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variant Time-Frequency Distributions 
ased on Conjugate Operators 

Franz Hlawatsch and Helmut Bolcskei 

Abstract- We propose classes of quadratic time-frequency 
distributions that retain the inner structure of Cohen’s class. 
Each of these classes is based on a pair of “conjugate” unitary 
operators producing time-frequency displacements. The classes 
satisfy covariance and marginal properties corresponding to 
these operators. For each class, we define a “central member” 
generalizing the Wigner distribution and the Q-distribution, and 
we specify a transformation by which the class can be derived 
from Cohen’s class. 

I. INTRODUCTION 

QHEN’S class with signal-independent kernels (Cohen’s 
class hereafter) consists of all quadratic time-frequency 

representations (QTFR’s) T,(t, f )  that are covariant to time- 
frequency shifts T s ~ , ~ , ( ~ ,  f )  = T,(t - T ,  f - U) [I]-[3]. 
Here, x ( t )  is a signal with Fourier transform X ( f )  = 
s, x ( t )  e- lzr f t  d t ,  and S,,, = F,T, with the time-shift 
operator (T, x) ( t )  = x ( t - ~ )  and the frequency-shift operator 
(F, x ) ( t )  = x ( t )  eJZrut.  The properties of the operators T, 
and F, entail a characteristic structure of Cohen’s class. In 
this letter, this structure will be worked out in a generalized 
framework. We construct QTFR classes that are based on 
pairs of “conjugate” operators and that satisfy generalized 
covariance and marginal properties [4], [5]. Due to space 
limitations, we summarize our results without providing 
proofs. The concept of conjugate operators has been developed 
independently in [6] and [7]. 

11. CONKTGATE OPERATORS 

We consider two operators A, and Bp  indexed by param- 
eters a E 4 and ,8 E B with 4 C IR. They are assumed 
to be unitary on a linear signal space X C: Cz(lR), and to 
satisfy identical composition laws A,,A,, = A,,,,, and 
Bp,Bp, = Bp,.p, where ( 4 , o )  is a commutative group 
[4], [SI, [9]. The eigenvalues A& and eigenfinctions u$(t) 
of A, are defined by (A,u$)(t)  = A&u$(t); they are 
indexed by a “dual parameter” 6. The A-Fourier trunsfom 
(A-FT) [SI is defined as X ~ ( i 5 )  = (FAX) (&)  = (x)u$) = 
Jt x ( t )  u$*(t) d t .  Analogous definitions apply to A i , p ,  
and X,(p) = (FB x)(p). We now assume that applying one 
operator to an eigenfunction of the other operator merely shifts 
the eigenfunction parameter [41, [51: 
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Dejnition 1. Two operators A, and Bp as described above 
will be called conjugate if i5 E 4,  f i  E G and 

( B p  U$) ( t )  = u$*p( t )  , (Aa U;) ( t )  = uf*,(t) . 

Two conjugate operators A,, B p  can be shown to satisfy 

1) Their eigenvalues can be written as A t , G  = 

Here, p(g) E IR maps (4 ,  0 )  onto (IR, +) in the sense 

p(g-  ) = -p(g) where go is the identity element 
in 4 and g-l denotes the group-inverse of g. In the 
following, we shall simply write A 6 ~ B  = A,,p and 

the following remarkable properties [4]: 

e*32rP(Q)  P(G) and AB e = F J Z r P ( P )  P ( P )  = AA . 
P,P ( P,P)* 

that $21 92) = I-L(g1) + P(gZ)> P b O )  = 07 and 

e , p  = x , p .  
2) They commute up to a phase factor, A,Bp = 

Aa,p BOA,. 
3) Their eigenfunctions are related as (ue,uf) = Aa,p, 

P 
JG $(t)  A& &@) = u%(t), and JG Ap,, d P ( 4  

J, J,, &(t,tl) B;(t,tl) d t d t l  = J ( P ( 4 )  S (P(P) )  

n 
= uF(t). where dp(g)  = lp’(g)I dg. 

4) The inner product of their kernels is 

where S(.) denotes the Dirac delta function (cf. [lo]). 
5 )  The A-FT and B-FT satisfy (&Bp x] (6) = (FA z)(h. 

P-’) and (F,Aax)(B) = ( F i ~ ) ( p o a - ’ ) ,  and they 
are related as X,(p) = J g X ~ ( 6 ) X i , & d p ( & )  and 

XA(&) = JG X B ( ~ )  A, ,p  dp(& (cf. [61, VI). 
a 

We now compose two conjugate operators A,, Bp as De = 
BOA, where Q = (a,,@ E G2 with 6’ = 4 x 4. It is readily 
shown that De is unitary on X and satisfies the composition 
property ~41, [111 DezDel = X,,,p, Deloez where ( G 2 , 0 )  
is the commutative group with group operation 81 o 0 2  = 
(a1,Pl) 0 ( Q Z , P ~ )  = (a1 0 a)a ,P~  0 Pz),  identity element 
Bo = (go,go), and inverse elements 8-1 = (a-’,P-’). 
Furthermore, Dgl = X,,pDg-l and De, = I where I is 
the identity operator on X .  

Examples. The shift operators T,, F, underlying Cohen’s 
class are conjugate with (B,  0 )  = (IR, +), p(g) = g,  eigenval- 
ues xKf = e-j’rrf, ),Et = e32rvt , eigenfunctions uT(t) = 
ejanft, uF(t’) = S(t’-  t ) ,  and dual parameters ? = f ,  17 = t. 
The operators are conjugate since (F, uT)( t )  = uT+,(t) 
and (T. ut”) (t’) = U;+, (t’). The operators underlying the 
hyperbolic QTFR’s class [12] are conjugate as well, but the 
operators underlying the afine class and the power classes 
1131-[15] are not conjugate. 
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111. COVARIANCE AND MARGINAL PROPERTIES 

Let v t ( t )  and ~ e ( f )  denote the instantaneous frequency 
and group delay of the eigenfunctions u;(t) and u j ( t ) ,  
respectively. For any 6 = (5,p) E G2, the corresponding 
functions v t ( t )  and @ ( f )  are assumed’ to intersect in a 
unique time-frequency (TF) point z = (t, f ). Hence, z = Z (8) 
where Z(8) will be called the localizationfunction (LF) of the 
operator De [4], [5]. The LF is constructed by solving the 
system of equations vg(t) = f ,  @ ( f )  = t for (t, f )  = z [4], 
[lo], [16]. It is assumed to be invertible, i.e., z = Z(e) + 

The LF describes the TF displacements caused by De. 
If a signal x ( t )  is localized about a TF point z = ( t , f ) ,  
then (Dex)(t) will be localized about a new TF point 
z’ = (t’, f’). Since z is the intersection2 of uf(t)  and uf ( t )  

with (5 ,p)  = 6 = Z-’(z), z’ will be the intersection of 
(De U$)  (t) and (De up) (t). Due to the conjugateness of 
A, and Bp, (De U$)  ( t )  = A,,& ~ & p ( t )  and (De U$, (t) = 

A;,6oa u;~,:). Hence, z’ = Z(& 0 / 3 ,p  0 a )  = Z(e o e’) = 
Z(Z-’(z) o e ) with 6” = (p, a). This motivates the following 
definition [4], [5]: 

Definition 2. A QTFR T,(z) = T,(t, f )  will be called 
covariant to De if 

P 

P 

P 

e = l - l ( z ) .  

with e-’ = (0-1)’ = (p-1,a-1).  

as follows (cf. [4], [ll]): 

operator De if and only if 

The class of all QTFR’s covariant to De is characterized 

Theorem I. A QTFR T,(z) = T,(t, f )  is covariant to an 

with Hf = D I ~ - ~ ( . ) I T H D ~ ~ , ( ~ ) ] ~ ,  i.e. h f ( t 1 , t z )  = 

Here, H is an arbitrary linear operator with kernel h(t1, tz), 
assumed independent of x( t ) ,  and De(t1,tz)  and D ; l ( t l , t z )  
are the kernels of De and Dr l ,  respectively. 

For given operator De, (2) defines a class of QTFR’s 
parameterized by the 2-D kernel h(t1,tz)  of the operator H. 
This class consists of all QTFR’s satisfying the covariance (1). 
For DO = S,,, = F,T,, (1) becomes the TF shift covariance 
T S , , , ~ ( ~ ,  f )  = T,(~-T,  f-v), and (2) becomes Cohen’s class 
where hf(t1,tz) = ht(t1,tz) = h ( t l - t , t ~ - t ) e 3 ’ ~ f ( ~ l - ~ ~ ) .  

Jt; Jt; D[Z-l(z)]T ( t l ,  ti) h(ti ,  ti) D&,]T (t12, t z )  dtidt’,. 

‘In certain cases, this assumption holds if one uses the group delay of 
u$(t)  and the instantaneous frequency of ug(t); here, an analogous theory 
can be formnlated. 

2zistheintersectionofu~(t) anduB(t)inthesensethatu%(t) P andue( t )  P 

are concentrated, in the TF plane, along v $ ( t )  and TF (f), respectively, and 
z is the intersection of v$(t)  and .F(f). 

P 

P 

P 

Besides the covariance prosperty (l), the marginal properties 
[41, ~ 1 ,  ~171 

are of importance. A class of QTFR’s satisfying (3) is 

A A 
where A($, 0) = A,,& A;,p, A:(f?) = (De-lp x,D01/2 x) = 

Ai:?/’ (x, De x) (the “characteristic f~nction”~), dp2(0)  = 
dp(a)dp(P), and Q(0) = Q(a,p) is a kernel (assumed 
independent of x( t ) )  satisfying Q(a,g0)  = Q(go,p)  = 1 [41, 
[SI, [17]. In the case of the conjugate operators T, and F,, 
the marginal properties (3) become st T,(t, f) dt = lX ( f ) I2  
and sf T,(t, f )  df = lx(t)12, A:(O) = A:(T, v) becomes the 
symmetric ambiguity function [3], and the QTFR class (4) 
becomes Cohen’s class. 

So far, we have formulatedl the QTFR class 7 = { T, (2)) in 
(2) comprising all QTFR’s satisfying the covariance property 
(l), and the QTFR class 7 = {T,(z)} in (4) related to the 
marginal properties (3). These classes are equivalent in the 
conjugate case [4], [5 ] :  

Theorem 2. For conjugate operators A,, Bo, there is 7 = 
7 or equivalently T,(z) T,(z) where the kernel 
h( t1 , t z )  of T,(z) and the k.erne1 Q(6) of T,(z) are related 

Hence, in the conjugate case considered, the “covariance 
approach” and the “characteristic function approach” to the 
construction of QTFR classes are fully equivalent. 

With Q(0) z 1, the “central member” Wg(z)  = ssG2 AF(0) A(Z-’(z),O) dp2(0 )  of the QTFR class 7 = 7 
is obtained [5], [18]. It can be expressed as 

a 

as h(tl,tZ) = ss~2 @*(e)  D,9(tl,tZ) A i $  dp2(e). 

A 

where(5,p) = Z-l(z). Any QTFR T,(z) of 7 = 7 can be 
derived from W , ( z )  as 

where $(e”) = ssG2 @(e) .A(e ,O)  dp2(e) [5]. In the spe- 
cial cases of Cohen’s class and the hyperbolic class, the 
central member becomes the: Wigner distribution and the Q- 
distribution, respectively [3], [ 121. 
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IV. TRANSFORMATION OF OPERATORS AND QTFR CLASSES 

The QTFR class I = I can be constructed using a 
transformation approach, a fact linking our theory to the 
“warping” theory in [lo], [16]. Let A, and Bp be conjugate 
operators on a signal space X, with group (G, 0 ) .  and consider 
the operators C, = VA,(,IV-~ and D6 = VB,(6)V-1. 
Here, V is an isometric isomorphism mapping X onto some 
other space y ,  and s(.) is a one-to-one function mapping some 
commutative group (X, *) onto (9, o), such that s(hl* h2) = 
s(h1) 0 s(h2) for all hl ,  h2 E 3-t. Assuming suitable choice 
of the dual parameters and 8, the eigenvalues/functions of 
C ,  and D6 are A$,,-?. = u$(t) = (Vu$i.))(t) 
and AD- = AB &(t)  = (VuB- )(t), respectively, 
and C, and Ds are conjugate operators on Y ,  with group 
(‘H, *). Thus, isometric isomorphisms V and one-to-one group 
transformations s( .) preserve the conjugateness property of 
two operators. The following theorem [5] states that any QTFR 
class 7 = 7 corresponding to conjugate operators A,, BO 
can be derived from Cohen’s class using a transformation. 
Similar results have been derived independently in [6], [7]. 

Theorem 3: Let A,, Bp be conjugate with group (9, 0 )  

corresponding to function p(.), so that At,‘ = e * ~ 2 K p ( a ) ~ ( ‘ ) .  

If AA ,,U: - = e--32K@(a)@(’) (- sign), then A, = VTtTp[,.V-’ 
and B p  = VFp(p)/t,V-l, where t, > 0 is an arbitrary 
reference time constant, and (V;’)(t) = & X ~ ( p - l ( * ) )  
with p- l ( . )  denoting the function inverse to p(-) .  Furthermore, 
any QTFR T,(z) = T,(t, f )  of the QTFR class I = 7 
associated to A,, Bp can be derived from a corresponding 
QTFR Cx( t ,  f )  of Cohen’s class as 

A A 

6,s S(S),S(S)’ 6 4 6 )  

where l-’(.) is the inverse LF of De = BOA,. If 

have to be replaced by A, = VFp(,)/tTV-l and 
Bp = VTtTP(p)V-l, (vL1)(t) = & X A ( P - ’ ( ~ ) )  , and 

X A - = ej2. r rp(a)@(’ )  (+ sign), then the above relations ,,a 
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