

datasets.

Availability of data andmaterials
• Project name: variancePartition
• Project home page: http://bioconductor.org/
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• License: GPL-2
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