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Abstract

Background: The identification of genetic variation underlying desired phenotypes is one of the main challenges

of current livestock genetic research. High-throughput transcriptome sequencing (RNA-Seq) offers new

opportunities for the detection of transcriptome variants (SNPs and short indels) in different tissues and species. In

this study, we used RNA-Seq on Milk Sheep Somatic Cells (MSCs) with the goal of characterizing the genetic

variation within the coding regions of the milk transcriptome in Churra and Assaf sheep, two common dairy sheep

breeds farmed in Spain.

Results: A total of 216,637 variants were detected in the MSCs transcriptome of the eight ewes analyzed. Among

them, a total of 57,795 variants were detected in the regions harboring Quantitative Trait Loci (QTL) for milk yield,

protein percentage and fat percentage, of which 21.44% were novel variants. Among the total variants detected,

561 (2.52%) and 1,649 (7.42%) were predicted to produce high or moderate impact changes in the corresponding

transcriptional unit, respectively. In the functional enrichment analysis of the genes positioned within selected QTL

regions harboring novel relevant functional variants (high and moderate impact), the KEGG pathway with the

highest enrichment was “protein processing in endoplasmic reticulum”. Additionally, a total of 504 and 1,063

variants were identified in the genes encoding principal milk proteins and molecules involved in the lipid

metabolism, respectively. Of these variants, 20 mutations were found to have putative relevant effects on the

encoded proteins.

Conclusions: We present herein the first transcriptomic approach aimed at identifying genetic variants of the

genes expressed in the lactating mammary gland of sheep. Through the transcriptome analysis of variability within

regions harboring QTL for milk yield, protein percentage and fat percentage, we have found several pathways and

genes that harbor mutations that could affect dairy production traits. Moreover, remarkable variants were also

found in candidate genes coding for major milk proteins and proteins related to milk fat metabolism. Several of

the SNPs found in this study could be included as suitable markers in genotyping platforms or custom SNP arrays

to perform association analyses in commercial populations and apply genomic selection protocols in the dairy

production industry.
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Background
The identification of genetic variation underlying desired

phenotypes is one of the main challenges in current

dairy genetic research. The higher content of sheep milk

in total solids when compared to cow and goat milk fa-

vors its greater aptitude for cheese production [1].

Therefore, genetic variation within genes that influence

the total solid content of milk is of crucial interest in

dairy sheep breeding because this variability could be

linked to milk composition, milk quality and cheese

production.

Over the years, several studies on polymorphisms in

ovine major milk proteins (caseins and whey proteins)

have appeared due to the potential association of these

polymorphisms with milk yield, milk composition and

milk technological aspects [1–4]. Additionally, as the

majority of dairy sheep traits are complex, research on

dairy Quantitative Trait Loci (QTL) mapping has also
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been widely performed. To date, 1,336 sheep QTL influ-

encing 212 different traits have been reported in a total

of 119 publications (http://www.animalgenome.org/cgi-

bin/QTLdb/index; accessed at 24 November 2016) [5].

In relation to milk traits, 242 QTL have been reported

[5]. However, the traditional methodology used for QTL

mapping with genome-wide sparse microsatellite

markers or with low/middle density Single Nucleotide

Polymorphism (SNP) genotyping platforms makes it dif-

ficult to identify the true causal mutations underlying

these complex traits.

Over the last few years, the constant improvement of

high-throughput sequencing platforms and the availabil-

ity of genome sequencing data have facilitated the detec-

tion of a substantial number of genetic variants in

livestock [6, 7]. The identification of this genomic vari-

ation is crucial to the rapid identification of mutations

that compromise animal health and productivity but also

to build a database of polymorphisms that could be used

as molecular markers for more accurate genomic predic-

tions and genome-wide association studies [6].

High-throughput transcriptome sequencing technol-

ogy (RNA-Seq) has been developed to identify and quan-

tify gene expression in different tissues [8, 9]. Moreover,

RNA-Seq also offers new opportunities for the efficient

detection of transcriptome variants (SNPs and short

indels) in different tissues and species [10, 11]. In this

way, when compared to whole genome sequencing,

RNA-Seq offers a cheaper alternative to identifying vari-

ation and, possibly, discovering the causal mutations

underlying the analyzed phenotypes [12, 13].

In this study, we used RNA-Seq on Milk Sheep Som-

atic Cells (MSCs) with the goal of characterizing the

genetic variation in the coding regions of the milk tran-

scriptome in two dairy sheep breeds, Churra and Assaf,

that are commonly farmed in Spain. In addition to the

general characterization of variations in the sheep milk

transcriptome, we focused our analysis on the detection

of variability within the coding regions harboring QTL

for milk yield, fat percentage and protein percentage and

in the genes codifying for major milk proteins and en-

zymes related to milk fat metabolism. Thus, this analysis

has allowed for the discovery of functionally relevant

variants within genes related to dairy production traits

that could be exploited by dairy sheep breeding pro-

grams after further research confirms the possible asso-

ciations with phenotypes of interest.

Results and discussion
Sequencing and mapping

Milk samples from eight ewes (four Churra and four

Assaf) were collected at different lactation time points

(days 10, 50, 120 and 150 after lambing). Based on the

quality score of the RNA (RIN > 7), we sequenced the

MSCs transcriptome from eight animals on days 10, 50

and 150 of lactation and from six animals on day 120 of

lactation. A total of 1,116 million paired-end reads was

obtained from the transcriptome sequencing of the 30

milk samples analyzed. An alignment of the reads to the

Ovis aries Oar_v3.1 genome yielded a mean of 88.10% of

the reads per RNA-Seq sample that aligned to unique lo-

cations in the ovine genome. After merging the repli-

cates from the same animal at the different sampling

time-points and marking the duplicates on the resulting

merged bam files, we found that an average of 119.33

million non-duplicated paired-end reads per animal

mapped to the Oarv3.1 genome assembly. General

RNA-Seq metrics obtained with the RSeQC software

[14] that consider the annotation bed file of the refer-

ence sheep genome are summarized in Table 1. In our

dataset of the sheep MSCs transcriptome, an average of

120.47 million tags per animal were defined. The term

“tag” accounted for the number of times one read is

spliced. The RSeQC program assigned an average of

110.08 million tags per merged sample to the annotated

sheep genome regions. Therefore, approximately 10.39

million tags were not assigned to annotated regions, sug-

gesting that approximately 10 million tags per sample

mapped to intergenic regions. The comparative analysis

performed in a previous study of the assembled tran-

scripts of this RNA-Seq dataset with the ovine genome

assembly Oar_v3.1 revealed that up to the 62% of the

transcripts detected in the MSCs genome were inter-

genic [15]. These results reflect the incompleteness of

the current annotation of the sheep transcriptome and

presume the presence of non-annotated transcripts that

Table 1 Summary of sequencing results according to the

annotation performed in this study of the MSC transcriptome

based on the sheep genome reference Oar_v3.1

Total Reads (paired end) 119325116

Total Tags 120473958

Total Assigned 110083502

Group Total_bases Tag_count Tags/kb

CDSa_Exons 32776750 65846229.88 2008.93

5′UTRb_Exons 3479917 960588.13 276.04

3′UTRc_Exons 8651433 4457991.13 515.29

Introns 803999021 13554137.88 16.86

TSSd_up_1kb 21995006 933617.50 42.45

TSS_up_5kb 101300701 2521024.00 24.89

TSS_up_10kb 187280303 3117103.63 16.64

TESe_down_1kb 21770670 10545653.88 484.40

TES_down_5kb 96011366 21156069.50 220.35

TES_down_10kb 173072739 22147451.25 127.97

a
CDS Coding DNA sequence; b5′UTR leader untranslated sequence; c3′UTR

trailer untranslated sequence; dTSS Transcription Start Site; eTES Transcription

End Site
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could codify for novel proteins or constitute functional

noncoding RNAs, like long noncoding RNAs (lncRNAs),

microRNAs (miRNAs), short interfering RNAs (siRNAs),

Piwi-interacting RNAs (piRNAs) or small nucleolar

RNAs (snoRNAs). In the human genome the transcrip-

tome functional non-coding elements have been esti-

mated to constitute up to 98% of transcripts [16]. The

identification of these functional elements in animals is

one of the goals of the Functional Annotation of Animal

Genomes (FAANG) project [17].

By focusing on assigned tags, as could be expected, the

vast majority of tags mapped to coding genome regions.

Specifically, we found an average of 65.85 million tags

per animal, or 2008.93 tags/kb that mapped to CDSs

(Table 1).

Variant detection and functional annotation

A total of 216,637 variants were detected in the MSCs

transcriptome of the eight ewes analyzed after the vari-

ants were filtered (Table 2; Additional file 1). Of these

variants, approximately the 78% were previously anno-

tated in dbSNP (version 143). Among the total variants

identified, 197,948 were SNPs and 18,689 were indels.

The transition to transversion (Ts/Tv) ratio was 2.4,

which was slightly higher than the 2.0-2.2 genome-wide

Ts/Tv ratio reported in relation to human whole-

genome sequence data [18]. However, this ratio is gener-

ally higher in exomes due to the increased presence of

methylated cytosine in CpG dinucleotides in exonic

regions [19].

Considering SNPs and Indels, the variant density

across the genome (Fig. 1) showed a more or less uni-

form distribution, with three regions showing a high

density of variants that should be noted (more than 800

variants/Mb). Two of these regions with high densities

of variants were located on chromosome 20 (OAR20) at

OAR20:26–27 Mb and OAR20:27–28 Mb, with 858 and

1321 variants/Mb, respectively. The Major Histocom-

patibility Complex (MHC) of sheep is located in a region

of chromosome 20 [20] that corresponds to the 2 Mb re-

gion with high variability detected in this study. This re-

gion on OAR20 was also identified to harbor a putative

QTL for milk yield-related traits [21]. The other region

with a high number of variants (972 variants/Mb) is lo-

cated on OAR6 (OAR6:85–86 Mb) and is related to the

genomic location of ovine genes coding for the milk ca-

seins (OAR6: 85,087,000-85,318,000). The large number

of variants positioned in this region could be due to the

high transcription levels of caseins in the lactating mam-

mary gland. The high transcription rate of the casein

cluster region, with an average of 3.48 million of tags

per kb of exon, refers to the transcription of both exons

and the surrounding intronic regions. Hence, it is re-

markable that a very high number of tags per kb of

intron was found in the casein cluster region (7011.22

tags per kb of intron) when compared with the average

across the whole sheep genome (16.86 tags per kb of in-

tron). Previous RNA-Seq analysis suggest that the pat-

tern of the intronic sequence read coverage in RNA-Seq

could be explained by an inefficient poly(A)+ purification

[22], the presence of intronic reads flanked by poly(A)+

stretches [23] or by transcripts undertaking splicing after

polyadenylation [23].

The annotation analyses performed with SnpEff [24]

and Variant Effect Predictor (VEP) [25] are summarized

in Table 2. The number of variants processed with

SnpEff was higher (216,637) when compared to the vari-

ants processed with the VEP software (212,742) because

SnpEff performs the annotation of the variants present

Table 2 Summary statistics of the identified variants

Fields Counts SnpEff Counts VEP

Variants processed 216637 212742

SNPs 197948 195503

Insertions 8603 7233

Deletions 10086 9032

Effects by impact

HIGH 2128 1891

MODERATE 22440 22385

LOW 43986 43667

MODIFIER 312170 232768

Effects by type

3_prime_UTR 12940 12950

5_prime_UTR 1819 1824

downstream_gene 113225 113207

frameshift 1162 1096

inframe_deletion 168 314

inframe_insertion 127 229

intergenic_region 96639 16991

intron 59198 58408

missense 21841 21824

non_coding_exon 2002 1993

non_coding_transcript 10 9492

splice_acceptor 525 332

splice_donor 594 371

splice_region 2353 2187

start_lost 16 28

stop_gained 119 112

stop_lost 28 30

stop_retained 26 31

synonymous 43003 43004

upstream_gene 27952 27948
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in the whole domestic sheep genome (Oar_v3.1), chro-

mosomes and scaffolds, whereas VEP only annotates var-

iants within ovine chromosomes. Variants were assigned

to four types of biological impact based on the signifi-

cance of the effect of the variant: high (e.g., frame shift,

stop gain/loss, start loss, etc.); moderate (e.g., nonsynon-

ymous coding changes, codon insertion/deletion, etc.);

low (e.g., synonymous changes etc.); or modifier (used

for terms with hard-to-predict effects and markers)

(Table 2). The number of functional effects assigned was

larger than the number of loci because the categories

were not mutually exclusive. Among the total number of

effects detected, the vast majority of the variants were

predicted to have modifier impacts by both software

programs (312,170 with SnpEff and 232,768 with VEP)

(Table 2). This is because most of the variants detected

were located in downstream gene regions (Table 2).

Among the distribution of the variants by type of effect,

the results of the two annotation tools were generally

consistent (Table 2). Only two non-coding categories

show marked discrepancies as follows: the variants an-

notated as intergenic regions and the variants annotated

as non-coding transcript variants (Table 2). A higher

number of variants were found by SnpEff than by VEP

in intergenic regions (96,639 and 16,991, respectively),

which could be due to the different performances of the

annotation algorithms. The VEP software found a

greater number of non-coding transcript variants than

SnpEff (9,492 and 10 variants, respectively) because VEP

annotates regulatory region variants without providing

additional datasets to the software [25].

Among the results described in Table 2, it is remark-

able the large proportion of variants identified within

non-coding regions (e.g. downstream, intergenic, in-

tronic variants) which could indicate the presence of

variants in unannotated exons and/or noncoding but

functionally transcribed genomic regions. As we have

pointed above, the 62% of the transcripts detected within

the ovine MSCs transcriptome were intergenic and

moreover, the 11% were classified as potentially novel

isoforms [15]. Therefore, the detection of variants out of

known protein coding regions can be expected. Further-

more, these results agree with the results found in previ-

ous studies in cattle and human [26, 27]. However,

further research needs to be done in the identification of

transcriptome functional elements in livestock genomes

to elucidate the potential role of the variants detected

within no-coding regions.

Variants in QTL regions

A total of 57,795 variants were detected within the

selected regions harboring QTL for milk yield, protein

percentage and fat percentage. Among them, 78.56%

were mutations already described in SNPdb (version

143). Most QTL in dairy sheep have been mapped with

low-density maps, resulting in the detection of the sig-

nificant effect within large confidence intervals. Hence,

the high amount of variants detected in this work within

ovine QTL for dairy traits could be related to the low

mapping resolution of many of the previously identified

QTL effects.

Due to the large number of total variants found, we fo-

cused our further exploratory study on the novel vari-

ants detected. Among the 12,389 novel variants

identified within QTL regions, 9,118 were SNPs, 2,161

were insertions and 1,110 were deletions. Approximately

Fig. 1 Genome-wide variant densities. Manhattan plot showing the variant density (number of SNPs per Mb) on the Y-axis and the positions of

the genome across the 26 ovine autosomes and the X chromosome on the X-axis
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82.15% of the identified novel variants were considered

sequence modifiers; the remaining (~17,85%) were in-

ferred to produce high impact (2.52%), moderate impact

(7.42%) or low impact (7.91%) changes in the corre-

sponding transcriptional unit (Fig. 2).

Considering that the variants found within QTL re-

gions may have been a consequence of selective pres-

sures related to dairy production traits, we performed a

functional enrichment analysis of the genes containing

the variants with high and moderate functional impacts.

For this analysis, we considered the variants that were

classified as high and moderate impact variants (Fig. 2)

by the two annotation software programs used, SnpEff

[24] and VEP [25]. However, based on the large number

of moderate missense variants identified by both pro-

grams (Fig. 2), we performed additional filtering to con-

sider only the missense mutations predicted to be

deleterious by SIFT [28], an external tool implemented

in the VEP software that predicts the effects of an amino

acid substitution on protein function. Hence, after

discarding those variants predicted to be tolerated, a

final total of 371 unique genes containing relevant func-

tional variants (Additional file 2) were used to perform a

functional enrichment analysis using the WEB-based

Gene SeT AnaLysis Toolkit (WebGestalt) [29]. These

genes were categorized by 14 enriched KEGG (Kyoto

Encyclopedia of Genes and Genomes) pathway terms

(padj < 0.05) (Additional file 3). The highest enriched

KEGG pathway was “protein processing in endoplasmic

reticulum” with a padj of 2.60e-05. Metabolic processes

in endoplasmic reticulum (ER) are associated with the

synthesis and folding of membrane and secretory pro-

teins as well as lipid synthesis. Under certain stress con-

ditions (such as high levels of carbon-based molecules,

free fatty acids, cytokines, and hypoxia), the accumula-

tion of unfolded/misfolded proteins activates the ER

stress signaling response [30, 31]. The mammary gland

faces high metabolic stress during lactation due to the

elevated rates of protein and fat synthesis. In our study,

the majority of the genes with relevant functional

Fig. 2 Functional characterization established by SnpEff and VEP software for the novel variants identified in this study within the QTL previously

reported for milk yield, milk protein percentage and milk fat percentage. a Distribution of the novel variants by impact; b Distribution of

moderate impact novel variants within QTL regions by functional effect; c Distribution of high impact novel variants within QTL regions by

functional effect
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variants enriched in the KEGG pathway “protein pro-

cessing in ER” were related to the ER stress response

(CAPN2, HSP90B1, PLAA, DERL2, DNAJB2, VCP,

UBQLN1, SSR1). Mutations in these genes could be re-

lated to a different response of the overloaded ER in mu-

tated animals during lactation, suggesting that these

mutations could be a consequence of selective pressure

for milk production traits. The high and moderate im-

pact variants found in these genes and the animal geno-

types for these variants are summarized in the additional

information (Additional file 4).

Among the remaining enriched KEGG pathways

(padj < 0.005) found in this analysis (Additional file 3),

“Jak-STAT signaling pathway”, “RNA transport” and

“Fatty acid elongation” should be highlighted due to

the putative influence of the genes within these path-

ways in milk yield or milk protein and fat content

(see relevant variants and associated genes in Additional

file 4). The Jak-STAT signaling pathway is directly impli-

cated in milk protein expression by the mammary gland

during lactation [32, 33]. Among the variants found in the

genes within this pathway, the variant found in the signal

transducer and activator of transcription 4 (STAT4) gene

is noteworthy because variants in the orthologous bovine

gene have been significantly associated with milk yield and

protein percentage [34, 35].

In the “RNA transport” pathway, it is worthwhile to high-

light variants within the EIF4G3, EIF3I, and EIF3D genes.

These three genes code for the eukaryotic translation initi-

ation factors 4 Gamma 3, 3 Subunit I and 3 Subunit D, re-

spectively. The binding of eIF4G to eIF3 is regulated by

insulin via the association of mTOR with eIF3, which

causes the initiation of translation in the mTOR signaling

pathway [36, 37]. This pathway is implicated in the positive

control of protein synthesis, and studies in ruminants have

highlighted the crucial role of the mTOR signaling pathway

in the regulation of milk protein synthesis [38].

The following two genes were enriched in the “Fatty

acid elongation in mitochondria” KEGG pathway: PPT2

and ACAA2. PPT2 is located within the ovine MHC re-

gion and encodes a member of the palmitoyl-protein

thioesterase family, which has significant thioesterase ac-

tivity against lipids with chain lengths of 10 or fewer car-

bons and 18 or more carbons [39]. The ACAA2 gene

codes for the acetyl-CoA acyltransferase 2, a protein in-

volved in lipid metabolism that catabolizes the last step

in fatty acid β-oxidation. In Chios sheep, a single nucleo-

tide polymorphism in ACAA2 was identified and associ-

ated with the milk yield phenotype [40].

Variants in sheep-cheese candidate genes

Variants in genes related to milk protein content

Variability related to milk protein content was evaluated

in the genes codifying for major milk proteins, i.e.,

within the genes encoding caseins (casein α-S1

(CSN1S1), casein α-S2 (CSN1S2), casein β (CSN2), and

casein κ (CSN3)) and whey proteins (α-lactalbumin

(LALBA) and β-lactoglobulin (PAEP)). After variant fil-

tration a total of 504 variants were identified within

these genes. Among these variants, 80 (15.9%) variants

were novel, and 424 (84.1%) variants were previously an-

notated in SNPdb (version 143). Most of the detected

variants in the major milk protein genes (452) were sin-

gle nucleotide polymorphisms (SNPs). There were also

29 deletions and 23 insertions.

A high number of the variants found in the genes co-

difying for major milk proteins were positioned in in-

trons (482). The large number of tags mapped to introns

within the casein cluster, which was pointed above, to-

gether with the higher variability generally expected in

non-coding regions may explain the high level of genetic

variation identified in this region.

Among the variants detected in the coding regions by

both software programs (SnpEff and VEP), we found one

splice donor variant, which was classified as a high impact

effect mutation, and ten missense variants. These muta-

tions found within protein genes are summarized in

Table 3. The splice donor variant found in the CSN1S2

gene is a novel variant that was detected in the two stud-

ied breeds (allele frequency of 0.625). This variant affects a

putative splice donor site at the third intron of the

CSN1S2 gene (GCA_000298735.1:6:85186875:G:A). Thus,

this SNP could cause intron retention resulting in a novel

isoform of CSN1S2, which should be confirmed by further

research.

Missense variants in the ovine casein genes, which

lead to amino acid changes in the protein products,

comprise a group of SNPs that are of particular interest

because some of these variants have been demonstrated

to influence the composition and/or technological prop-

erties of milk (reviewed by Moioli et al. [41]). Among

the missense variants detected in this study (Table 3),

one was in CSN1S1, two were in CSN2 and three were

in CSN1S2; no missense variants were found in CSN3.

This result agrees with the fact that CSN3 is considered

to be monomorphic in sheep [1]. Missense variants de-

tected in the CSN1S2 gene are relevant due to their rela-

tionships with known protein alleles. The deleterious

variant rs430397133 was detected in the CSN1S2 gene in

one heterozygous Churra ewe (allele frequency of 0.125).

The same animal was heterozygous for the other two

missense variants found in CSN1S2, named rs424657035

and rs399378277, which were predicted to be tolerated.

The mature protein of the known CSN1S2*B’ variant

harbors these three missense mutations [42]. The dele-

terious variant rs430397133, which causes the Asp90Tyr

substitution, is responsible for the higher isoelectric

point of the B protein variant that allows for its
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differentiation from CSN1S2*A [43]. An advantageous

effect of CSN1S2*B in comparison to CSN1S2*A in

terms of milk, fat and protein yield, and protein content

has been reported [3]. In this study, we also found the

variants responsible for αs2-CN protein alleles G

(rs424657035) and G’ (rs424657035 and rs399378277).

However, at the protein level, the G and G’ alleles are

hidden by the CSN1S2*A phenotype in isoelectric

focusing [3].

In the CSN1S1 gene, we found a previously described

missense variant (rs420959261). This SNP is responsible

for the p.Thr209Ile substitution, which differentiates the

protein variant CSN1S1*C’, the supposed ancestral vari-

ant, from CSN1S1*C” [44].

Two known SNPs, rs430298704 and rs416941267,

were detected within the CSN2 gene. The rs430298704

SNP is a missense variant causing the substitution

p.Met199Val which is classified as tolerated. This muta-

tion causes the A and G protein alleles of β-casein.

Corral et al. [45] found that in Merino sheep the GG

genotype for this variant was associated with an increase

in milk production, whereas the AA genotype was asso-

ciated with an increase in protein and fat percentage.

The rs416941267 is a missense variant causing the

amino acid exchange p.Leu212Ile associated to the

CSN2*X protein allele described by Chessa et al. [46].

One already described missense SNP, rs403176291,

was detected within the LALBA gene in both breeds.

This mutation causes the amino acid change p.Val27Ala

classified as deleterious by SIFT [28] and that has been

suggested to be a Quantitative Trait Nucleotide (QTN)

influencing milk protein percentage [47].

Regarding the PAEP (LGB) gene, which encodes the

milk β-lactoglobulin protein, our analysis identified the

missense variant (rs430610497) that differentiates pro-

tein alleles A and B of β-lactoglobulin [48, 49]. This

mutation causes the substitution p.Tyr36His and was

found in both breeds. A higher aptitude for cheese pro-

cessing has been shown in AA ewes due to a shorter

clotting time, better rate of curd firming and a higher

cheese yield [2]. The C allele of β-lactoglobulin [50] was

not found in this study. This rare C variant has been

only found in few breeds, including Merinoland, Latxa,

Carranzana, Spanish Merino, Serra da Estrela, White

Merino, and Black Merino [2]. However, at position

c.500 of the PAEP gene, we detected trialelic missense

variants, rs600923112 and rs600923112, which cause

two amino acid substitutions in the protein

(p.Gln167Leu and p.Gln167Arg, respectively). The

p.Gln167Leu amino acid change was found in the two

studied breeds, whereas the p.Gln167Arg substitution

was found only in Assaf sheep. These seem to be im-

portant mutations, as both amino acid changes are pre-

dicted to be deleterious by SIFT [28]. To our knowledge,

these mutations are not related to described protein al-

leles in the β-lactoglobulin so further research should be

conducted to elucidate their possible functional

consequences.

Variants in genes related to milk fat content

To find variability in candidate genes related to milk fat

content, we filtered the mutations positioned within a

total of 17 genes (Table 4) that have been previously re-

lated to milk fat metabolism [51].

We detected a total of 1,063 variants in the transcrip-

tomic regions containing the studied genes related to

lipid metabolism. The majority of the variants within

these genes (953; 89.65%) were previously annotated in

SNPdb (version 143). Among the variants detected, 990

were SNPs, 24 were insertions, and 49 were deletions.

As these variants occurred in the genomic regions en-

coding caseins and whey proteins, the highest

Table 3 Functionally relevant variants in genes codifying for major milk proteins

Variant a Gene Allele Freq Effect AA

Assaf Churra

rs600923112 PAEP 0.25 0.5 Missense-Deleterious p.Gln167Leu

rs600923112 PAEP 0.375 0 Missense-Deleterious p.Gln167Arg

rs430610497 PAEP 0.375 0.5 Missense-Tolerated p.His36Tyr

rs403176291 LALBA 0.125 0.5 Missense-Deleterious p.Val27Ala

rs420959261 CSN1S1 0.38 0.75 Missense-Tolerated p.Thr209Ile

rs416941267 CSN2 0.625 0.25 Missense-Tolerated p.Leu212Ile

rs430298704 CSN2 0 0.125 Missense-Tolerated p.Met199Val

GCA_000298735.1:6:85186875:G:A CSN1S2 0.625 0.625 Splice donor

rs430397133 CSN1S2 0 0.125 Missense-Deleterious p.Asp90Tyr

rs424657035 CSN1S2 0 0.25 Missense-Tolerated p.Ile120Val

rs399378277 CSN1S2 0.125 0.75 Missense-Tolerated p.Arg176His

a For described variants rs identifier is indicated and novel variants are described with the unique ID “INSDC Genome accession:CHROM:POS:REF:ALT”.
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proportion of mutations were located within intronic re-

gions (920; 86.39%).

According to the functional effects by impact found in

the fat-related genes, we identified four (0.38%) variants

with high impact, 27 (2.54%) with moderate impact, 100

(9.39%) with low impact and 934 (87.7%) with a modifier

impact. Among the moderate variants, we found a dis-

ruptive inframe deletion and 26 missense mutations, of

which four were classified as deleterious by SIFT [28].

The functionally relevant variants within genes related

to mammary gland fat metabolism are indicated in

Table 5.

The highest number of functionally relevant variants

were found in the XDH gene. Two splice acceptor

mutations and an inframe deletion were found in both

breeds (Table 5). It should be noted that the inframe dele-

tion (GCA_000298735.1:3:92239411:CCGCCCCTCTTCCC

GGGCGCCCCCATCTTCTTTTCCA:C) was found in

homozygosis in the eight ewes analyzed, which could

mean that the XDH sequence is not well-

characterized at this genomic location. Moreover, two

deleterious missense SNPs were found only in Assaf

ewes (allele frequency of 0.125). XDH encodes the

xanthine dehydrogenase, a protein implicated in milk

fat globule secretion [52]. Hence, mutations in this

gene could alter the mechanisms underlying lipid

droplet secretion.

PLIN2 encodes the perilipin 2/adipophilin protein.

Adipophilin is reported to have a role in the packaging

of triglycerides for secretion as milk lipids in the mam-

mary gland [53]. Moreover, the absence of adipophilin

has been associated with the formation of smaller intra-

cellular fat globules [54]. The splice donor variant found

within PLIN2 (GCA_000298735.1:2:87107748:C:A) gene

is a novel variant that was detected in both breeds (allele

frequency of 0.5). This variant affects a splice donor site

at the first intron of the PLIN2 gene. Thus, this SNP

could cause intron retention and a novel isoform.

A novel missense variant within the LPIN1 gene

(GCA_000298735.1:3:20585665:C:T), causing the amino

acid substitution p.Arg781Trp at the protein level, and

classified as deleterious by SIFT [28], was found in hetero-

zygosis in one Assaf sheep. LPIN1 encodes the lipin-1 pro-

tein, an enzyme implicated in triacylglycerol synthesis

[32]. Additionally, a role for lipin-1 in the transcriptional

regulation of other genes involved in milk lipid synthesis

has been suggested in relation to the mTOR, PPARα and

PPARγ regulatory pathways [55–57].

In the FASN gene, we detected a known missense mu-

tation (rs604791005) that causes the amino acid change

p.Gly2312Ala. This polymorphism was found in

Table 4 Milk fat candidate genes considered in this study

Gene symbol Description

BTN1A1 Butyrophilin Subfamily 1 Member A1

ACACA Acetyl-CoA Carboxylase Alpha

FABP3 Fatty Acid Binding Protein 3

CEL Carboxyl Ester Lipase

ACSL1 Acyl-CoA Synthetase Long-Chain Family Member 1

LPL Lipoprotein Lipase

ACSS2 Acyl-CoA Synthetase Short-Chain Family Member 2

XDH Xanthine Dehydrogenase

GPAM Glycerol-3-Phosphate Acyltransferase, Mitochondrial

DBI Diazepam Binding Inhibitor, Acyl-CoA Binding Protein

VLDLR Very Low Density Lipoprotein Receptor

DGAT1 Diacylglycerol O-Acyltransferase 1

PLIN2 Perilipin 2

SCD Stearoyl-CoA Desaturase

LPIN1 Lipin 1

SLC27A6 Solute Carrier Family 27 Member 6

FASN Fatty Acid Synthase

Table 5 Functionally relevant variants detected in the milk fat candidate genes considered in this study

Varianta Gene Allele Freq Effect AA

Assaf Churra

GCA_000298735.1:2:87107748:C:A PLIN2 0.5 0.5 High-Splice donor

GCA_000298735.1:3:20585665:C:T LPIN1 0.125 0 Missense-Deleterious (0) p.Arg781Trp

GCA_000298735.1:3:92183603:G:T XDH 0.5 0.5 High-Splice aceptor

rs428221119 XDH 0.25 0 Missense-Deleterious (0.02) p.Leu246Phe

rs429850918 XDH 0.25 0 Missense-Deleterious (0) p.Arg614Trp

GCA_000298735.1:3:92217135:G:A XDH 0.5 0.5 High-Splice aceptor

GCA_000298735.1:3:92239411:
CCGCCCCTCTTCCCGGGCGCCCCCATCTTCTTTTCCA:C

XDH 1 1 Moderate-Inframe deletion p.Pro1251_Phe1262del

rs604791005 FASN 0 0.125 Missense-deleterious-
low_confidence (0.04)

p.Gly2312Ala

GCA_000298735.1:26:13949071:C:T ACSL1 0.5 0.5 High-Splice donor

a For described variants rs identifier is indicated and novel variants are described with the unique ID “INSDC Genome accession:CHROM:POS:REF:ALT”
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heterozygosis in one Churra ewe. FASN encodes a fatty

acid synthase responsible for de novo fatty-acid biosyn-

thesis in the mammary gland [58]. In cattle, several poly-

morphisms in this gene have been associated with milk

fat content and fatty acid composition [59–64]. In

Churra sheep, two QTL affecting capric acid and poly-

unsaturated fatty acid contents were mapped to the gen-

omic region harboring the FASN gene [65], although the

variability identified in this gene did not appear to be

directly related to these QTL [65]. Therefore, the mis-

sense polymorphism described in this study should be

further analyzed to assess its possible association with

the QTL previously described in Churra sheep.

The splice donor variant found in the ACSL1 gene is a

novel variant that was detected in both breeds (allele fre-

quency of 0.5). This variant (GCA_000298735.

1:26:13949071:C:T) affects the first base of the 5′ splice

donor region of the second intron of ACSL1, which en-

codes an acyl-CoA synthetase long-chain family member

1. This protein is implicated in the activation of long

chain fatty acids [32].

Conclusions

We present herein the first transcriptomic approach per-

formed to identify the genetic variants of the lactating

mammary gland in sheep. Through the transcriptome

analysis of variability within regions harboring QTL for

milk yield, protein percentage and fat percentage, we

found several pathways and genes that could harbor mu-

tations with relevant effects on dairy production traits.

Moreover, remarkable variants were also found in candi-

date genes coding for major milk proteins and enzymes

related to milk fat metabolism. Further research is re-

quired to estimate the allele frequencies and determine

the phenotypic effects of the functionally relevant vari-

ants found through this RNA-Seq approach in commer-

cial sheep populations. Additionally, several of the SNPs

found in this study could be included as suitable

markers in genotyping platforms or custom SNP-arrays

to perform association analyses in commercial popula-

tions and apply genomic selection protocols in the dairy

production industry.

Methods

Animals and sampling

For this study, a MSCs transcriptome dataset from Assaf

and Spanish Churra dairy sheep breeds was used. The

dataset is available in the Gene Expression Omnibus

(GEO) database under the accession number GSE74825.

The source of the animals and the sampling process

protocol are described in detail in the related data de-

scriptor manuscript [66]. The milk samples of eight

healthy sheep (four Churra and four Assaf ewes) belong-

ing to the commercial farm of the University of León

were collected on days 10 (D10), 50 (D50), 120 (D120)

and 150 (D150) after lambing. At each sampling time-

point, we collected 50 ml of milk from each ewe one

hour after the routine milking at 8 a.m. and ten minutes

after the administration of five IUs of Oxytocin Facilpart

(Syva, León, Spain). The time-point for milk collection

was chosen to maximize the concentration of MSCs.

Previous studies have indicated that the diurnal time

point with the highest concentration of MSCs occurs

one hour after milking [67]. Moreover, oxytocin was ad-

ministered with the aim of stimulating its mechanical ef-

fect on myoepithelial contraction and thus the flattening

of the alveolar lumen, which causes the release of re-

sidual post-milking milk containing a higher concentra-

tion of exfoliated MECs [68].

Ethics statement

All protocols involving animals were approved by the

Animal Welfare Committee of the University of Leon,

Spain, following the proceedings described in Spanish

and EU legislations (Law 32/2007, R.D. 1201/2005, and

Council Directive 2010/63/EU).

Library preparation and sequencing

Somatic cell separation and RNA extraction were per-

formed as described by Suárez-Vega et al. (2016) [66].

The integrity of the RNA was assessed using an Agilent

2100 Bioanalyzer device (Agilent Technologies, Santa

Clara, CA, USA). The RNA integrity value (RIN) of the

samples ranged between 7.1 and 9. Paired-end libraries

with fragments of 300 bp were prepared using the True-

Seq RNA-Seq sample preparation Kit v2 (Illumina, San

Diego, CA, USA). The fragments were sequenced on an

Illumina Hi-Seq 2000 sequencer (Fasteris SA, Plan-les-

Ouates, Switzerland).

Alignment, variant identification and annotation

The read qualities of the RNA-Seq libraries were evalu-

ated using FastQC [69]. Using the STAR aligner [70] the

reads were mapped against the ovine genome assembly

v.3.1. (Oar_v3.1 [71]). After the alignment, Samtools [72]

was used to convert sam files to bam files and then to

sort and merge the bam files from the same animal at

different time-points. Metrics from the bam files were

obtained with RSeQC software [14] based on the anno-

tation bed file of the Oar_v3.1 sheep assembly obtained

from the UCSC Genome Browser [73]. Then, Picard [74]

was used to add read groups and mark duplicated reads

on the merged bam files. SNP and Indel calling was per-

formed using the Genome Analysis Toolkit (GATK, ver-

sion 3.4.46) software package following GATK best

practices [75]. To obtain high-quality variants, strict fil-

ter conditions were applied using vcffilter [76] and

SnpSift [77] (Variation Quality (QUAL) >30, Mapping
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Quality (MQ) >40, Quality By Depth. (QD) >5, Fisher

Strand (FS) <60 and a minimum Depth of coverage (DP)

>5 in all the samples). The bcftools “annotate –c ID” op-

tion [72] and the ovine reference vcf file downloaded

from the Ensembl database (SNPdb-version 143) were

used to annotate the known variants detected in our

study.

Two software programs, SnpEff [24] and Variant Effect

Predictor [25], were used to predict the functional con-

sequences of the detected variants. SnpEff allows users

to define specific intervals and customize the annotation

of the variants. Considering that the final aim of this

study is the characterization of the transcriptome vari-

ants that may be of special interest for the dairy indus-

try, we used SnpEff to select (i) the variants included

within previously reported sheep QTL studies for milk

protein percentage, milk fat percentage and milk yield

[5] and (ii) the variants included within candidate genes

related to milk protein and fat content. The selection of

the variants included in these two types of target regions

(QTL and candidate genes) was performed according to

the following criteria.

Filtering variants in QTL regions affecting milk production

traits

The coordinates of the genomic regions containing the

QTL related to milk protein percentage, milk fat per-

centage and milk yield, based on the annotation of the

SheepQTLdb [5], were downloaded from the Ensembl

database [71]. This information, provided as a bed file

(Additional file 5), was used by the SnpEff software (−fi

option) to retain only the variants matching the target

QTL intervals from the total number of variants identi-

fied through the GATK protocol. Due to the high num-

ber of variants detected in the selected QTL regions

(57,795), those variants already described in the Ensembl

database were filtered out using vcftools [78]. Among

the novel variants, we selected those which were pre-

dicted by the two annotation analyses (SnpEff and VEP)

to have relevant functional consequences. Thus, we

retained those variants that were classified in terms of

their functional consequences as “high” and “moderate”

by the two different software programs. Due to the large

number of variants classified as “moderate”, within the

moderate missense variants, we selected those predicted

to be “deleterious” by the VEP option “–sift b” [25]. This

option allows the use of the SIFT tool [28] for any of the

variants annotated as missense. SIFT is an algorithm

that predicts whether an amino acid substitution will

have a deleterious effect on the protein function [28]. Fi-

nally, we extracted the names of the genes containing

these functionally relevant mutations and used them to

perform a functional enrichment analysis with the Web-

based Gene Set Analysis Toolkit (WebGestalt) [29].

Filtering variants on protein and fat candidate genes

The candidate genes selected for a detailed analysis of

their genetic variability in the studied dataset included

those codifying for major milk constituent proteins

(CSN1S1, CSN1S2, CSN2, CSN3, PAEP, LALBA) and

17 genes related to mammary gland lipid metabolism

(Table 4). These genes were selected based on a pre-

vious study by our research group that evaluated the

gene expression of candidate milk genes in the milk

sheep transcriptome that affect cheese-related traits

[51]. To obtain the variants within the target genes

selected for the study, we used the –fi option from

SnpEff followed by a bed file with the coordinates of

the selected genes (Additional files 6 and 7) and the

–onlyTr option followed by a file with an ID list with

the Ensembl transcripts name of the selected genes.

From all the variants detected within the candidate

cheese-yield genes, we focused further our analyses

on those mutations that could have relevant conse-

quences. Hence, the variants classified by the two

software programs as having “high” and “moderate”

functional impacts were selected.

Additional files

Additional file 1: Title of data: Variants detected within the sheep milk

transcriptome. Description of data: Worksheet providing all the variants

detected within the milk somatic cells transcriptome. (XLSX 60502 kb)

Additional file 2: Title of data: Genes in QTL regions containing relevant

functional variants. Description of data: Worksheet providing the list of

genes within QTL regions, which contain variants with functional interest.

(XLSX 15 kb)

Additional file 3: Title of data: Results of the KEGG pathway enrichment

analysis with the genes in QTL regions containing relevant functional

variants. Description of data: Worksheet providing the results of the KEGG

pathway enrichment analysis performed with the genes containing variants

with functional interest. The file provides the enriched KEGG pathways, with

the p-values and the genes grouped within each pathway. (XLSX 15 kb)

Additional file 4: Title of data: Functionally relevant variants found in

the genes in “NOD-like receptor signaling pathway”, “Protein processing

in endoplasmic reticulum”, “RNA tansport” and “Fatty acid elongation in

mitochondria” KEGG pathways. Description of data: Worksheet providing

the description and phenotypes of the functionally relevant variants

found in the genes in “NOD-like receptor signaling pathway”, “Protein

processing in endoplasmic reticulum”, “RNA tansport“and “Fatty acid

elongation in mitochondria” KEGG pathways. (XLSX 15 kb)

Additional file 5: Title of data: Genomic regions containing the QTL

related to milk protein percentage, milk fat percentage and milk yield.

Description of data: Worksheet providing the coordinates of the genomic

regions containing the QTL related to milk protein percentage, milk fat

percentage and milk yield, based on the annotation of the SheepQTLdb.

(XLSX 12 kb)

Additional file 6: Title of data: Coordinates of the milk protein genes

genomic regions. Description of data: Worksheet providing the

coordinates of the genomic regions containing the milk protein genes.

(XLSX 9 kb)

Additional file 7: Title of data: Coordinates of the milk fat genes

genomic regions. Description of data: Worksheet providing the

coordinates of the genomic regions containing the genes related to milk

fat metabolism. (XLSX 10 kb)
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