Covariant Time-Frequency Distributions Based on Conjugate Operators

Franz Hlawatsch and Helmut Bölcskei

Abstract— We propose classes of quadratic time-frequency distributions that retain the inner structure of Cohen's class. Each of these classes is based on a pair of "conjugate" unitary operators producing time-frequency displacements. The classes satisfy covariance and marginal properties corresponding to these operators. For each class, we define a "central member" generalizing the Wigner distribution and the Q-distribution, and we specify a transformation by which the class can be derived from Cohen's class.

I. INTRODUCTION

▼OHEN'S class with signal-independent kernels (Cohen's class hereafter) consists of all quadratic time-frequency representations (QTFR's) $T_x(t, f)$ that are *covariant* to timefrequency shifts $T_{\mathbf{S}_{\tau,\nu}x}(t,f) = T_x(t-\tau,f-\nu)$ [1]-[3]. Here, x(t) is a signal with Fourier transform X(f) = $\int_t x(t) e^{-j2\pi ft} dt$, and $\mathbf{S}_{\tau,\nu} = \mathbf{F}_{\nu} \mathbf{T}_{\tau}$ with the time-shift operator $(\mathbf{T}_{\tau} x)(t) = x(t-\tau)$ and the frequency-shift operator $(\mathbf{F}_{\nu} x)(t) = x(t) e^{j2\pi\nu t}$. The properties of the operators \mathbf{T}_{τ} and \mathbf{F}_{ν} entail a characteristic structure of Cohen's class. In this letter, this structure will be worked out in a generalized framework. We construct QTFR classes that are based on pairs of "conjugate" operators and that satisfy generalized covariance and marginal properties [4], [5]. Due to space limitations, we summarize our results without providing proofs. The concept of conjugate operators has been developed independently in [6] and [7].

II. CONJUGATE OPERATORS

We consider two operators \mathbf{A}_{α} and \mathbf{B}_{β} indexed by parameters $\alpha \in \mathcal{G}$ and $\beta \in \mathcal{G}$ with $\mathcal{G} \subseteq \mathbb{R}$. They are assumed to be *unitary* on a linear signal space $\mathcal{X} \subseteq \mathcal{L}_2(\mathbb{R})$, and to satisfy identical composition laws $\mathbf{A}_{\alpha_2}\mathbf{A}_{\alpha_1} = \mathbf{A}_{\alpha_1 \bullet \alpha_2}$ and $\mathbf{B}_{\beta_2}\mathbf{B}_{\beta_1} = \mathbf{B}_{\beta_1 \bullet \beta_2}$ where (\mathcal{G}, \bullet) is a commutative group [4], [8], [9]. The eigenvalues $\lambda^A_{\alpha,\tilde{\alpha}}$ and eigenfunctions $u^A_{\alpha}(t)$ of \mathbf{A}_{α} are defined by $(\mathbf{A}_{\alpha} u^A_{\alpha})(t) = \lambda^A_{\alpha,\tilde{\alpha}} u^A_{\alpha}(t)$; they are indexed by a "dual parameter" $\tilde{\alpha}$. The A-Fourier transform (A-FT) [8] is defined as $X_A(\tilde{\alpha}) = (\mathcal{F}_A x)(\tilde{\alpha}) \stackrel{\Delta}{=} \langle x, u^A_{\alpha} \rangle = \int_t x(t) u^{A*}_{\alpha}(t) dt$. Analogous definitions apply to $\lambda^B_{\beta,\tilde{\beta}}, u^B_{\tilde{\beta}}(t)$, and $X_B(\tilde{\beta}) = (\mathcal{F}_B x)(\tilde{\beta})$. We now assume that applying one operator to an eigenfunction of the other operator merely shifts the eigenfunction parameter [4], [5]:

Manuscript received March 29, 1995. This work was supported by FWF grants P10012-ÖPH and P10531-ÖPH. The associate editor coordinating the review of this letter and approving it for publication was Prof. A. Tewfik.

Publisher Item Identifier S 1070-9908(96)01162-5.

Definition 1. Two operators \mathbf{A}_{α} and \mathbf{B}_{β} as described above will be called *conjugate* if $\tilde{\alpha} \in \mathcal{G}$, $\tilde{\beta} \in \mathcal{G}$ and

$$\left(\mathbf{B}_{\beta} u_{\tilde{\alpha}}^{A}\right)(t) = u_{\tilde{\alpha} \bullet \beta}^{A}(t), \qquad \left(\mathbf{A}_{\alpha} u_{\tilde{\beta}}^{B}\right)(t) = u_{\tilde{\beta} \bullet \alpha}^{B}(t).$$

Two conjugate operators \mathbf{A}_{α} , \mathbf{B}_{β} can be shown to satisfy the following remarkable properties [4]:

- Their eigenvalues can be written as λ^A_{α,α̃} = e^{±j2πμ(α)μ(α̃)} and λ^B_{β,β̃} = e^{∓j2πμ(β)μ(β̃)} = (λ^A_{β,β̃})^{*}. Here, μ(g) ∈ ℝ maps (G, •) onto (ℝ, +) in the sense that μ(g₁ g₂) = μ(g₁) + μ(g₂), μ(g₀) = 0, and μ(g⁻¹) = -μ(g) where g₀ is the identity element in G and g⁻¹ denotes the group-inverse of g. In the following, we shall simply write λ^A_{α,β} = λ_{α,β} and λ^B_β = λ^{*} α.
- $\lambda_{\alpha,\beta}^{B} = \lambda_{\alpha,\beta}^{*}.$ 2) They commute up to a phase factor, $\mathbf{A}_{\alpha}\mathbf{B}_{\beta} = \lambda_{\alpha,\beta}\mathbf{B}_{\beta}\mathbf{A}_{\alpha}.$
- 3) Their eigenfunctions are related as $\langle u_{\tilde{\beta}}^{B}, u_{\tilde{\alpha}}^{A} \rangle = \lambda_{\tilde{\alpha}, \tilde{\beta}},$ $\int_{\mathcal{G}} u_{\tilde{\beta}}^{B}(t) \lambda_{\tilde{\alpha}, \tilde{\beta}}^{*} d\mu(\tilde{\beta}) = u_{\tilde{\alpha}}^{A}(t), \text{ and } \int_{\mathcal{G}} u_{\tilde{\alpha}}^{A}(t) \lambda_{\tilde{\beta}, \tilde{\alpha}} d\mu(\tilde{\alpha})$ $= u_{\tilde{\alpha}}^{B}(t), \text{ where } d\mu(g) \stackrel{\triangle}{=} |\mu'(g)| dg.$
- 4) The inner product of their kernels is $\int_{t} \int_{t'} A_{\alpha}(t,t') B_{\beta}^{*}(t,t') dt dt' = \delta(\mu(\alpha)) \quad \delta(\mu(\beta))$ where $\delta(\cdot)$ denotes the Dirac delta function (cf. [10]).
- 5) The A-FT and B-FT satisfy $(\mathcal{F}_A \mathbf{B}_{\beta} x)(\tilde{\alpha}) = (\mathcal{F}_A x)(\tilde{\alpha} \bullet \beta^{-1})$ and $(\mathcal{F}_B \mathbf{A}_{\alpha} x)(\tilde{\beta}) = (\mathcal{F}_B x)(\tilde{\beta} \bullet \alpha^{-1})$, and they are related as $X_B(\tilde{\beta}) = \int_{\mathcal{G}} X_A(\tilde{\alpha}) \lambda^*_{\tilde{\beta},\tilde{\alpha}} d\mu(\tilde{\alpha})$ and $X_A(\tilde{\alpha}) = \int_{\mathcal{G}} X_B(\tilde{\beta}) \lambda_{\tilde{\alpha},\tilde{\beta}} d\mu(\tilde{\beta})$ (cf. [6], [7]).

We now compose two conjugate operators \mathbf{A}_{α} , \mathbf{B}_{β} as $\mathbf{D}_{\theta} \stackrel{\simeq}{=} \mathbf{B}_{\beta} \mathbf{A}_{\alpha}$ where $\theta = (\alpha, \beta) \in \mathcal{G}^2$ with $\mathcal{G}^2 = \mathcal{G} \times \mathcal{G}$. It is readily shown that \mathbf{D}_{θ} is unitary on \mathcal{X} and satisfies the *composition* property [4], [11] $\mathbf{D}_{\theta_2} \mathbf{D}_{\theta_1} = \lambda_{\alpha_2,\beta_1} \mathbf{D}_{\theta_1 \circ \theta_2}$ where (\mathcal{G}^2, \circ) is the commutative group with group operation $\theta_1 \circ \theta_2 =$ $(\alpha_1, \beta_1) \circ (\alpha_2, \beta_2) = (\alpha_1 \bullet \alpha_2, \beta_1 \bullet \beta_2)$, identity element $\theta_0 = (g_0, g_0)$, and inverse elements $\theta^{-1} = (\alpha^{-1}, \beta^{-1})$. Furthermore, $\mathbf{D}_{\theta}^{-1} = \lambda_{\alpha,\beta} \mathbf{D}_{\theta^{-1}}$ and $\mathbf{D}_{\theta_0} = \mathbf{I}$ where \mathbf{I} is the identity operator on \mathcal{X} .

Examples. The shift operators \mathbf{T}_{τ} , \mathbf{F}_{ν} underlying Cohen's class are conjugate with $(\mathcal{G}, \bullet) = (\mathbf{R}, +)$, $\mu(g) = g$, eigenvalues $\lambda_{\tau,f}^T = e^{-j2\pi\tau f}$, $\lambda_{\nu,t}^F = e^{j2\pi\nu t}$, eigenfunctions $u_f^T(t) = e^{j2\pi f t}$, $u_t^F(t') = \delta(t'-t)$, and dual parameters $\tilde{\tau} = f$, $\tilde{\nu} = t$. The operators are conjugate since $(\mathbf{F}_{\nu} u_f^T)(t) = u_{f+\nu}^T(t)$ and $(\mathbf{T}_{\tau} u_t^F)(t') = u_{t+\tau}^F(t')$. The operators underlying the hyperbolic QTFR's class [12] are conjugate as well, but the operators underlying the affine class and the power classes [13]-[15] are not conjugate.

1070-9908/96\$05.00 © 1996 IEEE

The authors are with INTHFT, Vienna University of Technology, Vienna, Austria.

III. COVARIANCE AND MARGINAL PROPERTIES

Let $\nu_{\tilde{\alpha}}^{A}(t)$ and $\tau_{\tilde{\beta}}^{B}(f)$ denote the instantaneous frequency and group delay of the eigenfunctions $u_{\tilde{\alpha}}^{A}(t)$ and $u_{\tilde{\beta}}^{B}(t)$, respectively. For any $\tilde{\theta} = (\tilde{\alpha}, \tilde{\beta}) \in \mathcal{G}^{2}$, the corresponding functions $\nu_{\tilde{\alpha}}^{A}(t)$ and $\tau_{\tilde{\beta}}^{B}(f)$ are assumed¹ to intersect in a unique time-frequency (TF) point z = (t, f). Hence, $z = l(\tilde{\theta})$ where $l(\tilde{\theta})$ will be called the *localization function* (LF) of the operator \mathbf{D}_{θ} [4], [5]. The LF is constructed by solving the system of equations $\nu_{\tilde{\alpha}}^{A}(t) = f$, $\tau_{\tilde{\beta}}^{B}(f) = t$ for (t, f) = z [4], [10], [16]. It is assumed to be invertible, i.e., $z = l(\tilde{\theta}) \Leftrightarrow$ $\tilde{\theta} = l^{-1}(z)$.

The LF describes the *TF displacements* caused by \mathbf{D}_{θ} . If a signal x(t) is localized about a TF point z = (t, f), then $(\mathbf{D}_{\theta} x)(t)$ will be localized about a new TF point z' = (t', f'). Since z is the intersection² of $u_{\alpha}^{A}(t)$ and $u_{\beta}^{B}(t)$ with $(\tilde{\alpha}, \tilde{\beta}) = \tilde{\theta} = l^{-1}(z), z'$ will be the intersection of $(\mathbf{D}_{\theta} u_{\alpha}^{A})(t)$ and $(\mathbf{D}_{\theta} u_{\beta}^{B})(t)$. Due to the conjugateness of \mathbf{A}_{α} and \mathbf{B}_{β} , $(\mathbf{D}_{\theta} u_{\alpha}^{A})(t) = \lambda_{\alpha,\tilde{\alpha}} u_{\tilde{\alpha} \bullet \beta}^{A}(t)$ and $(\mathbf{D}_{\theta} u_{\beta}^{B})(t) =$ $\lambda_{\beta,\tilde{\beta} \bullet \alpha}^{*} u_{\tilde{\beta} \bullet \alpha}^{B}(t)$. Hence, $z' = l(\tilde{\alpha} \bullet \beta, \tilde{\beta} \bullet \alpha) = l(\tilde{\theta} \circ \theta^{T}) =$ $l(l^{-1}(z) \circ \theta^{T})$ with $\theta^{T} = (\beta, \alpha)$. This motivates the following definition [4], [5]:

Definition 2. A QTFR $T_x(z) = T_x(t, f)$ will be called covariant to \mathbf{D}_{θ} if

$$T_{\mathbf{D}_{\theta}x}(z) = T_x\Big(l\big(l^{-1}(z)\circ\theta^{-T}\big)\Big) \tag{1}$$

with $\theta^{-T} = (\theta^{-1})^T = (\beta^{-1}, \alpha^{-1}).$

The class of all QTFR's covariant to D_{θ} is characterized as follows (cf. [4], [11]):

Theorem 1. A QTFR $T_x(z) = T_x(t, f)$ is covariant to an operator \mathbf{D}_{θ} if and only if

$$T_x(z) = \langle x, \mathbf{H}_z^D x \rangle$$

= $\int_{t_1} \int_{t_2} x(t_1) x^*(t_2) h_z^{D*}(t_1, t_2) dt_1 dt_2$ (2)

with $\mathbf{H}_{z}^{D} = \mathbf{D}_{[l^{-1}(z)]^{T}} \mathbf{H} \mathbf{D}_{[l^{-1}(z)]^{T}}^{-1}$, i.e. $h_{z}^{D}(t_{1}, t_{2}) = \int_{t_{1}'} \int_{t_{2}'} D_{[l^{-1}(z)]^{T}}(t_{1}, t_{1}') \quad h(t_{1}', t_{2}') \quad D_{[l^{-1}(z)]^{T}}(t_{2}', t_{2}) \quad dt_{1}' dt_{2}'.$ Here, **H** is an arbitrary linear operator with kernel $h(t_{1}, t_{2})$, assumed independent of x(t), and $D_{\theta}(t_{1}, t_{2})$ and $D_{\theta}^{-1}(t_{1}, t_{2})$ are the kernels of \mathbf{D}_{θ} and \mathbf{D}_{θ}^{-1} , respectively.

For given operator \mathbf{D}_{θ} , (2) defines a class of QTFR's parameterized by the 2-D kernel $h(t_1, t_2)$ of the operator H. This class consists of *all* QTFR's satisfying the covariance (1). For $\mathbf{D}_{\theta} = \mathbf{S}_{\tau,\nu} = \mathbf{F}_{\nu} \mathbf{T}_{\tau}$, (1) becomes the TF shift covariance $T_{\mathbf{S}_{\tau,\nu}x}(t, f) = T_x(t-\tau, f-\nu)$, and (2) becomes Cohen's class where $h_z^D(t_1, t_2) = h_z^S(t_1, t_2) = h(t_1-t, t_2-t) e^{j2\pi f(t_1-t_2)}$.

¹In certain cases, this assumption holds if one uses the group delay of $u^{\alpha}_{\tilde{\alpha}}(t)$ and the instantaneous frequency of $u^{B}_{\tilde{\beta}}(t)$; here, an analogous theory can be formulated.

 ^{2}z is the intersection of $u_{\tilde{\alpha}}^{A}(t)$ and $u_{\tilde{\beta}}^{B}(t)$ in the sense that $u_{\tilde{\alpha}}^{A}(t)$ and $u_{\tilde{\beta}}^{B}(t)$ are concentrated, in the TF plane, along $\nu_{\tilde{\alpha}}^{A}(t)$ and $\tau_{\tilde{\beta}}^{B}(f)$, respectively, and z is the intersection of $\nu_{\tilde{\alpha}}^{A}(t)$ and $\tau_{\tilde{\beta}}^{B}(f)$. Besides the covariance property (1), the *marginal properties* [4], [8], [17]

$$\int_{\mathcal{G}} T_x(l(\tilde{\theta})) d\mu(\tilde{\beta}) = |X_A(\tilde{\alpha})|^2,$$

$$\int_{\mathcal{G}} T_x(l(\tilde{\theta})) d\mu(\tilde{\alpha}) = |X_B(\tilde{\beta})|^2$$
(3)

are of importance. A class of QTFR's satisfying (3) is

$$\bar{T}_x(z) = \iint_{\mathcal{G}^2} \Psi(\theta) \ A^D_x(\theta) \ \Lambda(l^{-1}(z), \theta) \ d\mu^2(\theta)$$
(4)

where $\Lambda(\tilde{\theta}, \theta) \stackrel{\triangle}{=} \lambda_{\alpha,\tilde{\alpha}} \lambda_{\beta,\tilde{\beta}}^*$, $A_x^D(\theta) \stackrel{\triangle}{=} \langle \mathbf{D}_{\theta^{-1/2}} x, \mathbf{D}_{\theta^{1/2}} x \rangle = \lambda_{\alpha,\beta}^{-1/2} \langle x, \mathbf{D}_{\theta} x \rangle$ (the "characteristic function"3), $d\mu^2(\theta) \stackrel{\triangle}{=} d\mu(\alpha) d\mu(\beta)$, and $\Psi(\theta) = \Psi(\alpha,\beta)$ is a kernel (assumed independent of x(t)) satisfying $\Psi(\alpha, g_0) = \Psi(g_0, \beta) = 1$ [4], [8], [17]. In the case of the conjugate operators \mathbf{T}_{τ} and \mathbf{F}_{ν} , the marginal properties (3) become $\int_t T_x(t, f) dt = |X(f)|^2$ and $\int_f T_x(t, f) df = |x(t)|^2$, $A_x^D(\theta) = A_x^S(\tau, \nu)$ becomes the symmetric ambiguity function [3], and the QTFR class (4) becomes Cohen's class.

So far, we have formulated the QTFR class $\mathcal{T} = \{T_x(z)\}$ in (2) comprising all QTFR's satisfying the covariance property (1), and the QTFR class $\overline{\mathcal{T}} = \{\overline{T}_x(z)\}$ in (4) related to the marginal properties (3). These classes are equivalent in the conjugate case [4], [5]:

Theorem 2. For conjugate operators $\mathbf{A}_{\alpha}, \mathbf{B}_{\beta}$, there is $\mathcal{T} = \overline{\mathcal{T}}$ or equivalently $T_x(z) \equiv \overline{T}_x(z)$ where the kernel $h(t_1, t_2)$ of $T_x(z)$ and the kernel $\Psi(\theta)$ of $\overline{T}_x(z)$ are related as $h(t_1, t_2) = \iint_{\mathcal{G}^2} \Psi^*(\theta) D_{\theta}(t_1, t_2) \lambda_{\alpha,\beta}^{1/2} d\mu^2(\theta)$.

Hence, in the conjugate case considered, the "covariance approach" and the "characteristic function approach" to the construction of QTFR classes are fully equivalent.

With $\Psi(\theta) \equiv 1$, the "central member" $W_x^D(z) \stackrel{\Delta}{=} \iint_{\mathcal{G}^2} A_x^D(\theta) \Lambda(l^{-1}(z), \theta) d\mu^2(\theta)$ of the QTFR class $\mathcal{T} = \overline{\mathcal{T}}$ is obtained [5], [18]. It can be expressed as

$$W_x^D(z) = \int_{\mathcal{G}} X_A(\tilde{\alpha} \bullet \beta^{1/2}) X_A^*(\tilde{\alpha} \bullet \beta^{-1/2}) \lambda_{\beta,\tilde{\beta}}^* d\mu(\beta)$$

=
$$\int_{\mathcal{G}} X_B(\tilde{\beta} \bullet \alpha^{1/2}) X_B^*(\tilde{\beta} \bullet \alpha^{-1/2}) \lambda_{\alpha,\tilde{\alpha}} d\mu(\alpha)$$

where $(\tilde{\alpha}, \tilde{\beta}) = l^{-1}(z)$. Any QTFR $T_x(z)$ of $\mathcal{T} = \bar{\mathcal{T}}$ can be derived from $W_x^D(z)$ as

$$T_x(z) = \iint_{\mathcal{G}^2} W^D_x(l(\tilde{\theta})) \ \psi\Big(l^{-1}(z) \circ \tilde{\theta}^{-1}\Big) \ d\mu^2(\tilde{\theta})$$

where $\psi(\tilde{\theta}) = \iint_{\mathcal{G}^2} \Psi(\theta) \Lambda(\tilde{\theta}, \theta) d\mu^2(\theta)$ [5]. In the special cases of Cohen's class and the hyperbolic class, the central member becomes the Wigner distribution and the *Q*-distribution, respectively [3], [12].

³We note that $\theta^{1/2}$ is defined by $\theta^{1/2} \circ \theta^{1/2} = \theta$, and that $\lambda_{\alpha,\beta}^{-1/2} = (e^{\pm j 2\pi} \mu(\alpha) \mu(\beta))^{-1/2} = e^{\mp j \pi} \mu(\alpha) \mu(\beta)$.

IV. TRANSFORMATION OF OPERATORS AND QTFR CLASSES

The OTFR class $\mathcal{T} = \overline{\mathcal{T}}$ can be constructed using a transformation approach, a fact linking our theory to the "warping" theory in [10], [16]. Let A_{α} and B_{β} be conjugate operators on a signal space \mathcal{X} , with group (\mathcal{G}, \bullet) , and consider the operators $\mathbf{C}_{\gamma} \stackrel{\triangle}{=} \mathbf{V} \mathbf{A}_{s(\gamma)} \mathbf{V}^{-1}$ and $\mathbf{D}_{\delta} \stackrel{\triangle}{=} \mathbf{V} \mathbf{B}_{s(\delta)} \mathbf{V}^{-1}$. Here, V is an isometric isomorphism mapping \mathcal{X} onto some other space \mathcal{Y} , and $s(\cdot)$ is a one-to-one function mapping some commutative group $(\mathcal{H}, *)$ onto (\mathcal{G}, \bullet) , such that $s(h_1 * h_2) =$ $s(h_1) \bullet s(h_2)$ for all $h_1, h_2 \in \mathcal{H}$. Assuming suitable choice of the dual parameters $\tilde{\gamma}$ and $\tilde{\delta}$, the eigenvalues/functions of \mathbf{C}_{γ} and \mathbf{D}_{δ} are $\lambda_{\gamma,\tilde{\gamma}}^C = \lambda_{s(\gamma),s(\tilde{\gamma})}^A, \ u_{\tilde{\gamma}}^C(t) = \left(\mathbf{V}u_{s(\tilde{\gamma})}^A\right)(t)$ and $\lambda_{\delta,\tilde{\delta}}^{D} = \lambda_{s(\delta),s(\tilde{\delta})}^{B}$, $u_{\tilde{\delta}}^{D}(t) = \left(\mathbf{V}u_{s(\tilde{\delta})}^{B}\right)(t)$, respectively, and \mathbf{C}_{γ} and \mathbf{D}_{δ} are *conjugate* operators on \mathcal{Y} , with group $(\mathcal{H}, *)$. Thus, isometric isomorphisms V and one-to-one group transformations $s(\cdot)$ preserve the conjugateness property of two operators. The following theorem [5] states that any QTFR class $\mathcal{T} = \overline{\mathcal{T}}$ corresponding to conjugate operators $\mathbf{A}_{\alpha}, \mathbf{B}_{\beta}$ can be derived from Cohen's class using a transformation. Similar results have been derived independently in [6], [7].

Theorem 3: Let \mathbf{A}_{α} , \mathbf{B}_{β} be conjugate with group (\mathcal{G}, \bullet) corresponding to function $\mu(\cdot)$, so that $\lambda_{\alpha,\tilde{\alpha}}^{A} = e^{\pm j 2\pi \, \mu(\alpha) \, \mu(\tilde{\alpha})}$. If $\lambda_{\alpha,\tilde{\alpha}}^{A} = e^{-j 2\pi \, \mu(\alpha) \, \mu(\tilde{\alpha})}$ (- sign), then $\mathbf{A}_{\alpha} = \mathbf{V} \mathbf{T}_{t_{r}\mu(\alpha)} \mathbf{V}^{-1}$ and $\mathbf{B}_{\beta} = \mathbf{V} \mathbf{F}_{\mu(\beta)/t_{r}} \mathbf{V}^{-1}$, where $t_{r} > 0$ is an arbitrary reference time constant, and $(\mathbf{V}_{x}^{-1})(t) = \frac{1}{\sqrt{t_{r}}} X_{B}(\mu^{-1}(\frac{t}{t_{r}}))$ with $\mu^{-1}(\cdot)$ denoting the function inverse to $\mu(\cdot)$. Furthermore, any QTFR $T_{x}(z) = T_{x}(t, f)$ of the QTFR class $\mathcal{T} = \tilde{\mathcal{T}}$ associated to \mathbf{A}_{α} , \mathbf{B}_{β} can be derived from a corresponding QTFR $C_{x}(t, f)$ of Cohen's class as

$$T_x(z) = C_{\mathbf{V}^{-1}x}\left(t_r\mu(\tilde{\beta}), \frac{\mu(\tilde{\alpha})}{t_r}\right)\Big|_{\tilde{\theta} = l^{-1}(z)}$$

where $l^{-1}(\cdot)$ is the inverse LF of $\mathbf{D}_{\theta} = \mathbf{B}_{\beta}\mathbf{A}_{\alpha}$. If $\lambda_{\alpha,\tilde{\alpha}}^{A} = e^{j2\pi\,\mu(\alpha)\,\mu(\tilde{\alpha})}$ (+ sign), then the above relations have to be replaced by $\mathbf{A}_{\alpha} = \mathbf{V}\mathbf{F}_{\mu(\alpha)/t_{r}}\mathbf{V}^{-1}$ and $\mathbf{B}_{\beta} = \mathbf{V}\mathbf{T}_{t_{r}\mu(\beta)}\mathbf{V}^{-1}$, $(\mathbf{V}_{x}^{-1})(t) = \frac{1}{\sqrt{t_{r}}}X_{A}(\mu^{-1}(\frac{t}{t_{r}}))$, and $T_{x}(z) = C_{\mathbf{V}^{-1}x}\left(t_{r}\mu(\tilde{\alpha}),\frac{\mu(\tilde{\beta})}{t_{r}}\right)\Big|_{\tilde{\theta}=l^{-1}(z)}$.

REFERENCES

- L. Cohen, *Time-Frequency Analysis*. Englewood Cliffs, NJ: Prentice-Hall, 1995.
- [2] P. Flandrin, Temps-fréquence. Paris: Hermès, 1993.
- [3] F. Hlawatsch, "Duality and classification of bilinear time-frequency signal representations," *IEEE Trans. Signal Processing*, vol. 39, no. 7, pp. 1564–1574, July 1991.
- [4] F. Hlawatsch and H. Bölcskei, "Displacement-covariant time-frequency energy distributions," *Proc. IEEE ICASSP-95*, Detroit, MI, May 1995, vol. 2, pp. 1025–1028.
- [5] _____, "Time-frequency distributions based on conjugate operators," in Proc. IEEE UK Sympos. Applications of Time-Frequency and Time-Scale Methods, Univ. of Warwick, Coventry, UK, Aug. 1995, pp. 187–193a.
- [6] A. M. Sayeed and D. L. Jones, "On the equivalence of generalized joint signal representations," *Proc. IEEE ICASSP-95*, Detroit, MI, May 1995, vol. 3, pp. 1533–1536.
- [7] _____, "Integral transforms covariant to unitary operators and their implications for joint signal representations," submitted to *IEEE Trans. Signal Processing*, Sept. 1994.
- Signal Processing, Sept. 1994.
 [8] R. G. Baraniuk, "Beyond time-frequency analysis: Energy densities in one and many dimensions," *Proc. IEEE ICASSP-94*, Adelaide, Australia, Apr. 1994, vol. 3, pp. 357–360.
- [9] W. Rudin, Fourier Analysis on Groups. New York: Wiley, 1967.
- [10] R. G. Baraniuk and D. L. Jones, "Unitary equivalence: A new twist on signal processing," *IEEE Trans. Signal Processing*, vol. 43, no. 10, pp. 2269–2282, Oct. 1995.
- [11] F. Hlawatsch and H. Bölcskei, "Unified theory of displacementcovariant time-frequency analysis," in *Proc. IEEE Int. Sympos. Time-Frequency Time-Scale Analysis*, Philadelphia, PA, Oct. 1994, pp. 524–527.
- [12] A. Papandreou, F. Hlawatsch, and G. F. Boudreaux-Bartels, "The hyperbolic class of quadratic time-frequency representations, Part I," *IEEE Trans. Signal Processing*, vol. 41, no. 12, pp. 3425–3444, Dec. 1993.
- [13] J. Bertrand and P. Bertrand, "Affine time-frequency distributions," in *Time-Frequency Signal Analysis—Methods and Applications*, ed. B. Boashash, Longman-Cheshire, Melbourne, 1992, pp. 118–140.
- [14] O. Rioul and P. Flandrin, "Time-scale energy distributions: A general class extending wavelet transforms," *IEEE Trans. Signal Processing*, vol. 40, no. 7, pp. 1746–1757, July 1992.
- [15] A. Papandreou, F. Hlawatsch, and G. F. Boudreaux-Bartels, "A unified framework for the scale covariant affine, hyperbolic, and power class quadratic time-frequency representations using generalized time shifts," in *Proc. IEEE ICASSP-95*, Detroit, MI, May 1995, vol. 2, pp. 1017–1020.
- [16] R. G. Baraniuk, "Warped perspectives in time-frequency analysis," in Proc. IEEE Int. Sympos. Time-Frequency Time-Scale Analysis, Philadelphia, PA, Oct. 1994, pp. 528–531.
- [17] L. Cohen, "The scale representation," *IEEE Trans. Signal Processing*, vol. 41, no. 12, pp. 3275–3292, Dec. 1993.
- [18] F. Hlawatsch, T. Twaroch, and H. Bölcskei, "Wigner-type a-b and time-frequency analysis based on conjugate operators," to appear in *Proc. ICASSP-96*, Atlanta, GA, May 1996.