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PROGRAM ABSTRACT

1. Name of Program: VARIANT- a new nodal module for the DIF3D1 ,2 neutronics

code

2. Computer for which Program is Designed and Other Machine Version Packages

Available: CRAY X-MP, Sun SPARCstations, IBM RS6000 series.

3. Description of Problem Solved: VARIANT solves the multigroup steady-state

neutron diffusion and transport equations in two- and three-dimensional Cartesian

and hexagonal geometries using variational nodal methods. The transport

approximations involve complete spherical harmonic expansions up to order P5.

Eigenvalue, adjoint, fixed source, gamma heating, and criticality (concentration)

search problems are permitted. Anisotropic scattering is treated, and although

primarily designed for fast reactor problems, upscattering options are also

included.

4. Method of Solution: The neutron and transport equations are solved using a

variational nodal method 3-7 with one mesh cell (node) per hexagonal assembly

(Cartesian geometry node sizes are specified by the user). The nodal equations

are derived from a functional incorporating nodal balance, and reflective and

vacuum boundary conditions through Lagrange multipliers. Expansion of the

functional in orthogonal spatial and angular (spherical harmonics) polynomials

leads to a set of response matrix equations relating partial current moments to flux

and source moments. The equations are solved by fission source iteration in

conjunction with a coarse mesh rebalance acceleration scheme. The inner

iterations are accelerated by a partitioned matrix scheme equivalent to a synthetic

diffusion acceleration method 6

.

5. Restrictions on the Complexity of the Problems: Problem dimensions are all

variable. Enough memory must be allocated to contain all the information for at

least one energy group. Flux and source expansions of up to sixth order are

allowed. Partial currerc expansions up to second order are allowed. Angular and

scattering expansions of up to P5 are allowed. The typical limiting factor for a
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problem lies in the storage of response matrices for problems involving large

numbers of unique node types. For highly heterogeneous problems involving

thousands of different node types, calculation and storage of response matrices

represents the primary computational cost.

6. Typical Running Time: The times provided apply to a three dimensional isotropic

problem for a small LMR with 300 planar symmetry, 9 energy groups, 14 axial

mesh planes and 16 rings of hexagons. The problem consisted of 1694 nodes with

24 compositions and 216 unique node types. Each outer iteration required 70

inner iterations (5 groups required 10 inner iterations and 4 groups required 4

inner iterations). The diffusion calculation required 18 outer iterations and the

transport calculation required 19 outer iterations. The diffusion calculation

iterations used 41 CPU seconds on a CRAY X-MP/14, 47 seconds on an IBM

RS6000, and 107 seconds on a SPARC 20/50. The transport calculation for this

problem (with a P3 angular expansion) required 231 seconds on the CRAY X-

MP/14, 1046 seconds on an IBM RS6000 and 2183 seconds on a SPARC 20/50.

7. Unusual Features: Variational nodal methods incorporate a number of attractive

features. These include a standard hierarchy of space-angle approximation, well

behaved small mesh limits, and the absence of both ray effects and artificial

diagonal streaming depressions. Dimensionless parts of the response matrices

involving integrals in space and angle are pre-computed once using

MATHEMATICA for each geometry option. The results are stored in

FORTRAN data statements and used to generate response matrix sets for unique

nodes (defined by cross section and dimension data) prior to fission source

iteration. Anisotropic scattering (up to order P5) is also available. VARIANT

achieves near Monte Carlo accuracy at a fraction of the cost.

8. Related and Auxiliary Programs: VARIANT reads and wries the standard

interface files specified the Committee on Computer Code Coordination (CCCC).

9. Status: VARIANT is currently in use on the Reactor Analysis Division network

which consists of Sun SPARCstations and IBM RS6000 series workstations.

Modules for perturbation calculations, and inhomogeneous nodes are under

development.
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VARIANT: VARIational Anisotropic Nodal Transport

for Multidimensional Cartesian and Hexagonal Geometry Calculation

by

G. Palmiotti, E. E. Lewis, and C. B. Carrico

ABSTRACT

The theoretical basis, implementation information and

numerical results are presented for VARIANT (VARIational

Anisotropic Neutron Transport), a FORTRAN module of the

DIF3D code system at Argonne National Laboratory.

VARIANT employs the variational nodal method to solve

multigroup steady-state neutron diffusion and transport

problems. The variational nodal method is a hybrid finite

element method that guarantees nodal balance and permits

spatial refinement through the use of hierarchical complete

polynomial trial functions. Angular variables are expanded

with complete or simplified P1, P3 or PS spherical harmonics

approximations with full anisotropic scattering capability.

Nodal response matrices are obtained, and the within-group

equations are solved by red-black or four-color iteration,

accelerated by a partitioned matrix algorithm. Fission source

and upscatter iterations strategies follow those of DIF3D.

Two- and three-dimensional Cartesian and hexagonal

geometries are impk'nented. Forward and adjoint eigenvalue,

fixed source, gam: heating, and criticality (concentration)

search problems may be performed.
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I. INTRODUCTION

VARIANT (VARIational Anisotropic Neutron Transport) is a FORTRAN module

of the DIF3D code system1 at Argonne National Laboratory. It performs multigroup

neutron transport calculations in both Cartesian and hexagonal geometries in two and three

dimensions. Both forward and adjoint calculations may be performed. Spherical harmonics

are employed to treat the angular variables; at present Pi, P3 and P5 approximations are

implemented in all geometries and include both within-group and group.-to-group

anisotropic scattering. The spatial dependence of the flux variables is represented by

complete polynomials within coarse mesh nodes, and along internode interfaces.

Polynomials as high as fourth order for Cartesian and sixth order for hexagonal geometries

are implemented.

Solutions of the within-group neutron transport equation are obtained using the

variational nodal method, which originated at Northwestern University and has been

developed in close collaboration with Argonne National Laboratory. 2 -10 The defining

feature of the metod is a variational principle for the ever.-parity form of the transport

equation in which odd-parity Lagrange multipliers along the node interfaces guarantee

neutron conservation for each node. The well-founded variational formulation allows

computational algorithms to be derived using the classical Ritz procedure: known trial

functions in angle and in space are used to approximate the flux variables and obtain sets

of linear algebraic equations for each node, with inter-node coupling specified by

concomitant continuity conditions. For computations effectiveness a transformation of

variables is then employed to reduce the nodal equations to response matrix form.

The systematic use of the Ritz procedure allows well-defined hierarchies of

approximations in angle and in space to be generated. Diffusion or Pi theory is the natural

lowest-order angular approximation to arise from the formulation, allowing diffusion

calculations to be compared easily to higher-order spherical harmonics solutions. The

treatment of the spatial variables parallels hybrid finite element methods. The formalism

allows polynomials of increasing degrees to be used in examining spatial truncation errors

by p convergence as an alternative to the standard h convergence obtained from mesh

refinement. In addition to the standard spherical harmonic hierarchy of angular

approximations, VARIANT's variational formulation is also adapted easily to reduced

angular and simplified spherical harmonics approximations, 8'11 thus providing additional

flexibility in trade-offs between accuracy and computational cost.
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The foregoing approach contrasts significantly with those nodal methods which

were first formulated and applied with great success for diffusion theory and then extended

to transport theory. They begin with a statement of nodal balance and employ transverse

integration procedures to obtain approximate quasi-one-dimensional equations whose

solutions provide the necessary auxiliary conditions. While highly successful in obtaining

fast, coarse mesh diffusion solutions, these approaches have been confounded to some

extent by the complexity of space-angle coupling found in the transport equation.

Difficulties have been encountered in going beyond spatially flat interface assumptions and

in reconciling the angular approximation within the nodes with those along the interfaces.

Such methods provide only one space-angle "transport approximation" and allow neither

space-angle refinement to examine truncation error nor straight-forward provisions for

reconstructing intranodal flux distributions. Moreover, they provide neither the capability

to treat anisotropic scattering nor straight-forward provisions for adjoint calculations.

Discrete ordinate nodal methods circumvent some of these shortcomings by using a

standard SN hierarchy of angular approximations, but they have not been developed

sufficiently for reactor calculations to evaluate their potential. More extensive discussions

of competing nodal transport methods may be found elsewhere.12,13

As a module of the DIF3D code system, VARIANT makes extensive use of other

system modules to perform those operations which do not pertain either to the generation of

the response matrices or to the within-group solution algorithms. These include node

generation, outer iteration on the fission source and its acceleration, input of both geometry

and cross section files and output editing. Substantial modifications were made to handle

the input of anisotropic scattering cross section, which had not been a part of the original

DIF3D code.

A unique feature of VARIANT is the central role played by symbolic manipulation

in generating the nodal response matrices. For each new geometry or level of space-angle

approximation, the Ritz procedure spawns many - in most cases thousands - of

multidimensional integrals over known trial functions. Error-free evaluation of these large

arrays of integrals is intractable by hand. However they are easily put in dimensionless

form. Thus we utilize symbolic manipulation in the form of the Mathematica software

package 1 4 to automate the analytical evaluation of the integrals. The resulting arrays of

numbers are stored as DATA statements in the FORTRAN subroutines which generate the

2



response matrices. Thus the symbolic manipulation is performed only once for each new

geometry or for each new approximation in space or angle which is added to VARIANT.

Since the variational nodal equations are cast in response matrix form, VARIANT

is also able to make extensive use of existing coding in the nodal option 15 of the DIF3D.

The node numbering and other data handling capability for performing red-black or four

color response matrix iterations in Cartesian and hexagonal geometries, respectively is

retained in VARIANT. Nodal coding previously developed by R. Lawrence 15 -17 also

serves as an excellent point of departure from which to implement the partitioned matrix

algorithm developed for VARIANT to accelerate the iterative solution of the within-group

response matrix equations.

The remainder of this report is organized as follows. In Chapter 2 the variational

nodal method is described and the derivation of the response matrix equations presented.

Special attention is given to the treatment of boundary conditions and inclusion of

anisotropic scattering. In Chapter 3 the response matrix solutions algorithm and the

partitioned matrix acceleration techniques are described. In Chapters 4 and 5 respectively

numerical examples and user information are presented.
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II. THE VARIATIONAL NODAL METHOD

In this Chapter we set forth the theory behind the variational nodal method and

derive the linear algebraic equations used in the resulting multigroup response matrix

algorithm. For simplicity, in Sections II. A and B we first formulate the problem and

discretize the equations assuming isotropic scattering, and make use only of some of the

more general properties of the space-angle approximations. In Section II. C we then

examine the spherical harmonics approximation, the associated boundary conditions and

spatial approximations in more detail. In Section II. D we generalize the variational nodal

method to include both within-group and group-to-group anisotropic scattering. Finally, in

Section II. E. we present the symbolic manipulation evaluation of the integrals involved in

the coupling coefficient calculations.

II. A. The Variational Formulation

In this section we present the variational basis for the computational algorithms

which constitute the variational nodal method. We begin with the within-group transport

equation with isotropic scattering and sources:

[.V + a(r)]'(r,a) = f d'a (r)'(r,') + S(r) , (2.1)

where a is the total cross section, and as is the within-group scattering cross section; P

represents the angular flux and S the group source; r and 12 are the neutron position and

direction of travel. In the following subsections we first rewrite this equation in even parity

form, and then set forth the variational principle and its properties. The section concludes

with a demonstration of the nodal balance property of the variational principle.

II. A.) The Even-Parity Equations

The definitions of the even- and odd-parity flux components are

y(r,) = ['V(r,) + P(r,-)) (2.2)

and

x(r,)= [P(r,t) - 'P(r,-a)] (2.3)

4



respectively. To formulate the problem variationally, we first obtain the even-parity

equation with isotropic scattering and sources. This is accomplished by first evaluating Eq.

2.1 at and S2 and at -0 and then adding one half of the results to obtain

aV (r,i)+ a(r)i1(r,fl) = as(r)f dL'(r,fl') + S(r) . (2.4)

Likewise, subtracting the results yields

[-V y(r,$)+ a(r)x(r,$) =0 (2.5)

The even parity equation,

-A-SV ~0-1LV N+ ay = ash + S , (2.6)

is then obtained by using Eq. 2.5 to express the odd-parity flux in terms of W as

x = - a~10-V AV(2.7)

and then eliminating it from Eq. 2.4.

The scalar flux is written in terms of the even-parity flux as

4 = dLy , (2.8)

and the current vector in terms of the odd-parity flux as

j = du x . (2.9)

Thus combing Eqs. 2.7 and 2.9, we have

J = - afdc .u-V yu . (2.10)

On reflected boundaries, both even- and odd-parity flux components must meet the angular

symmetry conditions. Vacuum boundaries may be shown to reduce to the conditions 18

w i u, = (r,hisena saO(2.11)

where n is the outward normal on the vacuum surface.

5



H. A.2 The Nodal Variational Principle

The even-parity transport equation may be formulated as a variational principle in

terms of a global functional, F, which is a superposition of volume and surface

contributions from the v spatial nodes and y nodal interfaces comprising the problem

domain:

F11,X]=XFv[w,x] , (2.12)
V

where the contribution from node v is

F~y{, x] = f dV d[a' (Q-V y)2 + OV2 - S02 - 2S}+ 2 df dQ -niX (2.13)

In the absence of the interface term containing x , Eqs. 2.12 and 2.13 reduce to the

functional first formulated by Vladimirov 19 , and since used as the basis for many finite-

element and related approximations to the transport equation. The use of x as a Lagrange

multiplier at node interfaces is the unique feature which differentiates this functional from

previous even-parity variational formulations and gives rise to the variational nodal method.

For as we shall see, the continuity requirements of more conventional spatial finite

element approximations are relaxed, while neutron conservation is enforced on each node.

Requiring this functional to be stationary with respect to variations in W and x may

be shown to lead to the even-parity Euler-Lagrange equation within each node and the

continuity of both even and odd-parity fluxes across the interfaces. This is accomplished
as follows. 19 Suppose we let 'v be the reference even parity flux for r e V,, and xY the

corresponding odd parity flux for r e F . Next, we examine the effect of taking arbitrary

variations about the reference functions:

vy v + Sw ,reVV (2.14)

x = Y+ x . ref r (2.15)

Substituting these variations into Eq. 2.13, we may write

Fywv + S,xY + x = Fv[x.]+ F4wr,x]+ 2F4N[,x] , (2.16)

where the three terms on the right are referred to respectively as the zero, first and second

variations with respect to yi and x . The zero variation is just Eq. 2.13 evaluated with the

6



reference solution, while the second variation contains only products of the variations,

(Sy)2 and SySx . Here, the first variation is the focus of interest, since for the functional

of Eq. 2.12 to be stationary, the sum of these variations must vanish.

The contribution of nodeV~ to the first variation may be written explicitly as

SF4yN, x]= 2 dV d(a' (AV nSy)V y, + ayr,Sy] -S$ (as$, + S)}

(2.17)

+ 2f drf d -n,(xSy + ySx)

To put the first variation in more transparent form, we utilize the identity

a-' (.-V Sy)-V yV=- SyO [-V a-a-V W,+ v.(Q Sy a~1aV 'y,) , (2.18)

along with the divergence theorem,

f dVf dQA-V (&V .a-Vy,)= fdff d2-n8yi La-Vy, (2.18a)

and

f dGQ8i=& $(2.18b)

to rearrange terms and obtain

SF4yw, x]= 2 dVf dSy4 - IV a-a-V y, + ay, - -asS

(2.19)
+ 2j drf dMf-nlS aL-V iy,+ x) + 2J dJ dQA-n1 jvx

Requiring Eq. 2.12, the global functional, to be stationary is equivalent to

requiring the fist order variation to vanish:

SF[y,x]= ISF4jy,,x]==0 . (2.20)
V

Thus, the volume term from each 6F must vanish if SF is to vanish. But since S& within

each node is arbitrary, this takes place only if the bracketed term in Eq. 2.19 vanishes. But

this term and Eq. 2.6 are identical. Thus within each node, the even-parity transport

equation is the functional's Euler-Lagrange equation.

7



The terms over the internal interfaces must be treated somewhat differently.

Consider the interface between nodes V and V-'. Any such interface, designated by

r> and nY, is opposite another node interface, say fy and nly ,such that ry = and

ny ==- nY . From Eq. 2.19 we see that the contribution of this interface to the variation

of Eq. 2.20 may be written as the sum of just two integrals,

2j dJ d n, y6( a'-'V y - a'-1V V V)+ 2f dI d -n1 Sx (',v - ,') (2.21)

since the XSY terms in the second integral of Eq. 2.19 cancel. For the second term to

vanish with arbitrary variations, the even parity flux must be continuous across the

interface. Likewise, for the first term to vanish the flux gradient terms, which are seen

from Eq. 2.7 to represent the odd-parity flux, must also be continuous across the interface.

Thus the exact interface conditions are met. Finally, note that discontinuities in the cross

sections at the node interface have no effect on the foregoing argument (we would need

only to place nodal subscripts on the cross sections).

We have yet to consider the boundary conditions on the outer surface of the

problem domain. The functional is not varied on reflective boundaries. Rather, the

essential symmetry conditions are imposed on the angular distribution of even- and odd-

parity fluxes. This causes the Mx term in Eq. 2.13 to be identically equal to zero on

reflected boundaries. On vacuum boundaries, the replacement of the ix term with the

integral

drj d I nY-S2 0 2  (2.22)

yields Eq. 2.11. These are referred to as modified natural boundary conditions. We shall

return to a more detailed treatment of boundary conditions.

Before proceeding, we observe that the natural lowest-order angular approximation

with the foregoing variational formulation is the diffusion or P1 approximation. If we

require the even-parity flux to be independent of angle, yM(r,i) -> 4(r) , and likewise take

x (r,fl) -+ 3a-J(r) , the diffusion equation becomes the Euler -Lagrange equation, and

continuity of the scalar flux and normal current component across interfaces is imposed by

the Lagrange-multiplier term.

8



II. A.3 Nodal Balance

An important property of the nodal formulation is the imposition of neutron balance

over each node. Nodal balance may be demonstrated as follows. Suppose we define the

volume-averaged scalar flux for a particular node as

= $(r)dV (2.23)

and write the even parity flux as

y(r,) = + yro(r,) (2.24)

where the second term is required only to be orthogonal to 4:

Id d Q iyio(r,A) =0 . (2.25)

Likewise, we define the average source as

S=v S(r)dV (2.26)

and write

S(r) =9 + S0 (r) (2.27)

with the orthogonality condition

j S0(r)dV =0 (2.28)

If we insert Eqs. 2.24 and 2.27 into the functional given by Eq. 2.13, and utilize

the orthogonality conditions, and the definition of J, we may rearrange terms to obtain

F[W, x]= (a- -- 2V, 5 + 2- d'nJ

2 (2.29)

+ f dVj f d 4a' (1.V yo)2 + - as f diyo) + 2 df drf o-nyrox

Note that only the first three terms contain . Thus if we let -+ + 64 and require F,

to be stationary with respect to arbitrary variations 84, we obtain the nodal balance

equation

(a - as)Vv + drn,-J= Vv5 (2.30)
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which just states that absorption plus leakage must be equal to the number of source

neutrons produced in the node. This proof that nodal balance is preserved whether

'V represents the exact solution or only some approximation thereof. The approximate

case is very important, for it states that nodal neutron balance is maintained, independent

of the even- and odd-parity flux approximations which are used.

H. B. Transport Equation Discretization

In this section we utilize the foregoing variational formulation to discretize the

transport equation and obtain a set of linear equations suitable for efficient numerical

computations. Accomplishing this entails choosing a suitable set of space-angle trial

functions and employing it in a classical Ritz procedure. The equations which result from

the Ritz procedure are then cast in a form suitable for within-group response matrix

calculations. These, in turn, are embedded in a multigroup formalism. The choice of trial

functions is central to the development of accurate and computationally efficient methods.

Generally, we utilize orthogonal polynomials in space and spherical harmonics in angle.

We defer, however, a detailed discussion of trial functions and their associated boundary

conditions to Section II. D. In this section, we need specify only some of the more general

properties of the trial functions necessary to carry out the discretization.

II. B.1 The Ritz Procedure

The classical Ritz procedure consists of approximating the dependent variable or

variables in a variational principle with a set of known trial or basis functions, and

determining the unknown coefficients by requiring the functional to be stationary with

respect to variations in the coefficients. We apply the Ritz procedure by approximating the

even- and odd-parity fluxes as separable expansions of spatial and angular trial functions

with unknown coefficients. With the convention hereafter that repeated English (but not

Greek) subscripts imply summation, these take the form:

4,0)= f;(r)gm( )im r e Vv (2.31)

and

x(r,Q) = hjy~r)k. Q jay . r E ry (2.32)

Since, at present, only isotropic scattering is considered, the even-parity group source is

independent of angle and may be approximated as

10



r e Vv (2.33).

and the scalar flux as

$(r)= fi(r)8mim " r e VV (2.34)

In the foregoing equations the im and Xjy are arrays of unknown coefficients, and

the si are source coefficients. The fi(r) and h)(r) represent spatial basis functions which

are complete polynomials. They are orthonormal over the node volume and surfaces,

respectively, meeting the conditions

ffi(r)f,(r)dV = 8i, (2.35)

and

f h )r)h j,r)d~ = 8 . (2.36)

The angular basis functions, gm(Q), within the node are even-parity spherical harmonics

meeting the orthonormality conditions

f gm( 1)gm'()d = 8mm'. (2.37)

The odd-parity basis function, k 4a), along the interfaces consist of odd-order spherical

harmonics; their form is discussed further in section II. C.

Inserting the expansions of 'V, X, and S into Eq. 2.13 results in the reduced

functional

F4im, Xjnyl = imAi'!"i'm' - 2 imsim + 2X (imM Xjny (2.38)

where for convenience we have defined sim = omsi. The matrices in this equation are

defined as

A..,ma' 1PHm, + Vv ii 8smm' - (ss imsim') (2.39)

and

M = DijyEmny . (2.40)

11
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Each of the elements of these matrices is given in terms of integrals over known spatial or

angular trial functions as defined in Table I. The isotropic source moments are given by

si = { dVfi(r)S(r) (2.41)

The reduced functional may be written in a more compact form by defining ( and

xY as partitioned vectors formed from the successive columns of (im and Xjny, which are

the arrays of unknown coefficients. The resulting functional appears as

Fv[, x] = A(- 2(Ts + 21 T(My~y , (2.42)

where the partitioning of A, s and M is consistent with that of ( and Xy. We may

eliminate the sum over the surfaces by defining a single vector over the surfaces

xr = x,,x2T,---,xy ,---1 (2.42a)

and the corresponding coupling matrix

[M = ,M2,---,='Mr,---(2.42b)

Equation 2.42 may then be written as

F[(,x]= TAC - 2 Ts + 2(TMX (2.42c)

Requiring the functional to be stationary with respect to variations in jT then

yields

(= A~1 s - A~'MX . (2.43)

The variation with respect to Xy across an interface leads to the requirement that

wY = (2.44)

be continuous across each interface. Thus for the surfaces of the node we form an even-

parity vector, whose subvectors are the V., in terms of the internal trial function :

12



(2.44a)

Combining Eqs.2.43 and 2.44a, we have

Y= M Ais - MTA-'MX. (2.45)

This equation relates the even-parity flux moments on the node interfaces to the source

moments within the node and to the odd-parity flux moments on the node interfaces.

11. B.2 Multigroup Response Matrix Equations

Equation 2.45 may be viewed as a generalization of the T-1 form of a within-group

response matrix equation, which has previously been developed only for diffusion

theory. 2 1 To obtain a response matrix in conventional form, we introduce the change of

variables

j 1= = 4 x ' (2.46)

where j+ and jf are, respectively, outgoing and incoming partial current-like moments,

each integrated over the corresponding node surface I7 .. In the diffusion approximation

these reduce to the partial currents. Inverting Eq. 2.46 then yields

y= 2(j ++ j~) (2.46a)

and

x=j+- jf . (2.46b)

Combining Eqs. 2.45 and 2.46, we may then write the nodal response matrix equation in

the form

j+=Bs+Rfj~, (2.47)

where

R = [G + I]'[G - I] (2.48)

B=[G + I]'~C (2.49)

The matrices G and C are partitioned into submatrices defined for each interface. The

submatrices are defined as
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G y= MT AMy, (2.50)

and

C = MA-i (2.51)

Once the partial current moments are determined, the even-parity flux moments for the node

interior can be determined from the coefficients given by Eq. 2.43. Using Eq. 2.46b, we

have

= A~1s - 2C(j+ -) , (2.52)

where the first subvector $ of the vector ( contains the scalar flux moments.

The multigroup coupling equation for group g is given in the standard form

S =kvag4g,+ agg4g, , (2.53)

where the cross section notation is conventional. With the scalar flux expanded in each

group as indicated in Eq. 2.53, we obtain

sgi=k SmoXgvafgg'io + Ggg, g'iO (2.54)

where the subscript g is added to the source moments to denote the energy group, and we

continue to use the shorthand notation sim = Soms;. The group source moments depend

only on the corresponding scalar flux moments, (g'iO, in the higher energy groups, g'<g.

H. C The Spatial and Angular Trial Functions

We next examine the trial functions is space and angle in more detail. In choosing

the level of the spatial approximation, attention must be given to the rank of the matrix

which couples the nodal to the interface approximations. Likewise, care must be taken in

the coupling of the angular approximations if the classical spherical harmonics equations

are to be obtained.

H. C.1 Spatial Approximations

The spatial trial functions are taken to be complete polynomials both within the nodes and

along the interfaces. The internal polynomial is taken to be of a higher order than that on

the interface. In cases where there are relatively few response matrix types, there is little

14



penalty in making the interior polynomial of high enough order that it differs little for the

exact spatial solution. However, in problems with many response matrix types, the

formation of the response matrices, particularly the inversion of the A matrix, becomes

expensive as the dimension of the A matrix grows with the number of space-angle trial

functions. Therefore an important question is that of determining the lowest reasonable

order for the complete polynomial for the node interior.

An important criteria is that the D matrix must have full rank.2 2 Spatial

approximations which result in rank deficient matrices prevent convergence of the red-black

response matrix solution algorithms from being carried to completion. Round-off errors

introduce extraneous solutions which do not grow, but persist in preventing eigenvalue

calculations from being converged beyond the sixth or seventh decimal place.

II. C.2 Angular Approximations

The even- and odd-order spherical harmonics angular trial functions appearing in

the g and k vectors must be specified with care. Variational nodal methods based on

spherical harmonics expansions solve the even-angular-parity flux equations within the

nodes, while continuity between nodes is provided by even- and odd-parity flux moments.

In three-dimensional odd-order PN approximations, there are N(N+ 1)/2 coupled second-

order differential equations within each node. There are, however, N(N+1)/2 even- and

(N+1)(N+2)/2 odd-parity moments across the interfaces. Thus N+1 odd-parity continuity

conditions must be eliminated, since additional conditions would result in an over-

determined set of nodal equations. To derive general PN approximations, we turn to the

use of the Rumyantsev interface conditions.2 3 As detailed elsewhere,9 the Rumyantsev

conditions are identical to those imposed by the variational nodal functional, provided the

choice of odd-parity trial functions is restricted to those that result in a full rank matrix

coupling odd- and even-parity moments. This is accomplhted most simply by deleting the

Yn n terms from the odd-order interface expansions.9

To apply the odd-order PN approximation to the foregoing functional we expand the

even- and odd- parity fluxes in terms of the spherical harmonics defined by

Y (S2) =C Pq(i )cos(go) p = 0,1 ,2,,N
sin(qco) q =0,1,2,...,p (2.55)

15



where P ( ) are the associated Legendre polynomials. The coefficients C, are chosen

such that

f Ypq(A )Ypq,( )dQ = Spp,Sgq, , (2.56)

and we follow the convention that q>0 signifies the cosine series and q<0 the sine series.

Within the nodes, we approximate the even-parity flux by

V(r,i )= Y (Li) N(r) P=0,2,4-,N-1 (2.57)

At the interfaces we employ the odd-parity flux approximation

x(r, ) = Y ( ) () ) , p= 1,3,5..-,N (2.58)

where the angles in the odd-parity expansion are defined in terms of n, the outward normal

to the interface. A central point is the deletion of the Yp p, p=1,3,5,...N terms from the

odd-parity expansion of Eq. 2.58. These deletions yield the correct number of odd-parity

interface conditions. Equally important, it is demonstrated elsewhere that the resulting

spherical harmonics formulation satisfies the Rumyantsev interface conditions and results

in a full-rank coupling matrices between the even-order spherical harmonics expansions

within the nodes and the odd-order expansion at the interfaces. 9

We may write the variational nodal form of the spherical harmonics equations

compactly by first expressing the expansions of Eqs. 2.31 and 2.32 as vector

relationships. Define the vector of even- parity angular trial functions g(a) as

g(Z)T= YY2,y2,y20y21,22, ,.---(2.59)

and a corresponding vector consisting of the odd-parity trial functions k 40):

k(f)T= Y1OY3.2,Y3.1,Y3,Y31,Y32,Y5,- . (2.60)

The foregoing conditions are general and may be applied to any odd-order

spherical harmonics approximation. In earlier implementations of the variational nodal

16



method a somewhat different form of the interface conditions were used in P3

approximations.2 7 For the three-dimensional P3 approximation the correct number of

odd-parity conditions may be obtained by requiring continuity of the P1 ( ), P1 (1), P1 ()

and P3(p), P3(), P3 (e) moments, where p is the direction cosine perpendicular to and T
and E parallel to the interface. These moments have lead to consistently accurate numerical

results in two- and three-dimensional calculations.

The fortuitous correspondence of the number of required conditions with the

number of odd-order Legendre polynomials with direction cosines perpendicular and

parallel to the interface, however, holds only for the P3 approximation. They therefore

cannot be extended to P5 or higher approximations. Moreover they do not satisfy the

Rumyantsev conditions and result in an angular coupling matrix which is rank deficient.

Unlike rank deficiency in the spatial trial functions, there seems to be no effect on

convergence if it appears in the angular variables.

A number of other angular approximations are also be employed within the

framework of the variational nodal method to reduce the number of interface basis

functions without a commensurate loss of accuracy. The reduced8 ,11 and the simplified

spherical harmonics 8 approximations are discussed elsewhere. With any set of angular trial

functions used to approximate the transport equation, one must also specify a compatible

set of approximate boundary conditions. Both reflected and vacuum boundary conditions

are included in VARIANT. These two classes of conditions are treated somewhat

differently, since in the variational formulation, reflected conditions are "essential" and

must be imposed on the trial functions, while vacuum conditions are "modified natural" and

are incorporated into the variational format through the addition of appropriate surface

terms to the functional.

H. C.3 Reflected Boundary Conditions

With the foregoing angular trial functions, the Rumaynstev interface conditions are

satisfied by requiring y and X, to be continuous across nodal interfaces. The

components of the vector x7 are the odd-parity expansion coefficients ; along the

interface. In contrast, the vector vy is expressed by Eq. 2.44 as a linear combination of

the even-parity coefficients dim within the nodes. In expanded form these linear

combinations may be written as

y = DijyEmi ir. (2.61)
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Reflected boundary conditions are essential in the variational formulations and

therefore must be imposed directly on the y , and x, coefficients. To do this, we first

note that the index n in the A, and X coefficients corresponds to the odd-parity

spherical harmonic ordering in the vector k() as defined in Eq. 2.60.

As shown elsewhere, 9 the angular symmetry conditions for reflected boundary

conditions are satisfied if the Aji coefficients are set equal to zero for values of n

corresponding to Ypq with even q, and the x, coefficient are set to zero for terms

corresponding to odd q. Suppose we partition the vectors of interface vectors according to

even and odd values of q:

Vy W =(2.62)

Then the reflective boundary conditions are then

yI=0Xe=0 reFr (2.63)

and therefore the scalar product vanishes:

,= 0 r e F, (2.64)

This result, combined with Eq. 2.44, causes the Lagrange multiplier term MYg to

vanish for reflected boundaries from the reduced functional, Eq. 2.42 and from

subsequent equations. If Eqs. 2.63 are inserted into Eq. 2.46 for the partial current

moments, we obtain on reflected boundaries

=j , j=-jr e r (2.65)

which are the conditions employed in the response matrix solution algorithm.

II. C.4 Vacuum Boundary Conditions

Vacuum boundary conditions, in contrast to reflected conditions, are modified

natural boundary conditions. By modifying the functional with an appropriate surface term

along the vacuum, the exact condition is obtained by requiring the functional to be
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stationary along the boundary. There are three ways in which this characteristic of vacuum

boundary conditions can be incorporated into the computational algorithm.

The first is the classical approach described in Section II.A. We remove the

Lagrange multiplier integral from Eq. 2.13 along the vacuum boundary and replace it with

the integral, shown as Eq. 2.22. Then when the functional is required to be stationary with

respect to variations Syr (r,), r e [v , the correct vacuum boundary conditions results.

However, it is in terms of the gradient of the even parity flux rather than the odd-parity

Lagrange multiplier with which we would like to work. For if the Ritz procedure is applied

using this formulation, the partial current moments along the vacuum boundary are

eliminated, and the condition is incorporated into a response matrix of reduced dimension.

This approach is awkward to apply, gives rise to response matrices which are boundary-

condition-dependent and is difficult to incorporated into iterative solution algorithms for

the response matrix equations.

The foregoing difficulty is circumvented by retaining the odd-parity Lagrange

multiplier on the vacuum boundary as follows. Instead of replacing the vacuum surface

term in the functional by Eq. 2.13, we add the following term consisting of two integrals,

I = j dljdS dIn- - 2fdrfdcL n-yix (2.66)

to yield

F4N, x])= fjdV f da' '(. vy) 2 + a$2 - 2 dV4S+ 2f d f d(Q-nyx

(2.67)

dfI daQ -n - 2f dl f d(2.-ny67x

Requiring the functional to be stationary with respect to SX(r,Li) along the vacuum

boundary then yields yi (r,) = y" (r,I2) . When combined with this condition, the

variation Sy (r,) then yields the correct vacuum conditions given by Eq. 2.11.

To apply the Ritz procedure, we approximate yr" and x similarly to Eqs. 2.31 and

2.32 on the vacuum boundary,

yf"(r,Q)= f(r)g()(Im r e F (2.68)

and
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r e Fv (2.69)

Equation 2.66 then takes the form

I= imWiiyL mm'y(i'm, - 2imDijyEmnyjny, (2.70)

where elements of the L and W arrays are given in terms of the angular and spatial trial

functions respectively in Table 1. Defining

NmY= WiiyLmm' (2.71)

and utilizing the definition of M , we may rewrite Eq. 2.70 as

I = NDii''(Im' - 2(i M 'Y xjny . (2.72)

Writing this expression in vector form and adding it to the reduced functional given by Eq.

2.42 then yields

Fv[, x]= TAC - 2CTs + 2X (TMYy+2"TNyC"-2C TMyX (2.73)

Y

Requiring the reduced functional to be stationary with respect to variations Sx yields (_=

on the vacuum boundary and likewise taking 8 C yields

NY~= MYXY (2.74)

Eliminating ( between these results and solving for ( yields

= N'MYx,).. r e J,(2.75)

Then applying Eq.2.44 to obtain the even-parity surface variable, we obtain the vacuum

boundary condition:

Y = M NY Mg, (2.76)

20
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Finally, if we make the transformation of variables to the partial current moments defined

by Eq. 2.46 we have

j+ =( % MyT + I)~ (%yvNlM, - I) (2.77)

A somewhat simpler form of the vacuum boundary condition can be obtained by

applying the requirement that the reduced functional be stationary only with respect to the

angular variables. We begin again with the integrals of Eq. 2.66, but this time we expand

the even- and odd-parity fluxes only in angle, allowing arbitrary spatial variation,

W"(rfl)= g~m(A) m(r) r e [v (2.78)

x(rA)= k A)Xn4r) r E Fr (2.79)

Equation 2.66 then reduce to a difference of spatial integrals

I = f(dfmL m'- 2f dF'mEmnyXny (2.80)

Taking the appropriate variations now yields (m=(m and Lmm'y , = EmnyXny

which in matrix form may be expressed as

LL = Ex r E I7 '(2.81)

respectively. Therefore solving for ( and combing the result with Eq.2.44 yields the

vacuum boundary condition

S=ETL'1Ex. r E Fv (2.82)

It may be shown with Eq. 2.46 that on the vacuum boundaries may be expressed in terms

of the partial current moments as

= [TL-IE + I]' [TL-1E - I] j+
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Here however P, X and the corresponding partial current vectors are spatially dependent,

meaning that unlike Eq. 2.77 which imposes the condition only on the m spatial moments,

here it is imposed at each point r on the vacuum boundary. This is too strong a condition.

It may be relaxed, however, by requiring that Eq. 2.83 hold only for the spatial moments

drh r)y,(r)and dhjn, (r)xn r) and therefore for the corresponding vector

of the jji and jji,.

II. D Anisotropic Scattering

With the methodology thus far developed, we are now prepared to generalize the

variational nodal method to include anisotropic scattering. The arguments contained in the

preceding section concerning trial functions and boundary conditions remain valid. Thus

we need only to repeat the operations of Sections II. A and B in generalizing the variational

formalism and obtaining the multigroup response matrix equations with anisotropic

scattering. 7 Our starting point is the within-group transport equation with anisotropic

scattering:

[S-V + a(r)]P(r,fl) = fJ d 'a(r,- Q')P(r,Y') + S(ri) , (2.84)

where a is the total cross section, and as is the within-group anisotropic scattering cross

section; ' represents the angular flux and S the anisotropic group source.

II. D.1 Variational Formulation

To formulate the problem variationally, we must obtain the even-parity equation

with isotropic scattering and sources. This is accomplished by first using the even-parity

flux definitions in Eqs. 2.2 and 2.3 to obtain the following pair of second order equations

which are generalizations of Eq. 2.4 and 2.5

L-V x(rfi)+ a(r)y(r,)d= fd '+(r, -')y~r,A')+ S*(ri) (2.85)

and

(-V &,Q)+ a(r)X(r,f) = fd'a~(r,-X')X(r,)+ S-(r,) , (2.86)
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where we have divided the anisotropic scattering kernel into even- and odd-parity

components, a+ and a~, each of which is expanded in spherical harmonics of

corresponding parity,

a*(r,Q-.') = am(r)g(K2)gm(Q') (2.87)

Again repeated English indices denote summation, and the anisotropic cross section

components, am, do not contain a factor of 2+1 (see reference 7 for a discussion of the

expansion of the scattering kernel).Combining equations yields

x = - a-'fl.V y + a-'S- - a(- 2dM (a-)[[ X'-V y(') - S(L) , (2.88)

where for brevity we have defined

Sa = ( - a)_a)( ajmgj(c)gm((') . (2.89)

Since Eq. 2.88 is an explicit relation for x in terms of the even-parity flux and group

source, we may substitute it into Eq. 2.85 to obtain the within-group even-parity equation

with anisotropic scattering included:

-A-V a- [ -V N' - O-V a-f d'&~(-"[Y) Y -V " ,( ') + a =

(2.90)

fd'a+(a-LY)y4(Y)+ S+ - [2"Va 'S~+ a-if d ( -)S-(a') 

.

The variational functional for the even-parity transport equation may be generalized

to include anisotropic scattering terms in the foregoing equations. The global functional, F,

is a superposition of volume and surface contributions as in Eq. 2.12 With anisotropic

scattering, the contribution from node v is

F4y, x] = dVf d[a' (2.V V)2 + ay2

+ f dV {~aaf cdfg, $.V r N2J- af dQgmW - 2 dVf LdQN S (2.91)

+2j dVf dQ-V yajS + a'f dZ'&(S-')S-(')I + 2 dff d -nX.
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Requiring the functional to be stationary with respect to variations in y4 yields Eq. 2.90 as

the Euler-Lagrange equation within Vv and Eq. 2.88 along the interfaces. The continuity

of y1 across the interfaces is assured by requiring the functional to be stationary with respect

to interface variations in x, while the continuity of X is imposed by Lagrange multiplier

terms applied on nodal interfaces.

II. D.2 Within-Group Equations

A Ritz procedure employed to obtain the nodal response matrices for each energy

group parallels the isotropic case. We first approximate the even- and odd-parity fluxes as

separable expansions of spatial and angular trial functions, as in Eqs. 2.12 and 2.13. The

even- and odd-parity group sources are expanded as

S r,Q) = fi(r)g-(Qls/, r e Vv .(2.92)

where the source coefficients are given by

sm= dQgm S . (2.93)

Inserting the expansions of 4, X, and S into Eq. 2.91 results in the reduced

functional

r .mm'mm 2X(.4
Flim' Xjny] = imAii i'm, - 2imsim - 2 imT,'ii 'm'+ +2 imMXjn (2.94)

This differs from the isotropic scattering case in two respects. First, in the A matrix

additional terms augment the isotropic case to account for the within-group anisotropic

scattering:

A" = Am"' +&a~Pija-'&apvkpv"p + qviSmqmq (2.95)

Second, the even- and odd-parity source moments:

sm = fdVfi(r)f dgm(Q)*r,L) . (2.96)
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appear in conjunction with the array

TI _n(' )-UlVn m ' (2.97)

which operates on the odd-parity source. These are required to treat the anisotropic group-

to-group scattering. The U and V matrices, which do not appear with isotropic scattering,

are given in terms of the known angular and spatial trial functions. They are included in

Table I.

Aside from the division of the group source into even- and odd-parity components

the reduced functional is quite similar to its isotropic counterpart given in Eq. 2.42.

Fv[ x]= (TAC- 2(s- 2(TTs+ 2X M' (2.98)

Requiring the functional to be stationary with respect to variations in (T then yields

= A 1s+A-1~Ts--XM- A ) . (2.99)

while the variation with respect to XY across an interface again yields Eq. 2.44. Taken

together, Eqs. 2.44 and 2.99 yield a result analogous to Eq. 2.45:

Y = M A-'s++MfA~1Ts- - MX-'Mxy. (2.100)

To obtain a response matrix equations, the partial current variables defined by Eq. 2.46 are

again introduced. The result is

j+ = B+s+ + B-s- + R1 -, (2.101)

where R is defined as before by Eq. 2.48,while in the source moment terms

B+=[G + I]-IC (2.102)

and

B- = B+T . (2.103)
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For anisotropic scattering, however, A is replaced by A in the definitions of the G and C

matrices. Analogous to Eq. 2.43, the even-parity flux moments for the node interior are

given by

= A 1s+ + A~1Ts- - 2C(j+ -j-) . (2.104)

H. D.3 Multigroup Coupling Equations

In the case where only within-group anisotropic scattering is included, the odd-

parity source term vanishes and the even-parity source includes only scalar flux moments

from other energy groups. The anisotropic scattering terms thus affect only the magnitudes

of the R and B matrix elements. With group-to-group anisotropic scattering, however, the

source for group g contains both even- and odd-parity components:

S+()= kVE J dfg ,g4[) + fJd'agg,(L')wg(') (2.105)

and

S-(A)= fJdQ'G 4s')xg4') (2.106)

To eliminate the odd-parity flux from the group source terms we express the even-

and odd- parity components of the group-to-group scattering cross section in terms of the

like-parity spherical harmonics g+ and g-:

aCg,(-A') = ag'mgm(Q)gm(g') g'<g (2.107)

After a fair amount of algebraic manipulation the x flux components within the nodes can

be eliminated, and we obtain for s gim

sgim=k- SmygV fg'g'io + 0gg'm g'im (2.108)

and

sgim={ag'a-g'm)' ag'ms'im - Ti'm~g m, , (2.109)

The even-parity group source moments depend only on the corresponding flux moments,

g'im, in the higher energy groups, g'<g, and on (g'iO, the scalar flux moments. The odd-

parity source moments, however, are a function of the sg'im for g'<g as well as of the
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(g'im. Thus in multigroup calculations the sgim , as well as the (g'im must be stored for

each energy group, and the odd-parity source are computed recursively from the sources in

the higher energy groups. In the case of upscattering, the g'>g terms are taken from the

previous iteration.

II. E Evaluation of Nodal Integrals

In three dimensional geometry for a fourth order approximation the vector f has 35

elements, and for a quadratic approximation hy has 6 elements. For a full P5

approximation the nodal and interface angular trial function vectors each consist of 15

elements. The A matrix is a 275,625 (35x35x15x15) element array. For hexagonal-Z

geometry, with 8 interfaces per node, the M matrix contains 378,000 (8x35x15x15)

elements. Taking full advantage of symmetries of the coefficient submatrices, and of the

orthogonality properties of the trial functions still leaves one with a staggering number of

integrals to evaluate.

Performing these integrals by hand represents an intractable task. This problem is

overcome through the use of a symbolic manipulation program to automate the evaluation

of the cross-section independent integrals involved in generating the coefficients. To

accomplish this we must break the matrices into volume and angular cross-section

independent integrals which may be evaluated separately. The constituent parts are shown

in Table I in dimensionless form.

The individual submatrices consist of known functions of space and angle which

may be explicitly integrated. The symbolic manipulation code MATHEMATICA' 4 is used

to evaluate the integrals. The implementation of these integrals within the symbolic

manipulation code is fairly straight forward. Initially, the functional definitions of

Legendre polynomials and spherical harmonics are defined within the program. These

functions are then used to build up the vectors of trial functions. A simple nested do loop

structure then accesses the appropriate vector elements and constructs the integrand

corresponding to a particular submatrix element. The integration is then carried out over

the explicitly defined domain, and the result is stored as an element in an array

corresponding to a given submatrix. The array is written to an ASCII file which in turn is

read by a FORTRAN program which generates a FORTRAN DATA statement containing

the integrated values. The integration process is thus totally automated, and it is relatively
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simple, in principle, to generate the coefficient matrices for any desired set of trial functions

using Legendre polynomials, for other sets of orthogonal polynomials.

In Appendix A we show the MATHEMATICA scripts used to generate the orthogonal

polynomials as well as the submatrices needed to calculate the response matrix coefficients

and the flux reconstruction arrays. A three-dimensional Cartesian node is shown in Figure 1.

The local nodal coordinate system appears in Figure 2. For hexagonal geometry, Figure 3

shows the orientation of the positive directions along the sides.

Table I. Integral Arrays of Spatial and Angular Basis Functions

P! = jdV VV&f,

U;,= fdV f!V11

Dij7 = dl fh;

wii,= jd ffy

K

H"''= d( i\Aigm8m'

V"m' =f d ggm'

Emny= dS U-Egk

L mm'IY= . dS21n-n~gmgm'

V _ _

Figure 1

Three-Dimensional Cartesian Node
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Nodal Dimensions:
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-v/2 y v/2
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Figure 2

Local Nodal Coordinate System
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Figure 3

Orientation of the Positive Directions Along the Sides for Hexagonal Geometry
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III. SOLUTION ALGORITHMS

In this Chapter we present those solution algorithms which are unique to the

solution of the response matrix equations contained in VARIANT. In energy, VARIANT

is a conventional multigroup code, utilizing algorithms already existing in the DIF3D shell

of which it is a part. The energy-group equations are solved by fission source iteration in

conjunction with a coarse mesh rebalance acceleration scheme. These iterations, referred to

as outer iterations, are described in the DIF3D manual1 and in standard texts. To perform

such fission source iterations in multigroup problems, it is necessary to be able to solve for

the flux moments within a group, given the group source. In VARIANT we use a red-

black within-group response matrix algorithm to solve for the partial currents and then

reconstruct the flux moments. In Hexagonal geometry the two-color red-black scheme

must be replaced by a four color algorithm, but otherwise the logic is the same. In sections

III A. we set forth the basic red-black response matrix algorithm, but for brevity the

derivation of the four color algorithm is omitted. The inner iterations are accelerated by a

partitioned matrix scheme similar to a synthetic diffusion acceleration method.6 We

examine the matrix partition in Section III B. In Sections III C and III D respectively the

implementation of the inner and outer iterations are presented.

III.A Red-Black Response Matrix Algorithm

The response matrix equations derived in Chapter 2 are represented in a local coordinate

system centered about the node. Before we can describe the iterative solution algorithm

quantitatively we must express the coupled set of response matrix equations for all of the

nodes in the problem domain in terms of the local equations. We consider here the case of

two-dimensional X-Y geometry, before discussing the complication of hexagonal and

three-dimensional configurations.

To begin, we first divide the problem into a red-black checkerboard domain. We

may then add subscripts to Eq. 2.47 or 2.101 to indicate the K th red node

j+=R j+qm K=1,2,3, - - -Kr (3.1)

where in the case of anisotropic scattering both even- and odd-parity group sources are

contained in q.. Suppose we now define the partial current and source vectors for the red

nodes
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Jrl

,f 

qrl

Jr2 r

r= Jr3 qr= qr3  (3.2)

jFr 9 cr

and the corresponding block-diagonal global response matrices as

Rr 0 0

o Rr2 0
Rr= .0(3.3)

0 0 Rr3

We may then write the global equations for the red nodes:

ji = Rr jr + r. (3.4)

The equivalent equations for the black nodes are obtained simply by replacing r subscripts

with b in the foregoing procedure. The combined set of equations for red and black nodes

may thus be written as

j= R r+ q +. - q(3.5)

0 Rb , b

We may now complete the global notation by noting that each component of the

incoming partial current to a red cell is the identical to an outgoing partial current

component from the adjoining black cell. This may be expressed in terms of a global

connectivity matrix Hr as

jf = H, b (3.6)

for the red cells and

b= I~br Jr (3.7)

for the black. Note that the connectivity matrices will have at most one non-zero entry per

line and these will be equal to one at internal interfaces. Moreover, M = r-
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Equations 3.5 through 3.7 may now be used to obtain a single global response

matrix equation

[I-R jr'JI r (3.8)
-Rbr I Jb qb

where we have defined

Rth= Rri (3.9)

and

Rbr= Rbflbr , (3.10)

which unlike Rr and Rb are no longer block diagonal For brevity we have also deleted the

+ superscript from Jr and Jb since corresponding incoming partial currents have been

eliminated.

The standard red-black iteration may be written as a matrix splitting in which Rbr

is moved to the right side of the equation:

[ I 0 J r+1 0Re Jr r
O~rb1 Jr1 ' qr J(3.11)

-Rbr I Jb 0 0 Jb qb

which reduces to the final two-step iteration process

Jr = Rrb j1b+ qr

Jb,1 = RbrJr+1 + qb , (3.12)

where 1 is the iteration index.

III. B The Partitioned Matrix Algorithm

Since the dimensions of transport response matrices are often large, the time per red-black

iterations can be quite long. For this reason a partitioned matrix algorithm has been

developed which substantially shortens the CPU time required to converge a within-group

calculation. 6 The basic idea is to partition the response matrix between a diffusion-like

response matrix with only one term per interface and the larger number of higher-order

space-angle interface terms required to achieve accurate transport solutions. An iteration

consists of using the existing higher-order terms as a quasi-source to solve the diffusion-
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like response matrix equations. Then'a single sweep is made through the nodes to update

the higher-order moments using the new quasi-diffusion solution. The saving in using

this partitioning are often quite large. In three-dimensional P3 calculations with bilinear

spatial dependence at the interfaces, for example, there are eighteen terms per interface,

meaning that the dimension of the full response matrix is eighteen times that of the quasi-

diffusion calculation. In multigroup eigenvalue computations one such iteration per outer

iteration is usually sufficient. In fixed source problems a larger number is required.

The procedure used in deriving the partitioned matrix algorithm parallel to

considerable extent those utilized in section III. A. We First partition Eq.2.47 or 2.101 for

the x th red node to obtain an expanded form of Eq. 3.1:

jc R"R* jo q
= + , (3.13)

where j" represents the flat, normal partial currents for a given node, and jt represents

all other higher-order current moments.

We next construct global vectors for the red nodes, analogous to Eqs. 3.2

oft .i 0
Jrl Jrl qrl qrl

Jr2 Jr2 grr2 qr2

Jr = Jr3 Jr = Jr3  qr = q3 qr = qr3  (3.14)

JrK Jnc q q

The equivalent partitioned vectors may be written for each black node by substituting b for

r. We may then write a partitioned matrix equation analogous to Eq. 3.5 as
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j* 0 -Rth 0 -R j- q*

jb+ -Ro 0 -R 0 jb- q
= + (3.15)

t+ 0 -Rb 0 -R j- qt

j+ -Rr 0 -R 0 j- q

To convert from local to global numbering we must make a partition of the H4, and Ibr

matrices. These may be written as jo~= o",j*, j 7= ijt, j+~= f j*and

-= 1r J+. Using these expressions to eliminate the incoming currents from the right of

Eq. 3.8 , we obtain

I -Re 0 -R2 j* q

-00r I -R 0 .0 0
Rb I "b J =q (3.16)

0-Rh" IR, Jr q

-R2 0 -RK I j~ q~

where analogously to Eqs. 3.9 and 3.10 we have defined

R ,p-RapI ea=o,t;$= o,t (3.17)

and

Rap = RbpIHr . a= o,t; =o,t (3.18)

We are now prepared to perform a matrix splitting. We move three of the non-zero

submatrices in Eq. 3.16 to the right hand side as follows

I -Ro 0 0 jo 0 0 0 Rot jo q*

-R.roo 0 0 jb 0 0 RtO t 0 0Jbrbr Jb qb (.9
+ . (3.19)

0 -R I 0 jr 0 0 0 R, Jr q

-R 0 -Rb I jb 0 0 0 0 i q

Note that with the exception of the Ro submartix the coefficient matrix on the left is lower

triangular. This suggests that the iterative scheme created by adding the iteration index I to
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the partial currents on the right and 1+1 on those to the left. If we separate the equations

into two subsets, the iterative procedure is seen more clearly:

I -Roo jo q* 0 Rot Jr1 + 1(3.20)
-Rbr"I Jb 1 b Rbr 0 JbI

and

1L'fl+ 1 [tqtR .0 1 +1 0 iJI _0 J0 +qr 0 Rrb Jr 0 Rrb Jr
= ++ .(3.21)

-Rbr. I iqt 1Rbr 0 Jb 0 0 i

To solve for the 1+ 1 iterate of j and jb we must invert the operator on the left of

the first equation. But this matrix has a much smaller dimension than that in the second

equation; its dimension is only equal to the number of node interfaces in the problem

domain. In fact the solution is quite analogous to solving the diffusion nodal equation with

only the flat components of the current at each interface. For smaller problems it may be

economical to invert Eq.3.20 directly. In VARIANT we employ red-black iteration on Eq.

3.20 in the same manner described in III.B.

Once the 1+ 1 iterate of jr and Jb is known, the lower triangular structure on the

left of the second equation, allows the 1+ 1 iterate of jr and jb to be determined by a

single successive sweep through the red and then the black nodes. For simplified coding,

the red-black sweep of the second equation is replaced by a final sweep utilizing the entire

response matrix. This modification may be shown to have no effect provided the quasi-

diffusion calculation is converged. If the quasi-diffusion solution is not completely

converged, the inclusion of J and jl, in the final red-black sweep simply gives a slight

improvement in the convergence.

III. C Inner Iterations

In coding the calculation of the response matrices R and B of Eq. 2.47, the

LINPACK and LAPACK subroutines related to matrix inversion and matrix multiplication

have been used in order to improve computing times

Equation 2.67 is the basic equation solved by inner iteration once the source term is

known. A guessed vector j" is used to start the calculation. Boundary conditions are used
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to perform a complete sweep over the geometry and continuity conditions (outgoing partial

current through an interface set equal to the incoming partial current for the adjacent node)

are used to update the currents and perform inner iterations.

For boundary conditions the incoming partial currents on nodal surfaces which

form part of the outer boundary of the solution domain are computed in terms of the

outgoing partial current on the same surface:

J =- 0+

where the albedo y is given by:

1 - 2a

1 +2a

with "a" being the flux extrapolation constant. For the diffusion (P1) approximation we

have:

zero flux boundary condition: a = oo y = -1

zero incoming current boundary condition a = 0.5 y = 0

zero flux at extrapolated boundaries a = 0.4692 y = 0.4692

zero net current (reflective boundary condition a = 0 y = +1

Periodic boundary conditions are treated by using the computed outgoing current across a

boundary as an incoming current across the corresponding periodic boundary.

For the transport calculations, the void boundary condition is represented by Eq.

2.38. For the reflective and periodic boundary conditions, because of the spherical

harmonics expansion chosen, y is set equal to +1 or -1 according to the moment of the

partial current considered.

The total number of unknowns involved in a calculation is given by the number of

nodes multiplied by the number of sides of the nodes and by the total number of moments

of the partial current on each side. In hexagonal-Z geometry, a full P3 approximation, with

a linear approximation on each surface results in 144 unknowns (8x6x3) per node.

The unaccelerated inner iteration is performed by ordering the nodes and carrying

out a red-black (a1 ordering) sweep of the spatial grid. In hexagonal geometry, consistent

with the existing algorithm of the DIF3D nodal option, a four color ordering has been

applied.
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The number of inner iterations Mg in group g for a plane is determined in a manner

similar to that of the nodal option of DIF3D. Define:

k = 1 k h k"= Grn/D" (3.22)

where ,g" is the removal (absorption + outscattering) cross section of the node n and D"

is the diffusion coefficient.

The dimension "h" is taken equal to the lattice pitch in hexagonal geometry and to

the square root of the area in x-y geometry. The quantity kg is simply the averaged value

of the node dimension measured in diffusion lengths. The convergence rate of the iterative

procedure increases with increasing kg since the spectral radius of the Gauss-Seidel

iteration matrix decreases with increasing node size. The decreased spectral radius of the

iteration matrix is due to the decreasing value of the transmission coefficient with increasing

node size, which in turn increases the diagonal dominance of the global coefficient matrix.

In view of this observation, plus numerical results for a number of test problems, the

following simple formula is used to determine the number of inner iterations in each group

g:

5, kg > 1

Mg= 10, 0.5<kg <1

15, kg <0.5

The strategy adopted for the three-dimensional solution of Eq. 2.47 is consistent

with the one used in the original DIF3D nodal option. Instead of considering the full

matrix, R is split into the plane components and the axial ones. Then the contributions

coming from the incoming axial partial currents are included in the source term. The inner

(plane)iterations are performed in each plane to calculate the outgoing partial currents and

axial inner iterations (sweeps) are then performed with an odd-even ordering of the planes.

An algorithm, not present in the original code has been introduces to calculate the number

of axial inner iterations Max. It is similar to the planar algorithm, except that h in Eq. 3.22

is equal to the axial mesh size of the node, and the number of iterations is now selected to

be

Max={2, kg>0.5
9 4, kg< 0.5
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In coding the algorithms, much care has been taken in order to insure a maximum use of

vectorization, especially in solving Eqs. 3.20 and 3.21, which are fully and optimally

vectorized,

Several attempts have been made to take advantage of symmetry of the matrix and

the presence of a significant number of zero values in the response matrix due to the

orthogonality of the expansion functions. Unfortunately, the penalty associated with the

use of an indirect addressing and a partial loss of vectorization has discouraged such an

approach. Therefore, the full response matrices are presently used for the computation of

the partial currents.

Ill. D Outer bwations

Once the partial currents are calculated the average flux in the node may be

evaluated using Eq. 2.52. When the scalar flux moments are known , the Keff calculation

can proceed as in a standard code, by the evaluation of the fission source. Than, a new

outer iteration can be performed with the evaluation of the inner iteration process of the

required quantities group by group ( currents, fluxes, scattering sources).

An attempt was made to accelerate the convergence of the outer iterations by

introducing the Chebychev polynomial method. The already existing machinery used by

the finite difference option of DIF3D was employed. Unfortunately, the acceleration

method turned out to be ineffective, and sometimes slowed convergence. No clear reasons

have been found to explain such a behavior. The Chebychev polynomial acceleration is

independent of the algorithm used to solve the fixed source problem related to a single outer

iteration, provided that tie inner iterations are sufficiently converged. Nevertheless, it was

found that greatly increasing the number of full-matrix inner iterations has no positive

impact on the efficiency of the Chebychev method when applied to the variational nodal

method, Moreover, a similar trend has been observed when this acceleration method has

been applied to the original DIF3D nodal option. A possible explanation is related to the

presence of flux moments, and therefore of fission source moments. In this situation, the

dominance ratio calculated to evaluate the acceleration parameters will not be representative

of the entire iterative matrix because only the first moment of the fission source is used in

its determination.

For this reason it was decided to apply and adapt the algorithms already existing in

the DIF3D nodal option to accelerate the outer iterations: coarse mesh rebalancing and
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asymptotic source extrapolation. Full details of these methods are given in Ref. 15. We

only note that in calculating the leakage term of the coarse mesh rebalance equation we use

only the first moment of the partial currents because of the physical meaning of the

quantity. Slight differences are also caused by the fact that in our algorithm the partial

currents appear as integrated quantities over the node surface, whereas in the original

DIF3D nodal option, the partial currents are averaged values. The efficiency of the coarse

mesh rebalance acceleration and the asymptotic source extrapolation methods has been

verified for use in conjunction with the variational nodal method by several numerical tests.
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IV. NUMERICAL CALCULATIONS

Several numerical calculations have been carried out in order to determine the

optimum order of spatial approximation for the flux, source and leakage dependence. Based

on these results, it was decided to adopt a fourth order expansion for the flux dependence

inside the node. A linear leakage spatial dependence has been adopted together with a

quadratic expansion for the source. When using simplified spherical harmonics, a flat

approximation on the leakage term is used. Because of error compensation, this

approximation was found to give better results. Of course, all these approximation have been

left parametrized in the code in such a way that the user can change them.

IV. A Two Dimensional Results

In Table II we show the results obtained from an x-y model of the EBR-II reactor

similar to the one defined in reference 24. The model has been modified in order to enhance

the transport effect (more than 3% of AK/K). A nine group energy structure is used.

Table II. EBR-II x-y Geometry (enhanced transport effect)

Type of Cakulation K CPU Time (sec)

S4 (A) 0.99314 3.5

S8 (A) 0.99070 5.5

S8 (4A) 1.01417 24.4

S8 (16A) 1.01980 20.0

VARIANT P1 (diffusion) 0.99084 0.9 (0.3 + 0.6)

VARIANT P3 1  1.02361 2.1 (1.1 + 0.6)

VARIANT Simpl. P3  1.02409 1.2 (0.6 + 0.6)

VARIANT P3  1.02207 6.8 (4.2 + 2.6)

Reference 1.02199 

-

Tor VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU calculation
time is given in parenthesis.
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For this case we report also the SN results for different angular approximations and

different mesh sizes (the basic mesh grid A, used in the nodal calculation, has been

successively refined by dividing the mesh size by two (4A ) and four (16A )). The SN

calculations have been carried out using the highly optimized TWODANT code25 . The

reference solutions have been obtained by extrapolation of the refined TWODANT finite

difference calculations.

The SN calculations are very poor for the basic mesh grid where both S4 and S8 give

results comparable with the diffusion calculation (P1 solution of VARIANT). The S8 (16A)

calculation, which is still not as accurate as the P3 solution of VARIANT, requires a factor

3 more computation time. All calculations, as well as the ones presented in the following,

have been carried out on a RISC 6000/350 IBM workstation.

The P31 (corresponding to the reduced angular approximation) and the simplified

spherical harmonic calculations provide comparable results. They overestimate the reference

solution by less than 0.2% of AK/K, and, therefore, account for more than 90% of the total

transport effect. The simplified spherical harmonic approximation requires almost half the

time of the P31 calculation.

We also observe that for the full P3 approximation most of the time is spent in the

coupling coefficient calculation. This time is 14 times larger than that required for the

corresponding P1 (diffusion) calculation. The reason is related to the different number of

floating point operation, which increases as the square of the response matrix dimension.

In Table III we show results for an EBR-II hexagonal 2D model. In this case the total

transport effect is of the order of 1.3% AK/K. The SN calculations were carried out with the

TWOHEX26 code, using 6 triangles (A) or 24 triangles (4A) per subassembly. Recall that in

the case of the variational nodal method, only one node per subassembly is used.

Comparing computing times, we can note that the TWOHEX S4 (A ) calculation

requires 5 times more CPU time than the VARIANT P3 solution, which is in satisfactory
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Table 1I. EBR-ll Hexagonal 2-D Geometry

Type of Calculation KI CPU Time (sec)a

S4 (A) 1.03240 89.5

S8 (A) 1.03274 268.2

S8 (4A) 1.03285 1053

VARIANT P1(diffusion) 1.01882 2.6 (0.4 + 2.2)

VARIANT P31  1.03641 6.0 (3.7 + 2.3)

VARIANT Simpl. P3  1.03396 1.8 (0.8 + 1.0)

VARIANT P3  1.03326 17.6 (9.0 + 8.6)

Reference 1.03289 

-

"For VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU

calculation time is given in parenthesis.

agreement with the reference solution. Again a significant time is spent in computing the

response matrix coefficients. This is due to the presence of a large number (19) of nodes with

different compositions. The simplified spherical harmonic calculation gives a solution that is

clearly more accurate than the P31 solution and requires more than a factor 3 less time.

We also point out that, in hexagonal geometry, VARIANT provides better results than

the nodal diffusion approximation of DIF3D 15 for diffusion calculations when the solutions

from both methodologies are compared against a reference solution obtained by extrapolating

the finite difference results to a zero mesh size27 . This is related to the fact that the variational

nodal method employs a complete polynomial expansion to describe the flux intranodal spatial

dependence, whereas in the case of the DIF3D nodal option, cross terms are neglected. This

is not the case in Cartesian geometry where the two methods give almost identical results for

diffusion calculation when similar approximations are used for the flux, source and leakage

spatial dependence.
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IV. B Three Dimensional Results

The Takeda benchmark28 model 2 has been used totest the performance of VARIANT

in three dimensional Cartesian geometry. This model is representative of a small FBR reactor

and employs a four group energy structure. Results are shown in Table IV. The reference

solution is provided by the ANL VIM29 Monte Carlo code using the same multigroup cross

section set. Table IV also exhibits results (from reference 28) of SN solutions calculated by

the THREEDANT code25

.

Table IV. Takeda Benchmark Model 2 x-y-z Geometry Small FBR

Type of Control Rod CPU Time

Calculation K, Rod Out K. Rod In Worth (sec)

Monte Carlo VIM 0.97344 0.95988 0.1451

0.00036 0.00038 0.00057 ~8 hrs

Threedant S8 0.97348 0.95931 0.1517 

-

DIF3D Nodal

Transport Option 0.97138 0.95701 0.1546 11.7 (0.5 + 11.2)

VARIANT P1  0.96913 0.95430 0.1604 44.5 (0.3 + 44.2)

VARIANT P31  0.97228 0.95814 0.1518 46.9 (1.6 + 45.3)

VARIANT

Simple. P3  0.97429 0.96028 0.1497 28.7 (0.6 + 18.1)

VARIANT Pa 0.97349 0.95942 0.1506 562 (25 + 537)

'For VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU

calculation time is given in parenthesis.

The P3 VARIANT results are very similar to the S8 calculations. Both solutions are

in very good agreement with the reference Monte Carlo calculation. Of course, the CPU time

required by VARIANT is more than one order of magnitude less than that needed by VIM.

The simplified spherical harmonic solution is again more accurate than the P31

solution and requires even less CPU time than the diffusion solution. For comparison, we

have also displayed the results obtained by the transport option of the DIF3D nodal
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calculation. Altough the time required is less than that for the simplified spherical harmonics,

we observe that the latter solution provides better results for both Keff and control rod worth.

Finally to test the code in 3D hexagonal geometry, we have considered the simplified

model of EBR-II provided in reference 24 (see figure 4). Results are provided in Table V.

Table V. EBR-II Hexagonal-z Geometry

Type of Calculation T KI CPU Time (sec)a

Monte Carlo VIM 1.20423 0.00045 ~ 4 days

VARIANT P1  1.17268 73(2+71)

VARIANT P31  1.19523 213 (42 + 171)

VARIANT Simpl. P3  1.20292 47 (5 + 42)

VARIANT P 1.20349 1542 (308 + 1234

aFor VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU

calculation time is given in parenthesis.

The P3 variational nodal eigenvalue is within a few tenths of one percent of the VIM

Monte Carlo code result. We note that the VIM calculation required a few days of CPU time

against the 26 minutes required by VARIANT.

The simplified spherical harmonics calculation provides far superior results to the P3

,

solution (96% of the total transport effect against 72%) with a CPU time that again is lower

than the diffusion calculation. This is mainly due to the lower number of outer iterations

required to converge. The number of unknowns are the same for the diffusion and the

simplified harmonic approximation (16 per node).

In Table VI the comparison for the hexagonal row axially integrated power obtained

is shown. As we can see, the discrepancy between the P3 and the VIM values does not exceed

0.5%. The diffusion solution has discrepancies of the order of 5% in the reflector and blanket

regions, whereas the maximum error for the simplified spherical harmonic calculation is of the

order of 1 % and occurs in the first ring of the reflector region.
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Figure 4

EBR-II Representation for a Three Dimensional Criticality Problem
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Table VI. EBR-II Ring Axially Integrated Power (MWth)

46

Ring VIM VARIANT P' VARIANT SimpI. P J VARIANT P'

1 3.440 3.395 (-1.31) 3.425 (-0.44) 3.441 (0.03)

2 3.385 3.343 (-1.25) 3.373 (-0.35) 3.387 (0.06)

3 6.500 6.431 (-1.06) 6.486 (-0.22) 6.508 (0.12)

4 9.084 9.027 (-0.63) 9.098 (0.15) 9.117 (0.36)

5 10.975 10.938 (-0.34) 11.009 (0.31) 11.010 (0.32)

6 12.089 12.065 (-0.20) 12.089 (0.00) 12.067 (-0.78)

7 12.457 12.606 (1.20) 12.432 (-0.20) 12.400 (-0.46)

8 14.435 x 10-2 15.166 x 10.2 (5.06) 14.587 x 10.2 (1.05) 14.492 x 10-2 (-0.39)

9 14.65 x 10-2  15.40 x 10.2 (5.17) 14.763 x 10-2 (0.76) 14.676 x 10-2 (0.17)

10 13.112 x 10.2 13.816 x 10-2 (5.37) 13.222 x 10-2 (0.84) 13.143 x 10-2 (0.24)

11 95.30 x 10'3 10.058 x 10.2 (5.53) 96.098 x 10'3 (0.83) 95.595 x 10'3 (0.30)

12 64.846 x 10.2 68.179 x 10-2 (5.14) 65.316 x 10.2 (0.72) 65.158 x 10-2 (0.48)

13 37.505 x 10.2 39.165 x 10-2 (4.43) 37.627 x 10.2 (0.33) 37.614 x 10.2 (0.29)

14 21.972 x 10.2 22.829 x 10.2 (3.90) 21.960 x 10-2 (-0.05) 21.984 x 102 (0.05)

aDiscrepancy (in percent) with respect to the reference VIM value is given in parenthesis.



V. USER INFORMATION

VARIANT can be executed as an option in a standard DIF3D calculation. This

section highlights information of particular interest to users of the variational nodal option and

supplements the documentation provided in references 1 and 15 and the description of the

BCD input files.

V. A Data Management

In order to minimize differences with the original coding of DIF3D, data management

has been kept with the same strategy of two large blocks of work space (fast and extended

core memory) even as two-level computers are becoming obsolete. The philosophy of

containment stays the same: extended core memory contains arrays which can be stored on

external data files.

Because a large memory size is required to store nodal coupling coefficients, a special

strategy has been introduced for their management. First, all the matrices involved in the

response matrix equation and in the flux and source evaluations are mapped for unique non-

zero values. This mapping is done before the total memory requirement is evaluated and

demands a sizable quantity of memory (of the order of the one normally required in the fast

core memory array).

If the memory allocated by the user for the extended core array is sufficient, matrices

are used as they are; otherwise they are compressed and only unique elements are stored

along with their location in the original matrices. Of course, with the compressed matrices

computation time during outer iterations is penalized because of the use of indirect

addressing.

Due to the methodology of modeling anisotropic scattering in VARIANT, a new

COMPXS file structure has been implemented. The modification has been made in order to
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preserve compatibility with already existing codes that use COMPXS files. The description

of the new file structure is presented in Appendix B.

To enhance the performance on vector machines a new ordering of the partial current

moments has been adopted. This is reflected in the new specification of the NHFLUX file

structure shown in Appendix C. Contrary to the COMPXS file, the NHFLUX generated by

VARIANT will be incompatible with existing codes that use partial currents with moments

greater than first.

Recall that in order to reduce storage and computation time, the flux in VARIANT

is evaluated, using Eq. 2.52 -- only up to the number of moments of the source expansion.

This is done because only these moments of the flux are needed to compute the new outer

iteration source distribution. Therefore, only these moments are stored on the NHFLUX file.

In the case of the anisotropic calculation, the even-parity angular flux moments are also

evaluated and stored on NHFLUX, because they are needed in the anisotropic source

computation.

A post processor program, that reads the flux moments from the NHFLUX file,

reconstructs the flux locally at designated points of specified subassemblies and computes the

related reaction rates, will be soon made available.

V. B Variational Nodal Parameters

A new card 12 of the BCD input file A.DIF3D (see Appendix D) has been introduced

to specify the nodal variational parameters. Some comments on their meaning and use follow.

V. B.1 Nodal Spatial Approximation

Default values for within the node flux spatial approximations are fourth order in

Cartesian geometry and sixth order in hexagonal geometry. Linear dependence of the leakage
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on the surface of the node is also recommended. These values eliminate rank deficiency from

the nodal coupling coefficient matrices.22

Figure 5 shows the required internal order for a given surface approximation in order

to insure rank sufficiency. For a linear approximation of the spatial leakage slope, a third

order intra nodal flux expansion is needed for Cartesian geometry, and a sixth order expansion

is needed for hexagonal geometry. For a very tight convergence criteria (e.g., -107), rank

deficiency will result in a lack of convergence. For relaxed convergence criteria (e.g., -10),

third order for Cartesian and fourth order for hexagonal geometry can be safely used in

connection with linear approximation on the leakage term. For three-dimensional hexagonal

geometries, the axial expansion is kept to fourth order in order to minimize the size of the

response matrices while insuring rank sufficiency.

The order of the default source expansion polynomial is taken equal to one greater

than the surface approximation. It has been found that in some cases (especially for thermal

reactor configurations) an order equal to that used for the intra-nodal flux is necessary to

insure good power distribution results.

V. B.2 Angular Approximations

Specification of the P1 approximation for both flux and leakage will provide diffusion

results. Using P3 for the flux and P1 for the leakage will trigger the use of the reduced

angular approximation. With a negative value for the angular approximation variable input,

the code will use the corresponding simplified spherical harmonics. Because of error

compensation, the best results in this case are most often obtained with a flat (0)

approximation for the spatial dependence of the leakage on the surface of the node. The flux

angular expansion cannot be lower than the anisotropic order NPNO specified later.
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V. B.3 Asymptotic Extrapolation Sentinel

A new option, (asymptotic extrapolation) has been introduced. This option is invoked

by setting the sentinel to -1. In this case only the fission sources are accelerated and no extra

space is needed to store previous outer iteration partial currents. No significant penalty has

been observed in the performance of the acceleration using this option.

V. B.4 Anisotropic Scattering Order (NPNO) and Extended Transport

Approximation (NXTR)

No anisotropic order greater than either MAXORD (scattering order of cross sections

on the COMPXS file) or the flux angular expansion is allowed.

An option (NEXTR parameter) to invoke the use of the total cross section, transport

cross section, or extended transport approximation is described below.

NEXTR set to a negative value is intended solely to perform comparison calculation

and should not be used for any other purpose. This setting forces the use of the zero moment

of the total cross section for isotropic calculations, and the use of the transport cross section

for anisotropic calculations.

The default value of 0 is strongly recommended for NEXTR. With this value the

transport cross section is used for isotropic calculation. For the anisotropic calculations the

total cross section is used unless the value of NPNO is lower than MAXORD. In this case

the BHS approximation30 is applied (the extended transport approximation corrects the total

cross section by taking into account the NPNO+1 order of the anisotropic scattering).

If NEXTR is specified to set at a value N greater than NPNO, an extended transport

approximation is applied from NPNO+1 to NXTR. Be aware that if NXTR is greater than

NPNO+1, this correction is done at the risk of the user; there is no proof that such correction

will give reasonable results.
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With these premises, having a pair of identical values for NPNO and NXTR

(00,11,22,33, etc.) will be strictly equivalent to having: 00,10,20,30, etc.

V. B.5 Nodal Coupling Coefficient Packing Option

The default value (0) results in no packing of the nodal coupling matrices unless the

array length provided by the user for the extended core memory is not sufficient. The user

can force the packing by providing a value of 1 for this option. This sometimes can be useful

when it will allow the problem to run with all the group constants (cross sections, fluxes,

currents) in core, thus reducing the input/output operations and therefore compensating for

the increase in CPU time resulting from the use of indirect addressing to unpack the matrices

during the iterations calculations. Workstations with poor input/output performances seem

to benefit most from this strategy.

V. B.6 Radial Inner Iteration Algorithm

The default value (0) implies the use of the partitioned algorithm. For an outer

iteration, n inner iteration are first performed on the first moment of the partial currents, the

higher moments contributions are included in the source term. This is followed by a full

sweep on all the moments. Sometimes, the full sweep matrix algorithm is necessary to avoid

convergence problems. This is performed by applying the partitioned algorithm cycle n times,

where n is the total number of inner iterations.

When the maximum number of outer iterations or convergence is reached, proper

convergence of the inner iterations is checked. The last outer iteration is performed using the

full sweep matrix algorithm. The inner iteration convergence criteria is identical to the

pointwise fission source specified in convergence criteria card 5. Only the first moment of

the partial currents is checked.
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V. C Limitations

Enough memory must be allocated to contain all the information for at least one

energy group. Flux and source expansions up to sixth order are allowed in hexagonal

geometry, fourth order in Cartesian geometry. Partial current expansion up to second order

are allowed. Angular and scattering expansion of up to Ps are allowed. For highly

heterogeneous reactor configurations involving thousands of different node types, calculation

and storage of response matrices represents the primary computational cost. In problems of

this type, it is highly desirable to store as many response matrices as possible in fast memory.

V. D Programming Information

The programming structure of the nodal option of DIF3D has been retained for the

VARIANT option. Many of the existing subroutines have been modified, keeping essentially

the same functionality, and added with a new name where a V replaces an N. The list of

modified subroutines can be found in Table VII. Table VIII lists the names of the new

subroutines thait were not part of the original version of DIF3D. The call tree for the main

branches of the VARIANT option is shown in Fig. 6, keeping in mind that, referring to Fig.

7.1 of Ref. 15, VHINIT, VHSST and VSINIT have replaced NHINIT, NHSST and XSINIT.

Subroutines starting with D belong to the LAPACK and LINPACK mathematical package.

A new common block /VARIAN/, which contains parameters specific to the nodal variational

option, has been added. Finally in Table IX we show the list of the original DIF3D

subroutines that have been modified, without changing their name, in order to accommodate

the new VARIANT option and the new COMPXS file structure with anisotropic scattering

capability.
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Table VII.

RVHFLX

VALINT

VBLADD

VCCEL

VCCL3D

VCHEX

VCHEXB
VCMPXS

VCZ

VCZB

VDSCTM

VEXBAL

VEXREA

VFSINI

VFXREA

VHCC2D

VHCC3D

List of Modified Original DIF3D Subroutines,

With Name Changes where a V Replaces an N

VHCCPT 
VLXZ VSERRN

VHCCPT

VHCMPT

VHCORE

VHDISK

VHEDDM

VHGEOM

VHINED

VHINIT

VHINNR

VHOEDO

VHPEAK

VHPKED

VHPNT

VHSHAP

VHSST

VHXSEC

VLXHEX

Table VIII. List of the New Subroutines that Were Not

Part of the Original Version of DIF3D

CONCKI MACXY SRCSCP VCOH3D

HALCOP MACXYZ TVACBC VCOXY

MACH2D NPKCC UNIEL VCOXYZ

MACH3D PCXY VCOH2D ZERMAP

Table IX. List of Modified Original DIF3D Subroutines Without Name Changes

BCDINP EDITCR SSTATE OVL2

BININP LINKR1 COPIER OVL3

DIF3D LINKR2 DOMODS OVL5

DSSTO1 NHSIGA FARSET SVSCAT

DSST02 PDIF3D HMG4C UPDATE

DSST03 RADF3D ISOR58 WREC1

DXSREV SSINIT MAXBND WREC4
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VLXZ

VMBKRG

VMFSYM

VMINIT

VMJBDJ

VMMTRX

VNHCCC

VNHFIN

VNHOUT

VNHSTT

VONVCK

VRCFIS

VRCHEX

VRCSCT

VRCZ1

VSCREV

VSEDIT

VSERRN

VSGETI

VSGET2

VSINIT

VSTOUI

VSTOU2

VSUPDT

VUTR1

VUTR2

VUTR3

VUTR4

VUTR5

VXINIT

VXSHAP

VXYZCC

WVHFLX



Figure 6. Call Tree for the Main Branches of the VARIANT Option

VEINIT CLOSCF
- DEFICF
. HEnAP
. ICRED

. ICRIT

. NRZNAP

. OPENCF

. PURGCF

. PURGE

. PUTm

. VHCCPT ICRED

. VWCWPT

. VHCORE DEFICF

. . DELECF

EDITCR

. . ERROR

. .INTSET

. . LINES

. .PURGCF

. . PURGE

. . WIPOUT

. VHDISK DEFIDF

. . DOPC

S. ERROR

. VEGEON GETIJ

. . NPKCC ERROR
LINES
MACH2D DCOPY
. DGEM4
. DGETF2
. DGETRI
. DPOTF2
. DPOTRI

DSCAL

. DSYIUI
. HALCOP

MACH3D DGEDN

. DGETF2

. DGETRI
. DPOTF2
. DPOTRI

. DSCAL

. DSYMm

. HALCOP

MACXY DCOPY
. DGEM
. DGETF2
. DGETRI

. DPOTF2

. DPOTRI

. DSCAL

. DSYMM

. HALCOP

MACXYZ DCOPY
. DGEM

. DGETF2

. DGETRI

. DPOTF2

. DPOTRI

. DSCAL
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Figure 6. Call Tree for the Main Bra'.ches of the VARIANT Option (Cont'd.)

. . . . )SYMM
. . . . HALCOP
. . . PUTM

. . . UNIEL
" - . VCOH2D
. . . VCOH3D

. . . VCOXY

- . . VCOxYZ

. . . ZERMAP

. VHINED LINES

. VHPNT INTSET

. . PUTM

. WIPOTT

VHSST CLOSCF

. CLOSDF
. ERROR
. FLTSET
. LINES
. NHOEDO
. OPENCF
. OPENDF
. PURGCF
. PURGE
. PUTM

. VNHCCC BLKGET

. . BLIPUT

. . FINGET

. . FINPUT

. . ICRED

. . ICRIT

. . NODVOL

. . PCRED

. . PCRIT

. . VHCC2D FILGAM

. . . GETBND

. . . XACH2D ... etc...

. . VHCC3D FILGAX

. . . GETBND

. . . MACH3D ... etc...

. . VHINNR

. . VECSEC FLTSET

. . VZYCC FILGAM

. . . GETBND

. . . MACXY ... etc...
. . VXYZCC FILGAM

. . . GETEND

. . . MACXYZ ... etc...

. VNHFIN BLKGET

. . BLKPUT

. . FINGET

. . FINPUT

. . FLTSET

. . ICRED

. . NODVOL

. . OPENCF

. . OPENDF

. . PCRED

. . PCRIT

. . PURGE
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Figure 6. Call Tree for the Main Branches of the VARIANT Option (Cont'd.)

. . VHEDRME CLOSCF

. . . CPYFIL

. . . DEFICF

- . . OPENCF

PURGCF
. VHFSYK TVACBC

. . VHXSEC ... etc...

. . VXSHAP

. . WDIF3D

. . WIPOUT

S. XREAD

VNHOUT BLKGET

. . BLKPUT

. . FINGET

. . FINPUT

. . FLTSET

. . OPENCF

. . VHOEDT VHOEDO ERROR

. . . . LINEX

. . VUTR1 ICRED

. . . PCRED

. . . PCRIT

. . . VCCEL FEQUAT

. . . . VCHEXB TVACBC

. . . VCCL3D FEQUAT

. . . . VCZB TVACBC

.VUTR2 BLKGET

. . . FINGET

. . . FLTSET

. . . ICRED

. . . PCRED

. . . PCRIT

. . . SRCSCP

. . . VRCFIS

. . . VRCSCT

. . VUTR3 ICRED

. . . PCRED

. . . PCRIT

. . . PCXY

. . . VCHEX CONCKI

. . . . DCOPY

. . . . PCOPY

. . . . VCHEB .. .etc...

. . . VCZ VCZB ... etc...

. . . VRCHEX DCOPY

. . . . VCZB ... etc...

. . . VRCZ1

VUTR4 FLTSET

. . . ICRED

. . . PCRED

. . . PCRIT

. . . VLXHEX

. . . VLXZ

. . . VMMTRX VMBKRG

VMFSYN TVACBC

. . . . VMJBDY

. . . VSUPDT

. . VUTR5 CMSOLV

. . . ICRED

. . . PCRED

. . . PCRIT

. - . TIMER

57



Figure 6. Call Tree for the Main Branches of the VARIANT Option (Cont'd.)

. . VONVCK TIMER

.. . VSERRN
. VNHSTT BLKGET
. . BLKPUT

. . CLOSCF

. .FINGET

. . FINPUT

. .FLTSET

. . ICRED

. . OPENCF

. .PCRED

PCRIT

. . SEEK

. . VEXREA ERROR
. . . FLTSET

. . . LINES

. . . PCRED

. PCRIT

REED

. . . SEEK

. . VFSINI

. . VFXREA ERROR

. . . INTSET

. . . LINES

. . . PCRED

PCRIT

. . . REED

. . VNINIT FLTSET

. . VXINIT FLTSET

. WIPOUT

VSINIT CLOSCF
. ERROR
. LINES

. OPENCF

. PNTGET

. PURGCF

. PURGE

. PUTH

. SEEK

. VSGET1 BLKPUT
. . CLOSDF

. . ERROR

. . FEQUAT

. . FINPUT

. . FLTSET

. . IEQUAT

. . LINES

. . OPENDF

. . REED

. . RITE

. . VSEDIT CHRFLT

. . . LINES

. VSGET2 BLKPUT

. . CLOSDF

. . FINPUT

. . OPENDF

. . REED

. WIPOUT
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APPENDIX A

Mathematical Scripts Used to Generate the Orthogonal Polynomials and the

Submatrices needed to Calculate the Response Matrix Coefficients and

the Flux Reconstruction Arrays.
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ANGULAR TRIAL FUNCTIONS

(x, y, z are direction cosines)

FILE: even_parity. functions. 2d

(**************************************************************************)

(* Even Parity spherical harmonics, through P4 terms:

(* Y[0,0], Y[2,2], Y(2,1], Y[2,O], Y(4,4], Y(4,3], Y[4,2], Y[4,1] , Y[4,0] *)

g = {
1,

1/2 Sqrt[15] ( y^2 - zA2 ),

-Sqrt [15] x y,

-1/2 Sqrt[5] ( 1 - 3 xA2 ),

3/8 Sqrt[35] ( yA4 - 6 yA2 zA2 + zA4 ),

-3/2 Sqrt[35/2] x y ( yA2 - 3 z^2 ),

-3/4 Sqrt[5] ( yA2 - zA2 ) ( 1 - 7 xA2),

3/2 Sqrt[5/2] x y ( 3 - 7 x^2 ),

3/8 ( 3 - 30 xA2 + 35 xA4 ),

}

FILE: oddparity. functions . 2d

(* *)

(* Odd Parity spherical harmonics, through PS terms with Y[n,n] deleted: *)

(* Y[1,0], Y[3,2], Y[3,1], Y[3,0], Y[5,4], Y[5,3], Y(5,2], Y[5,1], Y[5,0] *)

(**************************************************************************)

k=

Sqrt [3] x,

1/2 Sqrt[105] x ( y^2 - zA2 ),

1/2 Sqrt[21/2] y ( 1 - 5 xA2 ),

1/2 Sqrt[7] x ( 5 xA2 - 3),

-3/8 Sqrt[385] x ( yA4 - 6 yA2 ZA2 + zA4),

-1/8 Sqrt[385/2] y ( 9 XA2 - 1 ) ( y^2 - 3 ZA2 ),

1/4 Sqrt[1155] x ( 3 xA2 - 1 ) ( y^2 - z^2 ),

-1/8 Sqrt[165] y ( 1 - 14 xA2 + 21 xA4 ),

1/8 Sqrt[11] x ( 63 xA4 - 70 x^2 + 15 ),

}

FILE: evenparity. functions. 3d

(******** ******************************************************************)

(* Even Parity spherical harmonics, through P4 terms:

(* Y(0,0], Y[2,2], Y[2,1], Y(2,0], Y[2,-1], Y[2,-2], Y[4,4],...., Y[4,-4] *)

(* *)

(**************************************************************************)

g= {
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1/2 Sqrt[15]

-Sqrt [15]

-1/2 Sqrt[5]

-Sqrt [15]

-Sqrt [15]

3/8 Sqrt[35]

-3/2 Sqrt[35/2]

-3/4 Sqrt[5]

3/2 Sqrt[5/2]

3/8

3/2 Sqrt[5/2]

3/2 Sqrt[5]

3/2 Sqrt[35/2]

3/2 Sqrt[35]

}

x y,

( 1
x z,

y z,

( y^

x y

( ya

x y

( 3

x z
y z

x z

y z

2 - z^2 ),

4

(

2

((-

FILE: oddyarity. functions. 3d

(* Odd Parity spherical harmonics, through P5 terms with Y(n,n] deleted: *)

(* Y[1,O], Y[3,2],.......,Y(3,-2], Y[5,4], Y[5,3],......, Y(5,-3], Y[5,-4] *)

(**************************************************************************)

Sqrt (3]

Sqrt [105]

Sqrt [21/2]

Sqrt (7]
Sqrt [21/2]

Sqrt [105]

Sqrt [385]
Sqrt [385/2]

Sqrt [1155]

Sqrt [165]

Sqrt [11] x

Sqrt[165] z

Sqrt [1155]

Sqrt [385/2]

Sqrt [385]

x,

x ( y^2 - z^2 ),

y ( 1 - 5 xA2 ),

x ( 5 x^2 - 3 ),

z ( 1 - 5 xA2 ),
x y z,

x ( y^4 - 6 y^2 z^2 + z^4),

y( 9 x2 - 1) (y^2 - 3 z2)

x ( 3 xA2 - 1 ) ( y^2 - z^2 ),

y ( 1 - 14 x^2 + 21 x^4

63 x^4 - 70 x^2 + 15 ),

1 - 14 x^2 + 21 x^4

x y z ( 3 x^2 - 1),

z ( 9 x^2 -1) ( 3 y^2 - zA2 ),

x ( y^3 z - y z^3 

)
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k = {

1/2

1/2

1/2

1/2

-3/8

-1/8

1/4

-1/8

1/8

-1/8

-1/2

-1/8

-3/2

}

3 X^2 ),

- 6 y^2 zA2 + zA4 ),
y^2 - 3 Z^2 ),

- zA2 ) ( 1 - 7 x^2 ),

3 - 7 XA2 ) 

,

30 x^2 + 35 x^4 ),

3 - 7 x^2 ),

1 - 7 X^2 ),
zA2 - 3 y^2 ),

zA2 - yA2 

)



FILE: Anglnt.math used in several Mathematica scripts to

calculate the angular integrals. The following relations are used:

(1) Integrate[ Sin[x]^(m-1) Cos[x]A(n-1), x, (0, Pi) ] =

l +(-l)^(m-1) ) Beta(m/2,n/2) / 2
(2) Integrate[ Sin[x]^(m-1) Cos[x]^(n-1), x, (0, 2 Pi) ] =

( 1+(-1)^(m-1)+(-1)^(n-1)+(-1)^(m-1) (-1)^(n-1) ) Beta(m/2,n/2) / 2

The algorithm treats each integrand as a polynmial in sines and cosines

of theta and phi (where phi is the azimuthal angle). The exponents

are extracted, along with any leading coefficinets, and the values for

the integrals in phi and theta are calculated using (1) and (2).

The integral values are summed term by term to arrive at the value

of the integral of the entire integrand.

The variable "dummy is introduce to ensure the integrand has the proper

polynomial structure (i.e. the number of terms is never less than 2).

"dummy" is zeroed out prior to adding the term to the sum

nDig = 30

<</usr/local/math2.2/Packages/Algebra/Trigonometry.m;
Anglnt [ f_ ] := Module[

{terms, sumTerms, coeff, expl, exp2, exp3, exp4, cl, c2, c3, c4 },

integrand = N[ Expand[ TrigReduce[ PowerExpand[

Sin [th] / (4 Pi) f ] ] ], nDig J + dummy;

(* Get the number of terms in the integrand *)

terms = Length[ integrand ];

(* Calculate the integral for each term in the polynomial *)

sumTerms = 0;

Do[

Print[ "Part ",1, ": ",N[ integrand[[l]] ] J;

(* Check to see if term is a contant *)

If[

NumberQ [integrand [ [1] ] 1,

(* Constant term *)

coeff = integrand[[1]];

expl = 0;

exp2 = 0;

exp3 = 0;

exp4 = 0,

(* function of theta and phi *)

If[

Length[ integrand[[l]] ] > 1,

If[

NumberQ[ integrand[[1,1]] ],

coeff = integrand[[1,1]],

coeff = 1.0 65



1,

coeff - 1.0

];

(* Check for "dummy" structure term *)

If [ Exponent[ integrand[[1]],dummy ] > 0, coeff - 0.0 1;

(* Extract exponents of sines and cosines *)

expi - Exponent [integrand [ [1] ] ,Cos[th] ];

exp2 = Exponent[ integrand [ [1] ] ,Sin [th] 3;
exp3 = Exponent[ integrand [ [1] ] ,Cos [ph] ];

exp4 = Exponent[ integrand [ [1] ] ,Sin [ph] ]

]3;

(*************************************************

Print [ "Cos [th] power = " , expl 3;
Print[ "Sin [th] power = ", exp2 3;

Print [ "Cos [ph] power = ",exp3 ] ;

Print [ "Sin [ph] power = ",exp4 3;

Print[ "Coefficient = ",coeff 3;

ci = (1 + (-1)Aexpl)/2;

c2 = (1 + (-1)^exp3 + (-1)^exp3 (-1)^exp4 + (-1)Aexp4) /2;

c3 - Beta [(expl+1) /2, (exp2+1) /2 ] ;

c4 = Beta[ (exp3+1) /2, (exp4+1) /2 ];

DEBUG

Print[ "ci, c2, c3, c4 = ",cl," ",c2," ",c3," ", c4 3;
DEBUG

sumTerms = sumTerms + NC coeff ci c2 c3 c4, nDig ],

{l, terms}

];

sumTerms

]

66



(*************************************************************************

FILE: AnglntPos.math used in the vacuum boundary condition calculation.

Same as Anglnt.math except that accounts for absolute value of

direction cosine in the integrand. The following relations are used:

(1) 2*Integrate[ Sin[x]^(m-1) Cos[x]^(n-1), x, {0, Pi/2} ] 

-

Beta (m/2 , n/2)

(2) Integrate[ Sin[x]^(m-1) Cos[x]^(n-1), x, (0, 2 Pi) ] =

( 1+(-1)^(m-1)+(-1)^(n-1)+(-1)^(m-1) (-1)^(n-1) ) Beta(m/2,n/2) / 2

The algorithm treats each integrand as a polynmial in sines and cosines

of theta and phi (where phi is the azimuthal angle). The exponents

are extracted, along with any leading coefficinets, and the values for

the integrals in phi and theta are calculated using (1) and (2).

The integral values are summed term by term to arrive at the value

of the integral of the entire integrand.

The variable "dummy is introduce to ensure the integrand has the proper

polynomial structure (i.e. the number of terms is never less than 2).

"dummy" is zeroed out prior to adding the term to the sum
**************************************************************************)

nDig = 30

<</usr/local/math2.2/Packages/Algebra/Trigonometry.m;
AnglntPos [ f_ ] := Module[

{terms, sumTerms, coeff, expl, exp2, exp3, exp4, ci, c2, c3, c4 },

integrand = N[ Expand[ TrigReduce[ PowerExpand[

Sin[th] /(4 Pi) f ] ] ], nDig ] + dummy;

(* Get the number of terms in the integrand *)

terms = Length[ integrand ];

(* Calculate the integral for each term in the polynomial *)

sumTerms = 0;

Do[

(*******************************************************

Print[ "Part ",l,": ",N[ integrand[[l]] ] ];

*******************************************************)

(* Check to see if term is a contant *)

If(

NumberQ [integrand[[l]] ],

(* Constant term *)

coeff = integrand[[1]];

expl = 0;

exp2 = 0;

exp3 = 0;

exp4 = 0,

(* function of theta and phi *)

If[

Length[ integrand[[1]] ] > 1,

If [

NumberQ[ integrand[[l,1]] ],

coeff = integrand[[1,1]J,
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coeff 1.0

],

coeff - 1.0

(* Check for "dummy" structure term *)

If [ Exponent[ integrand[[1]],dummy ] > 0, coeff = 0.0 ];

(* Extract exponents of sines and cosines *)

expl = Exponent[ integrand [ [1] ] , Cos[th] ];

exp2 Exponent [integrand [ [1] ] ,Sin [th] ];

exp3 = Exponent[ integrand [ [1] ] ,Cos [ph] ] ;

exp4 - Exponent [integrand [ [1] ] ,Sin [ph] ]

Print [ "Cos [th] power = ", expl ] ;

Print[ "Sin [th] power = " , exp2 ];

Print [ "Cos [ph] power = " , exp3 ];

Print[ "Sin [ph] power = ", exp4 ] ;

Print[ "Coefficient = ",coeff ] ;

ci = 1;

c2 = (1 + (-1)Aexp3 + (-1)Aexp3 (-1)Aexp4 + (-1)Aexp4)/2;

c3 = Beta[ (expl+1) /2, (exp2+1) /2 ] ;

c4 = Beta[ (exp3+1) /2, (exp4+l) /2 ] ;

DEBUG

Print[ "ci, c2, c3, c4 = ", cl, " ",c2," ",c3," ", c4 J;
DEBUG

sumTerms = sumTerms + N[ coeff ci c2 c3 c4, nDig J,
{i, terms}

] ;

sumTerms

]
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(* A Mathematica script to generate the H matrix, which takes into account

the angular dependence of the node interior.

2d Geometry *)

ifa=9

rules = {x -> Cos[th],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}

<<even parity. functions. 2d

g = g /. rules

o=.{Cos[th] ,Sinith] *Cos [ph]}

<AngInt.math

h = Table[0,{i,2},{j,2),{k,ifa},{l,ifa}]
Do[a=Anglnt[ o[[i]] o[[j]] g[[k]] g[[l]] ];

h[[i,j,k,l]]=a;

a=a, (*

h[[i,j,l,k]]=a;

h[[j,i,k,l]]=a;

h[[j,i,l,k]]ua, *)

{i,2},{j,2},{kifa),{l,ifa)]

(* Save["hxy.dat",h] *)

stmp = OpenWrite["hxy.rawdata"]
WriteString[stmp,"H \n"]

Do[Write[stmp,N[h[[i,j,k,l]],16]],{l,ifa},{k,ifa},{j,2},{i,2}]

Close (stmp]
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This MATHEMATICA script calculate the E matrix (angular coupling)

for 2-D X-Y geometry. The E matrix is defined as

E = Integrate[ g[i] k[j] Omega[j].n,(th,O,Pi),(ph,0,2 Pi)]

where g[i] are the even parity angular trial functions,

k[j] are the odd parity trial functions on a given face

n is the unit normal for the face

Omega.n is alway equalent to the "mu" direction in surface coordinates

The angular trial function set defined in this script covers up to a

P5 expansion.

*****************************'****************************************

ifa = 9

<<Anglnt.math
<<even_parity. functions . 2d

<<oddparity. functions. 2d

k = Sqrt[3] x k

kl = k /. {x->u,y->n,z->s)

k2 = k /. {x->n,y->u,z->s}

trigl = {x->Cos [th] ,y->Sin[th]Cos [ph] ,z->Sin[th] Sin [ph])

trig2 = {u->Cos [th] ,n->Sin[th]Cos [ph] ,s->Sin[th] Sin [ph]}

g = g /. trigl

kl = kl /. trig2

k2 = k2 /. trig2

e = Table[0,{i,2},{j,ifa},{l,ifa}]

Do[

e[[l,i,j]] = AngInt[g[[i]]kl[[j]]];

e[[2,i,j]] = AngInt[g[[i]]k2[[j]]],

{i,ifa},{j,ifa}

Save ["exy.dat",e]

stmp = OpenWrite["exy.rawdata"]

WriteString [stmp, "E \n"]

Do[Write[stmp,N[e[[i,j,l]],16]],{l,ifa),{j,ifa},{i,2}]

Close [stmp]
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This MATHEMATICA script calculate the E matrix (angular coupling)

for 2-D hexagonal geometry. The E matrix is defined as

E = Integrate[ g[i] k(j] Omega[j].n,{th,O,Pi},{ph,0,2 Pi}]

where g(i] are the even parity angular trial functions,

k[j] are the odd parity trial functions on a given face

n is the unit normal for the face

Omega.n is away equalent to the "mu" direction in surface coordinates

The angular trial function set defined in this script covers up to a

P5 expansion.

(* Define number of angular moments *)

nAng = 9

(* Define even parity angular trial functions *)

<<evenparity. functions. 2d

gg = g
Clear[g]

(* Define odd parity angular trial functions *)

<<oddparity.functions.2d

kx = Sqrt[3] x k

Clear([k]

(* Rotate odd parity functions into surface coordinates *)

cl = 1/2

c2 = Sqrt[3]/2

gg = gg /. {x -> u, y -> v, z -> w}

kl = kx /. { x -> u, y -> v, z -> w }

k2 = kx /. { x -> cl u + c2 v, y -> c2 u - cl v, z -> w }

k3 = kx /. { x -> -ci u + c2 v, y -> c2 u + ci v, z -> w }

(* convert to direction cosines *)

trig = {u->Cos(th],v->Sin(th] Cos [ph] ,w->Sin[th]Sin[ph] }

gg = gg /. trig

ki = ki /. trig

k2 = k2 /. trig

k3 = k3 /. trig

e = Table[O,{i,3},{j,nAng},{k,nAng}]

(* Calculate integrands for the E matrix *)

Print["Begin calculating v and w face data"]

<<AngInt.math

Do[

Print [ "Generating e[i, ", j, ", ", k, "] " ]
e[[1,j,k]] = AngInt[ gg[[j]] kl[[k]] 1;
e[[2,j,k]] = AngInt[ gg[[j]] k2[[k]] ];

e[[3,jk]] = Anglnt[ gg[[j]] k3[[k]] 1,
{j,nAng}, {k,nAng} 71
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(* Save E matrix, and generate raw data for data statement *)

(* Save("ehex.dat",e] *)

stmp - OpenWrite["ehex.rawdata"]

WriteString [stmp, "B \n"]

Do[

Write[ stmp, Chop[ NC e[[i, j,k]], 12 1, 10^-14 ] 

,

{k,nAng}, {j,nAng},{i,3}

]
Close stamp ]
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(* A Mathematica script to generate the V matrix,

the angular dependence array needed in the anisotropic scattering

calculation. 2D Geometry *)

(* Define even parity angular trial functions *)

<<evenparity. functions .2d

gg = g
Clear[g]

(* Define odd-parity scattering functions *)

gm = {Sqrt[3]x,

Sqrt [3] y,

Sqrt(7/4] (5x^3-3x),

Sqrt[21/8] (5x^2-1)y,

Sqrt[105/4] (yA2-z^2)x,

Sqrt[35/8] (yA2-3z^2)y,

1/8 Sqrt[11] x ( 63 xA4 - 70 xA2 + 15 ),

-1/8 Sqrt[165] y ( 1 - 14 xA2 + 21 xA4 ),
1/4 Sqrt[1155] x ( 3 xA2 - 1 ) ( yA2 - z^2 ),

-1/8 Sqrt[385/2] y ( 9 xA2 - 1 ) ( y^2 - 3 z^2 ),

-3/8 Sqrt[385] x ( y^4 - 6 yA2 zA2 + zA4),

3/8 Sqrt[77/2] y (yA4 -10 y^2 zA2 + 5z A4),

}
o={Cos(th] ,Sin[th] *Cos [ph]}

trig = {x->Cos[th] ,y->Sin[th]Cos [ph] ,z->Sin[th]Sin(ph])

gg = gg /. trig

gm = gm /. trig

v = Table(0,{i,2),{j,9},{k,12}]

(* Calculate integrands for the V matrix *)

<<AngInt.math
Do[

Print[ "Generating v [i, ", j, ", ", k, "] " ];

v[[1,j,k]] = AngInt[ o((1]]gg[[j]] gm[[k]] ];

v[[2,j,k]] = AngInt o[[2]]gg[[j]] gm[[k]] ],

{j, 9), {k, 12)

]

(* Save V matrix, and generate raw data for data

statement *)

(* Save("vxy.dat",v] *)

stmp = OpenWrite["vxy.rawdata"]

WriteString[stmp,"V \n"]

Do[

Write[ stmp, Chop[ N( v[[i,j,k]], 12 ], 10^-14 ] ],
{k,12},{j,9},{i,2}

]

Close (stmp]
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(* A Mathematica script to generate vacuum boundary conditions.

2D Geometry *)

r1 = (x -> Cos[th],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}

r2 = {u -> Cos[th],n -> Sin[th]Cos[ph],s -> Sin[th]Sin[ph]}

<<evenparity. functions . 2d

gi = g /. ri

<<AngIntPos.math

<<exy.dat;
el - Table[ e[[1,i,j]],{i,9},{j,9}];

1 - Table[0,{j,9},{k,9}];

uu - Table[0,{j,9),{k,9)];

vac - Table[0,{j,9},{k,9}];

i9 = IdentityMatrix[9];

Do[

1[[j,k]] = AngIntPos[ Cos[th] gl[[j]] gl[[k]] ],
{j,9), {k,9}

];

uu = (Transpose Cel] .Inverse [1] .el)/2;

vac - Inverse(uu+i9].(uu-i9);

(* Save["vacxy.dat",el,1,uu,vac]

stmp = OpenWrite ["vacxy. out", FormatType->OutputForm]

Write [stmp, MatrixForm[N[vac, 8J]]

Close[stmp] *)

stmp = OpenWrite["vacxy.rawdata"]

WriteString[stmp,"P \n"]

Do[Write[stmp,N[vac[[i,j]],16]],{j,9),{i,9)]

Close [stmp]
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(* A Mathematica script to generate the H matrix, which takes into account

the angular dependence of the node interior.

3d Geometry *)

rules = (x -> Cos[th],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}

<ceven_parity.functions.3d

<<AngInt.math

g = g /. rules

o={Cos [th] ,Sin[th]*Cos[ph],Sin[th] Sin[ph]}

h = Table[0,{i,3),{j,3),{k,15),{1,15}]

Do[

a-AngInt[ o[[i]] o[[j] g[[k]] g[[1]] ];
h[[i,j,k,1]].a;

h[[i,j,l,k]].a;

h[[j,i,k,l]].a;

h[[j,i,l,k]]=a,

{i,3},{j,i,3),{k,15},{l,k,15}]

(* Save["hxyz.dat",h] *)

stmp - OpenWrite["hxyz.rawdata"]

WriteString [stmp, "H \n"]

Do[Write[stmp,N[h[[i,j,k,l]] ,16] ]J,{1,15}, {k,15},{j,3}, {i,3}]

Close [stmp]
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This MATHEMATICA script calculate the B matrix (angular coupling)

for 3-D X-Y-Z geometry. The B matrix is defined as

B = Integrate [ g [i] k [j] Omega [j] .n, (th,0, Pi) , (ph, 0 , 2 Pi)]

where g[i] are the even parity any alar trial functions,

k[j] are the odd parity trial functions on a given face

n is the unit normal for the face

Omega.n is alway equalent to the "mu" direction in surface coordinates

The angular trial function set defined in this script covers up to a

P5 expansion.

* **** ** ***** **** ** ***** ***** ** ************************************* ***** 

)

ifa = 15

<<AngInt .rmath
<<evenparity. functions . 3d

<<oddparity. functions . 3d

k = Sqrt [3] x k

kl = k /. {x->u,y->n,z->s}

k2 = k /. {x->n,y->u,z->s}

k3 = k /. {x->s,y->u,z->n}

trigs = {x->Cos [th],y->Sin[th]Cos [ph] ,z->Sin[th]Sin[ph])

trig2 = {u->Cos[th] ,n->Sin[th]Cos [ph] ,s- >Sin[th]Sin[ph]}

g = g /. trigi

k1 = ki /. trig2

k2 = k2 /. trig2

k3 = k3 /. trig2

e = Table[0,{i,3},{j,ifa},{1,ifa}]

Do[

e[[l,i,j]] = AngInt(g[[i]]kl[[j]]];

e[[2,i,j]] = AngInt(g[[i]]k2[[j]]];

e[[3,i,j]] = AngInt(g[[i]]k3[[j]]],

{i,ifa},{j,ifa}

(* Save ("exyz.dat ",e] *)

stmp = OpenWrite ["exyz.rawdata"]

WriteString [stmp, "E \n"]

Do [Write (stmp,N[e [ [i, j,1]] ,16]] , {l, ifa}, {j, ifa}, {i, 3}]

Close [stmp]

76



This MATHEMATICA script calculate the E matrix (angular coupling)

for 3-D hexagonal geometry. The E matrix is defined as

E - Integrate[ g(i] k[j] Omega[j].n,{th,O,Pi},{ph,0,2 P}]

where gi] are the even parity angular trial functions,

k[j] are the odd parity trial functions on a given face

n is the unit normal for the face

Omega.n is alway equalent to the "mu" direction in surface coordinates

The angular trial function set defined in this script covers up to a

P5 expansion.

nAng = 15

<<AngInt.math

<<even_parity. functions. 3d

<<oddparity. functions. 3d

gg = g
Clear [g]

kx = Sqrt[3] x k

Clear [k]

(* Rotate odd parity functions into surface coordinates *)

cl = 1/2

c2 = Sqrt[3]/2

gg = gg /. {x -> u, y -> v, z -> w}

ki = kx /. { x -> u, y -> v, z -> w }
k2 = kx /. {x -> cl u + c2 v, y -> c2 u - ci v, z -> w }
k3 = kx /. { x -> -ci u + c2 v, y -> c2 u + cl v, z -> w }

k4 = kx /. { x -> w, y -> u, z -> v}

(* convert to direction cosines *)

trig = {u->Cos [th] ,v->Sin[th]Cos [ph],w->Sin(th]Sin[ph] }

gg = gg /. trig

ki = kl /. trig

k2 = k2 /. trig

k3 = k3 /. trig

k4 = k4 /. trig

Clear [e]

e = Table[O,{i,4},{j,nAng},{k,nAng}]

Do[

Print ["Generating e[i, ", j, ", ", k,"]" ];

e[[1,j,k]] = AngInt[gg[[j]] kl[[k]] ];

e[[2,j,k]] = AngInt[gg[[j]] k2[[k]] 1;

e[[3,j,k]] = AngInt[gg[[j]] k3[[k] ];

e[4,j,k]] = AngInt[gg[[j]] k4[[k]] ],

{j,nAng}, {k,nAng}
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(* Save B matrix, and generate raw data for data statement *)

(* Save["ehexz.dat",e] *)

stamp - OpenWrite["ehexz.rawdata"]

WriteString [stmp, "B \n"]

Do[

Write[ stmp, Chop[ N[ e[[i, jk]], 12 1, 10^-14 ]I

(knAng}, {j,nAng}, {i,4)

Close stamp ]
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(* A Mathematica script to generate the V matrix,

the angular dependence array needed in the anisotropic scattering

calculation. 3D Geometry *)

trig = (x -> Cos(th],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}

(* Define even parity angular trial functions *)

<<evenparity.functions.3d

gp = g
Clear [g)

gp = gp /. trig

(* Define odd-parity scattering functions *)

gm = {Sqrt[3]x,

Sqrt[(3] y,

Sqrt [3] z,
Sqrt[7/4] (5x^3-3x),

Sqrt[21/8] (5xA2-1)y,

Sqrt[21/8] (5x^2-1)z,

Sqrt[105/4] (y^2-z^2)x,

Sqrt [105]x*y*z,

Sqrt[35/8] (y^2-3z^2)y,

Sqrt[35/8] (3y^2-z^2)z,

1/8 Sqrt[11] x ( 63 x^4 - 70 x^2 + 15 ),

-1/8 Sqrt[165] y ( 1 - 14 x^2 + 21 x^4 ),

-1/8 Sqrt[165] z ( 1 - 14 x^2 + 21 x^4 ),

1/4 Sqrt[1155] x ( 3 x^2 - 1 ) ( y^2 - z^2 ),

-1/2 Sqrt[1155] x y z ( 3 x^2 - 1),

-1/8 Sqrt[385/2] y ( 9 x^2 - 1 ) ( y^2 - 3 z^2 ),

-1/8 Sqrt[385/2] z ( 9 x^2 - 1 ) ( 3 y^2 - z^2),

-3/8 Sqrt[385] x ( y^4 - 6 y^2 z^2 + z^4),

-3/2 Sqrt[385] x ( y^3 z - y z^3 ),

3/8 Sqrt[77/2] y (y^4 -10 y^2 z^2 + 5z ^4),

3/8 Sqrt[77/2] z (z^4 -10 y^2 z^2 + 5 y^4),

}

gm = gm /. trig

o={Cos (th] ,Sin[th] *Cos [ph] ,Sin[th]Sin[ph] }

<< AngInt.math

v = Table[0,{j,3},{k,15},{1,21}]

Do[v[[j,k,l]]=Anglnt[o[[j]]gp[[k]]gm[[1]]], {j,3},{k,15},{l,21}]
(* Save["vxyz.dat",v] *)

Put [V ,"vxyz.rawdata"]

Do[PutAppend[N[v[[j,k,1]],16],"vxyz.rawdata"],{l,21},{k,15},{j,3}]

79



(* A Mathematica script to generate vacuum boundary conditions.

3D Geometry *)

ifa - 15

ri - (x -> Cos[th],y -> Sin[th]Cos[ph],z -> Sin th]Sin[ph])

r2 - {u -> Cos[th],n -> Sin[th]Cos[ph],s - Sin[th]Sin[ph]}

<< even parity. functions. 3d

gi - g /. rJ

<<AngIntPos.math

<<exyz.dat;
el - Table[ e[[1,i,j]],{i,ifa},{jifa}];

1 - Table[0,{j,ifa},{k,ifa}];

uu - Table[0,{j,ifa},{k,ifa}];

vacz - Table[0,{j,ifa},{k,ifa}];

i4 - IdentityMatrix~ifa];

Do[

1[[j,k]] - AngIntPos[ Cos[th] gl[[jJ] gl[[k]] ],

{j, ifa), {k, ifa)

];

Print["Inverting matrix"];

uu - (Transpose[el].Inverse[1].el)/2

vacz - Inverse[uu+i4].(uu-i4);

(* Save["vacxyz.dat",el,1,uu,vacz]

stmp = OpenWrite ["vacxyz .out", FormatType->OutputForm]

Write [stmp, MatrixForm[N[vacz, 8]]]

Close[stmp] *)

stmp = OpenWrite("vacxyz.rawdata"]
WriteString[stmp,"P \n"]

Do[Write[stmp,N[vacz[[i,j]] ,16]],{j,ifa},{i,ifa}]

Close[stmp]
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SPATIAL TRIAL FUNCTIONS

FILE: f.surf.xy.dat

Trial functions on a side of a X-Y node. Expansion order: 2

1 = {1, 2*3A(1/2)*x, -5A(1/2)/2 + 6*5A(1/2)*xA2}

FILE: f.vol.xy.dat

Trial functions on the interior of a X-Y node. Expansion order: 4

f = {1, 2*3A(1/2)*x, 2*3A(1/2)*y, -5A(1/2)/2 + 6*5A(1/2)*xA2, 12*x*y,

-5^(1/2)/2 + 6*5A(1/2)*y^2, -3*7A(1/2)*x + 20*7A(1/2)*xA3,

-(15A(1/2)*y) + 12*15A(1/2)*XA2*y, -(15^(1/2)*X) + 12*15A(1/2)*x*yA2,

-3*7^(1/2)*y + 20*7^(1/2)*yA3,

-21/8 + 210*xA4 - (3*5A(1/2)*(-5A(1/2)/2 + 6*5A(1/2)*xA2))/2,

-6*21^(1/2)*x*y + 40*21A(1/2)*xA3*y,

-5/4 - (5A(1/2)*(-5^(1/2)/2 + 6*5A(1/2)*x^2))/2 + 180*x^2*y^2 

-

(5A(1/2)*(-5A(1/2)/2 + 6*5A(1/2)*yA2))/2,

-6*21A(1/2)*x*y + 40*21A(1/2)*x*yA3,

-21/8 + 210*yA4 - (3*5^(1/2)*(-5A(1/2)/2 + 6*5A(1/2)*y^2))/2}

FILE: f.surf.hex.dat

Trial functions on a side of a hex node. Expansion order: 2

1 = {1, 3*2A(1/2)*3A(1/4)*x, -5A(1/2)/2 + 9*15A(1/2)*x^2}

FILE: f.vol.hex.dat

Trial functions on the interior of an hex node. Expansion order: 6

f = (1., 3.531397147659254*x, 3.531397147659254*y,

-0.992094737665681 + 12.37218113922247*x^2, 15.2127765851133*x*y,

-1.386623516201175 + 4.220134183810281*x^2 + 13.07212295960745*y^2,
-7.364172208855169*x + 45.55400150508527*xA3,

-2.843918214276882*y + 52.77654471105122*xA2*y,

-6.215410878336123*x + 15.34253644105606*xA3 + 69.31604172534397*x*yA2,

-9.20730654962232*y + 30.49051331999612*xA2*y + 46.79193393431396*yA3,

1.144405667459047 - 40.06601247254548*x^2 + 168.2602416904509*x^4 

-

1.406229436608328*yA2, -26.50296143625209*x*y + 193.4898333051816*xA3*y,

0.937907092856306 - 25.07947109327715*x^2 + 54.30072427626424*x^4 

-

8.90944642896137*y^2 + 250.7950289971609*x^2*y^2,

-50.42654572628691*x*y + 130.7053493868987*xA3*y 

+

302.4959930449739*x*y^3, 1.539474445844345 - 8.59954682742715*x^2 

+

5.127712221713981*xA4 - 47.18963566829999*y^2 

+

173.7862848738076*xA2*y^2 + 163.2901353147327*y^4,

11.6653537350933*x - 194.1305451511002*x^3 + 623.0154297905012*x^5 

-

5.717241004090825*x*yA2, 4.69185605425132*y - 157.7548620476962*xA2*y 

+

717.9223962484047*x^4*y - 9.2171369165954*y^3,

9.69755937019898*x - 106.9840393103204*x^3 + 197.8190140565777*x^5 

-

102.6298897072043*x*y^2 + 917.106990708609*xA3*yA2,

5.264241230
7
6094

7
*y - 205.4054425941534*xA2*y + 464.0234379739513*xA4*y 

-

27.72465200112097*yA3 + 1184.265472234982*xA2*y^3,
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309.2541675819772*x*y^2 + 851.414464715421*x^3*y^2 

+

1255.463567163217*x*y^4, 15.684574
7
0472548*y - 111.28234482202*x^2*y 

+

132.6642324402051*x^4*y - 215.3509727206996*y^3 

+

899.228572510356*x^2*y^3 + 561.3590955
7 7

0824*y^5,

-1.060095787822545 + 83.019683621295*x^2 - 889.228572832441*x^4 

+

2313.052962198468*x^6 - 1.293105354507158*yA2 

-

11.53703521761299*x^2*y^2 + 9.39119022184615*y^4,

0.0000108358095451932*x*y*(4.335238300855329*10^6 - 7.246427*10^7*x^2 

+

2.452554741140914*10^8*XA4 - 4.901970000000001*10AS*y^2),

-1.342920857770678 + 63.30661830660211*x^2 - 448.8548508855424*x^4 

+

720.0866810090347*x^6 + 21.19039857921666*yA2 

-

682.8485950113241*x^2*y^2 + 3419.545944882732*x^4*y^2 

-

41.92742357206419*y^4, 66.87661377195044*x*y - 878.806782568358*x^3*y 

+

1698.779184200614*x^5*y - 388.6964335735138*x*y^3 

+

4389.10418853506*x^3*y^3, -0.69529255111581 + 33.14469660668448*x^2 

-

108.7042593792074*x^4 + 17.72340254766733*x^6 + 23.12292942763903*y^2 

-

1326.755058402553*x^2*y^2 + 3138.811085482705*x^4*y^2 

-

84.7848146373795*y^4 + 5426.412021403232*x^2*y^4,

100.3195658795806*x*y - 505.5173873502208*x^3*y 

+

447.2929180746544*x^5*y - 1647.523967451926*x*y^3 

+

4884.832425884538*x^3*y^3 + 4986.581349244301*x*y^5,

-1.735740046497104 + 18.46246594573035*x^2 - 45.48807275055156*x^4 

+

28.55381163561693*x^6 + 106.555405180707*y^2 - 891.974915726297*x^2*y^2 

+

1307.292857878233*x^4*y^2 - 918.732525582574*y^4 

+

4380.113505445939*x^2*y^4 + 1915.895220021416*y^6}

FILE: f.surfxy.xyz.dat

Trial functions on a surface of a X-Y-Z node. Expansion order: 2

f = {1, 2*3^(1/2)*x, 2*3^(1/2)*y, -5A(1/2)/2 + 6*5^(1/2)*x^2, 12*x*y,

-5A(1/2)/2 + 6*5^(1/2)*y^2}

FILE: f.vol.xyz.dat

Trial functions on the interior of a X-Y-Z node. Expansion order: 4

f = {1, 2*3^(1/2)*x, 2*3A(1/2)*y, 2*3^(1/2)*z, -5^(1/2)/2 + 6*5^(1/2)*x^2,

12*x*y, -5^(1/2)/2 + 6*5A(1/2)*yA2, 12*y*z, -5^(1/2)/2 + 6*5^(1/2)*z^2,

12*x*z, -3*7^(1/2)*x + 20*7^(1/2)*X^3, -(15^(1/2)*y) + 12*15^(1/2)*x^2*y,

-(15^(1/2)*x) + 12*15^(1/2)*x*y^2, -3*7A^(1/2)*y + 20*7^(1/2)*y^3,

-(15^(1/2)*z) + 12*15^(1/2)*y^2*z, -(15^(1/2)*y) + 12*15^(1/2)*y*z^2,

-3*7^(1/2)*z + 20*7^(1/2)*z^3, -(15^(1/2)*x) + 12*15^(1/2)*x*z^2,

-(15^(1/2)*z) + 12*15^(1/2)*x^2*z, 24*3^(1/2)*x*y*z,

-1/(80*(1/3600 - (-1/(32*5^(1/2)) + (3*5^(1/2))/224)^2)^(1/2)) 

+

x^4/(1/3600 - (-1/(32*5A(1/2)) + (3*5^(1/2))/224)^2)^(1/2) 

-

((-1/(32*5A(1/2)) + (3*5^(1/2))/224)*(-5^A(1/2)/2 + 6*5^(1/2)*x^2))/

(1/3600 - (-1/(32*5^(1/2)) + (3*5A(1/2))/224)^2)^(1/2),

-6*21^(1/2)*x*y + 40*21^(1/2)*x^3*y,

-1/(144*(1/14400 - (1/(32*5^(1/2)) - 5^(1/2)/288)A2)A(1/2)) 

-

((1/(32*5^(1/2)) - 5^(1/2)/288)*(-5^(1/2)/2 + 6*5A(1/2)*x^2))/

(1/14400 - (1/(32*5^(1/2)) - 5^(1/2)/288)A2)A(1/2) 

+

(x^2*y^2)/(1/14400 - (1/(32*5^(1/2)) - 5A(1/2)/288)A2)A(1/2) 

-

(-5^(1/2)/2 + 6*5A(1/2)*yA2)/

(72*5A(1/2)*(1/14400 - (1/(32*5^(1/2)) - 5A(1/2)/288)A2)A(1/2)),

-6*21A(1/2)*x*y + 40*21A(1/2)*x*y^3,

-21/8 + 210*yA4 - (3*5A(1/2)*(-5A(1/2)/2 + 6*5A(1/2)*yA2))/2,
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-6*21A(1/2)*y*z + 40*21^(1/2)*yA3*z,

-5/4 - (5A(1/2)*(-5A(1/2)/2 + 6*5A(1/2)*y^2))/2 + 180*y^2*z^2 

-

(5A(1/2)*(-5^(1/2)/2 + 6*5A(1/2)*ZA2))/2,

-6*21A(1/2)*y*z + 40*21^(1/2)*y*zA3,

-21/8 + 210*zA4 - (3*5^(1/2)*(-5A(1/2)/2 + 6*5^(1/2)*zA2))/2,

-6*21^(1/2)*x*z + 40*21^(1/2)*x*Z^3,

-1/(144*(1/14400 - (1/(32*5^(1/2)) - 5A(1/2)/288)A2)A(1/2)) 

-

((1/(32*5^(1/2)) - 5^(1/2)/288)*(-5^(1/2)/2 + 6*5^(1/2)*xA2))/

(1/14400 - (1/(32*5^(1/2)) - 5^(1/2)/288)^2)A(1/2) 

+

(xA2*ZA2)/(1/14400 - (1/(32*5A(1/2)) - 5^(1/2)/288)A2)A(1/2) 

-

(-5^(1/2)/2 + 6*5A(1/2)*ZA2)/

(72*5A(1/2)*(1/14400 - (1/(32*5A(1/2)) - 5^(1/2)/288)^2)A(1/2)),

-6*21A(1/2)*x*z + 40*21^(1/2)*XA3*z, -6*5A(1/2)*y*z + 72*5A(1/2)*xA2*y*z,

-6*5A(1/2)*x*z + 72*5A(1/2)*x*yA2*z, -6*5A(1/2)*x*y + 72*5A(1/2)*x*y*zA2}

FILE: f.surfxy.hexz.dat

Trial functions on a X-Y surface of a hex-Z node. Expansion order: 2

f = {1, 3*2A(1/2)*3A(1/4)*x, 2*3^(1/2)*y, -5^(1/2)/2 + 9*15A(1/2)*xA2,

6*2A(1/2)*3^(3/4)*x*y, -5A(1/2)/2 + 6*5^(1/2)*y^2}

FILE: f.surfh.hexz.dat

Trial functions on a hex surface of a hex-Z node. Expansion order: 2

f = {1, (6*3A(1/4)*x)/5A(1/2), (6*3^(1/4)*y)/5A(1/2),

-5*(5/127)^(1/2) + 36*(15/127)A(1/2)*xA2, 18*(5/7)^(1/2)*x*y,

(-5*(635/903)A(1/2))/4 + (41*(-5*(5/127)A(1/2) + 36*(15/127)A(1/2)*x^2))/

(4*903^(1/2)) + 9*(635/301)A(1/2)*yA2}

FILE: f64.vol.hexz.dat

Trial functions on the interior of a hex-Z node.

Expansion order: 6 in the X-Y plane, 4 in the Z axis.

f = {l., 3.531397147659254*x, 3.53139714
7
659254*y, 3.464101615137754*z,

-0.992094737665681 + 12.37218113922247*x^2, 15.2127765851133*x*y,

-1.386623516201175 + 4.22013418381028*x^2 + 13.0
7
212295960745*y^2,

12.23311856289929*y*z, -1.118033988749895 + 13.41640786499874*z^2,

12.23311856289929*x*z, -7.364172208855168*x + 45.55400150508527*xA3,

-2.843918214276883*y + 52.77654471105124*xA2*y,

-6.215410878336125*x + 15.34253644105606*xA3 + 69.31604172534398*x*y^2,

-9.20
7
30654962232*y + 30.49051331999613*xA2*y + 46.79193393431396*yA3,

-3.436716983117353*z + 42.85849266715744*y^2*z,

-3.948222038857477*y + 47.37866446628973*y*zA2,

-7.937253933193773*z + 52.91502622129182*z^3,

-3.948222038857477*x + 47.37866446628973*x*zA2,

-4.803404762060481*z + 45.28316225765551*xA2*z + 14.61897364223524*yA2*z,

52.6986039392208*x*y*z, 1.144405667459047 - 40.06601247254547*x^2 

+

168.0G02416904509*xA4 - 1.406229436608328*yA2,

-26.5029614362521*x*y + 193.4898333051816*xA3*y,

0.937907092856306 - 25.07947109327715*x^2 + 54.30072427626425*x^4 

-

8.90944642896137*yA2 + 250.7950289971609*xA2*yA2,

-50.42654572628692*x*y + 130.7053493868988*xA3*y 

+

302.4959930449739*x*yA3, 1.539474445844345 - 8.59954682742714*x^2 

+

5.127712221713985*xA4 - 47.18963566829997*yA2 

+

173.7862848738076*xA2*yA2 + 163.290135314732
7
*y^4,
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-22.68916516138272*y*z + 140.3528101458449*yA3*z,

1.109195636770142 + 8.88178419700125*10A-16*xA2 - 13.83251902862112*yA2 

-

13.31031764124171*zA2 + 165.9902283434534*yA2*zA2,

-28.02959589992768*y*z + 186.8639726661845*y*zA3,

1.125 - 45.00000000000001*ZA2 + 210.*zA4,

-28.02959589992768*x*z + 186.8639726661845*x*zA3,

1.550292220712804 - 14.615077773959*xA2 - 4.718253454585189*yA2 

-

18.60350664855365*zA2 + 175.380933287508*xA2*ZA2 

+

56.61904145502227*yA2*zA2, -25.51024084284776*x*z 

+

157.8036901897536*xA3*z, -24.48571340145234*y*z 

+

211.1407608441662*xA2*y*z + 81.0858166384408*yA3*z,

-21.53081486238894*x*z + 53.14810526577217*xA3*z 

+

240.1178120957201*x*yA2*z, -17.00840128541522*x*y 

+

204.1008154249827*x*y*zA2, 11.66535373509326*x - 194.1305451510995*xA3 

+

623.0154297904985*xA5 - 5.717241004090801*x*yA2,

4.691856054251322*y - 157.7548620476962*x^2*y + 717.9223962484051*XA4*y 

-

9.2171369165954*y^3, 9.69755937019897*x - 106.9840393103202*xA3 

+

197.8190140565769*XA5 - 102.6298897072043*x*yA2 

+

917.106990708609*xA3*yA2, 5.264241230760949*y 

-

205.4054425941535*xA2*y + 464.0234379739516*xA4*y 

-

27.72465200112097*yA3 + 1184.265472234982*xA2*yA3,

8.09990722997389*x - 32.6914364353943*xA3 + 9.0669661188542*XA5 

-

309.2541675819773*x*yA2 + 851.414464715421*xA3*yA2 

+

1255.463567163217*x*yA4, 15.68457470472548*y - 111.28234482202*x^2*y 

+

132.8642324402053*xA4*y - 215.3509727206996*yA3 

+

899.228572510356*xA2*yA3 + 561.3590955770824*yA5,

-1.060095787822544 + 83.019683621295*xA2 - 889.228572832441*xA4 

+

2313.052962198468*xA6 - 1.293105354507159*yA2 

-

11.53703521761299*xA2*yA2 + 9.39119022184614*yA4,

46.97581656109533*x*y - 785.2090285514575*xA3*y 

+

2657.541607416357*xA5*y - 53.11681331625073*x*yA3,

-1.342920857770676 + 63.30661830660207*xA2 - 448.8548508855424*xA4 

+

720.0866810090344*xA6 + 21.19039857921664*yA2 

-

682.8485950113239*xA2*yA2 + 3419.545944882731*xA4*yA2 

-

41.92742357206416*yA4, 66.87661377195044*x*y - 878.806782568358*x^3*y 

+

1698.779184200614*xA5*y - 388.6964335735138*x*yA3 

+

4389.10418853506*xA3*yA3, -0.6952925511158102 + 33.14469660668446*xA2 

-

108.7042593792074*xA4 + 17.72340254766721*xA6 + 23.12292942763903*yA2 

-

1326.755058402552*xA2*yA2 + 3138.811085482704*xA4*yA2 

-

84.7848146373794*yA4 + 5426.412021403232*xA2*yA4,

100.3195658795807*x*y - 505.5173873502208*xA3*y 

+

447.2929180746549*xA5*y - 1647.523967451927*x*yA3 

+

4884.832425884538*xA3*yA3 + 4986.581349244301*x*y^5,

-1.735740046497101 + 18.46246594573032*xA2 - 45.4880727505516*xA4 

+

28.55381163561682*xA6 + 106.5554051807069*yA2 

-

891.974915726297*xA2*yA2 + 1307.292857878232*xA4*yA2 

-

918.732525582574*yA4 + 4380.113505445938*XA2*yA4 + 1915.895220021416*yA6}
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(* A Mathematica script to generate othornormal trial functions

over an XY node

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients

f [n] = sum(a[i]f [i] :i=1,n-.)+a[n]g[n] {1}

(a) calculate inner products and store in a

(b) using inner products calc a[n] 

-

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>^2:i=l,n-1)) {2}

(c) using a[n], calculate all a[i]

a[i] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial

function using {1}

(* Define the volume integral over the node *)

VolInt[f_] := Integrate[f,{x,-1/2,1/2},{y,-1/2,1/2}]

(* Define a vector consisting of the functions making up a complete

fourth order polynomial *)

g = {1,x,y,xA2,x*y,y^2,x^3,x^2*y,x*y^2,yA3,x^4,xA 3 *y,xA2*yA2,x*yA3,yA4}

(* Define and initalize a vector for the orthogonal trial functions *)

f = Table[0,{i,15}]

(* Define and initialize a vector for the trial function coefficients *)

a = Table[0,{i,15}]

(* Define the first trial function as 1 *)

f [[1]] = 1

(* Begin loop to determine trial functions *)

Do[

Print["Generating trial function ",n];

(* Calculate inner products *)

Do[ a[[j]] = VolInt[f[[j]]*g[[n]]],{j,l,n-1} ];

a[[n]] = VolInt[g[[n]]*g[[n]]];

(* Calculate sum of squares of inner products *)
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sum = 0;

Do[ sum = sum+a[[j]]A2,{j,n-1} ];

(* Calculate the values of the coefficients *)

a[[n]] = 1/Sqrt[a[[n]]-sum];

Do[ a[[j]] = -a[[n]]*a[[j]], {j,n-l) ];

(* Store the trial function in f[n] *)

sum = 0;

Do[ sum = sum+a[[j]]*f[[j]],{j,n-1} ];

f [[n]] = sum + a[[n]]*g[[n]],

(* End of Do loop *)

{n,2,15}]

(* Save the set of trial functions *)

Save ["f.vol .xy.dat",f]
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(* A Mathematica script to generate othornormal trial functions

over an XY side *)

VolInt[f_] := Integrate[f,{x,-1/2,1/2}]

g = {1,x,x^2}

1 = Table[0, {i,3}]

a = Table[0, {i,3}]

1[[1]] = 1

Do[

Print ["Generating trial function ",n];

Do[ a[[j]] = VolInt[l[[j]]*g[[n]]],{j,1,n-1} ];

a[[n]] = VolInt[g[[n]]*g[[nJ];

Print["End of VolInt"];

sum = 0;

Do[ sum = sum+a a[[j]A2,{j,n-1} ];

a[[n]] = 1/Sqrt[a[[n]]-sum];

Do[ a[[j]] = -a[[n]]*a[[j]], {j,n-l} ];

sum = 0;

Do[ sum = sum+a[[j]]*l[[j]],{j,n-1} ];

1[[n]] = sum + a[[n]]*g[[n]],

{n,2,3} ]

Save ["f. surf .xy.dat" , 1]
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(* A Mathematica script to generate the P matrix, which takes into account

the spatial dependence of the node interior.

X-Y Geometry *)

<<f.vol.xy.dat
VolInt[f_] := Integrate[f,{x,-1/2,1/2},{y,-1/2,1/2}]

s = {xr y}

p = Table[O,{i,15},{j,15},{k,2},{l,2}]

Do[

If [k==1,

Do[p[[i,j,k,l]] = VolInt[D[f[[i],s[[k]]]*D[f[[j]],s[[l]]];

Print[i," "j," ,k,"l ",1," ,p[ [i j,k,1] ] ];

p[[j,i,k,lJJ = p[[i,j,k,l]],
{i,15}, {j,i,15}

I,

Do[p[[i,j,k,l]] = VolInt[D[f[[i]],s[[k]]]*D[f[[j]] ,s[[J]]]]
Print[i," "i,, " ",k,"l ",1," f",p[ [i,j,k,1]]]

p[[j,i,1,k]] =p[[i,j,k,1]],
{i,15}, {j,15}

]
],

{k,2}, {l,k,2}

]
(* Save["pxy.dat",p] *)

Put ["P", "pxy.rawdata"]

Do[PutAppend[N[p[[i,j,k,1]],16],"pxy.rawdata"],{l,2},{k,2},{j,15},{i,15}]
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(* A Mathematica script to generate the D matrix, which couples

the spatial dependence of the node surfaces to the node interior.

X-Y Geometry

2

*************

* 

*

4 * * 1

* 

*

*************

3

<<f .vol .xy.dat
<<f . surf . xy. dat

1 = 1 /. x->s

fl = f /. {x->l/2,y->s}

f2 = f /. {y->1/2,x->s}

my = {1,1,-1,1,-16,l,-1,l,-1,,-,1,-1.,1}

SurfInt[f_] := Integrate[f,{s,-1/2,1/2}]

d = Table[0,{i,4},{j,15},{k,3}]

Do[ d[[L,j,k]] = Surflnt[fl[[j]]*J[[k]]];

Print[" side 1 ",d[[l, j,k]]] ;

d[[3, j,k]] = mx[[j]]*d[[1, j,k]];

Print[" side 3 ",d[[3,j,kJ]];

d[[2,j,k]] = Surflnt[f2[[j]]*1[[k]]];

Print[" side 2 ",d[[2,j,k]]];

d[[4,j,k]] = my[[j]]*d[[2,j,k]];

Print[" side 4 ",d[[4,j,k]]],

{j,15}, {k,3}

I
(* Save ["dxy.dat",d] *)

Put [D, "dxy. rawdata"]

Do[PutAppend[N[d[ [i, j,k] ] , 16], "dxy.rawdata"] , {k,3}, {j,15}, {i,4}]
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(* A Mathematica script to generate the U matrix,

the spatial dependence array needed in the anisotropic scattering

calculation. X-Y Geometry *)

<<f .vol .xy.dat
VolInt[f_] := Integrate[f,{x,-1/2, 1/2},{y,-1/2,1/2}]
s = {x, y}

u = Table[0,{i,15},{j,15},{l,2}]

Do[

Do[u[[i,j,l]] = VolInt[f[[j]]*D[f[[i]],s[[1]]]];

Print Ii," ", j," ,1," ,u[ [i, j,1] ] ] 

,

{i,15}, {j,15}

] 

,

{l,2}

(* Save ["uy.dat",u] *)

Put [U, "uxy.rawdata"]

Do[PutAppend[N[u[ [i,j,l] ] ,16] , "uxy.rawdata"],{l,,2}, {j,15}, {i,15}]
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(* A Mathematica script to generate othornormal trial functions

over an hex node

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients

f[n] = sum(a[i]f[i]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a

(b) using inner products calc a[n] 

-

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>^2:i=1,n-1)) {2}

(c) using a[n], calculate all a[i]

a[i] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial

function using {1}

**************************************************************************)

VolInt[f_] := (b = 3^(3/4)/Sqrt[2];

Simplify[

Integrate[f, {x,-b/3,0}, {y,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b}]+

Integrate[f,{x,0, b/3}, {y, x/Sqrt[3]-1/b,-x/Sqrt[3]+1/b}]])

g = {1,

x, y,

x^2, x*y, y^2,

x^3, x^2*y, x*y^2, y^3,

x^4, x^3*y, x^2*y^2, x*y^3, y^4,

x^5, x^4*y, x^3*y^2, x^2*y^3, x*y^4, y^5,

x^6, x^5*y, x^4*y^2, x^3*y^3, x^2*y^4, x*y^5, y^6)

f = Table[0,{i,28}]

a = Table[O,{i,28}]

f[[1]] = 1

Do[

Print["Generating trial function ",n];

Do[ a[[j]] = VolInt[f[[j]]*g[[n]]],{j,1,n-1} ];

a[[n]] = VolInt[g[[n]]*g[[n]]];

Print["End of VolInt"];

sum = 0;

Do[ sum = sum+a[[jJ]]2,{jn-1)}];

a[[n]] = 1/Sqrt[a[[n]]-sum];

Do[ a[[j]] = -a[[n]]*a[[j]], {j,n-1} ];

sum = 0;

Do[ sum = sum+a[[j]]*f[[j]],{j,n-1} ];

f[[n]] = sum + a[[n]]*g[[n]],

{n,2,28}]

Save["f.vol.hex.dat",f]
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(* A Mathematica script to generate othornormal trial functions

over an hexagon side *)

VolInt[f_] (b = 3^(3/4)/Sqrt[2];

b*Integrate [f, {x, -1/ (2b) ,1/ (2b) }])

g = {1,x,x^2}

1 = Table[0,{i,3}]

a = Table[0,{i,3}]

1[[1]] = 1

Do[

Print["Generating trial function ",n];

Do[ a[[j]] = VolInt[l[[j]]*g[[n]]],{j,l,n-1} ];

a[[n]] = VolInt[g[[n]]*g[[n]]];

Print["End of VolInt"];

sum = 0;

Do[ sum = sum+a[[j]]^2,{j,n-1} ];

a[[n]] = 1/Sqrt[a[[n]]-sum];

Do[ a[[j]] = -a[[n]]*a[[j]], {j,n-1} ];

sum = 0;

Do[ sum = sum+a[[j]]*1l[[j]],{j,n-1} ];

1[[n]] = sum + a[[n]]*g[[n]],

{n,2,3} ]

Save ["f.surf .hex.dat",1]
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(* A Mathematica script to generate the P matrix, which takes into account

the spatial dependence of the node interior.

hex Geometry *)

<<f.vol.hex.dat
VolInt[f_] (b = 3A(3/4)/Sqrt[2];

Simplify[

Integrate[f, {x,-b/3,0}, {y,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b}]+

Integrate[f,{x,0, b/3},{y, x/Sqrt[3]-1/b,-x/Sqrt[3]+1/b}]])

s = {x, y}

p = Table[0, {i,28}, {j,28}, {k,2}, {l,2}]

Do[

If [k==l,

Do[p[[i,j,k,l]] = VolInt[D[f[[i]],s[[k]]]*D[f[[j]],s[[1]J]];

Print [i, " ", j, " ", k, " ",1, " ",p [[i, j, k, l] ]] ;

p[[j,i,k,l]] = p[[i,j,k,l]],
{i,28}, {j,i,28}

I,

Do[p[[i,j,k,l]] = VolInt[D[f[[i]],s[[k]]]*D[f[[j]],s[[l]]]]
Print(i," "11, j," " ,k,",,, " " fp[ [i, j,k,l] ] ];

p[[j,i,l,k]] = p[[i,j,k,l]],
{i,28}, {j,28}

I

{k,2}, {l,k,2}

]

(* Save["phex.dat",p] *)

Put [P, "phex.rawdata"]

Do[PutAppend[N[p[[i,j,k,1]],16],"phex.rawdata"],{l,2},{k,2},{j,28},{i,28}]
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(* A Mathematica script to generate the D matrix, which couples

the spatial dependence of the node surfaces to the node interior.

hex Geometry

*

3 * * 2

* 

***

4*

*****

*1

***

5 * * 6

*

(* Load vector of basis functions *)

<<f.vol.hex.dat

(* Load vector of surface trial functions)

<<f.surf.hex.dat

(* Define vectors fn where fn is the vector of interior trial functions

transformed to the surface n's coordinate system *)

b = 3A(3/4)/Sqrt[2]

(* the notation a /. {x -> x', y -> y'} can be

expression "a" replacing x with x' and y with

x- >s

{ x 

-

{ x
{ x
{x
x.

{ x 

-

b/3

b/6 (2b

b/6 (2b

-b/3

b/6 (2b

b/6 (2b

S + 1),

s - 1),

S - 1),

s + 1),

y

y

y

y

y

y

S

-1/

1/

S

-1/

1/

read as transform the

y' *)

(4b) (2b s - 3)

(4b) (2b s + 3)

(4b) (2b s + 3)

(4b) (2b s - 3)

}
}
}
}
}
}

(* Define the surface integral on a node surface *)

SurfInt[f_] := b*Integrate[f,{s,-1/(2b),1/(2b)}]

(* Define and initialize the elements of the D matrix *)

d = Table[0,{i,6},{j,28},{k,3}]

(* Calculate the elements of the D matrix. The D matrix is defined as

D[i,j,k] = SurfInt[f[j]*l[k]] on the ith nodal surface where f and 1
are vectors of orthogonal trial functions on the node interior and

nodal surface i *)

Do[ d[[l,j,k]]

d[[2,j,k]]

d[ [3,j,k]]J

d[[4,j,k]]

d[ [5,j,k] I

Surflnt[fl[[j]]*1[[k]]];

Surflnt[f2[[j]]*1[[k]]];

Surflnt[f3[[j]]*1[[k]]];

Surflnt[f4[[j]]*1[[k]]];

Surflnt[f5[[j]]*1[[k]]];

1

fl

f2

f3

f4

f5

f6

1

f

f

f

f

f

f

I.

I.

I.

I.

I.

I.

I.
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d[[6,j,k]] = Surflnt[f6[[j]]*l[[k]]],

{j,28}, {k,3}

]

(* Store the completed D matrix *)

(* Save ["dhex.dat",d] *)

(* Write the numerical values of the D matrix to an ascii file *)

Put [D, "dhex.rawdata"]

Do [PutAppend[N[d[ [i, j,k] ] ,16] , "dhex.rawdata"] , {k, 3}, {j, 28}, {i, 6}]
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(* A Mathematica script to generate the U matrix,

the spatial dependence array needed in the anisotropic scattering

calculation. hex Geometry *)

<<f.vol.hex.dat
VolInt[f_] := (b = 3^(3/4)/Sqrt[2];

Simplify[

Integrate(f, {x,-b/3,0}, {y,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b}]+

Integrate[f, {x,0, b/3}, {y, x/Sqrt[3] -1/b, -x/Sqrt[3]+1/b}]])

s = {x, y}

u = Table[O,{i,28},{j,28),{l,2}]

Do[

Do[u[[i,j,l]] = VolInt[f[[j]]*D[f[[i]],s[[l]]]];

Print [i," ", j," "1,1, " ",u[ ii, j,1]] ],

{i,28}, {j,28}

{l,2}

(* Save["uhex.dat",u] *)

Put [U ,"uhex.rawdata"]

Do[PutAppend[N[u[[i,j,1]],16],"uhex.rawdata"],{l,2},{j,28},{i,28}]
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(* A Mathematica script to generate othornormal trial functions

over an XYZ node

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients

f(n] = sum(a[i]f[i]:i=1,n-l)+a[n]g[n] {1}

(a) calculate inner products and store in a

(b) using inner products calc a[n] 

-

a[n] = 1/sgrt(<g[n],g[n]>-sum(<f[i],g[n]>A2:i=l,n-1)) {2}

(c) using a[n], calculate all a[i]

a[i] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial

function using {1}

* *******-******************************************************************

g = {1,

x,

y,

z,

x^2,

x*y,

y^2,

y*z,

z2,

z*x,

x^3,

x^2*y,

x*y^2,
y^3,

y^2*z,

Y*z^2,

z^3,

z^2*x,

z*x^2,

x*y*z,

x^4,

x^3*y,

x^2*yA2,
x*yA3,

y^4,
y^3*z,

y^2*zA2,
y*zA3,

z^4,

z^3*x,

z^2*xA2,

z*x^3,

x^2*y*z,

x*yA2*z, 97



X*y*Z^2}

f = Table[0,{i,35}]

a = Table[0,{i,35}]

f[[1]] = 1

Do[

Print["Generating trial function ",n];

Do[ a[[j]] = VolInt[f[[j]]*g[[n]]],{j,1,n-1} ];

a[[n]] = VolInt[g[[n]]*g[[n]]];

Print["End of VolInt"];

sum = 0;

Do[ sum = sum+a[[j]]^2,{j,n-} J;
a[[n]] = 1/Sqrt[a[[n]]-sum];

Do[ a[[j]] = -a[[n]]*a[[j]], {j,n-l} ];

sum = 0;

Do[ sum = sum+a[[j]]*f[[j]],{j,n-1} J;

f [[n]] = sum + a[[n]]*g[[n]],
{n,2,35}]

Save ["f .vol.xyz.dat", f]
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(* A Mathematica script to generate othornormal trial functions

over an X-Y surface of a X-Y-Z node.

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients

f[n] = sum(a[i]f[i]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a

(b) using inner products calc a[n] 

-

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>A2:i=1,n-1)) {2}

(c) using a[n], calculate all a[i]

a[i] = -a[n] <f[i],g(n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial

function using {1}

**************************************************************************)

(* Define the volume integral over the node *)

VolInt[f_] := Integrate[f,{x,-1/2,1/2},{y,-1/2,1/2}]

(* Define a vector consisting of the functions making up a complete

second order polynomial *)

g = {l,x,y,x^2,x*y,yA2}

(* Define and initalize a vector for the orthogonal trial functions *)

f = Table[0,{i,6}]

(* Define and initialize a vector for the trial function coefficients *)

a = Table[O,{i,6}]

(* Define the first trial function as 1 *)

f[[1]] = 1

(* Begin loop to determine trial functions *)

Do[

Print ["Generating trial function ",n];

(* Calculate inner products *)

Do[ a[[j]] = VolInt[f[[j]]*g[[n]]],{j,l,n-1} ];

a[[n]] = VolInt[gE[n]]*g[[n]]];

(* Calculate sum of squares of inner products *)

99



sum = 0;

Do[ sum = sum+a[[j]]A2,{j,n-1} ];

(* Calculate the values of the coefficients *)

a[[n]] = 1/Sqrt[a[[n]]-sum];

Do[ a[[j]] = -a[[n]]*a[[j]], {j,n-l} ];

(* Store the trial function in f [n] *)

sum = 0;

Do[ sum = sum+a[[j]]*f[[j]],{j,n-1} ];

f [[n]] = sum + a[[n]]*g([n]],

(* End of Do loop *)

{n,2,6} ]

(* Save the set of trial functions *)

Save["f.surfxy.xyz.dat",f]
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(* A Mathematica script to generate the P matrix, which takes into account

the spatial dependence of the node interior.

X-Y-Z Geometry *)

<<f.vol.xyz.dat
VolInt[f_] := Integrate[f,{x,--1/2, 1/2},{y,-1/2,1/2},{z,-1/2,1/2}]
s = {x, y, z}

p = Table[0, {i,35}, {j,35}, {k,3}, {l,3}]

Do[

If [k==l,

Do[p[[i,j,k,l]] = VolInt[D[f[[i]],s[[k]]]*D[f[[j]],s[[l]]]]

Print [i, " ", j ," ", k, " ",1, " ", p[ [i, j ,k, 1] ] ] ;

p[[j,i,k,l]] = p[[i,j,k,l]],
{i,35}, {j,i,35}

],

Do[p[[i,j,k,l]] = VolInt[D[f [[i]],s[[k]]]*D[f[[j]],s[[l]]]];

Print[i," ",j," ",k,"l ",1," ",p[[i,j,k,1]]] ;

p[[j,i,l,k]] = p[[i,j,k,l]],
{i,35}, {j,35}

]
],

{k,3}, {l,k,3}

]

(* Save["pxyz.dat",p] *)

Put [P, "pxyz.rawdata"]

Do[PutAppend[N[p[[i,j,k,1]],16],"pxyz.rawdata"],{1,3),{k,3},{j,35},{i,35}]
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(* A Mathematica script to generate the D matrix, which couples

the spatial dependence of the node surfaces to the node interior.

X-Y-Z Geometry *)

<<f.surfxy.xyz .dat

1 = f /. {x->t,y->s}

Clear [f]

<<f.vol.xyz .dat

fl = f /. {x->1/2,y->t,z->s}

f2 = f /. {y->1/2,x->t,z->s}

f3 = f /. {z->1/2,x->t,y->s}

f4 = f /. {x->-1/2,y->t,z->s}

f5 = f /. {y->-1/2,x->t,z->s}

f6 = f /. {z->-1/2,x->t,y->s}

(*mx = Table (1, {i, 35} ]

my = Table[1,{i,35}]

mz = Table(1,{i,35}]

mxm = {2, 6,10,11,13,18,20,22,24,30,32,34,35}

mym = {3,6, 8,12,14,16,20,22,24,26,28,33,35}

mzm = {5,8,10,15,17,19,20,26,28,29,32,33,34)

Do[ mx[[mxm[[i]]]] = -1;

my[[mym[[i]]]] = -1;

mz[[mzm((i]]]] = -1,

{i, 13}
] *)

Surflnt[f_] := Integrate[f,{s,-1/2,1/2},{t,-1/2,1/2}]

d = Table[0,{i,6},{j,35}, (k,6}]

Do[ d[[1,j,k]] = Surflnt[fl[[j]]*l[[k]]];

Print[" side 1 ",d[[1,j,k]]];

(*d[[3,j,k]] = mx[[j]]*d[[2,j,k]];*)

d[[3,j,k]] = Surflnt[f4[[j]]*1[(k]]];

Print[" side 3 ",d[[3,j,k]]];

d[[2,j,k]] = Surflnt[f2[[j]]*l[[k]]];

Print[" side 2 ",d[[2,j,k]]];

(*d[[4,j,k]] = my[[j]]*d[[2,j,k]];*)

d[[4,j,k]] = Surflnt[f5[[j]]*l[[k]]];

Print[" side 4 ",d[[4,j,k]]];

d[[5,j,k]] = Surflnt[f3[[j]]*l[[k]]]

Print[" side 5 ",d([5, j,k] ]] ;

(*d[[6,j,k]] = mz[[j]]*d[[5,j,k]];*)

d[[6,j,k]] = Surflnt[f6[[j]]*l[[k]]];

Print[" side 6 ",d[[6,j,k]]],

{j,35},{k,6}

]
(* Save["dxyz.dat",d] *)

Put [D, "dxyz . rawdata"]

Do[PutAppend[N[d[ [i, j,k]] , 16] , "dxyz.rawdata"] , {k,6), {j, 35}, {i,6}]
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(* A Mathematica script to generate the U matrix,

the spatial dependence array needed in the anisotropic scattering

calculation. X-Y-Z Geometry *)

<<f.vol.xyz.dat
VolInt[f_] := Integrate[f,{x,-1/2,1/2},{y,-1/2,1/2},{z,-1/2,1/2}]

s = {x, y, z}
u = Table[0,{i,35},{j,35},{l,3}]

Do[

Do[u[[i,j,l]] = VolInt[f[[j]]*D[f[[i]],s[[l]]]]

Print [i," ", j ," ",1,"O ", u[ [i, j ,1] ] ],

{i,35}, {j,35}

I,

{1,3}

(* Save["uxyz.dat",u] *)

Put(U,"uxyz.rawdata"]

Do[PutAppend[N[u[[i,j,1]],16],"uxyz.rawdata"],{l,3},{j,35},{i,35}]
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(* A Mathematica script to generate othornormal trial functions

over an hex-Z node. Complete expansion order is: 6th order in X and Y,

4th order in Z.

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt (volume) (f [1] 

)

(4) Loop over lin. indep. polynomials to det. trial function coefficients

f~n] = sum(a[i]f[i]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a

(b) using inner products calc a [n] 

-

a(n] = 1/sqrt(<g[n,g[n]>-sum(<f[i],g[n]>^2:i=l,n-1)) {2}

(c) using a[n], calculate all a[i]

a[i] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial

function using {1}

**************************************************

VolInt [f_ := (b = 3^ (3/4) /Sqrt [2] ;

Simplify[

Integrate[f,{x,-b/3,0},{y,-x/Sqrt[3]-l/b, x/Sqrt[3]+1/b},{z,-1/2,1/2}]+

Integrate[f,{x,0, b/3},{y, x/Sqrt[3]-1/b,-x/Sqrt[3]+1/b},{z,-1/2,1/2}]])

g = {1,
x, y, z,

x^2,

x*y,

y^2,

y*z,

z^2,

z*x,

xA3,

x^2*y,

x*y^2,

y^3,

y^2*z,

y*z^2,

z^3,

z^2*x,

z*x^2,

x*y*z,

x^4,

x^3*y,

x^2*y^2,

x*y^3,

y^4,
y^3*z,

y^2*zA2,

y*zA3,

z^4,

z^3*x,

z^2*xA2,

Z*XA3, 104



X^2*y*Z,

x*y^2*z,

x*y*z^2,

x^5,

xA4*y,

x^3*y^2,

xA
2
*yA

3

,

x*yA4

,

y^5

x^6,

xA5*y,

xA
4
*yA

2

,

x^3*yA3,

x^2*yA4,

x*yA5,

YA
y^6

}

f = Table[0,{i,48}]

a = Table[0,{i,48}]

f[[1]] = 1

Do[

Print["Generating trial function ",n];

Do[ a[[j]] = VolInt[f[[j]]*g[[n]]],{j,1,n-1} ];

a[[n]] = VolInt[g[[n]]*g[[n]]];

Print["End of VolInt"];

sum = 0;

Do[ sum = sum+a[[j]]^2,{j,n-1 ];

a[[n]] = 1/Sqrt[a[[n]]-sum];

Do[ a[[j]] = -a[[n]]*a[[j]], {j,n-1} ];

sum = 0;
Do[ sum = sum+a[[j]]*f[[j]],{j,n-1} ];

f [[in]] = sum + a[[n]]*g[[n]],

{n,2,48} ]

Save ["f.hex3d64 .dat", f]
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(* A Mathematica script to generate othornormal trial functions

over an XY surface FOR A SIDE OF A HEX CAN

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f [1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients

f[n] = sum(a[i]f[i]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a

(b) using inner products calc a [n] 

-

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>^2:i=1,n-1)) {2}

(c) using a[n], calculate all a[i]

a[i] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial

function using {1}

(* Define the volume integral over the node *)

VolInt[f_] := (b=3^(3/4)/Sqrt[2] ;

b*Integrate [f, {x, -1/ (2 b) ,l/ (2 b)}, {y, -1/2, 1/2}] 

)

(* Define a vector consisting of the functions making up a complete

fourth order polynomial *)

g = {1,x,y,x^2,x*y,yA2}

(* Define and initalize a vector for the orthogonal trial functions *)

f = Table[0,{i,6}]

(* Define and initialize a vector for the trial function coefficients *)

a = Table[0,{i,6}]

(* Define the first trial function as 1 *)

f[[1]] = 1

(* Begin loop to determine trial functions *)

Do[

Print["Generating trial function ",n];

(* Calculate inner products *)

Do[ a[[j]] = VolInt[f[[j]]*g[[n]]],{j,l,n-1} ];

a[[n]] = VolInt[g[[n]]*g[[n]]];

(* Calculate sum of squares of inner products *)
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sum = 0;

Do[ sum = sum+a[[j]]^2,{j,n-1} ];

(* Calculate the values of the coefficients *)

a[[n]] = 1/Sqrt[a[[n]]-sum];

Do[ a[[j]] = -a[[n]]*a[[j]], {j,n-l} ];

(* Store the trial function in f En] *)

sum = 0;

Do[ sum = sum+a[[j]]*f[[j]],{j,n-1} ];

f [[n]] = sum + a[[n]]*g[n]],

(* End of Do loop *)

{n,2,6} ]

(* Save the set of trial functions *)

Save ["f. surfxy.hexz.dat", f]
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(* A Mathematica script to generate othornormal trial functions

over an hex surface FOR A SIDE OF A HEX '\N

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt (volume) (f(1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients

f[n] = sum(a[i]f[i]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a

(b) using inner products calc a[n] 

-

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>A2:i=1,n-1)) {2)

(c) using a[n], calculate all a[i]

a[i] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial

function using {1}

VolInt [f_] (b = 3^(3/4) /Sqrt [2] ;

Simplify [

Integrate[f, {x, -b/3,0}, {y,-x/Sqrt[3] -1/b, x/Sqrt[3]+1/b}]+

Integrate[f, {x,0, b/3}, {y, x/Sqrt[3]-l/b,-x/Sqrt[3]+1/b}]])

g = {1,

x, y,

x^2,x*y,y^2}

f = Table[0,{i,6}]

a = Table[0,{i,6}]

f [[1]]= 1

Do[

Print["Generating trial function ",n];

Do[ a[[j]] = VolInt[f[[j]]*g[[n]]],{j,l,n-1} ];

a[[n]] = VolInt[g[[n]]*g[[n]]];

Print [ "End of VolInt"] ;

sum = 0;

Do[ sum = sum+a[J[j]]2,{j,n-1} ];

a[[n]] = 1/Sqrt[a[[n]]-sum];

Do[ a[[j]] = -a[[n]]*a[[j]], {j,n-1} J;
sum = 0;

Do[ sum = sum+a[[j]]*f[[j]],{j,n-1} ];

f[[n]] = sum + a[[n]]*g[[n]],

{n,2,6} ]

Save ["f.surfh.hexz.dat", f]
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(* A Mathematica script to generate the P matrix, which takes into account

the spatial dependence of the node interior.

hex-Z Geometry *)

<<f64.vol.hexz.dat

f = Simplify[N[f,15]]

VolInt[f_] :=
b = 3A(3/4)/Sqrt[2];

Simplify[

Integrate[f,{x,-b/3,0},{y,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b},{z,-1/2,1/2}]+

Integrate[f,{x,0, b/3},{y, x/Sqrt[3]-1/b,-x/Sqrt[3]+1/b},{z,-1/2,1/2}]])

s = {x, y, z}

p = Table[0,{i,48},{j,48},{k,3},{l,3}]

Do[

If[k==l,

Do[

p[[i,j,k,l]] = VolInt[D[f[[i]],s[[k]]]*D[f[[j]],s[[lJ]]];

Print[ i," ",j," ",k," ",1," ",N[ p[[i,j,k,l1)] ];

p[[j,i,k,l]] = p[[i,j,k,l]],

{i,48}, {j,i,48}

],

Do[

p[[i,j,k,l]] = VolInt[D[f[[i]],s[[k]]]*D[f[[j]],s[[l]]]];

Print [ i," " , j ," ",k," ",1," ",N[ p [i, j ,k,1]] ] ];

p[[j,i,l,k]] = p[[i,j,k,l]],

{i,48), {j,48}

I
1;

(* Save["s64.phexz.dat",p],

{k,3}, {l,k,3}

] *)

stmp = OpenWrite["s64.phexz.rawdata"]

WriteString[stmp,"P \n"]

Do[

Write[ stmp, Chop[ N[ p[[i,j,k,l]], 12 ], 10^-12 ] ]

{l,3},{k,3},{j,48},{i,48}

1

Close [stmp]
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(* Script for calculating the hex-z D matrix. The sides are numbered

as follows:

Sides 1-6 : rectangular faces starting at x = b/3, numbered counter

clockwise

Side 7 : upper hexagonal face

Side 8 : lower hexagonal face

(* Number of internal moments *)

(* 4th order in z, 6th order in xy *)

nFluxMom = 48

(* Number of surface moments *)

(* quadratic in s and t *)

nCurrMom = 6

(* Load vector of surface trial functions *)

(* xy trial functions on the rectangular faces *)

<< f.surfxy.hexz.dat

f=Simplify[N[f, 15]]

hxy = f

hxy = hxy /. { x -> s, y -> t }

Clear[f]

(* hex trial functions on the z faces *)

<< f.surfh.hexz.dat

f=Simplify(N[f, 15]]

hz = f

hz = hz /. { x -> s, y -> t }

Clear([f]

(* define a function which returns the appropriate surface trial function *)

h[i_,j_] = ( If[ i < 7, hxy[[j]], hz[[j]] ] );

(* Define surface integral: sides 1-6 - rectangular domain

sides 7-8 - hexagonal domain *)

surfInt[f_,i_] = 

(

If[

i < 7,b=3A(3/4)/Sqrt[2];

b*Integrate[f,{s,-1/(2 b),l/(2 b)},{t,-1/2,1/2}],

b = 3A(3/4)/Sqrt[2];

Simplify[

Integrate[f,{s,-b/3,0},{t,-s/Sqrt[3]-1/b, s/Sqrt[3]+1 /b}]+

Integrate[f,{s,0, b/3},{t, s/Sqrt[3]-1/b,-s/Sqrt[3]+1 /b}]

]

(* Load vector of internal basis functions, f *)

<<f64.vol.hexz.dat
f=Simplify[N[f,15]]

(* Define vectors fp where fp[[n]] is the vector of interior trial functions
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transformed to the surface n's coordinate system *)

b = 3A(3/4)/Sqrt[2]

fp = Table[ 0, {i,8} ]

fp[[1]] = f /. { x -> b/3 , y -> s , z -> t }

fp[[2]] = f /. { x -> b/6(2b s + 1), y -> -1/(4b) (2b s - 3), z -> t }

fp[[3]] = f /. { x -> b/6(2b s - 1), y -> 1/(4b) (2b s + 3), z -> t }

fp[[4]] = f /. { x -> -b/3 , y -> s , z -> t }

fp[[5]] = f /. { x -> b/6(2b s - 1), y -> -1/(4b) (2b s + 3), z -> t }

fp[[6]] = f /. { x -> b/6(2b s + 1), y -> 1/(4b) (2b s - 3), z -> t }

fp[[7]] = f /. { z -> 1/2, x -> s, y-> t }

fp[[8]] = f /. { z -> -1/2, x -> s, y-> t }

(* Define and initialize the elements of the D matrix *)

d = Table[0,{i,8},{j,nFluxMom},{k,nCurrMom)]

Do[

d[[i,j,k]] = surfInt[ Simplify[ N[ fp[[i,j]] h[i,k], 14 ] ], i ];

Print["Surface ",i," Pair[ ",j,", ",k," ] = ", N[ d[[i,j,k]] ] ],
{i,8},{j,nFluxMom),{k,nCurrMom)

(* Store the completed D matrix *)

(* Save["s64.dhexz.dat",d] *)

(* Write the numerical values of the D matrix to an ascii file *)

stmp = OpenWrite["s64.dhexz.rawdata"]

WriteString[stmp,"D \n"]

Do[

Write[ stmp, Chop[ N[ d[[i,j,k]],12 ], 1OA-12 ] ],

{k,nCurrMom}, {j,nFluxMom}, {i,8)

Close [stmp]
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(* A Mathematica script to generate the U matrix,

the spatial dependence array needed in the anisotropic scattering

calculation. hex-Z Geometry *)

<<f64.vol.hexz.dat
f=Simplify[N[f,15]]

VolInt[f_] := (b = 3A(3/4)/Sqrt[2];

Simplify[

Integrate[f,{x,-b/3,0},{y,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b},{z,-1/2, 1/2)]+
Integrate[f,{x,0, b/3),{y, x/Sqrt[3]-1/b,-x/Sqrt[3]+1/b},{z,-1/2, 1/2)]])

s = {x, y, z}
u = Table(0,{i,48},{j,48},{l,3}]

Do[

Do[u[[i,j,1]] = VolInt[f[[j]]*D[f[[i]],s[[1]]]];

Print [i," " ""1""u i 1

{i,48}, {j,48}

],

{1,3}

]
(* Save["s64.uhexz.dat",u] *)

Put [U, "s64 .uhexz.rawdata"]

Do[PutAppend[N[u[[i,j,1]] ,16] , "s64.uhexz.rawdata"],{l,3}, {j,48},{i,48}]
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(* A Mathematica script to generate the P matrix, which takes into account

the angular dependence of the node interior.

2d Geometry *)

ifa=9

rules = {x -> Cos[th],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}

<<even parity.functions.2d

g = g /. rules

o={Cos[th] ,Sin[th] *Cos [ph] }

<<AngInt.math
h = Table[0,{i,2},{j,2},{k,ifa},{l,ifa}]

Do[a=Anglnt[ o[[i]] o[[j]] g[[k]] g[[l]] ];

h[ [i, j ,k,1]]=a;
a=a, (*

h[[i, j,l,k] ]=a;

h [[j, i,k,1]]=a;

h[[j,i,1,k]]=a, *)

{i, 2} , {j,2}, {k, ifa} , {1,ifa}]

(* Save["hxy.dat",h] *)

stmp = OpenWrite["hxy.rawdata"]

WriteString[stmp,"H \n"]

Do[Write[stmp,N[h[[i,j,k,1]],16]],{l,ifa},{k,ifa},{j,2},{i,2}]

Close [stmp]

113



(* A Mathematica script to generate the P matrix, which takes into account

the angular dependence of the node interior.

3d Geometry *)

rules = {x -> Cos[th],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}

<<even parity. functions . 3d

<<AngInt.math
g = g /. rules

o={Cos [th] ,Sin[th]*Cos [ph] ,Sin[th] Sin[ph] }

h = Table[0, {i,3}, {j,3), {k,15},{l,15}]

Do[

a=AngInt[ o[[i]] o[[j]] g[[k]] g[[1]] ];

h[[i,j,k,l]]=a;

h[[i,j,l,k]]=a;

h[[j,i,k,l]]=a;

hE[j,i,l,k]]=a,
{i,3},{j,i,3},{k,15},{l,k,15}]

(* Save["hxyz.dat",h] *)

stmp = OpenWrite["hxyz.rawdata"]
WriteString [stmp, "H \n"]

DokWrite[stmp,N[h[[i,j,k,l]],16]],{1,15),{k,15},{j,3},{i,3}]

Close [stmp]
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APPENDIX B

DESCRIPTION OF FILE COMPXS

PREPARED 3/7/78 AT ANL

LAST REVISED 08/31/95

COMPXS

MACROSCOPIC COMPOSITION CROSS SECTIONS

C -----------------------------------------------------------------------

CS FILE STRUCTURE 

-

RECORD TYPE

SPECIFICATIONS

COMPOSITION INDEPENDENT DATA

********* (REPEAT FOR ALL COMPOSITIONS)

* COMPOSITION SPECIFICATIONS

* ****** (REPEAT FOR ALL ENERGY GROUPS

* * IN THE ORDER OF DECREASING

* * ENERGY)

* * COMPOSITION MACROSCOPIC GROUP

* * CROSS SECTIONS

*********

POWER CONVERSION FACTORS

NGROUP

ICHI

NUP (I)

NDN (I)

ISCHI

NFAM

MULT

PRESENT IF 

-

ALWAYS-

ALWAYS 

-

ALWAYS 

-

ALWAYS-

ALWAYS 

-

NUMBER OF ENERGY GROUPS.

PROMPT FISSION SPECTRUM FLAG FOR THIS

COMPOSITION. ICHI=-1 IF COMPOSITION USES THE

SET-WIDE PROMPT CHI GIVEN IN SET CHI RECORD

(BELOW). ICHI=0 IF COMPOSITION IS NOT

FISSIONABLE. ICHI=1 FOR COMPOSITION PROMPT CHI

VECTOR. ICHI=NGROUP FOR COMPOSITION PROMPT CHI

MATRIX.

NUMBER OF GROUPS OF UPSCATTERING INTO GROUP I

FROM LOWER ENERGY GROUPS FOR THE CURRENT

COMPOSITION

NUMBER OF GROUPS OF DOWNSCATTERING INTO GROUP I

FROM HIGHER ENERGY GROUPS FOR THE CURRENT

COMPOSITION

PROMPT FISSION SPECTRUM FLAG. ISCHI=0 IF

THERE IS NO SET-WIDE PROMPT CHI. ISCHI=1 IF

THERE IS A SET-WIDE PROMPT CHI VECTOR.

ISCHI=NGROUP IF THERE IS A SET-WIDE PROMPT

CHI MATRIX.

NUMBER OF DELAYED NEUTRON FAMILIES.

2 FOR IBM MACHINES, 1 OTHERWISE.
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C

C

C

C

CF

CE

C

CS

CS

CS

CS

CS

CS

CS

CS

CS

CS

CS

CS

CS

CS

CS

C

C-----------------------------------------------------------------------

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD



C-

CR SPECIFICATIONS (TYPE 1) 

-

C 

-

CL NCMP,NGROUP, ISCHI,NFCMP,MAXUP,MAXDN,NFAM,NDUM1,NDUM2,NDUM3 

-

C 

-

CW 10 

-

C 

-

CD NCMP NUMBER OF COMPOSITIONS. 

-

CD NFCMP NUMBER OF FISSIONABLE COMPOSITIONS. 

-

CD MAXUP MAXIMUM NUMBER OF GROUPS OF UPSCATTERING FOR 

-

CD THE SET. 

-

CD MAXDN MAXIMUM NUMBER OF GROUPS OF DOWNSCATTERING 

-

CD FOR THE SET. 

-

CD MAXORD ANISOTROPIC SCATTERING ORDER 

-

CD NDUM2 RESERVED. 

-

CD NDUM3 RESERVED. 

-

C 

-

C-----------------------------------------------------------------------

C-------------------------------------------------------------------------------

CR COMPOSITION INDEPENDENT DATA (TYPE .) 

-

C 

-

CC ALWAYS PRESENT 

-

C 

-

CL ((CHI (I, J) , I=1, ISCHI) , J=1, NGROUP) , (VEL (J) , J=1, NGROUP) , 

-

CL 1 (EMAX (J) , J=1, NGROUP) ,EMIN, ((CHID (J, K) , J=1,NGROUP) , K=1, NFAM) , 

-

CL 2 (FLAM (K) , K=1, NFAM) , (NKFAM (J) , J=1, NCMP) 

-

C 

-

CW MULT* (NGROUP* (ISCHI+2+NFAM) +1+NFAM) +NCMP 

-

C 

-

CD CHI PROMPT FISSION FRACTION INTO GROUP J FROM 

-

CD GROUP I. IF ISCHI=1, THE LIST REDUCES TO 

-

CD (CHI(J),J=1,NGROUP), WHERE CHI(J) IS THE 

-

CD FISSION FRACTION INTO GROUP J. 

-

CD VEL MEAN NEUTRON VELOCITY IN GROUP J (CM/SEC). 

-

CD EMAX MAXIMUM ENERGY BOUND OF GROUP J (EV). 

-

CD EMIN MINIMUM ENERGY BOUND OF SET (EV). 

-

CD CHID FRACTION OF DELAYED NEUTRONS EMITTED INTO 

-

CD NEUTRON ENERGY GROUP J FROM PRECURSOR 

-

CD FAMILY K. 

-

CD FLAM DELAYED NEUTRON PRECURSOR DECAY CONSTANT 

-

CD FOR FAMILY K. 

-

CD NKFAM NUMBER OF FAMILIES TO WHICH FISSION IN 

-

CD COMPOSITION J CONTRIBUTES DELAYED NEUTRON 

-

CD PRECURSORS. 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR COMPOSITION SPECIFICATIONS (TYPE 3) 

-

C 

-

CC ALWAYS PRESENT 

-

C

CL ICHI, (NUP (I) , I=1, NGROUP) , (NDN (I) , I=1, NGROUP) , 

-

CL 1 (NUMFAM (I) , I=1, NKFAMI) 

-

C 

-

CC NKFAMI = NKFAM (K)
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C

CW 1+2*NGROUP+NKFAMI 

-

C 

-

CD NUMFAM FAMILY NUMBER OF THE I-TH YIELD VECTOR IN 

-

CD ARRAY SNUDEL(I). 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR COMPOSITION MACROSCOPIC GROUP CROSS SECTIONS (TYPE 4) 

-

C 

-

CC ALWAYS PRESENT 

-

C 

-

CL XA,XTOT,XREM,XTR,XF,XNF, (CHI(I),I=1,ICHI), 

-

CL 1 (XSCATU (I) , I=1, NUMUP) , XSCATJ, (XSCATD (I) , I=1, NUMDN) , 

-

CL 2PC,A1,B1,A2,B2,A3,B3,(SNUDEL(I),I=1,NKFAMI),XN2N, 

-

CL 3 ((XSCAUP (I, L) , I=1,NUMUP) , (XSCAJP (I, L) , I=1, NUMDN) , L=1, MAXORD) 

-

C 

-

CC NUMUP = NUP FOR THE CURRENT GROUP 

-

CC NUMDN = NDN FOR THE CURRENT GROUP 

-

CC NKFAMI = NKFAM(K) 

-

C 

-

CW MULT* (15+ICHI+NUMUP+NUMDN+NKFAMI) IF ICHI.GT.O 

-

CW MULT*(15+NUMUP+NUMDN+NKFAMI) IF ICHI.EQ.-1 

-

CW MULT*(13+NUMUP+NUMDN+NKFAMI) IF ICHI.EQ.O 

-

C 

-

CD XA ABSORPTION CROSS SECTION. 

-

CD XTOT TOTAL CROSS SECTION. 

-

CD XREM REMOVAL CROSS SECTION, TOTAL CROSS SECTION 

-

CD FOR REMOVING A NEUTRON FROM GROUP J DUE TO ALL 

-

CD PROCESSES. 

-

CD XTR TRANSPORT CROSS SECTION. 

-

CD XF FISSION CROSS SECTION, PRESENT ONLY IF 

-

CD ICHI.NE.O. 

-

CD XNF TOTAL NUMBER OF NEUTRONS EMITTED PER FISSION 

-

CD TIMES XF, PRESENT ONLY IF ICHI.NE.O. 

-

CD CHI PROMPT FISSION FRACTION INTO GROUP J FROM 

-

CD GROUP I, PRESENT ONLY IF ICHI.GT.O. IF ICHI=1, 

-

CD THE LIST REDUCES TO THE SINGLE NUMBER CHI, 

-

CD WHICH IS THE PROMPT FISSION FRACTION INTO 

-

CD GROUP J. 

-

CD XSCATU TOTAL SCATTERING CROSS SECTION INTO GROUP J 

-

CD FROM GROUPS J+NUP(J),J+NUP(J)-1,...,J+2,J+1, 

-

CD PRESENT ONLY IF NUP(J) .GT.O. 

-

CD XSCATJ TOTAL SELF-SCATTERING CROSS SECTION FROM 

-

CD GROUP J TO GROUP J. 

-

CD XSCATD TOTAL SCATTERING CROSS SECTION INTO GROUP J 

-

CD FROM GROUPS J-1,J-2,...,J-NDN(J), PRESENT 

-

CD ONLY IF NDN(J).GT.0. 

-

CD PC PC TIMES THE GROUP J REGION INTEGRATED 

-

CD FLUX FOR THE REGIONS CONTAINING THE CURRENT 

-

CD COMPOSITION YIELDS THE POWER IN WATTS IN THOSE 

-

CD REGIONS AND ENERGY GROUP J DUE TO FISSIONS 

-

CD AND NON-FISSION ABSORPTIONS. 

-

CD Al FIRST DIMENSION DIRECTIONAL DIFFUSION 

-

CD COEFFICIENT MULTIPLIER. 

-

CD B. FIRST DIMENSION DIRECTIONAL DIFFUSION 

-

CD COEFFICIENT ADDITIVE TERM. 

-

CD A2 SECOND DIMENSION DIRECTIONAL DIFFUSION 

-
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CD COEFFICIENT MULTIPLIER. 

-

CD B2 SECOND DIMENSION DIRECTIONAL DIFFUSION 

-

CD COEFFICIENT ADDITIVE TERM. 

-

CD A3 THIRD DIMENSION DIRECTIONAL DIFFUSION 

-

CD COEFFICIENT MULTIPLIER. 

-

CD B3 THIRD DIMENSION DIRECTIONAL DIFFUSION 

-

CD COEFFICIENT ADDITIVE TERM. 

-

CD SNUDEL NUMBER OF DELAYED NEUTRON PRECURSORS PRODUCED 

-

CD IN FAMILY NUMBER NUMFAM(I) PER FISSION 

-

CD IN GROUP J. 

-

CD XN2N N,2N REACTION CROSS SECTION 

-

C 

-

CN THE MACROSCOPIC XN2N(J) TIMES THE FLUX IN GROUP-

CN J GIVES THE RATE AT WHICH N,2N REACTIONS OCCUR 

-

CN IN GROUP J. THUS, FOR N,2N SCATTERING, 

-

CN XN2N (J) =0.5* (SUM OF SCAT (J TO G)) SUMMED OVER 

-

CN ALL G WHERE SCAT IS THE N,2N SCATTERING MATRIX. 

-

C 

-

CD XSCAUP SAME AS XSCATU BUT FOR ANISOTROPIC ORDER L 

-

CD XSCAJP SAME AS XSCATJ BUT FOR ANISOTROPIC ORDER L 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR POWER CONVERSION FACTORS (TYPE 5) 

-

C 

-

CC ALWAYS PRESENT 

-

C 

-

CL (FPWS(I),I=1,NCMP), (CPWS(I),I=1,NCMP) 

-

C 

-

CW 2*MULT*NCMP 

-

C 

-

CD FPWS FISSIONS/WATT-SECOND FOR EACH COMPOSITION 

-

CD CPWS CAPTURES/WATT-SECOND FOR EACH COMPOSITION 

-

C 

-

CN 

-

CN IF ENERGY CONVERSION DATA ARE SUPPLIED FOR 

-

CN NEITHER FISSION NOR CAPTURE FOR A PARTICULAR 

-

CN COMPOSITION, BOTH FPWS AND CPWS SHOULD BE SET 

-

CN TO THE ARTIFICIAL VALUE OF -1.OE+20 FOR THAT 

-

CN COMPOSITION. 

-

CN 

-

CN IF EITHER FPWS(I) OR CPWS(I) (BUT NOT BOTH) IS 

-

CN SPECIFIED BY THE USER FOR COMPOSITION I, THEN 

-

CN THE ITEM WHICH IS NOT SPECIFIED SHOULD BE SET 

-

CN TO ZERO FOR COMPOSITION I. 

-

CN 

-

CN AT THE PRESENT TIME, REBUS-3 IS THE ONLY CODE 

-

CN WHICH USES THE DATA IN RECORD TYPE 5, AND 

-

CN THE -1.0E+20 NUMBERS ARE USED TO INDICATE THAT 

-

CN THE USER HAS SPECIFIED NEITHER FISSION NOR 

-

CN NON-FISSION CAPTURE ENERGY CONVERSION FACTORS 

-

CN FOR VARIOUS COMPOSITIONS. 

-

C

C-----------------------------------------------------------------------

CEOF

118



APPENDIX C

DESCRIPTION OF VARIANT OUTPUT FILE NHFLUX

PREPARED 3/01/82 

-

LAST REVISED 8/31/95

REVISED 5/29/91 FOR DIF3D 7.0 

-

NHFLUX 

-

REGULAR NODAL FLUX-MOMENTS AND INTERFACE PARTIAL CURRENTS 

-

ORDER OF GROUPS IS ACCORDING TO DECREASING 

-

ENERGY. NOTE THAT DOUBLE PRECISION FLUXES ARE 

-

GIVEN WHEN MULT=2 

-

C-----------------------------------------------------------------------

CS FILE STRUCTURE 

-

RECORD TYPE

FILE IDENTIFICATION

SPECIFICATIONS

INTEGER POINTERS

RECORD PRESENT IF

1D

2D

***********(REPEAT FOR ALL GROUPS)

* FLUX MOMENTS

* XY-DIRECTED PARTIAL CURRENTS

* Z -DIRECTED PARTIAL CURRENTS

ALWAYS

ALWAYS

NSURF.GT.1

3D ALWAYS

4D

5D

ALWAYS

NDIM.EQ. 3

CS *********** 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR FILE IDENTIFICATION 

-

C 

-

CL HNAME, (HUSE (I) , I=1, 2) , IVERS 

-

C 

-

CW 1+3*MULT=NUMBER OF WORDS 

-

C 

-

CD HNAME HOLLERITH FILE NAME - NHFLUX - (A6) 

-

CD HUSE (I) HOLLERITH USER IDENTIFICATION (A6) 

-

CD IVERS FILE VERSION NUMBER 

-

CD MULT DOUBLE PRECISION PARAMETER 

-

CD 1- A6 WORD IS SINGLE WORD 

-

CD 2- A6 WORD IS DOUBLE PRECISION WORD 

-

C

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

SPECIFICATIONS (1D RECORD)

C

C

C

C

C

CF

CE

C

CN

CN

CN

C

CS

CS

CS

CS

CS

CS

CS

CS

CS

CS

CS

CR
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CL NDIM, NGROUP,NINTI,NINTJ,NINTK, ITER, EFFK, POWER, NSURF, 

-

CL NMOM,NINTXY,NPCXY,NSCOEF, ITRORD, IAPRX, ILEAK, IAPRXZ, ILEAKZ, 

-

CL IORDER, IDUM 

-

C 

-

CW 20 =NUMBER OF WORDS 

-

C 

-

CD NDIM NUMBER OF DIMENSIONS 

-

CD NGROUP NUMBER OF ENERGY GROUPS 

-

CD NINTI NUMBER OF FIRST DIMENSION FINE MESH INTERVALS 

-

CD NINTJ NUMBER OF SECOND DIMENSION FINE MESH INTERVALS 

-

CD NINTK NUMBER OF THIRD DIMENSION FINE MESH INTERVALS. 

-

CD NINTK.EQ.1 IF NDIM.LE.2 

-

CD ITER OUTER ITERATION NUMBER AT WHICH FLUX WAS 

-

CD WRITTEN 

-

CD EFFK EFFECTIVE MULTIPLICATION FACTOR 

-

CD POWER POWER IN WATTS TO WHICH FLUX IS NORMALIZED 

-

CD NSURF NUMBER OF XY-PLANE SURFACES PER NODE. 

-

CD NMOM NUMBER OF FLUX MOMENTS IN NODAL APPROXIMATION 

-

CD NINTXY NUMBER OF MESH CELLS (NODES) ON XY-PLANE 

-

CD NPCXY NUMBER OF XY-DIRECTED PARTIAL CURRENTS ON 

-

CD XY-PLANE 

-

CD NSCOEF NUMBER OF PARTIAL CURRENT MOMENTS PER NODE 

-

CD SURFACE 

-

CD ITRORD ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 

-

CD SOURCE WITHIN THE NODE 

-

CD IAPRX ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 

-

CD FLUXES WITHIN THE NODE 

-

CD ILEAK ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 

-

CD LEAKAGES ON THE SURFACES OF THE NODES 

-

CD IAPRXZ ORDER OF THE PN EXPANSION OF THE FLUX 

-

CD ILEAKZ ORDER OF THE PN EXPANSION OF THE LEAKAGE 

-

CD IORDER MESH ORDERING SENTINEL 

-

CD =0, ORIGINAL NODAL ORDERING PRIOR TO DIF3D 7.0 

-

CD =1, REVISED NODAL ORDERING, DIF3D 7.0 

-

CD IDUM RESERVED FOR FUTURE USE 

-

C 

-

CN IORDER PERMITS DETECTION OF NHFLUX FILES FROM 

-

CN DIF3D VERSIONS PRECEDING DIF3D 7.0 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR INTEGER POINTERS (2D RECORD) 

-

C 

-

CC PRESENT IF NSURF.GT.1 

-

C 

-

CL (IPCPNT(I,J), I=1,NSURF) ,J=1,NINTXY) , (IPCBDY(I) , I=1,NPCBDY) , 

-

CL (ITRMAP(I),I=1,NINTXY) 

-

C 

-

CW NSURF*NINTXY + NPCBDY + NINTXY =NUMBER OF WORDS 

-

C 

-

CD IPCPNT(I,J) POINTERS TO INCOMING XY-PLANE PARTIAL CURRENTS. 

-

CD IPCBDY(I) POINTERS TO OUTGOING PARTIAL CURRENTS ON OUTER 

-

CD XY-PLANE BOUNDARY. 

-

CD ITRMAP(I) TRANSFORMATION MAP BETWEEN NODAL AND GEODST 

-

CD MESH CELL ORDERINGS. 

-

CD NPCBDY = NPCXY - NSURF*NINTXY. 

-

C 

-

CN IPCBDY WILL INCLUDE OUTGOING PARTIAL CURRENTS 

-
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CN ON CERTAIN SYMMETRY BOUNDARIES TO AVOID VECTOR 

-

CN RECURSION IN DIF3D 7.0 AND LATER VERSIONS. 

-

C 

-

CN THE NODAL ORDERING IN DIF3D 7.0 AND LATER 

-

CN VERSIONS HAS ACTIVE NODES ORDERED BY COLOR, 

-

CN FOLLOWED BY INACTIVE NODES. 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

REGULAR FLUX MOMENTSCR

C

(3D RECORD)

CL ((FLUX (I, J) , I=1, NMOM) , J=1, NINTXY) - - - - - -SEE STRUCTURE BELOW- - - - -

-

C 

-

CW NMOM*NINTXY*MULT = NUMBER OF WORDS 

-

C 

-

C DO 1 K=1,NINTK 

-

C 1 READ (N) *LIST AS ABOVE* 

-

C 

-

FLUX(I,J) REGULAR FLUX MOMENTS BY NODE FOR THE PRESENT

GROUP

REGULAR XY-DIRECTED PARTIAL CURRENTS (4D RECORD)

CL ((PCURRH (I, M) , M=1, NSCOEF) , I=1, NPCXY) - - - -SEE STRUCTURE BELOW----

C 

-

CW NPCXY*NSCOEF*MULT = NUMBER OF WORDS 

-

C 

-

C DO 1 K=1,NINTK 

-

C 1 READ (N) *LIST AS ABOVE* 

-

C 

-

PCURRH (I, M) OUTGOING XY-DIRECTED PARTIAL CURRENTS

ACROSS ALL XY-PLANE SURFACES FOR THE

THE PRESENT GROUP

ELEMENTS I=1,NSURF*NINTXY OF EACH VECTOR PCURRH(.,M) MAP TO 

-

SURFACE S OF NODE N WHERE S = MOD(I-1,NSURF)+1 AND 

-

N = (I-1)/NSURF + 1 

-

THE REMAINING ELEMENTS (PCURRH (I, M) , I=NSURF*NINTXY+1, NPCXY) , 

-

IF ANY, CORRESPOND TO INCOMING PARTIAL CURRENTS (M=1) OR INCOMING-

HALF-ANGLE INTEGRATED FLUXES (M=2) FOR NODE SURFACES ON THE OUTER-

(POSSIBLY IRREGULAR) XY-PLANE BOUNDARY. 

-

THE FOLLOWING ORIENTATION IS USED TO DENOTE 

-

SURFACES J=1, ... ,NSURF AND NEIGHBORING NODES J=1, .. . ,NSURF: 

-*

J=3 

****

J=4 

***

* J=2

***

* J=1

**

J=5 * * J=6

Y

J=2

* 

*

J=3 

*

* 

*

J=4
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CD

CD

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR

C

CD

CD

CD

C

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

* J=1 +----> X



*

CN

CN

CN

CN

CARTESIAN NODES

NSURF = 4

C

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR REGULAR Z-DIRECTED PARTIAL CURRENTS (5D RECORD) 

-

C 

-

CL (((PCURRZ (I, M, J) , I=1, NINTXY) , M=1, NSCOEF) , J=1, 2) 

-

CL ------ SEE STRUCTURE BELOW---------

C 

-

CW NINTXY*NSCOEF*2*MULT = NUMBER OF WORDS-- 

-

C 

-

C DO 1 K=1,NINTK1 

-

C 1 READ (N) *LIST AS ABOVE* 

-

C 

-

CC WITH NINTK1 = NINTK + 1 

-

PCURRZ (I, M, J) REGULAR Z-DIRECTED PARTIAL CURRENTS (M=1) AND

HALF-ANGLE INTEGRATED FLUXES (M=2) IN

PLUS- (J=1) AND MINUS- (J=2) Z DIRECTIONS

ACROSS ALL AXIAL BOUNDARIES FOR THE PRESENT

GROUP

CN E.G. INCOMING PARTIAL CURRENTS FOR NODE I ON 

-

CN AXIAL MESH INTERVAL K ARE PCURRZ(I,1,1) ON THE 

-

CN LOWER BOUNDARY (RECORD K) AND PCURRZ (I,1, 2) ON 

-

CN THE UPPER AXIAL BOUNDARY (RECORD K+1). 

-

C 

-

C-----------------------------------------------------------------------

CEOF

122

HEXAGONAL NODES

NSURF = 6

C

CD

CD

CD

CD

CD

C



APPENDIX D

DESCRIPTION OF THE BCD INPUT FILE A.DIF3D

C***********************************************************************

C 

-

C REVISED 8/31/95 

-

C 

-

CF A.DIF3D 

-

CE ONE-, TWO-, AND THREE-DIMENSIONAL DIFFUSION THEORY 

-

CE MODULE-DEPENDENT BCD INPUT 

-

C 

-

CN THIS BCD DATASET MAY BE WRITTEN EITHER 

-

CN IN FREE FORMAT (UNFORM=A.DIF3D) OR 

-

CN ACCORDING TO THE FORMATS SPECIFIED FOR EACH 

-

CN CARD TYPE (DATASET=A.DIF3D). 

-

CN 

-

CN COLUMNS 1-2 MUST CONTAIN THE CARD TYPE NUMBER. 

-

CN 

-

CN A BLANK OR ZERO FIELD GIVES THE DEFAULT OPTION 

-

CN INDICATED. 

-

CN 

-

CN NON-DEFAULTED DATA ITEMS ON THE A.DIF3D 

-

CN DATA SET ALWAYS OVERRIDE THE CORRESPONDING 

-

CN DATA ON THE RESTART DATA SET DIF3D. 

-

C 

-

C***********************************************************************

C-----------------------------------------------------------------------

CR PROBLEM TITLE (TYPE 01) 

-

C 

-

CL FORMAT----- (12,4X,11A6)

C 

-

CD COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD- =======- =======================================================-

CD 1-2 01 

-

CD 

-

CD 7-72 ANY ALPHANUMERIC CHARACTERS (1 CARD ONLY). 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR STORAGE AND DUMP SPECIFICATIONS (TYPE 02) 

-

C 

-

CL FORMAT----- (12,4X,3I6)

C 

-

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD = ======= = = == = = = == = = == = = = == = = == = = ==-

CD 1 1-2 02 

-

CD 

-

CD 2 7-12 POINTR CONTAINER ARRAY SIZE IN FAST CORE MEMORY (FCM) 

-

CD IN REAL*8 WORDS (DEFAULT=10000). 

-

CD 

-

CD 3 13-18 POINTR CONTAINER ARRAY SIZE IN EXTENDED CORE 

-

CD MEMORY (ECM) IN REAL*8 WORDS (DEFAULT=30000). 

-
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CD 4 19-24 POINTR DEBUGGING EDIT. 

-

CD 0.. .NO DEBUGGING PRINTOUT (DEFAULT). 

-

CD 1.. .DEBUGGING DUMP PRINTOUT. 

-

CD 2.. .DEBUGGING TRACE PRINTOUT. 

-

CD 3... BOTH DUMP AND TRACE PRINTOUT. 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR PROBLEM CONTROL PARAMETERS (TYPE 03) 

-

C 

-

CL FORMAT----- (12,4X,1116)

C 

-

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD =- == ===- == === === === === === === === === === === === === ===-

CD 1 1-2 03 

-

CD 

-

CD 2 7-12 PROBLEM TYPE. 

-

CD 0.. .K-EFFECTIVE PROBLEM (DEFAULT). 

-

CD 1...FIXED SOURCE PROBLEM. 

-

CD 

-

CD 3 13-18 SOLUTION TYPE. 

-

CD 0.. .REAL SOLUTION (DEFAULT). 

-

CD 1.. .ADJOINT SOLUTION. 

-

CD 2... BOTH REAL AND ADJOINT SOLUTION. 

-

CD 

-

CD 4 19-24 CHEBYSHEV ACCELERATION OF OUTER ITERATIONS. 

-

CD 0... YES, ACCELERATE THE OUTER ITERATIONS (DEFAULT). 

-

CD 1.. .NO ACCELERATION. 

-

CD 

-

CD 5 25-30 MINIMUM PLANE-BLOCK (RECORD) SIZE IN REAL*8 WORDS FOR 

-

CD I/O TRANSFER IN THE CONCURRENT INNER ITERATION 

-

CD STRATEGY. THE DEFAULT (=4500) IS HIGHLY RECOMMENDED. 

-

CD 

-

CD 6 31-36 OUTER ITERATION CONTROL. 

-

CD -3...BYPASS DIF3D MODULE. 

-

CD -2.. .CALCULATE DATA MANAGEMENT PARAMETERS AND PERFORM 

-

CD NEUTRONICS EDITS ONLY. 

-

CD -1... CALCULATE DATA MANAGEMENT PARAMETERS, CALCULATE 

-

CD OVERRELAXATION FACTORS AND PERFORM NEUTRONICS 

-

CD EDITS ONLY. 

-

CD .GE.0...MAXIMUM NUMBER OF OUTER ITERATIONS (DEFAULT=30). 

-

CD 

-

CD 7 37-42 RESTART FLAG. 

-

CD 0.. .THIS IS NOT A RESTART (DEFAULT). 

-

CD 1.. .THIS IS A RESTART PROBLEM. 

-

CD 

-

CD 8 43-48 JOB TIME LIMIT, MAXIMUM (CP AND PP(OR WAIT)) PROCESSOR 

-

CD SECONDS (DEFAULT=1000000000). 

-

CD 

-

CD 9 49-54 NUMBER OF UPSCATTER ITERATIONS PER OUTER ITERATION 

-

CD (DEFAULT=5). PERTINENT TO UPSCATTER PROBLEMS ONLY. 

-

CD 

-

CD 10 55-60 CONCURRENT ITERATION EFFICIENCY OPTION. 

-

CD 0.. .PERFORM THE ESTIMATED NO. OF INNER ITERATIONS FOR 

-

CD EACH GROUP. 

-

CD 1.. .AVOID THE LAST PASS OF INNER ITERATIONS IN THOSE 

-

CD GROUPS FOR WHICH THE NO. OF ITERATIONS IN THE LAST 

-

CD PASS ARE LESS THAN A CODE DEPENDENT THRESHOLD. 

-
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CD 

-

CD 11 61-66 ACCELERATION OF OPTIMUM OVERRELAXATION FACTOR 

-

CD CALCULATION. 

-

CD 0.. .NO ACCELERATION (DEFAULT). 

-

CD 1.. .ASYMPTOTIC SOURCE EXTRAPOLATION OF POWER ITERATIONS-

CD USED TO ESTIMATE THE SPECTRAL RADIUS OF EACH INNER 

-

CD (WITHIN GROUP) ITERATION MATRIX. 

-

CD 12 67-72 OPTIMUM OVERRELAXATION FACTOR ESTIMATION ITERATION 

-

CD CONTROL. THE DEFAULT (=50) IS STRONGLY RECOMMENDED. 

-

C 

-

CN THE MAXIMUM NUMBER OF OUTER ITERATIONS SENTINEL 

-

CN SPECIFIES THE NUMBER OF OUTERS THAT CAN BE PERFORMED 

-

CN (COLS. 31-36) EACH TIME THE DIF3D MODULE IS INVOKED. 

-

CN 

-

CN THE DIF3D TERMINATION PROCEDURE WILL ALWAYS: 

-

CN 1... (RE) WRITE THE APPROPRIATE FLUX FILES 

-

CN (RTFLUX OR ATFLUX). 

-

CN 2 ... (RE) WRITE THE RESTART FILE DIF3D. 

-

CN TO FACILITATE AUTOMATIC RESTART, THE RESTART FLAG 

-

CN ON THE DIF3D RESTART CONTROL FILE WILL BE TURNED ON 

-

CN AUTOMATICALLY UPON DETECTION OF: 

-

CN 1.. .MAXIMUM NUMBER OF OUTER ITERATIONS. 

-

CN 2...TIME LIMIT. 

-

CN 

-

CN 

-

CN TO RESTART THE FLUX CALCULATION: 

-

CN EITHER 

-

CN 

-

CN PROVIDE THE RESTART DATA SET DIF3D AND 

-

CN THE APPROPRIATE FLUX DATA SET (RTFLUX OR ATFLUX) 

-

CN AND SPECIFY THEM UNDER "BLOCK=OLD" IN THE BCD 

-

CN INPUT DATA 

-

CN OR 

-

CN 1.. .SET THE RESTART FLAG (COLS. 37-42) TO 1 ON 

-

CN THE TYPE 03 CARD. THIS PERMITS IMMEDIATE 

-

CN RESUMPTION OF OUTER ITERATION ACCELERATION. 

-

CN 2... INCLUDE THE LATEST K-EFFECTIVE ESTIMATE 

-

CN (COLS. 13-24) AND THE DOMINANCE RATIO 

-

CN ESTIMATE ON THE TYPE 06 CARD (COLS. 61-72). 

-

CN 3.. .INCLUDE THE OPTIMUM OVERRELAXATION FACTORS 

-

CN FOR EACH GROUP (TYPE 07 CARD). 

-

CN 4.. .PROVIDE THE APPROPRIATE FLUX DATA SET (RTFLUX 

-

CN OR ATFLUX) AND SPECIFY IT UNDER "BLOCK=OLD" 

-

CN IN THE BCD INPUT DATA. 

-

CN 

-

CN A NON-ZERO TIME LIMIT (COLS. 43-48) OVERRIDES 

-

CN THE ACTUAL TIME LIMIT DETERMINED INTERNALLY 

-

CN BY SYSTEM ROUTINES IN THE ANL AND LBL PRODUCTION 

-

CN IMPLEMENTATIONS 

-

CN 

-

CN THE TIME LIMIT PARAMETER (COLS. 43-48) IS PERTINENT 

-

CN TO EACH ENTRY TO THE DIF3D MODULE. 

-

CN 

-

CN IT IS RECOMMENDED THAT AN ODD NUMBER OF UPSCATTER 

-

CN ITERATIONS BE SPECIFIED (COLS. 49-54) TO AVOID 

-

CN ADDITIONAL I/O OVERHEAD. 

-

CN 

-

CN THE USER IS CAUTIONED TO MONITOR THE POINT-WISE 

-

CN FISSION SOURCE CONVERGENCE TO ENSURE THAT MONOTONIC 

-

CN CONVERGENCE IS OBTAINED WHEN THE EFFICIENCY OPTION 

-
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CN (COLS. 55-60) IS ACTIVATED. 

-

CN 

-

CN THE OPTIMUM OVERRELAXATION FACTOR ACCELERATION OPTION 

-

CN IS PRIMARILY INTENDED FOR PROBLEMS KNOWN TO HAVE HIGH 

-

CN (>1.8) OPTIMUM OVERRELAXATION FACTORS. 

-

CN 

-

CN ITERATION CONTROL (COLS. 67-72) OF THE OPTIMUM 

-

CN OVERRELAXATION FACTOR ESTIMATION IS PRIMARILY INTENDED 

-

CN FOR USE IN CONJUNCTION WITH THE ASYMPTOTIC ACCELERATION-

CN OPTION (COLS. 61-66). 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR EDIT OPTIONS (TYPE 04) 

-

C 

-

CL FORMAT ----- (12,4X,10I6)

C 

-

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD = ======- = ==== === ==== === === ==== === ==== === ==== === ===-

CD 1 1-2 04 

-

CD 

-

CD 2 7-12 PROBLEM DESCRIPTION EDIT (IN ADDITION TO USER INPUT 

-

CD SPECIFICATIONS WHICH ARE ALWAYS EDITED. 

-

CD 0.. .NO EDITS (DEFAULT). 

-

CD 1...PRINT EDITS. 

-

CD 2.. .WRITE EDITS TO AUXILIARY OUTPUT FILE. 

-

CD 3.. .WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

CD 

-

CD 3 13-18 GEOMETRY (REGION TO MESH INTERVAL) MAP EDIT. 

-

CD 0.. .NO EDITS (DEFAULT). 

-

CD 1...PRINT EDITS. 

-

CD 2.. .WRITE EDITS TO AUXILIARY OUTPUT FILE. 

-

CD 3.. .WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

CD 

-

CD 4 19-24 GEOMETRY (ZONE TO MESH INTERVAL) MAP EDIT. 

-

CD 0.. .NO EDITS (DEFAULT). 

-

CD 1...PRINT EDITS. 

-

CD 2.. .WRITE EDITS TO AUXILIARY OUTPUT FILE. 

-

CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

CD 

-

CD 5 25-30 MACROSCOPIC CROSS SECTION EDIT. 

-

CD ENTER TWO DIGIT NUMBER SP WHERE 

-

CD 

-

CD S CONTROLS THE SCATTERING AND PRINCIPAL CROSS SECTIONS 

-

CD P CONTROLS THE PRINCIPAL CROSS SECTIONS EDIT ONLY. 

-

CD 

-

CD THE INTEGERS S AND P SHOULD BE ASSIGNED ONE OF THE 

-

CD FOLLOWING VALUES (LEADING ZEROES ARE IRRELEVANT). 

-

CD 0. .. NO EDITS (DEFAULT). 

-

CD 1...PRINT EDITS. 

-

CD 2.. .WRITE EDITS TO AUXILIARY OUTPUT FILE. 

-

CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

CD 

-

CD 6 31-36 BALANCE EDITS 

-

CD ENTER 3 DIGIT NUMBER GBR WHERE 

-

CD 

-

CD G CONTROLS GROUP BALANCE EDITS INTEGRATED OVER THE 

-

CD REACTOR 

-
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CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

8 43-48 FLUX EDITS 

-

ENTER 3 DIGIT INTEGER RMB WHERE 

-

R CONTROLS FLUX EDIT BY REGION AND GROUP 

-

INCLUDING GROUP AND REGION TOTALS 

-

M CONTROLS TOTAL (GROUP INTEGRATED) FLUX EDIT 

-

BY MESH INTERVAL 

-

B CONTROLS TOTAL FLUX EDIT BY MESH INTERVAL AND GROUP 

-

(RTFLUX OR ATFLUX) 

-

THE INTEGERS R, M, AND B SHOULD BE ASSIGNED 

-

ONE OF THE FOLLOWING VALUES (LEADING ZEROES ARE 

-

IRRELEVANT) 

-

0.. .NO EDITS (DEFAULT). 

-

1...PRINT EDITS. 

-

2.. .WRITE EDITS TO AUXILIARY OUTPUT FILE. 

-

3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

49-54 ZONE AVERAGED (REAL) FLUX EDIT. 

-

0 ... NO EDITS (DEFAULT). 

-

1...PRINT EDITS. 

-

2.. .WRITE EDITS TO AUXILIARY OUTPUT FILE. 

-

3.. .WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

10 55-60

11 61-66

REGION AVERAGED FLUX EDIT. 

-

0.. .NO EDITS (DEFAULT). 

-

1...PRINT EDITS. 

-

2.. .WRITE EDITS TO AUXILIARY OUTPUT FILE. 

-

3.. .WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

INTERFACE FILES TO BE WRITTEN IN ADDITION TO RTFLUX 

-

AND/OR ATFLUX. 

-

ENTER 4 DIGIT INTEGER FSRP WHERE 

-

F CONTROLS WRITING OF SURFACE FAST FLUX TO SFEDIT 

-
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7

B CONTROLS REGION BALANCE EDIT BY GROUP 

-

R CONTROLS REGION BALANCE EDIT TOTALS 

-

(INCLUDING NET PRODUCTION AND ENERGY MEDIANS) 

-

THE INTEGERS G, B, AND R SHOULD BE ASSIGNED ONE OF THE 

-

FOLLOWING VALUES (LEADING ZEROES ARE IRRELEVANT) 

-

0.. .NO EDITS (DEFAULT). 

-

1...PRINT EDITS. 

-

2.. .WRITE EDITS TO AUXILIARY OUTPUT FILE. 

-

3.. .WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

37-42 POWER EDITS 

-

ENTER 2 DIGIT NUMBER RM WHERE 

-

R CONTROLS REGION POWER AND AVERAGE POWER DENSITY EDITS-

M CONTROLS POWER DENSITY BY MESH INTERVAL EDIT (PWDINT) 

-

THE INTEGERS R AND M SHOULD BE ASSIGNED 

-

ONE OF THE FOLLOWING VALUES (LEADING ZEROES ARE 

-

IRRELEVANT) 

-

0.. .NO EDITS (DEFAULT). 

-

1...PRINT EDITS. 

-

2.. .WRITE EDITS TO AUXILIARY OUTPUT FILE. 

-

3.. .WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

9

CD

CD

CD



S CONTROLS WRITING OF

R CONTROLS WRITING OF

P CONTROLS WRITING OF

SURFACE POWER DENSITY TO SFEDIT

RZFLUX

PWDINT

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

C

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

ENTERING THE INTEGER 30 IN COLUMNS 31-36 YIELDS

THE REGION BALANCE EDIT BY GROUP ON BOTH THE PRINT

THE AUXILIARY OUTPUT FILES.

THE INTERFACE

CELL-AVERAGED

BY MESH CELL.

STANDARD FINE

AND 

-

FILE SFEDIT CONTAINS SURFACE- AND

POWER DENSITY AND/OR FAST FLUX DATA

ON OPTION IT IS WRITTEN IN EITHER

MESH CELL ORDER OR IN REGION ORDER.-

C

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR CONVERGENCE CRITERIA (TYPE 05) 

-

C 

-

CL FORMAT-----(I2,10X,3E12.5) 

-

# COLUMNS

1

2

3

1-2

CONTENTS... IMPLICATIONS, IF ANY

05

13-24 EIGENVALUE CONVERGENCE CRITERION FOR STEADY STATE

CALCULATION (DEFAULT VALUE = 1.OE-7 IS RECOMMENDED).

25-36 POINTWISE FISSION SOURCE CONVERGENCE CRITERION

FOR STEADY STATE SHAPE CALCULATION

(DEFAULT VALUE = 1. OE-5 IS RECOMMENDED).

4 37-48 AVERAGE FISSION SOURCE CONVERGENCE CRITERION

FOR STEADY STATE SHAPE CALCULATION

(DEFAULT VALUE = 1.0E-5 IS RECOMMENDED).

IN UPSCATTERING PROBLEMS IT IS RECOMMENDED THAT
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12 67-72

THE INTEGERS F, S, R, AND P SHOULD BE ASSIGNED ONE OF

THE FOLLOWING VALUES (LEADING ZEROES ARE IRRELEVANT)

0...DO NOT WRITE THE INTERFACE FILE

1...WRITE THE INTERFACE FILE (SFEDIT WILL BE WRITTEN

IN REGULAR MESH CELL ORDER)

2...WRITE THE SFEDIT FILE IN REGION ORDER (PERTINENT

TO THE SFEDIT FILE ONLY)

MASTER DIF3D EDIT SENTINEL DURING CRITICALITY SEARCHES

-1...SUPPRESS ALL DIF3D EDITS EXCEPT THE ITERATION

HISTORY AND ERROR DIAGNOSTICS

0.. .EDIT INPUT DATA ON 1ST SEARCH PASS, OUTPUT

INTEGRALS UPON CONVERGENCE OR UPON ACHIEVING THE

MAXIMUM SEARCH PASS LIMIT.

N...ALSO INVOKE SPECIFIED DIF3D EDITS EVERY N-TH

SEARCH PASS.

MULTI-DIGIT EDIT SPECIFICATION EXAMPLES.

ENTERING THE INTEGER 201 IN COLUMNS 31-36 YIELDS

THE GROUP BALANCE EDIT ON THE AUXILIARY FILE AND

THE REGION BALANCE EDIT ON THE PRIMARY PRINT FILE.

C

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

C

CN



CN THE EIGENVALUE CONVERGENCE CRITERION (COLS. 13-24) 

-

CN BE .1 TIMES THE POINTWISE FISSION SOURCE CONVERGENCE 

-

CN CRITERION (COLS. 25-36). 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR OTHER FLOATING POINT DATA (TYPE 06) 

-

C 

-

CL FORMAT----- (I2,10X,5E12.5) 

-

C 

-

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD =- == ===- == === === === === === === === === === === === === ===-

CD 1 1-2 06 

-

CD 

-

CD 2 13-24 K-EFFECTIVE OF REACTOR (DEFAULT IS OBTAINED FROM 

-

CD THE APPROPRIATE RTFLUX OR ATFLUX FILE, IF PRESENT. 

-

CD OTHERWISE DEFAULT = 1.0). 

-

CD 

-

CD 3 25-36 ANY POINTWISE FISSION SOURCE WILL BE NEGLECTED IN THE 

-

CD POINTWISE FISSION SOURCE CONVERGENCE TEST IF IT IS 

-

CD LESS THAN THIS FACTOR TIMES THE R.M.S. FISSION 

-

CD SOURCE (DEFAULT VALUE = .001 IS RECOMMENDED). 

-

CD 

-

CD 4 37-48 ERROR REDUCTION FACTOR TO BE ACHIEVED BY EACH SERIES 

-

CD OF INNER ITERATIONS FOR EACH GROUP DURING A SHAPE 

-

CD CALCULATION - STRONGLY RECOMMENDED THAT THE DEFAULT 

-

CD VALUE OF (.04) BE USED. 

-

CD 

-

CD 5 49-60 STEADY STATE REACTOR POWER (WATTS). (DEFAULT = 1.0). 

-

CD 

-

CD 6 61-72 DOMINANCE RATIO (FOR RESTART JOBS ONLY). 

-

C 

-

CN K-EFFECTIVE SPECIFICATIONS (COLS. 13-24): 

-

CN 1.. .FOR K-EFFECTIVE PROBLEMS, SUPPLY ESTIMATED 

-

CN K-EFFECTIVE OF REACTOR. 

-

CN 2.. .FOR RESTARTED K-EFFECTIVE PROBLEMS, SUPPLY 

-

CN LATEST K-EFFECTIVE ESTIMATE SUPPLIED ON THE 

-

CN ITERATION HISTORY EDIT. 

-

CN 3.. .FOR SOURCE PROBLEMS, SUPPLY K-EFFECTIVE OF 

-

CN THE REACTOR. 

-

CN DEFAULT IS OBTAINED FROM THE APPROPRIATE RTFLUX OR 

-

CN ATFLUX FILE, IF PRESENT. OTHERWISE DEFAULT=1.0 .

-

C 

-

CN NON-MONOTONIC POINTWISE FISSION SOURCE CONVERGENCE 

-

CN IS USUALLY INDICATIVE OF THE NEED TO TIGHTEN THE ERROR 

-

CN REDUCTION FACTOR(COLS. 37-48). THIS IS FREQUENTLY TRUE-

CN IN TRIANGULAR GEOMETRY PROBLEMS WHERE A VALUE OF .01 IS-

CN USUALLY SUFFICIENT TO OBTAIN MONOTONIC CONVERGENCE. 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR OPTIMUM OVERRELAXATION FACTORS (TYPE 07) 

-

C 

-

CL FORMAT-----(I2,10X,5E12.5) 

-

C 

-

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD =- = = =- = = = = = = = = = = = = = = = = = = = = = = = = = = =-
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CD 1 1-2 07 

-

CD 

-

CD 2 13-24 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 1. 

-

CD 

-

CD 3 25-36 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 2. 

-

CD 

-

CD 4 37-48 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 3. 

-

CD 

-

CD 5 49-60 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 4. 

-

CD 

-

CD 6 61-72 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 5. 

-

C 

-

CN REPEAT 5 VALUES PER CARD FOR AS MANY TYPE 07 CARDS 

-

CN AS ARE NEEDED. 

-

CN 

-

CN THE OPTIMUM OVERRELAXATION FACTORS ARE NORMALLY 

-

CN OBTAINED FROM THE RESTART INSTRUCTIONS PRINTED 

-

CN IMMEDIATELY AFTER THE DIF3D ITERATION HISTORY EDIT. 

-

CN IN THE RESTART INSTRUCTIONS, THE FACTORS ARE ALWAYS 

-

CN EDITTED IN THE - -REAL PROBLEM- - ORDERING AND SHOULD BE 

-

CN ENTERED ON THE TYPE 07 CARD - -EXACTLY-- AS EDITTED 

-

CN IN THE RESTART INSTRUCTIONS. 

-

CN 

-

CN THE PERMISSIBLE FACTOR RANGE IS BOUNDED BY 1.0 AND 2.0 

-

CN INCLUSIVE. A ZERO OR BLANK FACTOR ENTRY DEFAULTS 

-

CN TO 1.0. FACTORS ARE COMPUTED FOR THOSE GROUPS HAVING 

-

CN A FACTOR OF 1.0; FACTORS GREATER THAN 1.0 ARE NOT 

-

CN RECOMPUTED. 

-

CN 

-

CN TYPE 07 CARDS ARE PRIMARILY INTENDED FOR RESTART JOBS 

-

CN ONLY (STRONGLY RECOMMENDED). 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR NEAR CRITICAL SOURCE PROBLEM ASYMPTOTIC EXTRAPOLATION 

-

CR PARAMETERS (TYPE 08) 

-

C 

-

CC ***** WARNING.. .SELECT THIS OPTION ONLY IF THE ***** 

-

CC ***** ASYMPTOTIC EXTRAPOLATION IS REQUIRED FOR ***** 

-

CC ***** THIS PROBLEM. ***** 

-

C 

-

CL FORMAT-----(I2,4X,I6,E12.5,I6) 

-

C 

-

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD = ======== = = = == = = = = == = = = = == = = = = ==-

CD 1 1-2 08 

-

CD 

-

CD 2 7-12 NUMBER OF OUTER (POWER) ITERATIONS PERFORMED PRIOR TO 

-

CD ASYMPTOTIC EXTRAPOLATION OF NEAR CRITICAL SOURCE 

-

CD PROBLEM (DEFAULT=5). 

-

CD 

-

CD 3 13-24 EIGENVALUE OF THE HOMOGENEOUS PROBLEM CORRESPONDING 

-

CD TO THE NEAR CRITICAL SOURCE PROBLEM. THIS EIGENVALUE 

-

CD MUST BE LESS THAN ONE. 

-

CD 

-

CD 4 25-30 INITIAL FLUX GUESS SENTINEL. 

-

CD 0.. .FLAT FLUX GUESS=1.0 (DEFAULT) 

-

CD 1.. .FLAT FLUX GUESS=0.0 

-
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C

CN THE TYPE 08 CARD IS REQUIRED TO ACTIVATE AN ALTERNATE 

-

CN SPECIAL ACCELERATION SCHEME FOR NEAR CRITICAL 

-

CN SOURCE PROBLEMS. 

-

CN 

-

CN IF COLS. 13-24 ARE ZERO OR BLANK, THE HOMOGENEOUS 

-

CN PROBLEM EIGENVALUE WILL BE ESTIMATED. IN THIS CASE, IT 

-

CN IS RECOMMENDED TO INCREASE THE NUMBER OF ITERATIONS IN 

-

CN COLS. 7-12 TO AT LEAST 10. 

-

C 

-

C------------------------------------------------------------------------

C-----------------------------------------------------------------------

CR SN TRANSPORT OPTIONS (TYPE 09) 

-

C 

-

CL FORMAT----- (I2,4X,2I6,6X,E12.4) 

-

C 

-

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD = = = = = = = = = = = = = = = = == = = = = = = = = = = = = = = =-

CD 1 1-2 09 

-

CD 

-

CD 2 7-12 SN ORDER. 

-

CD 

-

CD 3 13-18 MAXIMUM ALLOWED NUMBER OF LINE SWEEPS PER LINE PER 

-

CD INNER ITERATION (DEFAULT=10). 

-

CD 

-

CD 4 25-36 LINE SWEEP CONVERGENCE CRITERION (DEFAULT=i.OE-4). 

-

C 

-

CN TO INVOKE THE DIF3D TRANSPORT OPTION, THE TYPE 09 CARD 

-

CN MUST BE PRESENT WITH A NONZERO SN ORDER. FOR THE TIME 

-

CN BEING, USERS MUST ALSO CONTINUE TO 'PRELIB' TO 

-

CN DATASET 'C116.B99983.MODLIB' TO INVOKE THIS OPTION. 

-

C 

-

C-----------------------------------------------------------------------

C------------------------------------------------------------------------

CR PARAMETERS FOR NODAL OPTION (TYPE 10) 

-

C 

-

CL FORMAT----- (12,4X,7I6)

C 

-

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD =- == ===- == === === === === === === === === === === === === ===-

CD 1 1-2 10 

-

CD 

-

CD 2 7-12 NODAL APPROXIMATION IN XY-PLANE. 

-

CD ENTER 3 DIGIT NUMBER LMN WHERE 

-

CD 

-

CD L DETERMINES WHETHER THIS IS A DIFFUSION OR TRANSPORT 

-

CD CALCULATION. 

-

CD M IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE 

-

CD ONE-DIMENSIONAL FLUXES IN THE XY-PLANE. 

-

CD N IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE 

-

CD LEAKAGES TRANSVERSE TO THE X- AND Y-DIRECTIONS. 

-

CD 

-

CD HEXAGONAL GEOMETRY: 

-

CD L = 0... (ALWAYS - ONLY DIFFUSION THEORY IS AVAILABLE 

-

CD IN HEXAGONAL GEOMETRY). 

-

CD M = 2.. .NH2 FLUX APPROXIMATION. 

-
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CD M = 3.. .NH3 FLUX APPROXIMATION. 

-

CD M = 4.. .NH4 FLUX APPROXIMATION (DEFAULT). 

-

CD N = 0... (ALWAYS). 

-

CD 

-

CD CARTESIAN GEOMETRY: 

-

CD L =0 .. .DIFFUSION-THEORY OPTION (DEFAULT). 

-

CD L = .. .TRANSPORT-THEORY OPTION. 

-

CD M = 2.. .NX2 (QUADRATIC) FLUX APPROXIMATION. 

-

CD M = 3... NX3 (CUBIC ) FLUX APPROXIMATION (DEFAULT). 

-

CD M = 4.. .NX4 (QUARTIC ) FLUX APPROXIMATION. 

-

CD N = 0.. .CONSTANT LEAKAGE APPROXIMATION. 

-

CD N = 2 ... QUADRATIC LEAKAGE APPROXIMATION (DEFAULT). 

-

CD 

-

CD LEADING ZEROS ARE IRRELEVANT. 

-

CD THEREFORE, DEFAULT VALUES FOR MN ARE 40 (HEXAGONAL 

-

CD GEOMETRY) AND 32 (CARTESIAN GEOMETRY). 

-

CD 

-

CD IF THE TRANSPORT OPTION (L=1) IS SPECIFIED, TRANSPORT 

-

CD THEORY IS USED IN BOTH THE XY-PLANE AND THE AXIAL 

-

CD DIRECTION IN THREE-DIMENSIONAL CARTESIAN GEOMETRY. 

-

CD 

-

CD 3 13-18 NODAL APPROXIMATION IN Z-DIRECTION. 

-

CD ENTER 2 DIGIT NUMBER MN WHERE 

-

CD 

-

CD M IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE 

-

CD ONE-DIMENSIONAL FLUX IN THE Z-DIRECTION. 

-

CD N IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE 

-

CD LEAKAGE TRANSVERSE TO THE Z-DIRECTION. 

-

CD 

-

CD HEXAGONAL AND CARTESIAN GEOMETRIES: 

-

CD M = 2.. .NZ2 (QUADRATIC) FLUX APPROXIMATION. 

-

CD M = 3.. .NZ3 (CUBIC ) FLUX APPROXIMATION (DEFAULT). 

-

CD M = 4.. .NZ4 (QUARTIC ) FLUX APPROXIMATION (CARTESIAN 

-

CD GEOMETRY ONLY). 

-

CD N = 0.. .CONSTANT LEAKAGE APPROXIMATION. 

-

CD N = 2.. .QUADRATIC LEAKAGE APPROXIMATION (DEFAULT). 

-

CD 

-

CD LEADING ZEROS ARE IRRELEVANT. 

-

CD THEREFORE, DEFAULT VALUE FOR MN IS 32. 

-

CD 

-

CD 4 19-24 COARSE-MESH REBALANCE ACCELERATION CONTROL. 

-

CD -1.. .NO COARSE-MESH REBALANCE ACCELERATION. 

-

CD .GT.0.. .NUMBER OF FINE MESH PER REBALANCE MESH IN X- AND 

-

CT) Y-DIRECTIONS - CARTESIAN GEOMETRY ONLY (DEFAULT=4) .

-

CD 

-

CD 5 25-30 NUMBER OF XY-PLANE PARTIAL CURRENT SWEEPS PER GROUP 

-

CD PER AXIAL MESH SWEEP PER OUTER ITERATION. 

-

CD (DEFAULT = 0 - LET CODE DECIDE). 

-

CD 

-

CD 6 31-36 NUMBER OF AXIAL PARTIAL CURRENT SWEEPS PER GROUP 

-

CD PER AXIAL PARTIAL CURRENT SWEEP 

-

CD PER OUTER ITERATION (DEFAULT=2). 

-

CD 

-

CD 7 37-42 HALF-DOMAIN SYMMETRY FLAG. 

-

CD -1.. .DO NOT USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45 

-

CD DEGREE (CARTESIAN GEOMETRY) PLANAR SYMMETRY EVEN 

-

CD IF SUCH SYMMETRY EXISTS. 

-

CD 0.. .USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45 DEGREE 

-

CD (CARTESIAN GEOMETRY) PLANAR SYMMETRY IF SUCH 

-

CD SYMMETRY EXISTS (DEFAULT). 

-
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C

CN THE NODAL OPTION IS INVOKED IN HEXAGONAL GEOMETRY BY 

-

CN SPECIFYING GEOMETRY-TYPE SENTINELS BETWEEN 110 AND 128 

-

CN ON THE A.NIP3 TYPE 03 CARD. 

-

CN 

-

CD 8 43-48 ASYMPTOTIC SOURCE EXTRAPOLATION SENTINEL. 

-

CD 0.. .PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION ON THE 

-

CD THE NODAL OUTER ITERATIONS. 

-

CD 1.. .DO NOT PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION 

-

CD 

-

CN THE NODAL OPTION IS INVOKED IN CARTESIAN GEOMETRY BY 

-

CN SPECIFYING GEOMETRY-TYPE SENTINELS 40 OR 44 ON THE 

-

CN A.NIP3 TYPE 03 CARD AND PROVIDING ANY ACCEPTABLE 

-

CN (E.G. DEFAULT) VALUES ON A.DIF3D TYPE 10 CARD. 

-

CN 

-

CN *** THE CARTESIAN-GEOMETRY NODAL OPTION MAY NOT BE 

-

CN AVAILABLE IN ALL VERSIONS OF DIF3D. *** 

-

C 

-

CN IT IS IMPORTANT THAT THE NUMBER OF FINE MESH PER 

-

CN REBALANCE MESH BE CHOSEN SUCH THAT THE AVERAGE 

-

CN REBALANCE MESH SPACING IS APPROXIMATELY 30 TO 40 CM IN 

-

CN THE XY-PLANE. THUS, FOR EXAMPLE, IF THE AVERAGE FINE 

-

CN MESH SPACING IS DELTA CM, THEN THE INTEGER INPUT IN 

-

CN COLS. 19-24 SHOULD BE BETWEEN 30/DELTA AND 40/DELTA. 

-

C 

-

CN IF SLOW (OR DIVERGENT) ITERATIVE CONVERGENCE BEHAVIOR 

-

CN IS OBSERVED, THE NUMBER OF PARTIAL CURRENT SWEEPS 

-

CN SPECIFIED IN COLS. 25-30 AND 31-36 SHOULD BE INCREASED. 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR AXIAL COARSE-MESH REBALANCE BOUNDARIES FOR NODAL 

-

CR OPTION (TYPE 11) 

-

C 

-

CL FORMAT----- (I2,10X,3(I6,E12.5)) 

-

C 

-

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD = ===== =- = === === === === === ==== === === === === === === ===-

CD 1 1-2 11 

-

CD 

-

CD 2 13-18 NUMBER OF AXIAL COARSE-MESH REBALANCE INTERVALS. 

-

CD 

-

CD 3 19-30 UPPER Z-COORDINATE OF THE COARSE-MESH REBALANCE 

-

CD BOUNDARY. 

-

CD 

-

CD 4 31-36 NUMBER OF AXIAL COARSE-MESH REBALANCE INTERVALS. 

-

CD 

-

CD 5 37-42 UPPER Z-COORDINATE OF THE COARSE-MESH REBALANCE 

-

CD BOUNDARY. 

-

CD 

-

CD 6 49-54 NUMBER OF AXIAL COARSE-MESH REBALANCE INTERVALS. 

-

CD 

-

CD 7 55-66 UPPER Z-COORDINATE OF THE COARSE-MESH REBALANCE 

-

CD BOUNDARY. 

-

C 

-

CN THE TYPE 11 CARD IS PERTINENT ONLY WHEN THE THREE- 

-

CN DIMENSIONAL NODAL OPTION (A.NIP3 TYPE 03 GEOMETRY-TYPE 

-

CN SENTINEL VALUE EQUAL TO 44 OR BETWEEN 120 AND 128) IS 

-
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CN SPECIFIED. 

-

CN 

-

CN IF NO TYPE 11 CARDS ARE PRESENT, THE AXIAL COARSE-MESH 

-

CN REBALANCE BOUNDARIES ARE DEFINED BY THE AXIAL COARSE- 

-

CN MESH BOUNDARIES OBTAINED FROM THE GEODST FILE. THESE 

-

CN BOUNDARIES IN TURN ARE ANY BOUNDARY POSITIONS SPECIFIED-

CN ON THE DATASET A.NIP3 TYPE 09 OR 30 CARDS. 

-

CN 

-

CN AXIAL COARSE-MESH REBALANCE BOUNDARIES MUST BE SELECTED-

CN FROM THE SET OF COARSE-MESH BOUNDARIES CONTAINED IN THE-

CN GEODST FILE, AS DETERMINED BY THE COARSE-MESH 

-

CN BOUNDARIES WHICH ARE EXPLICITLY MENTIONED ON THE 

-

CN DATASET A.NIP TYPE 09 OR 30 CARDS. 

-

CN 

-

CN BOUNDARIES ARE SPECIFIED VIA NUMBER PAIRS. 

-

CN EACH NUMBER PAIR IS OF THE FORM (N(I), Z(I)). THERE 

-

CN ARE N(I) AXIAL COARSE-MESH REBALANCE INTERVALS BETWEEN 

-

CN Z(I-1) AND Z(I), WHERE Z(0) IS THE LOWER REACTOR 

-

CN BOUNDARY IN THE Z-DIRECTION. NUMBER PAIRS MUST BE 

-

CN GIVEN IN ORDER OF INCREASING MESH COORDINATES. ALL 

-

CN AXIAL COARSE-MESH REBALANCE BOUNDARIES MUST COINCIDE 

-

CN WITH THE MESH LINES WHICH BOUND MESH INTERVALS. 

-

C 

-

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

CR PARAMETERS FOR VARIATIONAL NODAL OPTION (TYPE 10)

C 

-

CL FORMAT ----- (12,4X,11I6)

C 

-

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

-

CD =-- =======---- =======================================================---------------------

CD 1 1-2 12 

-

CD 

-

CD 2 7-12 NODAL SPATIAL APPROXIMATION.

CD ENTER 3 DIGIT NUMBER LMN WHERE 

-

CD 

-

CD L IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 

-

CD SOURCE WITHIN THE NODE. 

-

CD M IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 

-

CD FLUXES WITHIN THE NODE. 

-

CD N IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 

-

CD LEAKAGES ON THE SURFACES OF THE NODES. 

-

CD 

-

CD HEXAGONAL AND CARTESIAN GEOMETRY: 

-

CD L = 1... LINEAR SOURCE APPROXIMATION. 

-

CD L = 2... QUADRATIC SOURCE APPROXIMATION. 

-

CD L = 3... CUBIC SOURCE APPROXIMATION. 

-

CD L = 4... QUARTIC SOURCE APPROXIMATION. 

-

CD L = 5... 5TH ORDER SOURCE APPROXIMATION. 

-

CD L = 6... 6TH ORDER SOURCE APPROXIMATION. 

-

CD (DEFAULT VALUE L=N+1). 

-

CD (L CANNOT BE GREATER THAN M). 

-

CD M = 1... LINEAR FLUX APPROXIMATION. 

-

CD M = 2... QUADRATIC FLUX APPROXIMATION. 

-

CD M = 3... CUBIC FLUX APPROXIMATION. 

-

CD M = 4... QUARTIC FLUX APPROXIMATION (DEFAULT) 

-

CD M = 5... 5TH ORDER FLUX APPROXIMATION. 

-

CD M = 6... 6TH ORDER FLUX APPROXIMATION. 

-
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CD N = 0... FLAT LEAKAGE APPROXIMATION. 

-

CD N = 1... LINEAR LEAKAGE APPROXIMATION (DEFAULT). 

-

CD N = 2... QUADRATIC LEAKAGE APPROXIMATION. 

-

CD 

-

CD 

-

CD LEADING ZEROS ARE IRRELEVANT. 

-

CD THEREFORE, DEFAULT VALUES FOR LMN ARE 241 

-

CD M = 5 OR 6 ONLY FOR HEXAGONAL GEOMETRY. 

-

CD IN 3D HEXAGONAL GEOMETRY M = 5 OR 6 PROVIDES 

-

CD FULL EXPANSION IN THE X AND Y PLANE, Z DIRECTION 

-

CD IS EXPANDED TO 4TH ORDER. 

-

CD 

-

CD 

-

CD 3 13-18 ANGULAR APPROXIMATION. 

-

CD ENTER 2 DIGIT NUMBER MN WHERE 

-

CD 

-

CD M IS THE ORDER OF THE PN EXPANSION OF THE FLUX. 

-

CD N IS THE ORDER OF THE PN EXPANSION OF THE LEAKAGE. 

-

CD 

-

CD HEXAGONAL AND CARTESIAN GEOMETRIES: 

-

CD M = 1... P1 FLUX EXPANSION. 

-

CD M = 3... P3 FLUX EXPANSION (DEFAULT). 

-

CD M = 5... P5 FLUX EXPANSION 

-

CD N = 1... P1 LEAKAGE EXPANSION. 

-

CD N = 3... P3 LEAKAGE EXPANSION (DEFAULT). 

-

CD N = 5... P5 LEAKAGE EXPANSION 

-

CD 

-

CD LEADING ZEROS ARE IRRELEVANT. 

-

CD THEREFORE, DEFAULT VALUE FOR MN IS 33. 

-

CD MN EQUAL TO 11 CORRESPONDS TO DIFFUSION CALCULATION. 

-

CD IF MN IS NEGATIVE, SIMPLIFIED SPHERICAL HARMONICS 

-

CD ARE USED. 

-

CD 

-

CD 4 19-24 COARSE-MESH REBALANCE ACCELERATION CONTROL. 

-

CD -1.. .NO COARSE-MESH REBALANCE ACCELERATION. 

-

CD .GT.0...NUNBER OF FINE MESH PER REBALANCE MESH IN X- AND 

-

CD Y-DIRECTIONS - CARTESIAN GEOMETRY ONLY (DEFAULT=6) .

-

CD 

-

CD 5 25-30 NUMBER OF XY-PLANE PARTIAL CURRENT SWEEPS PER GROUP 

-

CD PER AXIAL MESH SWEEP PER OUTER ITERATION. 

-

CD (DEFAULT = 0 - LET CODE DECIDE). 

-

CD 

-

CD 6 31-36 NUMBER OF AXIAL PARTIAL CURRENT SWEEPS PER GROUP 

-

CD PER AXIAL PARTIAL CURRENT SWEEP 

-

CD PER OUTER ITERATION (DEFAULT=0 - LET CODE DECIDE) 

-

CD 

-

CD 7 37-42 HALF-DOMAIN SYMMETRY FLAG. 

-

CD -1...DO NOT USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45 

-

CD DEGREE (CARTESIAN GEOMETRY) PLANAR SYMMETRY EVEN 

-

CD IF SUCH SYMMETRY EXISTS. 

-

CD 0.. .USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45 DEGREE 

-

CD (CARTESIAN GEOMETRY) PLANAR SYMMETRY IF SUCH 

-

CD SYMMETRY EXISTS (DEFAULT). 

-

C 

-

CN THE NODAL OPTION IS INVOKED IN HEXAGONAL GEOMETRY BY 

-

CN SPECIFYING GEOMETRY-TYPE SENTINELS BETWEEN 110 AND 128 

-

CN ON THE A.NIP3 TYPE 03 CARD. 

-

CN 

-

CD 8 43-48 ASYMPTOTIC SOURCE EXTRAPOLATION SENTINEL. 

-

CD -1.. .PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION ON THE 

-
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CD NODAL OUTER ITERATIONS ONLY ON FISSION SOURCES.

CD NO EXTRA-SPACE IS NEEDED TO STORE PREVIOUS OUTER

CD ITERATION CURRENTS.

CD 0.. .PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION ON THE

CD NODAL OUTER ITERATIONS ON FISSION SOURCES AND

CD CURRENTS.

CD 1... DO NOT PERFORM ASYMPTOTIC SCURCE EXTRAPOLATION

CD

CD 9 49-54 ANISOTROPIC SCATTERING APPROXIMATION NPNO.

CD 0.. . ISOTROPIC SCATTERING (DEFAULT).

CD N...ANISOTROPIC SCATTERING ORDER (.LE.3).

CD N MUST BE LESS THAN OR EQUAL TO MAXORD, MAXIMUM

CD ANISOTROPIC ORDER SPECIFIED IN ISOTXS OR COMPXS

CD FILES.

CD

CD 10 55-60 EXTENDED TRANSPORT APPROXIMATION (NXTR) ON TOTAL

CD CROSS SECTION.

CD -1...IF NPNO .EQ. 0 USE TOTAL CROSS SECTION PROVIDED

CD IN COMPXS FILE, OTHERWISE USE TRANSPORT CROSS

CD SECTION INSTEAD OF TOTAL ONE.

CD 0...(DEFAULT).

CD IF NPNO .EQ. 0 USE TRANSPORT CROSS SECTION

CD PROVIDED IN COMPXS FILE.

CD IF NPNO .GT. 0 AND NPNO .EQ. MAXORD USE TOTAL

CD CROSS SECTION PROVIDED IN COMPXS FILE.

CD IF NPNO .GT. 0 AND NPNO .LT. MAXORD CORRECT TOTAL

CD CROSS SECTION PROVIDED IN COMPXS FILE WITH

CD EXTENDED TRANSPORT APPROXIMATION TAKING INTO

CD ACCOUNT THE NPNO + 1 ORDER SCATTERING CROSS

CD SECTIONS (BHS APPROXIMATION).

CD N... IF NXTR .LE. NPNO USE TOTAL CROSS SECTION.

CD IF NXTR .GT. NPNO PERFORM EXTENDED TRANSPORT

CD APPROXIMATION ON TOTAL CROSS SECTION FROM NPNO + 1

CD TO NXTR ORDER.

CD

CD 11 61-66 NODAL COUPLING COEFFICIENT PACKING OPTION.

CD 0...NO PACKING WILL BE PERFORMED UNLESS NOT ENOUGH

CD ECM MEMORY IS AVAILABLE (DEFAULT).

CD 1...NODAL COUPLING COEFFICIENT WILL BE PACKED (ONLY

CD UNIQUE ELEMENTS ARE STORED). THIS OPTION SHOULD

CD BE USED, ESPECIALLY ON WORKSTATIONS, WHEN IT WILL

CD ALLOW THE PROBLEM TO RUN WITH ALL GROUP FLUXES

CD AND CURRENTS IN CORE.

CD

CD 12 67-72 RADIAL INNER ITERATION ALGORYTHM.

CD 0... .PARTITIONED MATRIX ALGORYTHM (DEFAULT).

CD 1...FULL MATRIX ALGORYTHM. THIS ALGORYTHM IS SOMETIMES

CD NECESSARY WITH VERY SMALL NODE MESH SIZE WHERE

CD DIVERGENCE CAN OCCUR. THIS ALGORYTHM REQUIRES A

CD SIGNIFICANTLY LARGER COMPUTATIONAL TIME.

CD FULL MATRIX ALGORYTHM IS IMPOSED WHEN ONLY ONE

CD OUTER ITERATION IS SPECIFIED (FIXED SOURCE

CD PROBLEM).

CD

CN THE NODAL OPTION IS INVOKED IN CARTESIAN GEOMETRY BY

CN SPECIFYING GEOMETRY-TYPE SENTINELS 40 OR 44 ON THE

CN A.NIP3 TYPE 03 CARD AND PROVIDING ANY ACCEPTABLE

CN (E.G. DEFAULT) VALUES ON A.DIF3D TYPE 12 CARD.

CN

CN *** THE CARTESIAN-GEOMETRY NODAL OPTION MAY NOT BE
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AVAILABLE IN ALL VERSIONS OF DIF3D. ***

C

CN IT IS IMPORTANT THAT THE NUMBER OF FINE MESH PER 

-

CN REBALANCE MESH BE CHOSEN SUCH THAT THE AVERAGE 

-

CN REBALANCE MESH SPACING IS APPROXIMATELY 30 TO 40 CM IN 

-

CN THE XY-PLANE. THUS, FOR EXAMPLE, IF THE AVERAGE FINE 

-

CN MESH SPACING IS DELTA CM, THEN THE INTEGER INPUT IN 

-

CN COLS. 19-24 SHOULD BE BETWEEN 30/DELTA AND 40/DELTA. 

-

C 

-

CN IF SLOW (OR DIVERGENT) ITERATIVE CONVERGENCE BEHAVIOR 

-

CN IS OBSERVED, THE NUMBER OF PARTIAL CURRENT SWEEPS 

-

CN SPECIFIED IN COLS. 25-30 AND 31-36 SHOULD BE INCREASED. 

-

C 

-

C-----------------------------------------------------------------------

CEOF
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