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Introduction: Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has
had a disastrous effect worldwide during the previous three years due to widespread
infections with SARS-CoV-2 and its emerging variations. More than 674 million
confirmed cases and over 6.7 million deaths have been attributed to successive
waves of SARS-CoV-2 infections as of 29th January 2023. Similar to other RNA
viruses, SARS-CoV-2 is more susceptible to genetic evolution and spontaneous
mutations over time, resulting in the continual emergence of variants with distinct
characteristics. Spontaneous mutations of SARS-CoV-2 variants increase its
transmissibility, virulence, and disease severity and diminish the efficacy of
therapeutics and vaccines, resulting in vaccine-breakthrough infections and re-
infection, leading to high mortality and morbidity rates.

Materials andmethods: In this study, we evaluated 10,531 whole genome sequences
of all reported variants globally through a computational approach to assess the
spread and emergence of the mutations in the SARS-CoV-2 genome. The available
data sources of NextCladeCLI 2.3.0 (https://clades.nextstrain.org/) and NextStrain
(https://nextstrain.org/) were searched for tracking SARS-CoV-2mutations, analysed
using the PROVEAN, Polyphen-2, and Predict SNP mutational analysis tools and
validated by Machine Learning models.

Result: Compared to the Wuhan-Hu-1 reference strain NC 045512.2, genome-wide
annotations showed 16,954 mutations in the SARS-CoV-2 genome. We determined
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that the Omicron variant had 6,307 mutations (retrieved sequence:1947), including
67.8% unique mutations, more than any other variant evaluated in this study. The spike
protein of the Omicron variant harboured 876 mutations, including 443 deleterious
mutations. Among these deleterious mutations, 187 were common and 256 were
unique non-synonymous mutations. In contrast, after analysing 1,884 sequences of
the Delta variant, we discovered 4,468 mutations, of which 66% were unique, and not
previously reported in other variants. Mutations affecting spike proteins are mostly
found in RBD regions for Omicron, whereas most of the Delta variant mutations drawn
to focus on amino acid regions ranging from 911 to 924 in the context of epitope
prediction (B cell & T cell) and mutational stability impact analysis protruding that
Omicron is more transmissible.

Discussion: The pathogenesis of the Omicron variant could be prevented if the
deleterious and persistent unique immunosuppressive mutations can be targeted
for vaccination or small-molecule inhibitor designing. Thus, our findings will help
researchers monitor and track the continuously evolving nature of SARS-CoV-2
strains, the associated genetic variants, and their implications for developing
effective control and prophylaxis strategies.

KEYWORDS

COVID-19, SARS-CoV-2, deleterious mutation, unique mutation, delta variant, omicron
variant, immune response, vaccine designing

1 Introduction

The ongoing COVID-19 caused by SARS-CoV-2 has wreaked
havoc on global economies, businesses, communities, and public
health due to widespread infections in humans (Hoque et al., 2020;
Islam et al., 2021; Jakariya et al., 2022; Rakib et al., 2022). Causingflu-
like symptoms and nearly 2%–5%mortality, the COVID-19 pandemic
worsened due to continuously emerging SARS-CoV-2 variants from
time to time, contributing to the surge in infections and deaths in
multiple waves (Dhama et al., 2022; Jacobs et al., 2023; Islam et al.,
2022a; Islam et al., 2022b).

Similar to other RNA viruses, SARS-CoV-2 is prone to mutations
that produce new variants, creating difficulties in developing effective
antiviral drugs and vaccines against this virus (Ahmed et al., 2020;
Jacobs et al., 2023; Sakib et al., 2021; Wang et al., 2020). Over 2 years,
the SARS-CoV-2 virus has evolved through multiple new mutations
and various genetic variants, such as Alpha (B.1.1.7) with seven, Beta
(B.1.351) with nine, Gamma (P.1) with 12, Delta (B.1.6, B.1.6.2) with
17, Omicron (B.1.1.529) and Neocov variant with 32 newmutations in
the spike protein gene (Ahmed et al., 2021; Chakraborty et al., 2022a;
Chakraborty et al., 2022b; Chakraborty et al., 2022c; Chakraborty
et al., 2022d; Chakraborty et al., 2022e). These variants have spread to
various regions of the world, and among them, variants of concern
(VOCs) such as Delta, Omicron, and their sub-lineages have caused
significant risk to public health (Hossain et al., 2021; Islam et al., 2021,
Islam et al., 2022a). However, the number of fatalities caused by
various SARS-CoV-2 variants fluctuates considerably (Islam et al.,
2022b; Islam et al., 2022c; Islam et al., 2022d). So far, only a few
comprehensive studies have been conducted, incorporating all SARS-
CoV-2 variants (Davies et al., 2021; Imai et al., 2021; Walensky et al.,
2021). Each variant of SARS-CoV-2 evolves with greater
pathogenicity, infecting and evading the immune system of the
host, leading to vaccine breakthrough infections, re-infections via
overpowering vaccine efficacy and antibodies-based therapies (Roy
et al., 2022a; Chakraborty et al., 2022b; Roy et al., 2022b). Eight of the
23 mutations from the original Wuhan-Hu-1 strain (Accession

NC_045512, version NC_045512.2) that make up B.1.1.7 are in the
spike protein, in which N501Y, spike deletion 69–70 del, and P681H
are the three mutations that are considered to have the most biological
impact (Yang et al., 2021). In addition to D614G, B.1.351 contains a
cluster of mutations (242–244 del and R246I) in the N-terminal
domain, three mutations (K417N, E484K, and N501Y) in the
receptor-binding domain (RBD), and one mutation (A701V) near
the furin cleavage site. Among the three significant mutations that the
spike protein RBD carries, E484K is situated in a loop region away
from direct hACE2 (human angiotensin-converting enzyme 2)
contact, while mutations in P.1: N501Y and K417T interact with
human ACE2 (hACE2). (Faria et al., 2021; Hossain et al., 2021;
Chandran et al., 2022). Compared with the first strain (alpha
strain) of SARS-CoV-2, the Delta variant B.1.617.2 has
23 mutations. Twelve such mutations have been found in the spike
protein, including T19R, L452R, T478K, D614G, P681R, and D960N
(Shiehzadegan et al., 2021; Asghar et al., 2022).

To prevent SARS-COV-2 infections, a few COVID-19 vaccines
utilizing distinct vaccine platforms have been developed (Hossain
et al., 2021). In addition, vaccination campaigns and booster shots are
underway in majority of nations to provide the populace with
protective immunity. Some drugs, including recent oral antiviral
drugs nirmatrelvir/ritonavir and molnupiravir, and therapies have
been found effective and used for emergency purposes. However, an
effective vaccine to tackle the menace of emerging variants of SARS-
CoV-2, particularly such as Delta and Omicron, is still awaited (Aleem
et al., 2022; Barouch, 2022). Designing effective vaccines against
SARS-CoV-2 variants is a very challenging issue as it is required to
develop mutation-proof, variant-specific, and universal vaccines to
prevent the spread of COVID-19 (Gong et al., 2022; Park et al., 2022).
In this regard, investigating SARS-COV-2 variants and unique
mutations is essential for developing effective anti-COVID-
19 drugs and vaccines (Rakib et al., 2021; Jakariya et al., 2021).

Therefore, in the present study, we analyzed the mutation patterns
of 10,531 SARS-CoV-2 genomes of 12 variants from around the world
in terms of frequency, type, the ratio of synonymous to non-
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synonymous mutations, and zone analysis. Based on the most
significant mutations, we focused primarily on the Delta and
Omicron variants. The impact of deleterious mutations on B- and
T cell responses has also been investigated to identify the specific
mutations responsible for the downregulation of the host immune
system. The structural conformation of the most concerning
mutations, such as mutations of spike proteins, was also
determined. The results of this study will aid the scientific
community in the development of variant-specific, more accurate,
effective, and successful vaccines, as well as provide possible
indications for the regions of deleterious variant viral proteins in
the Omicron variant. Therefore, in the present study, we analyzed the
mutation patterns of 10,531 SARS-CoV-2 genomes of 12 variants from
around the world in terms of frequency, type, the ratio of synonymous
to non-synonymous mutations, and zone analysis. Based on the most
significant mutations, we focused primarily on the Delta and Omicron
variants. The impact of deleterious mutations on B- and T cell
responses has also been investigated to identify the specific
mutations responsible for the downregulation of the host immune
system. The structural conformation of the most concerning
mutations, such as mutations of spike proteins, was also

determined. The results of this study will aid the scientific
community in the development of variant-specific, more accurate,
effective, and successful vaccines, as well as provide possible
indications for the regions of deleterious variant viral proteins in
the Omicron variant.

2 Materials and methods

2.1 Genomic data collection and filtering

The first SARS-CoV-2 whole genome sequence (WGS) was
deposited on 5 January 2020, in GenBank (accession number: NC_
045512.2). Currently, the total number of submitted sequence
numbers is 127,108,83 (accordingly, Global Initiative on Sharing
All Influenza Data (GISAID), 20 August 2022) (https://www.gisaid.
org/) (Khare et al., 2021).

In this study, we filtered 214,459 sequences from the whole extracted
GISAID dataset based on specific criteria (all of the complete genome
sequences retrieved including both death and alive p with high coverage
read, patient status, and collection date from the human host). It can be

FIGURE 1
Schematic diagram representing several stages starting from genomic data collection to analysis.
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noted that the collected sequences retrieved from dead patients do not
influence the whole analyzed dataset. Only complete genomes with a size
greater than 29,000 bp were selected, and those with low coverage,
possessing >5% of N, were filtered out. Finally, the filtered process
ultimately resulted in 10,531 complete genomes of SARS-CoV-2 for
this study, which ranged from January 2020 to January 2022
(Figure 2) (Supplementary Table S9). Pyfasta (https://github.com/
brentp/pyfasta) was used to split the total genome into six separate
files. The entire procedure used in this study is presented in Figure 1.

2.2 Mutation analysis

Sequence analysis, alignment, and clustering were performed using
NextClade (https://clades.nextstrain.org/), an advanced tool for SARS-
CoV-2 sequence analysis (Aksamentov et al., 2021). Mutational frequency
count was executed using Python script (uploaded to GitHub). Error-free
sequence data were normalized (filtered to reduce data redundancy and
eliminate undesirable characteristics) using Python script and advanced
Excel options. The most frequent mutations and their deleterious impact
were further analyzed using PredictSNP (https://loschmidt.chemi.muni.
cz/predictsnp/) (Bendl et al., 2014), PolyPhen 2 (http://genetics.bwh.
harvard.edu/pph2/) (Adzhubei et al., 2013), SIFT (https://sift.bii.a-star.
edu.sg/) (Ng, 2003), PROVEAN (http://provean.jcvi.org/index.php)
(Choi & Chan, 2015), and the I-Mutant Suite (http://gpcr2.biocomp.
unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi) (Capriotti et al.,
2005). Deleterious or non-synonymous mutations are critically
analyzed and cross-checked using these tools. To define deleterious
mutation, a threshold value of -2.5 was determined to ensure highly
balanced accuracy (Choi & Chan, 2015). Therefore, mutations having a
value smaller than -2.5 were identified as deleterious.

2.3 Prediction of immune responses

2.3.1 B cell epitope prediction
The antibody epitope prediction tool (http://tools.iedb.org/bcell/)

from IEDB (Immune Epitope Database) was used to detect the B cell
antigenic regions. In this tool, a semi-empirical method named “Kolaskar
& Tongaonkar antigenicity” was used (Kolaskar & Tongaonkar, 1990) as
the analyzedmethod for B cell antigenic prediction as themethod ensures
75% accuracy. The antigenic region refers to the epitope that is most likely
to bind to B cells whereas the non-antigenic region shows lower or no
affinity to bind to B cells. Each mutation sequence was derived using
Python script, which is available from GitHub on request (Islam et al.,
2022e; Islam et al., 2023). Based on the antigen propensity score collected
from the tool, linear B cell epitope area graphs of wild sequences were
constructed using ggplot2 (version 3.3.5), ggh4x (version 0.1.2.1.9), and
cowplot (version 1.1.1) in the R statistical environment (version 3.6.1).
Graphs are presented as antigenic (>threshold value) and non-antigenic
(<threshold value) regions based on a threshold value of 1 as the average
score for most of the sequence is around 1. Mutations having increased
antigenic scores are likely to bind B cells, therefore, enabling the host
immunity to act to sort the fight. But the opposite case refers to the
mutations that are becoming immune to the host B cell. Codes generated
for the graphs can be accessed from GitHub upon request. Mutations are
marked as line graphs with a point mark on the mutation position. The
significant mutation was marked by comparing the antigenic propensity
score of mutated proteins with that of wild-type proteins. If the score of

the mutated proteins dropped in the antigenic region, it was marked as
significant.

2.3.2 T Cell epitope prediction
Wild type sequenced for each protein was then used to perform

T Cell epitope prediction with the “CD4 T Cell immunogenicity
prediction tool” of IEDB (http://tools.iedb.org/CD4episcore/) (Paul
et al., 2015; Dhanda et al., 2018). The threshold value of the combined
score was set to 50%. The results give immunogenicity scores of several
predicted immunogenic segments for a particular peptide. However,
for more accuracy combined scores were taken into concern as the
score not only includes immunogenicity scores but also scores from
the seven allele method (an optimized method for prediction of HLA
responses) (Dhanda et al., 2018). The mutations occurring in these
predicted immunogenic segments were then used to perform with the
same tool to observe the change in combined score due to that
particular mutation. According to the result, a higher value
indicates a lower tendency to provoke an immune response.
Therefore, the mutations which caused an increase in the
combined score beyond 50%, were marked as the most significant.

2.4 Effects of missense mutation on protein
stability and protein-protein binding affinity

Mutations likely to suppress the immune response for both B-
and T cells are selected for the next level of analysis to demonstrate
their functional impacts. Most of the data, except spike protein,
were collected with the COVID-3D database (http://biosig.
unimelb.edu.au/covid3d/). For the spike protein of the delta
variant (PDB ID:7jji), the “DynaMut” database (http://biosig.
unimelb.edu.au/dynamut/) (C. H. Rodrigues et al., 2018) was
used to find ΔΔG to identify the stabilizing effect of the
mutations."Δ Vibrational Entropy Energy”, was also determined
to identify the impact on structural flexibility, and deformation and
fluctuation analysis. “mCSM-PPI2" (http://biosig.unimelb.edu.au/
mcsm_ppi2/) (C. H. M. Rodrigues et al., 2019) was used to predict
the affinity changes and differences in the interaction between the
wild-type and the mutant for both delta and omicron. The effects of
missense mutation on protein stability for omicron were analyzed
with “mCSM Stability” (https://biosig.lab.uq.edu.au/mcsm/) (Pires
et al., 2014). To perform protein and/or gene functional analysis,
the 3D structure of spike protein was collected from the Protein
Data Bank (https://www.rcsb.org/).

2.5 Normalization, data validation, and
machine learning

In order to overcome the biases in the various factors or platforms
in mutation-based studies normalization is a crucial pre-processing
step. A sample-wise normalization is a typical approach in intra-study
analysis. Numerous established sample-wise normalization techniques
have been created and used, such as simple standardization
(standardize to zero mean and unit variance). This data was
subjected to standard normalization or standardization prior to
validation under machine learning, which confirmed independent
and unbiased findings of the mutational structure and at the same
time standardized each sample to a mean of zero and a unit variance.
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The overall analysis was validated using machine learning and
Bio-python. We used the following set of different classifiers, which
includes probabilistic ones: Logistic Regression, Linear Discriminant
Analysis, Support Vector Machines (SVM) (Cortes & Vapnik, 1995),
and Neural Networks (Jantzen, 1998). We used a specific performance
measure under the ROC curve, which is the proportion of correctly
classified samples. The classes were balanced so that the accuracy
metrics worked correctly.

We trained and turned the classifiers on the SARS-CoV-
2 mutational databases (Supplementary Table S7). To avoid
overfitting, five-fold cross-validation was performed. Specifically, a
dataset was split into five approximately equal parts (or folds), of
which four parts were used for training and the fifth part for
validation. This procedure was repeated five times with different
parts used for validation each time. The performance measure is an
average of the values computed at each iteration. While the dataset is
usually split into folds randomly, we created folds such that all
mutations in the same protein fell into the same fold. This was
done to avoid over fitting in the situation where we train and test
a classifier on the same protein.

3 Results

3.1 Mutational analysis of SARS-CoV-
2 variants

Through a comprehensive mutational analysis of
10,531 complete genomes (The number of sequences had been

retrieved in a sequential way mentioned in the Genomic data
collection and filtering portion of the methodology Section 2.1 and
neither these sequences nor the partial sequences under different
variants were compromised by any factor or biased) of SARS-
CoV-2, we detected 16,954 common and unique mutations (which
were continuously filtered according to the mutation score, and
only a specific amount of highly deleterious mutations were
focused for further mutational analysis) compared to the
Wuhan-Hu-1 reference strain (Accession NC_045512,
VersionNC_045512.2). Based on the mutational spectra, we
found 12 variants of SARS-CoV-2, including 1,076 genomes
from Alpha, 686 from Beta, 1,350 from Gamma, 1884 from
Delta, 805 from Epsilon, 461 from Zeta, 1,468 from Eta,
133 from Theta, 305 from Lota, 207 from Kappa,
209 from Lambda, and 1947 from Omicron variants. The
Omicron variant showed a comparatively higher mutation rate
(Figure 2D).

Among these variants, the Delta variant (B.1.617.2) showed
4,468 mutations, of which 1,204 were deleterious having a value
less than the threshold (−2.5). Moreover, among the detected
mutations in the Delta variant, 66% were unique, and not reported
in other variants. By contrast, the highest number of mutations (n =
6,307) were found in the Omicron variant in which 4,178 (67.8%) were
predicted to be unique while 1,092 (26.14%) were identified as
deleterious (Table 1).

In the mutational analysis, the highest number of mutations
were detected in the S protein while the E protein contained the
lowest (Figure 3). The mutation rate of the Omicron variant’s S
protein was significantly higher than that of other variants.

FIGURE 2
An overview of the scenario of coronavirus. (A) Phylogenetic tree of SARS-CoV-2 depicting variant emergence from January 2020 to January 2022. (B) A
world map depicting the frequency of variants occurring across the world. (C) The total number of mutations occurring across the whole genome of
SARSCoV-2. The length of the bar determines the diversity ofmutations at a specific position on the genome. (D) The total number ofmutations along specific
types like common, unique, neutral, and deleterious across all the variants of SARS-CoV-2. (Analysed by Nextstrain: https://nextstrain.org).
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Amidst 876 mutations detected in the spike protein of the
Omicron variant, 364 were common, 512 were unique,
412 were neutral, and 187 were deleterious. Further, the
deleterious mutations included 187 common deleterious and
256 unique non-synonymous mutations. The Delta variant, on
the other hand, had the second-highest number of mutational
patterns, with 53 being unique deleterious mutations, whereas
Kappa was found as the third-highest variant possessing 44 unique
deleterious mutations. Conversely, the other variants such as
Alpha, Gamma, Eta, Theta, Lota, Zeta, etc. had more neutral
mutations in the S protein region than Omicron, Delta, and
Kappa variants (Table 2).

3.2 Comparative analysis of the deleterious
mutations

A deleterious mutation can be referred as a mutation for which
the protein compound of a gene is not produced, or does not
function, or interferes with normal function. Moreover,
impairment of regulatory functions can be a possible outcome of
deleterious regulatory agents. Accordingly, the functional impact of
mutations was analyzed using PROVEAN (Protein Variation Effect
Analyzer), which predicts the effect of amino acid (aa) substitution
on the overall function of a protein. The lower scores for mutant
(<−2.5) in PROVEAN, were marked as the most deleterious. In this
study, the lowest score of Omicron was –11.248, found in the
C3408S, while Delta showed the lowest score –12.869, was found in
W55C. Interestingly, these three deleterious mutations were found
in the ORF8 region of the SARS-CoV-2 genome. We further
compared the mutation patterns between Omicron and Delta
variants, which revealed that unique-deleterious mutations of
these variants were significantly stable in the protein
configuration (Table 3). By comparing all mutations of the
SARS-CoV-2 variants, we found that mutations in the Omicron
variants were more deleterious than the other 12 variants. The non-

synonymous score of the Omicron variant was higher for most
structural proteins and/or genes.

Further, The Omicron variant showed a higher degree of
deleterious mutations in ORF1a, ORF1b, ORF7a, ORF 8, and ORF
9b (Table 2). According to PROVEAN, –2.5 was the threshold value
for deleterious mutation. Therefore, mutations with a score less than
–2.5 were considered deleterious. Consequently, our findings indicate
a negative correlation between the severity of a deleterious mutation
with its score.

By analyzing the common mutations among the 12 SARS-CoV-
2 variants, our analysis found that the Omicron variant possessed the
highest number ofmutations in spike protein (Figures 4A, B), whereas the
Delta variant possessed the lowest number (Table 3). While the Omicron
variant showed an overall higher frequency of common mutations in N,
ORF1a, ORF1b, ORF7, and ORF7b of the S protein, Alpha, Gamma, and
Delta variants were exposed to numerous unique mutations (Figure 3A).
Among these mutations, the Omicron variant had the highest number of
unique mutations. Accordingly, the deleterious/non-synonymous
mutation scores varied among variants (Figures 3B, D). A
predominant score zone was observed for the Delta variant. The S
protein of this variant (Omicron) was more virulent because of its
immense unique-deleterious mutation score (Table 3).

3.3 B–cell epitope prediction

The probability of altered proteins becoming B–cell epitopes (up
and down-regulation of B cell immunological response) for specific
detrimental mutations in the Delta variant was visualized using the
“ggplot2” package of the R statistical environment (Figures 3, 4;
Figure 5). The threshold value used to define the region was set to
1.00. The upper portion of the threshold value can be referred to as
antigenic regions that are most likely to be an epitope for B cells,
whereas the lower portion showed non-antigenicity for B cells.

The deleterious mutations for which the antigenic response
decreased were considered significant, and an increase in the

TABLE 1 Comparative view of different types of mutations in 12 variants of SARS-CoV-2.

Variant Pango
lineage

Total retrieved
sequences

Total
mutations

Common
mutations

Unique
mutations

Deleterious
mutations
(common)

Deleterious
mutations
(unique)

Alpha B.1.1.7 1076 1102 648 454 145 96

Beta B.1.351 686 451 279 172 3 42

Gamma P.1 1350 1427 812 615 173 133

Delta B.1.617.2 1884 4468 1513 2952 361 844

Epsilon B.1.427 B.1.429 805 1002 604 398 139 92

Zeta P.2 461 726 461 265 108 62

Eta B.1.525 1468 811 504 307 124 64

Theta P.3 133 161 109 52 23 14

Lota B.1.526 305 438 291 147 59 30

Kappa B.1.617.1 207 1218 871 347 209 114

Lambda C.37 209 367 224 143 58 40

Omicron B.1.1.529 1947 6307 2129 4178 563 1092
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antigenic response represented unchanged, neutral, or insignificant
mutations. The mutations for which the B cell response
rose significantly in the antigenic portions were extremely

beneficial to the host immune system. By contrast, a decrease in
the scores in the antigenic region indicates a threat to the host
immune system.

FIGURE 3
Comparison of common and unique deleterious mutation patterns in different variants. (A) Frequency of top common deleterious mutations of different
proteins in twelve variants. (B) Deleterious mutation score of common mutations. (C) Frequency of top unique deleterious mutations of different proteins in
twelve variants. (D) Deleterious mutation score of unique mutations.
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3.3.1 Delta variant
3.3.1.1 ORF1a

Out of 666 deleterious mutations detected in ORF1a, 281 had
lower antigenic score. To present these on the graph, we further
predicted T Cell epitopes. Mutations that passed both analyses (n =
37 mutations) were presented in five segments featuring positions
2200–2648, 2700–3190, 3300–3500, 3700–4000, and 4000–4300
(Supplementary Figure S1). Among these mutations, L2218D and
F2598N, L2948T, L3754G, F4034Q, L4234S, and V4242W
(Supplementary Figure S1) appeared to have the greatest impact on
lowering antigenic scores.

3.3.1.2 ORF1b
Among 262 deleterious mutations detected, 92 had a lower

antigenic score for B cells. Based on the significance level in both
B- and T Cell epitope prediction, the Y894M and L898D
(Supplementary Figure S1) mutations were significant in both
contexts.

3.3.1.3 ORF3a
Out of 47 deleterious mutations detected, 18 occurred in the B cell

epitope region of the ORF3a.Among theseI35T and Y107H
(Supplementary Figure S1) mutations were found to be significant
in B- and T Cell epitope prediction.

3.3.1.4 ORF6
Of the 10 deleterious mutations detected in ORF6, I37T had a

lower score.

3.3.1.5 ORF7a
Of the 30 deleterious mutations found in ORF7a, 13 significant

mutations were found. Six of these were the most significant, including
I4T, V24F, C58F, C67F, V74F, and V82A. The C67F mutation
occurring in the antigenic region had a lower score than the
threshold value, indicating the region was a non-antigenic portion.
Among the most significant mutations, V82A decreased the likelihood

of being a B cell epitope and had a higher mutation count of 1,831
(Supplementary Figure S1). Similarly, the I4T mutation remained
significant in both contexts.

3.3.1.6 ORF7b
A total of eight deleterious mutations such as M1I, E3A, E3Q,

L14S, F28Y, W29C, E39A, and C41F were analyzed (Supplementary
Figure S1). Among these, L14S was the most significant mutation
observed in the antigenic region, while C41F was found in the non-
antigenic region. A positive antigenic response was detected due to six
different mutations (M1I, E3A, E3Q, F28Y, W29C, and E39A) in
ORF7b.

3.3.1.7 ORF8
Out of the 22 deleterious mutations detected, five were found to

be significant. The C37F mutation occurred in the antigenic region
with a mutation count of 38 and lowered the likelihood of binding
to B cells (Supplementary Figure S1). Furthermore, the I10N,
C102F, C102Y, and F120A mutations occurred in the antigenic
portion and contributed to the negative antigenic response.
However, none of the mutations dragged the antigenic region
into a non-antigenic region.

3.3.1.8 ORF9b
Among the 22 deleterious mutations detected in ORF9b, five

occurring in the antigenic regions may contribute to lowering the
likelihood of binding to B cells. These five mutations (P3S, A11S, L14F,
I45T, L52P, and V76F), along with others, are presented in
Supplementary Figure S1. Among these, P3S and V76F attribute
the antigenic region to be non-antigenic. However, L52P was
significant in both B- and T cells.

3.3.1.9 Envelope protein
Three deleterious mutations were identified in the envelope

protein. Among these, V58F was the most significant, as it
decreased the score and lowered the immune response of B cells in

TABLE 2 Comparison of mutations in the spike protein among 12variants of SARS-CoV-2.

Variant Total
mutation

Common
mutation

Unique
mutation

Neutral
mutation

Deleterious mutation
(common)

Deleterious mutation
(unique)

Alpha 162 100 62 155 4 3

Beta 69 48 21 62 3 4

Gamma 215 119 96 200 8 7

Delta 678 326 352 560 65 53

Epsilon 125 92 33 118 5 2

Zeta 101 70 31 95 5 1

Eta 136 84 52 129 4 3

Theta 31 21 10 14 2 15

Lota 75 54 21 70 2 3

Kappa 421 295 126 316 61 44

Lambda 71 48 23 66 2 3

Omicron 876 364 512 412 187 256
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TABLE 3 Comparison of the deleterious mutations between Omicron and Delta variants of SARS-CoV-2 in their different genes.

Gene Omicron (O, o) Delta (Δ, δ) Gene Omicron (O, o) Delta (Δ, δ)

Position Score Position Score Position Score Position Score

E R61L −1.733 R61L -2.8 ORF1b C1367T -10.71 H962I -10.31

N Q306T −3.878 W55C -12.869 Y470S -9.75 C928W -10.31

G164S −2.918 G99S -3.861 Y1944T -9.397 C942F -10.31

N150T −2.645 P162L -3.655 C143T -8.549 C939F -10.26

ORF1a C3408S −11.248 C2989K -11.183 G343C -8.378 G670L -9.667

W3004Y −11.153 W4096L -11.111 R1600N -8.654 G674I -9.667

G2815L −11.044 C4370F -10.248 D1815T -8.43 G550L -9.667

P4211S −10.398 W3481L -10.121 V345E -8.289 P618I -9.667

Y3364C −10.051 C2445S -9.618 L428V -8 Y916G -9.663

P2870S −9.499 C2851S -9.319 M557H -8.8 Y822G -9.663

Y2301C −9.404 G3795L -9.316 G1022T -8.627 D675V -8.7

L2298S −9.305 G3809L -9.316 T267N -7.533 N694F -8.7

P3015L -9.21 G3372I -9.316 M915S -7.398 Y537A -8.7

Y4280H -9.11 F2834P -9.293 V344E -6.965 Y665A -8.7

G3546T −9.05 Y4013P -9.216 P1645S -6.729 D456I -8.4

S2493Y −8.185 Y4013G -9.183 T453A -6.533 G328C -8.3

D2627C −8.143 P3642I -9.042 R712C -6.366 Y737T -8.229

S3264D −7.948 C2913H -8.534 C2551S -6.206 Y819A -8.167

S3195N −7.901 G2987L -8.531 L1088T -5.751 G2436C -8.138

N1576D −7.817 C3867I -8.416 V1012N -5.751 N619I -8.043

D1600C −7.804 C2984A -8.387 N2694T -5.708 G662L -8.033

G2258Y −7.746 Y3811A -8.385 H1897S -5.583 Y1759C -7.875

F3554T −7.657 G4244F -8.385 E720Y -5.09 P821A -7.731

ORF3a W193T −7.276 G187C -7.248 E1623A -5.026 Q923F -7.731

G188L −6.6 G172S -4.457 C688V -5.003 P528S -7.73

T32E -5.505 T221K -4.276 S583T -4.971 Y971L -7.502

T229T -4.276 N257Y -4.257 T984E -4.958 G940T -7.502

S162K -3.886 K235T -3.276 V2501Y -2.89 D295Y -7.419

K61L -3.6 S58I -3.276 G2510T -2.877 D842A -7.396

I62T -3.39 A103P -3.229 L342R -2.767 P970C -7.278

V256D -2.886 I47T -3.067 ORF9b P39T -8.478 L52P -7

ORF7a E41T -6 Q57R -2.629 R47E -5 I45T -5

Y97E -5.825 Q38K -2.629 L64T -4 V76F -4.87

K2Y -5.684 M19T -5.571 A29S -3.304 L14F -4

H47I -4.667 H3Y -3.071 V15T -3 N35S -3.43

R78Y -4.333 C58F -7.333 S D1199Y -10.528 C301R -9.89

T57H -4.333 C67F -7.333 N824S -10.076 N919W -9.35

V82Y -4.667 G42D −7 F318R -9.813 C301L -7.9

(Continued on following page)
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the antigenic region (Supplementary Figure S1). The other two
mutations were observed to increase the antigenic score, making
the envelope more susceptible to the adaptive immune system
(Supplementary Figure S1).

3.3.1.10 Membrane glycoprotein
Of the three deleterious mutations detected in membrane

protein, mutations at residue position 82 were found to be
significant, as they lowered the antigenic response of the
antigenic portion. As observed, the replacement of isoleucine
with threonine had a much greater effect than serine. In
addition to this mutation, threonine had a higher mutational
count of 1,864 (Supplementary Figure S1).

3.3.1.11 Nucleocapsid proteins
Deleterious mutations are presented in the context of B cell

responses. Three mutations (e.g., K248M, R203M, and P168S) were
highly significant out of 16 deleterious mutations found in the
nucleocapsid. K248M and P168S mutations occurred in antigenic

regions and contributed to lowering the immune response to non-
antigenic regions, whereas R203M occurred in the non-antigenic
portion with a high mutation count of 1,868 (Supplementary
Figure S1).

3.3.1.12 Spike (S) protein
Significant mutations detected in Sprotein were divided into

five sections (Figures 5A–E). Out of 116 mutations identified,
48 mutations were deleterious, occurring in the antigenic region
and lowering the score. Thirteen mutations, including C301R
(Figure 5A), Y423W, L533K, V539Y, V551Q (Figure 5B),
C738N, L763W, V781D (Figure 5C), V915W, V915S, L916S,
I923W, and A944R (Figure 5D) were found to drag the
antigenic portion to a non-antigenic region of the spike protein.
These mutations had the highest occurrence compared with other
mutations. For example, V539Y, C738N, and L763W mutations
were found to have occurred 16-times while A944R mutation was
found 15-times, Y423W for 13-times, V915W, L916S, and I923W
12-times and V915S occurred 3-times.

TABLE 3 (Continued) Comparison of the deleterious mutations between Omicron and Delta variants of SARS-CoV-2 in their different genes.

Gene Omicron (O, o) Delta (Δ, δ) Gene Omicron (O, o) Delta (Δ, δ)

ORF7b F19S −7 W29C −13 G496S -9.424 T478K -7.062

ORF8 C90T −10.389 I10N −5.389 Q498R -9.0665 L452R -6.066

C25V −10.389 Q23H −4.722 Y505H -8.709 R158G -5.071

G96C −6.611 F120A −4.056 N501Y −8.3515 T19R -4.075

T80Y −4.667 P70L −4.056 Q594H −7.994 P681R -3.08

H40T −3.556 R115C −3.722 N764K −7.6365 D950N -2.084

H40S −3.167 G8V −3 N856K −7.279 E484A -1.09

G77T −2.944 D119V −2.917 L981F −6.9215 E484K -0.09

FIGURE 4
Comparative view of spike mutations within (A) Omicron and (B) Delta variants (Image source: Modified from COG-UK Mutation Explorer: http://sars2.
cvr.gla.ac.uk/cog-uk).

Frontiers in Pharmacology frontiersin.org10

Islam et al. 10.3389/fphar.2023.1090717

http://sars2.cvr.gla.ac.uk/cog-uk
http://sars2.cvr.gla.ac.uk/cog-uk
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1090717


3.3.2 Omicron variant
As mutational analysis and B cell epitope prediction on delta

variant directs the most significance towards spike protein, the
analysis narrowed down to explore mutations of omicron on spike
protein too. The mutational analysis of the top 100 mutations
found most deleterious are selected for further analysis
(Supplementary Table S8). Among these A67V, G142D, N211I,
L212V, G339D, S371L, S375F, G446S, S477N, T478K,

Q493R, G496S, Y505H, D614G, N764K, Q954H, N969K, L981F
mutations found to be occurring in antigenic regions of
spike protein (Figure 6). Its is a noticeable result that
along with the other mutations of delta variant, additional
mutations G339D (Figure 6A), S477N (Figure 6B), Q493R
(Figure 6B), and Y505H (Figure 6B), occurring in RBD region
of spike protein, shows significance in the context of B cell epitope
prediction.

FIGURE 5
Comparison of the B cell epitope for spike (S) protein of SARS-CoV-2 Delta variant. (A) B cell epitope prediction score from 100 to 400 amino acids (aa) of
the S protein. (B) B cell epitope prediction score from 400 to 650 aa of the S protein. (C) B cell epitope prediction score from 720 to 900 aa of S protein. (D)
B cell epitope prediction score from 900 to 1050 aa of the S protein. (E) B cell epitope prediction score from 1150 to 1280 aa of the S protein.
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3.4 T Cell epitope prediction

CD4 T Cell immunogenicity prediction tool gives scores of
segments from the peptides which can be identified as

immunogenic based on a threshold value (50%). Most of the
significant T Cell epitope mutation scores were predicted as less
than 50 (Supplementary Table S1). An increment of the combined
score for a mutant was taken into concern as it depicts susceptibility

FIGURE 6
Comparison of the B cell epitope for spike (S) protein of SARS-CoV-2 omicron variant. (A) B cell epitope prediction score from 50 to 380 amino acids (aa)
of the S protein. (B) B cell epitope prediction score from 400 to 570 aa of the S protein. (C) B cell epitope prediction score from 600–780 to 900 aa of S
protein. (D) B cell epitope prediction score from 780 to 1000 aa of the S protein.
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towards survival into host immunogenic conditions. Envelope protein
mutations V58F and R61L were observed to have a significant score
(<50%) in the two epitopic segments (Supplementary Table S1). It was
also predicted that the combined score increase is noticeable in the
epitope region covering positions 51–65 (50% in this case). However,
mutations exhibited a decreased score in the region 56–70, which
indicated greater immunogenicity of T Cell epitopes. Among the
281 mutations that lowered B cell epitope potency, 50 mutations
were found to significantly lower T Cell epitope potency by crossing
the threshold. Therefore, the F2598N, L2948T, L3754G, F4034Q,
L4234S, and V4242W mutations were found to be the most
significant in both B- and T Cell epitope analyses (Supplementary
Table S1).

Amidst the identified 92 mutations from B cell epitope prediction,
25 were found to lower the immune potency of T cells. while
11 mutations suppressed T Cell responses. The L898D and Y894M
mutations were most significant for B- and T cells. For ORF3a, the
I35T and Y107Hmutations appeared to cross the threshold. ORF6 and
ORF8 did not showmany similarities to the expected result, suggesting
that the mutations are safe for the host. For ORF7a, ORF7b, and
ORF9b, the mutations I4T, L14S, and L52P showed the expected
significance by crossing the threshold. In T Cell epitope prediction
V911Y, V915S, V915W, L916S, A924Q, and I923W increased the
combined score over the threshold values. However, V915W, V915S,
L916S, and I923W were the most significant mutations in both
analyses (Supplementary Table S1).

As, the analysis suggested, additional six mutations of omicron
variant A67V, G142D, S371L, S373P, S375F, and L981F occur in the
positions that were T Cell responsive in the wild variant. Among the
six A67V, G142D, and L981F are seen (Supplementary Table S4) to
induce the increase of combined score. L981F is the most important in
this context as it crosses the threshold value indicating that the region
is becoming less responsive towards CD4 T cells.

3.5 Effects of missense mutations on protein
stability and protein-protein binding affinity

3.5.1 Delta variant
Physical characteristics of two mutations (V58F and R61L) of the

envelope protein were collected from the COVID-3D database.
However, both mutations were destabilizing, along with decreased
molecular flexibility (Supplementary Table S1). Both I82S and I82T
mutations of membrane protein, as well as P168S mutation of
nucleocapsid protein, are destabilizing and contribute to increased
molecular flexibility of spike protein (Supplementary Table S2). The
I35T mutation had a more destabilizing effect on ORF3a than Y107H
with increased molecular flexibility (Supplementary Table S2).

The I4T mutation in ORF7a, being destabilized and increased
molecular flexibility, showed significance in B and T Cell epitope
prediction too. The L14S mutation of ORF7b was also significant, as it
was found to be a destabilizing mutation that increases molecular
flexibility (Supplementary Table S2). A detailed graphic overview of
the molecular interactions of these mutations is shown in Figure 7.

3.5.2 Omicron variant
Except for N440K, Q493R, and Q498R, all other 12 mutations

(G339D, S371L, S373P, S375F, K417N, G446S, S477N, T478K, E484A,
G496S, N501Y, Y505H) on receptor binding domain (RBD) were

found as destabilizing indicating that these mutations are most likely
to go through further several mutations (Supplementary Table S6).
Among these, G339D (Figure 6A), S477N, and Q493R occurring in the
B cell epitope region and Y505H occurring in the non-epitope region
(Figure 6B) induce less likeliness towards B cell as suggested B cell
epitope prediction section. These destabilizing mutations are of
concern as further mutations on the same position could turn the
protein less immunogenic andmore specific toward the host receptors.

The increasing affinity of protein-protein binding (PPB)
phenomena could be an issue to focus as this may enable the spike
protein to bind host receptor with higher affinity. Therefore, in this
context, G339D, N440K, S477N, Q498R, and N501Y (increase affinity
in chain C) mutations could be used to explore in the future as each of
these mutations contributes to increasing PPB affinity (Supplementary
Table S5). It is a must to mention that both G339D (Figure 6A) and
S477N (Figure 6B) also have significant respect for the B cell epitope
prediction tool. A comparison of the molecular interaction of these
mutations with the wild variant could ease the mind with a proper
understanding of the impact of mutations on the protein-protein
interaction (Figure 8).

3.6 Machine learning validation

Logistic regression, linear discriminant analysis, and artificial
networks have similar kind of results aligned with each other in
the context of deleterious and neural mutation perspectives (Table 4).

Whereas the result from the support vector machine classifier
slightly differed from the result of rest of the models. However, all the
models ensure at least 75% accuracy compared to the deleterious tool
prediction and scenario. Therefore, in that context, it can be stated that
machine learning models can validate the results at least 75% of cases
and artificial neural network can validate the result up to 85% which is
enough to maintain a balanced error-free mutational analysis
(Table 5).

As it is evident from Tables 4, 5, the classifiers can reach, on
average, 80.5% accuracy in the initial feature space and 74.5%
sensitivity can be attained most of the time. For Logistic
Regression, Linear Discriminant analysis the classification in
transformed feature space leads to more accurate predictions. The
significance level is undoubtedly confirmed over the test (p < 0.0001).
Therefore, the deleterious mutations can be confirmed to a most
significant percentage maintaining all the machine learning validation.
The ROC curve estimated from the result section portraited a more
transparent and visually vivid explanation with precise interpretation
(Supplementary Figure S4).

4 Discussion

Since the first emergence of SARS-CoV-2 in late December 2019,
multiple genomic variants have emerged, among which the Delta
variant has been declared a ‘variant of concern’ (VOC) until
November 2021 due to distinct characteristics (Araf et al., 2022;
Mohapatra et al., 2022). The first Omicron variant (B. 1.1. 529)
was identified on 09 November 2021 from a clinical sample that
possessed comparatively higher mutations than other variants. The
VOC was attributed to higher transmissibility with a severe disease
course, decreased treatment efficacy, and many other concerning
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features by the Centers for Illness Control and Prevention (CDC)
(https://www.cdc.gov/coronavirus/2019-ncov/index.html). However,
The World Health Organization designated the Omicron variantB.
1.1.529 as a VOC on 26 November 2021. A recent study reported that
protection against the Omicron variant was only moderately conferred
by the primary COVID-19 vaccination and prior SARS-CoV-
2 infections (Chin et al., 2022). Although protection against
Omicron infection was greatly enhanced by booster dosage, it
gradually reduced with time (Andeweg et al., 2022). Mutation in
the SARS-CoV-2 is a continuous process leading to multiple variant
introductions. Though the latest SARS-CoV-2 variant’s infectivity,
prevalence, and severity are still unknown, investigations along with
genomics analysis should be an ongoing process to get every detail to
recommend efficient ways to prevent the upcoming surge (Araf et al.,
2022).

New variants of SARS-CoV-2 had been observed during the
pandemic. According to Majumdar and Niyogi. (2020), mutations
in the ORF3a protein of SARS-CoV-2infectionis associated with a

high mortality rate. Previous research has indicated that the D614G
mutation of SARS-CoV-2 plays a role in the severity and mortality
of COVID-19 patients, along with other factors, especially age and
co-morbidity (Cong et al., 2020; Dutta et al., 2020; Grubaugh et al.,
2020).

In this study, we filtered out 16,954 unique and common
mutations from 10,531 sequences for 12 strains (Table 1). These
unique mutations being present in a variant could be used to
explain why that particular variant is much more transmissible
than the previous one. For example, among 100 mutations of
omicron in spike protein around 30 mutations were found to be
unique (Supplementary Table S8) giving one of the clue that why this
variant is more transmissible than delta. However, the presence of a
destabilized common mutation in a new variant could be detrimental
for future variants as these mutations tend to mutate over time. Based
on these detrimental impacts, we characterized the mutations in
neutral and deleterious sections. The mutations that is contributing
to the detrimental impact on the host are therefore defined as

FIGURE 7
Most significant two mutations of spike proteins of delta variant with a comparative overview of molecular interaction (A) V915S-chain A-absence of
9 hydrophobic bonds, 2 polar bonds, and 1 Vander Waals bond in themutein. Chain B- the absence of 9 hydrophobic bonds, 1 polar bond, and 1 Vander Waals
bond in the mutein. Chain C- absence of 9 hydrophobic bonds, 1 polar bond, and 1 Vander Waals bond in the mutein. (B) L916S-chain A-the absence of
12 hydrophobic bonds in themutein. Chain B- absence of 17 hydrophobic bonds, increase of 3 polar bonds and 1 hydrogen bond, decrease of clash in the
mutein. Chain C- the absence of around 10 hydrophobic bonds, 1 carbonyl bond, and 1 clash in the mutein. Clashes are defined as unfavorable interactions
where atoms are too close together.
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deleterious and on the contrary, the other is defined as neutral having
no significant impact on the host. All the deleterious mutations and
their score predicted from some specific mutational analysis tools were
further validated by four machine learning models: Logistic
Regression, Linear Discriminant Analysis, Artificial Neural

Network and Support Vector Machine (Tables 4, 5). At most 85%
match score had been achieved by Artificial Neural Network while the
lowest similarity scenario was achieved by a Support Vector Machine
(Table 5). The significance level is confirmed over the test at its best
(p < 0.0001).

FIGURE 8
Most significant fivemutations of spike proteins of the omicron variant with a comparative overview ofmolecular interaction. A wild variant of G339D has
1 clash and 2 polar bonds whereas the mutein has an additional 3 polar, 1 hydrophobic and 1 van der waals bonds. Accordingly, wild variant of K417N has
6 polar, 1 ionic and 5 hydrophobic bond whereas the mutein has an additional 2 polar and 1 van der waals bond but lacks ionic and hydrophobic bonds. Wild
variant of S477N has 2 polar and 1 van der waals bond whereas the mutein lacks van der waals bond but has an additional 1 clash. Wild variant of Q493R
has 6 polar, 1 van der waals, and 3 hydrophobic bond whereas the mutein lacks van der waals bond and 2 polar bonds but has an additional 1 hydrogen bond.
Finally, Y505H has 3 polar and 1 clash which results in additional 1 polar, 1 hydrogen, 1 van der waals, and 1 hydrophobic bonds with the lackings of the clash.
Clashes are defined as unfavorable interactions where atoms are too close together.

TABLE 4 Prediction of deleterious mutation depending on four classifiers: Logistic Regression, Linear Discriminant Analysis, Artificial Neural Network, and Support
Vector Machine.

True values

Logistic
regression

Linear
discriminant
analysis

Artificial neural
network

Support vector
machine

*D *N *D *N *D *N *D *N

Predicted Values Deleterious 29 31 29 24 32 23 25 38

Neutral 6 95 6 100 3 101 10 86

*D, Deleterious mutation *N, Neutral mutation.
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Analysis of the unique mutation frequency of each variant
indicated that the Omicron and Delta variants showed more
frequent deleterious mutations. Surface glycoproteins also showed
the notable feature of a unique mutation. Overall, the Omicron variant
covered 512 unique mutations in its S protein, whereas Delta, Alpha,
Gamma, and Kappa variants covered 352, 62, 96, and 126 unique
mutations, respectively (Table 2).

The Omicron variant changes the structural pattern of the
spike protein more rapidly than expected (Figure 8), which can be
well explained by its rapidly transmissible nature. Various studies
have focused on mutations in spike proteins (Duan et al., 2020;
Huang et al., 2020; Xie et al., 2020). Therefore, mutations that
occur in the surface glycoprotein may be of concern (Islam et al.,
2020).

In addition, the neutral and deleterious mutation scores
(Supplementary Table S7) of different variants were analyzed.
Neutral or synonymous mutations were observed among all
variants (Lucas et al., 2008; Shah et al., 2020) in their spike
proteins (Table 2). The highest number of neutral mutations was
observed in the Omicron variant, whereas in Alpha, Gamma,
Epsilon, Eta, and Kappa variants, 155, 200, 118, 129, and
316 neutral mutations, respectively (Table 1). Accordingly, more
deleterious mutations were observed in the spike protein, indicating
the attempts of the spike protein to break the immune defense
system of the host (Table 2).

In this study, we took a computational approach to analyze
deleterious mutations among common and unique mutations in
the variants. Accordingly, we have compared all the mutations in
different variants by some specific markers (deleterious score, average
deleterious score, average deleterious mutations per sequence of
different variants, and mutations severely affecting the stability of
the protein). After considering all of the factors it was estimated that
the degree of deleterious mutations was far higher in the Omicron
variant compared to other variants. While Omicron variants showed
the highest mutation score pattern for both common and unique
mutations, the Delta variant showed the second-highest pattern. A
comparative analysis of the top 184 unique-deleterious mutations in
Omicron revealed it as one of the most transmissible variants
(Table 3), containing more deleterious mutations than that of
Delta. The Omicron variant showed a high degree of deleterious
mutations in S, ORF1a, ORF7a, ORF 8, and ORF 9b. This result
indicated that the effective and non-synonymous mutations scaled up
the Omicron variant to be more virulent and transmissible. The Delta
variant, originating in India had already claimed numerous lives in the
previous year, while the Omicron variant had been shown to infect
more included as hospital cases (Sigal et al., 2022).

The spike protein of the Omicron variant showed a high
frequency of deleterious mutations (Table 3). The deleterious

mutation in this protein was cross-checked using four tools
(Predict SNP, SIFT, PolyPhen2, and PROVEAN). With a high
deleterious score, the surface glycoprotein of the Omicron
variant confirmed its more virulent and transmissible nature.
The heatmap of unique mutation scores of different proteins
within different variants indicated that the Omicron variant had
the highest possible deleterious mutation in its spike protein
compared with the other variants (Figure 3). Moreover, other
protein portions of the Omicron variant showed more non-
synonymous mutations responsible for protein function
alteration and immune escape mechanisms (Figure 8 and
Supplementary Table S4).

From these observations, we can conclude that mutations of the
omicron variant in the spike protein have the greatest impact. V915S
and L916S are both destabilizing mutations that occur with a serine
residue. Both have been shown to lower the likelihood of binding with
B- (Figure 5D) and T cells (Supplementary Table S1), increase
molecular flexibility, and decrease affinity (Supplementary Table
S3). In ORF3a (I35T, Y107H), both mutations are of concern
considering B and T cells (Supplementary Figure S1), although
I35T is the most destabilized with increasing molecular flexibility
(Supplementary Table S2). ORF7a (I4T), ORF7b (L14S), and ORF9b
(L52P) proteins have one destabilizing mutation (Supplementary
Table S2) that increases the likelihood of binding with B
(Supplementary Figure S1) and T cells (Supplementary Table S1)
and also increases molecular flexibility (Supplementary Table S2).
ORF1a and ORF1b proteins give concerned mutation lists
considering both B- (Supplementary Figure S1) and T Cell
(Supplementary Table S2) epitope prediction. Mutations in
membrane protein (I82T), nucleocapsid protein (K248M and
P168S), ORF6 (I37T), and ORF8 (C37F, I10N, C102F, C102Y,
and F120A) were significant for lowering B cell epitope potency
(Supplementary Figure S1). Mutations in the envelope (V58F) were
also significant for B cell epitope prediction (Supplementary Figure
S1) while providing mixed results for T Cell epitope prediction
(increase in score in one peptide but decrease in other peptide
portion) (Supplementary Table S2) Asghar et al., 2022. These
results from our study corroborated the results of many of the
previous research.

In comparison, 10 mutations (W353R, Y421A, Y423W, C432F,
C432L, L533K, V534W, C538V, V539Y) were found to be significant
in RBD region ranging from 319 to 541 (Kumar et al., 2022) of the
spike protein of delta variant in context of B cell epitope prediction
(Figures 5A, B) whereas in omicron variant’s spike protein additional
four mutations (G339D, S477N, Q493R, and Y505H) (Figures 6A, B)
were enlisted confirming the significance level of omicron spreading.

Although the T Cell epitope prediction context does not give
much of a clue about the deleterious effects of mutations on the

TABLE 5 Comparative analysis of classification quality (accuracy) for classifiers trained without transformation (in initial feature space) and with transformation (in
transformed space from the use of a neutral network) on mutational data.

Accuracy Kappa Sensitivity Specificity Auroc Mcnemar’s test p-value

LR 0.8151 0.0694 0.8286 0.6984 0.5635 <0.001

LDA 0.8214 0.0742 0.8286 0.8065 0.5675 <0.001

ANN 0.8559 0.0498 0.9143 0.7855 0.5499 <0.001

SVM 0.7597 0.1134 0.4286 0.7968 0.7513 <0.001
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RBD region, both variant stability, and protein-protein binding
affinity gives some interesting aspect. As seen for the omicron
variant most destructive mutations that affect the protein stability
(Supplementary Table S6) reside between the residues
339–505 featuring mutations G339D, S371L, S373P, S375F,
K417N, G446S, S477N, T478K, E484A, G496S, N501Y, Y505H,
each of which are in RBD. But in the case of the delta, these effects
were observed by mutations V911Y, V915S, V915W, V916S,
I923W, and A924Q which is in the heptad region (HR1) and
ranged from 902 to 952 (Xu et al., 2004). For protein-protein
binding affinity, the most significant value is also observed between
911–924 residues in the case of the delta variant (Supplementary
Table S3) and 339–505 residues for the omicron variant
(Supplementary Table S5).

While several studies have shown that the Alpha variant is
associated with an overall higher case fatality rate than the original
lineages (Brainard et al., 2022), only a few studies indicated Delta and
Omicron variants (Challen et al., 2021; Nyberg et al., 2022). In a cohort
study in the Netherlands, van Gils et al. (2022) reported that vaccines
were less neutralized by the Omicron variant even after booster dosing.
According to Zhang et al. (2022) two-dose mRNA-1273 and
BNT162b2 vaccines were able to neutralize against Alpha, Beta,
Gamma, and Delta variants but after 6 months, antibodies declined
for BNT162b2. Both the two vaccines, mRNA-1273 and
BNT162b2 were found weakly active against Omicron for
neutralizing antibodies.

Despite few antiviral drugs and vaccines available on the market
to control the spread of infections, new SARS-CoV-2 variants
continue to emerge, making it difficult to combat without
complete immunization (M. Hossain et al., 2021; Sakib et al.,
2021). The heatmap in our study (Figure 3) revealed that the
Omicron variant had more common mutations in comparison
with other variants, where most of the common mutations of the
Omicron variant are deleterious (Table 1), causing alterations in
protein function. We analyzed the association of host immune
response with each deleterious mutation of the Omicron variant
(Figure 6) as it is a variant of concern and revealed important
outcomes. The deleterious mutations of the Omicron variant were
cross-checked and the B cell responses to the different deleterious
mutations of different proteins were analyzed (Figure 6). Most of the
deleterious mutations were responsible for the downregulation of the
immune response, especially the mutations in the ORF1a, ORF3a,
ORF7a, ORF8, and ORF9b regions (Supplementary Figure S1;
Supplementary Table S1). The spike protein had the greatest
impact on suppressing the host adaptive immune response
(Figures 5, 6; Supplementary Tables S1, S4). This indicates a
comparative graphical analysis of the special immunosuppressive
capability of all proteins, especially within the spike protein for the
Omicron variant. The specific mutations responsible for the highest
immunosuppressive nature were further cross-checked with their
respective mutation frequencies suggesting they occurred in a
repeated manner which makes them too virulent to challenge
humanity for their existence.

5 Conclusion

The presence of unique and common deleterious mutations in
delta and omicron suggests the reason for their aggressive virulence

nature which has compelled the human being to face an epidemic in
this modern era. Observing all the mutations of both delta and
omicron variants, our study concludes that among all proteins
spike protein is the most significant for both delta and omicron
variants. In the delta, the significance has been drawn towards the
heptad region as the most significant mutations are V911Y, V915S,
V915W, L916S, I923W, and A924Q. Whereas, for omicron, the
attention moves towards mutations G339D, K417N, S477N,
Q493R, and Y505H which reflects the RBD region. This explains
that although the delta variant is more deadly, omicron has its obvious
ability to spread faster.

6 Future prospects

The prediction of the epitope of B cells and T cells does not wholly
ensure the clinical conditions as it’s based on a computational method.
It’s a guide for researchers to study specific mutations. Further study
could be explored on the mutations to determine the effect on the
epitopic region. The changes in molecular interactions are needed to
study further to find out the chemistry of the mutein that increases the
sustainability of an emergence variant.
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