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Abstract

Introduction—Germ cell tumors (GCT) are a rare form of childhood cancer that originate from 

the primordial germ cell. Recent genome-wide association studies (GWAS) have identified 

susceptibility alleles for adult testicular GCT (TGCT). Here we test whether these SNPs are 

associated with GCT in the pediatric and adolescent population.

Methods—This case-parent triad study includes individuals with GCT diagnosed between ages 

0–19. We evaluated 26 SNPs from GWAS of adult TGCT and estimated main effects for pediatric 

GCT within complete trios (N=366) using the transmission disequilibrium test. We used 

Estimation of Maternal, Imprinting and interaction effects using Multinomial modelling to 
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evaluate maternal effects in non-Hispanic white trios and dyads (N=244). A Bonferroni correction 

was used to account for multiple comparisons.

Results—A variant in SPRY4 (rs4624820) was associated with reduced risk of GCT (OR [95% 

CI]: 0.70 [0.57, 0.86]). A variant in BAK1 (rs210138) was positively associated with GCT (OR 

[95% CI]: 1.70 [1.32, 2.18]), with a particularly strong estimated effect for testis tumors (OR [95% 

CI]: 3.31 [1.89, 5.79]). Finally, a SNP in GAB2 (rs948662) was associated with increased risk for 

GCT (OR [95% CI]: 1.56 [1.20, 2.03]). Nominal associations (p<0.05) were noted for eight 

additional loci. Maternal effects were observed for KITLG SNP rs4474514 (OR [95% CI]: 1.66 

[1.21, 2.28]) and rs7221274 (OR [95% CI]: 2.07 [1.43, 2.99]), near TEX14, RAD51C, and 

PPM1E.

Conclusions—We observed associations between SNPs in SPRY4, BAK1, and GAB2 and 

GCTs. This analysis suggests there may be common genetic risk factors for GCT in all age groups.

Introduction

Germ cell tumors (GCTs) are a form of childhood cancer that is rare in children age 0–14 

but accounts for approximately 15% of malignancies diagnosed in adolescents and young 

adults age 15–19 (Horner MJ). Most GCTs occur in the ovaries or testes; however 

extragonadal tumors also occur and likely arise from abnormal germ cell migration during 

fetal development. Although it is presumed that GCTs share a common cell of origin, the 

primordial germ cell (PGC) (Schneider, et al. 2001; Schneider, et al. 2006), these tumors are 

heterogeneous and include teratomas and yolk sac tumors (YST) of infants and young 

children (Type I tumors) and germinomas and nonseminomas of adolescents and young 

adults (Type II tumors) (Oosterhuis and Looijenga 2005). In addition, tumors can present as 

a mixture of these types. Their etiology remains poorly understood and evidence suggests 

that GCTs, including those in adults, are initiated in utero (Henderson, et al. 1979; 

Schottenfeld, et al. 1980; Sonne, et al. 2008). Thus, alterations in normal embryonic 

development are likely to be especially relevant to GCT etiology.

Studies of adult testicular GCT (TGCT) have shown strong heritability of these tumors 

(Bromen, et al. 2004; Forman, et al. 1992; Heimdal, et al. 1996; Sonneveld, et al. 1999; 

Westergaard, et al. 1996), suggesting a role for genetic factors in their etiology (Crockford, 

et al. 2006). There are few studies on family history of cancer in pediatric GCTs, and none 

with a sufficient sample size to specifically evaluate family history of GCT (Johnston, et al. 

1986; Shu, et al. 1995; Walker, et al. 1988). Although a major susceptibility gene for adult 

TGCT has not been identified, genome-wide association studies (GWAS) have found 

susceptibility loci for TGCT near KITLG, SPRY4, BAK1 (Kanetsky, et al. 2009; Rapley, et 

al. 2009); DMRT1, TERT, ATF7IP (Kanetsky, et al. 2011; Turnbull, et al. 2010); 
SLC25A44, UCK2, DAZL, CENPE, PITX1, PRDM14, MFSD1, TEX14, RAD51C, 
PPM1E, MCM3AP(Ruark, et al. 2013; Schumacher, et al. 2013); HPGDS, MAD1L1, 
RFWD3 (Chung, et al. 2013; Litchfield, et al. 2015b), HNF1B (Kristiansen, et al. 2015), and 
GSPT1, ZFPM1, GAB2, (Litchfield, et al. 2015a). Several of these genes are involved in 

survival (KITLG (Runyan, et al. 2006)) or early differentiation of PGCs (DAZL (Kee, et al. 

2009)), regulation of transcription (DMRT1 (Krentz, et al. 2009) and PRDM14 (Tsuneyoshi, 

et al. 2008; Yamaji, et al. 2008)), and spermatogenesis (TEX14, RAD51C, PPM1E 
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(Greenbaum, et al. 2006; Ihara, et al. 2005; Karlberg, et al. 2004; Kuznetsov, et al. 2007)) 

and therefore are plausibly involved in TGCT, and potentially pediatric GCT, etiology.

Several susceptibility genes for GCT have been identified among male mice in the 129/Sv 

mouse model of testicular teratoma (Oosterhuis and Looijenga 2005), including Dnd1 
(Youngren, et al. 2005) and Dmrt1 (Krentz, et al. 2009). The tumors that arise in 129/Sv 

mice most closely resemble GCTs that occur in children (Oosterhuis and Looijenga 2005), 

providing evidence that genetic susceptibility may also be important in pediatric GCTs. 

Additionally, adult and pediatric GCTs share the primordial germ cell as their common cell 

of origin and tumors of differing types, including both testicular and ovarian tumors, can be 

classified together based on their chromosomal complement and developmental potential as 

proposed by Oosterhuis and Looijenga (Oosterhuis and Looijenga 2005). Due to these 

shared characteristics, we hypothesized that genetic risk factors of adult TGCT may impact 

pediatric GCTs of all types. Furthermore, Murray et al. (Murray, et al. 2015) recently 

showed that all malignant GCTs over-express two microRNA clusters, regardless of patient 

age, histology, or tumor location, providing additional evidence of common biological 

characteristics across all types of GCTs. In an independent study, we previously reported 

associations between SNPs in three of these genes (KITLG, SPRY4, and BAK1) and 

pediatric GCT (Poynter, et al. 2012), providing further support for a shared genetic etiology. 

Here, we analyzed 26 SNPs at 21 independent loci identified in GWAS of adult TGCT in a 

case-parent triad study of pediatric and adolescent GCT to determine whether variation at 

these loci correlates with risk in the younger age group.

Results

DNA was available for 366 complete trios. Among the children with GCTs, 184 (50%) were 

male and 182 were female, and 59% were age 11–19 years at diagnosis (Table 1). Most 

participants were white, non-Hispanic (56%) or Hispanic (35%). Testicular and ovarian 

tumors represented 25% and 27% of our sample, respectively, while 21% were intracranial 

and 28% were extragonadal. The most frequent tumor histologies were mixed/other (32%) 

and germinomas (29%). Twenty two percent of tumors were classified as teratomas and 17% 

were yolk sac tumors (Table 1).

Among all samples, three loci reached the multiple testing-corrected statistical significance 

threshold (p<0.00192 for 26 tests; Table 2). A variant in SPRY4 (rs4624820) was associated 

with GCT in all samples (OR [95% CI]: 0.70 [0.57, 0.86]). Associations were statistically 

significant among younger children (OR and 95% CI: 0.64 [0.46, 0.89]) and in germinomas 

(OR [95% CI]: 0.53 [0.36, 0.78]). Point estimates were also decreased with nominally 

significant p-values (p<0.05) for children age ≥11 at diagnosis, ovarian tumors, and tumors 

of mixed histology (Figure 1).

A variant in BAK1 (rs210138) was also significantly associated with GCT overall (OR and 

95% CI: 1.70 [1.32, 2.18]), with a particularly strong estimated effect for tumors located in 

the testis (OR and 95% CI: 3.31 [1.89, 5.79]). The estimated association was stronger for 

male adolescents (OR and 95% CI: 2.71 [1.76, 4.19]) than for younger males (OR and 95% 
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CI: 1.43 [0.72, 2.83]) or females of any age, although confidence intervals overlap (Figure 

2).

Finally, the minor allele of rs948662 (GAB2) which tags the originally reported rs7107174 

(r2=0.99) from Litchfield et al (Litchfield, et al. 2015a) was associated with increased risk of 

GCT overall (OR and 95% CI: 1.56 [1.20, 2.03]). This SNP was also associated nominally 

significant for both <11 and ≥11 age groups, germinomas, intracranial tumors, ovarian 

tumors, and males (Figure 3).

Overall and stratified results based on analyses of participants of all races and ethnicities for 

all variants are presented in supplementary figures. When we restricted analyses to include 

only non-Hispanic white participants (Table 2), a variant in MFSD1 (rs8046148) was 

associated with GCT risk (OR and 95% CI: 0.50 [0.35, 0.72]). Effect estimates for the 

variants within SPRY4 and BAK1 (rs4624820 and rs210138, respectively), but not GAB2 
(rs948662), were stronger and remained statistically significant.

In the analysis of maternal and parent-of-origin effects, we observed maternal effect 

associations for a variant in KITLG (rs4474514; OR and 95% CI: 1.66 [1.21, 2.28]) and a 

variant near TEX14, RAD51C, and PPM1E (rs7221274; OR and 95% CI: 1.63 [1.26, 2.12]; 

Table 3). We observed a maternal parent-of-origin association for the BAK1 variant 

rs210138 (p=0.0016) and a paternal parent-of-origin association for the variant near TEX14, 
RAD51C, and PPM1E (rs7221274; p=0.00019).

Discussion

We observed statistically significant associations between SNPs in SPRY4, BAK1, and 

GAB2 and pediatric and adolescent GCTs, with a particularly strong association between the 

variant in BAK1 and testicular tumors. We also observed maternal associations for SNPs 

near KITLG and the locus containing TEX14, RAD51C, and PPM1E. We did not observe 

either direct or maternal effects for the other loci identified by previous studies of adult 

TGCT, however there were eight other loci for which p-values met the unadjusted but not the 

adjusted significance threshold. We investigated a relatively small number of SNPs with 

strong evidence to justify possible associations, and the multiple comparisons correction 

greatly reduced study power with the limited sample size. Without subsequent validation 

studies it is not possible to distinguish whether these additional eight loci have real or 

random associations with pediatric TGCT risk, and we still consider them plausible 

candidates for future investigation.

The SNPs identified in the GWAS of adult TGCT were notable both for their large effect 

sizes relative to GWAS of other adult cancers and because many were found in or near genes 

that are important germ cell biology. Only one previous study has examined the association 

between adult TGCT GWAS loci and pediatric GCT (Poynter, et al. 2012). That study, 

which used an independent sample set with no overlap in the current study, evaluated four 

SNPs, three of which were tested in the current analysis (rs4474514, rs210138, and 

rs755383). In that study the BAK1 SNP (rs210138) was also associated with increased risk 

of GCT overall (OR and 95% CI: 1.80 [1.10, 2.95]), particularly for tumors located in the 
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gonads (OR and 95% CI: 2.28 [1.24, 4.20]). KITLG SNP rs4474514 was also associated 

with tumors located in the gonads (OR and 95% CI: 2.12 [1.09, 4.14] and with GCT in 

adolescents (OR and 95% CI: 2.28 [1.09, 4.79]) in our previous study. No associations were 

observed between DMRT1 SNP rs755383 and pediatric GCT. The final SNP tested in that 

analysis was in SPRY4 (rs4324715) and was associated with increased risk of GCT in males 

(OR and 95% CI: 2.42 [1.01, 5.80]), among adolescents (OR and 95% CI: 2.40 [1.19, 4.83]), 

and for tumors located in the gonads (OR and 95% CI: 1.84 [1.03, 3.29]). This variant is in 

moderate to high linkage disequilibrium with the variant typed and analyzed in the present 

study (rs4624820; r2=0.84). In this larger study of pediatric GCT, we did not replicate 

findings for the KITLG variant, although we did observe maternal effects for this SNP. This 

discrepancy in findings may be due to differences in sample composition, as the previous 

study consisted of 71% female cases. However when we limited the current study to female 

cases, we observed a null association between the KITLG variant and GCT. Alternatively, 

the association reported may have been a chance finding which was not observed within the 

larger present dataset. We also observed similar results for the BAK1 SNP and a variant in 

SPRY4 in high LD with the previously evaluated variant. When we combined estimates 

from both datasets using meta-analytic techniques, the association between the BAK1 

variant remained robust (meta-analytic OR and 95% CI: 1.81 [1.57, 2.09]; p-value: 

0.00003). Meta-analysis results for the variants within DMRT1 and KITLG remained null; 

we were not able to combine estimates for the SPRY4 locus since different variants were 

used in each study.

Mouse studies show that germ cells originate on the yolk sac then migrate through the dorsal 

mesentery of the hindgut (Lawson and Hage 1994) before populating the genital ridges 

(Wilhelm, et al. 2007). In normal fetal development, PGCs that remain in the midline go 

through a rapid process of cell death through intrinsic apoptosis pathways (Runyan, et al. 

2006). Thus it is plausible that genes involved in the survival, differentiation, and apoptosis 

of PCGs are relevant to germ cell tumor development. rs210138 is located within an intron 

of BAK1 (BCL2-antagonist/killer 1), which encodes a protein that induces apoptosis by 

binding to and antagonizing the apoptosis repressor activity of BCL2 and other anti-

apoptotic proteins (Yan, et al. 2000).

The KIT/KITLG pathway is involved in the survival of primordial germ cells during 

migration to the genital ridge (Runyan, et al. 2006). The KITLG pathway also represses 

expression of BAK1 in testicular germ cells, and interaction of BAK1 with anti-apoptotic 

proteins is implicated in the germ cell apoptosis that occurs in response to blockage of this 

pathway (Yan, et al. 2000). The mouse orthologue of KITLG (Kitl, encoded at the steel 

locus) is also a modifier of TCGT susceptibility in the 129/Sv mouse (Heaney, et al. 2008). 

SPRY4 (Sprouty RTK signaling antagonist 4) is also associated with the KITLG pathway 

(Frolov, et al. 2003). Additionally, it inhibits the mitogen-activated protein kinase (MAPK) 

pathway (Sasaki, et al. 2003). Ovarian germ cell tumors were recently found to harbor 

somatic mutations in MAPK1 (Zou, et al. 2016).

GAB2 (GRB2-associated binding protein 2) encodes a docking protein involved in signal 

transduction from tyrosine kinases. Its role in carcinogenesis is highly plausible given its 

involvement in cell proliferation and cell transformation. Indeed, it has previously been 
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shown to function as a proto-oncogene within melanoma, hepatocellular carcinoma, and 

breast, colorectal, and ovarian cancers (Adams, et al. 2012; Chen, et al. 2016; Matsumura, et 

al. 2014). Although the association with rs948662 that exceeded the multiple-testing 

correction threshold was for overall GCT risk, we observed increased point estimates of 

similar magnitude and nominal associations for this variant and ovarian and intracranial 

tumors and germinomas.

We observed maternal effects for SNPs near KITLG (rs4474514) and the locus containing 

TEX14, RAD51C, and PPM1E (rs7221274). In 129/Sv mice, the ortholog of KITLG is a 

modifier of TGCT risk (Heaney, et al. 2008). Although the functional mechanism of KITLG 
in TGCT is not known, studies of knockout mice suggest these genes may prevent germ cell 

apoptosis (Runyan, et al. 2006). While the role of the maternal genome in modifying risk of 

pediatric GCT is unclear, a recent study in zebrafish showed that maternal genes are 

essential in the regulation of PGC properties in the offspring (Forbes, et al. 2015). 

Furthermore, a study of maternal effects in testicular cancer showed increased risk in 

offspring associated with interaction between maternal variants in KITLG and SHBG 
(Nsengimana and Barrett 2012). Additional support for a role of maternal genetic factors on 

offspring GCT risk includes evidence that variations in maternal cytochrome p450 gene 

impact offspring risk of TGCT (Starr, et al. 2005) and the observation of a parent-of-origin 

effect for SPRY4 (Karlsson, et al. 2013). In the present study, maternal origin of the variant 

allele conferred an increased risk of TGCT in offspring.

We detected a maternal parent-of-origin effect of the BAK1 variant rs210138 and a paternal 

parent-of-origin effect of the rs7221274 variant near TEX14, RAD51C, PPM1E. The mostly 

likely impact of a parent-of-origin effect is imprinting, an epigenetic event in which gene 

expression is modified based on the transmitting parent (Guilmatre and Sharp 2012). Our 

observations of parent-of-origin effects at two loci may indicate that gene expression of 

these loci is altered in pediatric and adolescent GCT. Molecular evidence for imprinting is 

necessary to confirm this potential.

Pediatric and adolescent GCTs are a heterogeneous group of tumors. Recent studies have 

shown that the differing histological subtypes not only have separate DNA methylation 

profiles (Amatruda, et al. 2013; Jeyapalan, et al. 2011) but also exhibit differences in 

microRNA expression (Murray, et al. 2010) and distinct transcriptome profiles (Palmer, et al. 

2008). Furthermore, adult TGCTs arise from PGCs at a different developmental stage than 

those that occur in children (Oosterhuis and Looijenga 2005; Sievers, et al. 2005). Therefore 

it is not surprising that our results differed by age group, histology, and tumor location and 

that we did not observe associations for all SNPs. However, recent evidence suggests that 

there may be cases of TGCT diagnosed in adulthood that, other than age of onset, meet the 

criteria of a pediatric GCT (Oosterhuis, et al. 2015). Thus there may be shared etiology 

between pediatric and adult cases among a subgroup of patients.

This study is the first to use germline DNA in an investigation of genetic risk factors for 

pediatric GCT. It is also the first comprehensive examination of the association of TGCT-

associated variants with risk of pediatric GCT. Strengths of this study include the strong a 
priori hypothesis that adult TGCT and pediatric GCT may share common genetic causes, 
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including the biological plausibility of variants identified by adult TGCT GWAS. This study 

had a large sample size overall, although our power was limited in subtype analyses.

We found evidence that GCTs in all age groups may share some genetic risk factors. In 

addition, ours is the first study to report maternal effects in pediatric GCT for genes 

associated with adult TGCT. Additional studies are needed to confirm these results. Fine 

mapping and functional studies are also needed to elucidate the mechanisms driving these 

associations in GCTs in all age groups.

Materials and Methods

Study participants

Children and adolescents diagnosed with GCT were identified through the Children’s 

Oncology Group Childhood Cancer Research Network (CCRN) (Musselman, et al. 2014) 

and invited to participate in this case-parent triad study. Children were eligible for the study 

if they had a primary diagnosis of GCT including germinoma (ICCC code (Steliarova-

Foucher, et al. 2005) 9060–9065), teratoma (9080–9084), embryonal carcinoma (9070–

9072), yolk sac tumor (9071), choriocarcinoma (9100, 9103, 9104), and mixed GCT (9085, 

9101, 9102, 9105) in all sites including the brain between July 1, 2008 and December 31, 

2015. Additional eligibility criteria included age < 20 years at diagnosis, the availability of 

at least one biological parent alive and willing to participate, and ability to complete a 

questionnaire in English or Spanish. Pathology reports were provided by the participating 

Children’s Oncology Group institutions per the CCRN protocol.

Saliva DNA was collected from the children with GCT and their biological parents for use in 

genetic analyses, and lifestyle and environmental risk factors were assessed using mailed 

questionnaires. All participants received a saliva collection kit (Oragene) with instructions 

and mailer with return postage. Parents and children ≥ 5 years received a standard Oragene 

saliva DNA kit. Children < age 5 years received the Oragene kit for assisted DNA collection, 

which uses absorbent sponges. Participants were re-contacted within six months of donation 

for additional samples if DNA yield was insufficient. This analysis is based on an interim 

dataset including participants recruited to the study through December 13, 2013.

All study procedures were approved by the University of Minnesota Institutional Review 

Board.

a priori Variant selection

A literature review of search terms ‘germ cell tumor’, ‘testicular germ cell’, ‘genetic 

susceptibility’, and ‘GWAS’ identified 10 articles (Chung, et al. 2013; Kanetsky, et al. 2009; 

Kanetsky, et al. 2011; Kristiansen, et al. 2015; Litchfield, et al. 2015a; Litchfield, et al. 

2015b; Rapley, et al. 2009; Ruark, et al. 2013; Schumacher, et al. 2013; Turnbull, et al. 

2010). These manuscripts together identified 31 variants in 25 genes that reached study-wide 

significance and were therefore considered in the current study. Only the following four 

variants were not tagged well (r2>0.80) by any variant on the genotyped array and hence 

were not assessed in the current study: rs11705932 in TFDP2, rs12699477 in MAD1L1 
(though rs3778991 in MAD1L1 is reported), rs7010162 upstream of PRDM14, and 
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rs2195987 in RPSAP58. The final variant excluded from the current study (rs6897876) is in 

high LD (r2>0.94) with rs4624820, and both are in the same region of SPRY4. As 

rs6897876 was tagged by rs4624820, we elected to include only the latter variant in this 

analysis.

DNA extraction

Saliva samples were stored at room temperature and batched for DNA extraction. We 

performed automated DNA isolation using Autopure LS system (Qiagen) and Puregene 

chemistry (Gentra Systems) according to the manufacturer’s protocols. DNA yield was 

quantified using 1:10 diluted DNA performed in triplicate by quantitative real-time PCR 

using absolute quantification on an ABI 7900 Prism real-time instrument and extracted DNA 

was aliquoted and stored at -20°C until genotyping.

Genotyping

Genotyping was performed by the University of Minnesota Genomics Center (UMGC) using 

Illumina HumanCoreExome-12 version 1.1_B BeadChips (Illumina, San Diego, CA, USA) 

according to the manufacturer’s specified protocol. Allele cluster definitions for each variant 

were determined using Illumina GenomeStudio Genotyping Module and the intensity data 

from those study samples with high quality data (i.e., the 95.4% of samples with a Log R 

ratio standard deviation < 0.35). The resulting cluster definition file was used on all study 

samples to determine genotype calls and quality scores. Genotype clusters for all a priori 
selected variants of interest were manually inspected and adjusted as needed using Genvisis 

(http://www.genvisis.org). For all other variants, genotype calls were made when a genotype 

yielded a quality score (Gencall value) of 0.25 or higher. The final raw data set contained 

542,585 variants that could be used for inferring genetic ancestry, validating putative 

relationships, and identifying cryptic relatedness.

Quality Control

A CEPH Utah HapMap sample was placed on each DNA plate of 96 samples processed 

together in the laboratory. In addition, 76 blind duplicate samples were distributed among 

the 16 plates to assess genotyping concordance and to detect plate effects. Blind duplicate 

reproducibility was 99.80% for all markers, 99.98% for markers that passed QC and 

100.00% for those markers used in the present analyses. There was no evidence for plate-

specific genotype effects.

Genvisis was used to identify samples with sex aneuploidy. Eight children with GCTs had 

Klinefelter syndrome (47,XXY karyotype) and one unaffected mother had triple X 

syndrome (47,XXX karyotype). The affected daughter of the individual with triple X 

syndrome had a normal 46,XX karyotype. No individuals with Turner syndrome, mosaic 

Turner syndrome, mosaic Klinefelter syndrome or mosaic triple X syndrome were observed.

Samples having genotypes for at least 98% of the variants were considered for inclusion in 

analyses. Variants with a call rate of 98% or lower were excluded from further quality 

control analyses (n=19,782; 3.65%). Variants were removed if: (1) the minor allele 

frequency of the founders (parents) was less than 0.01 in the data set (n=242,287; 44.65%); 
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(2) there were differential rates of missing genotypes in the probands versus the parents 

(p<0.0001; n=9) or males versus females (p<0.0001; n=1121, 0.21%), (3) allele frequencies 

differed between males and females (p<0.0001; n=143; 0.03%), (4) significant deviation 

from Hardy–Weinberg equilibrium was observed in the founders (p<0.00001; n=8123; 

1.5%), or (5) significant deviation from expected when imputing the variant from nearby 

markers using PLINK’s ---mishap test (p<0.0001; n=8133; 1.5%). Many markers failed 

multiple tests. The final data set consisted of 275,996 variants that passed all quality control 

measures for use in defining ancestry.

Statistical methods and analysis

The transmission disequilibrium test (TDT) as implemented in PLINK was the primary 

method for estimating main effects, which by design controls for population stratification. 

Subgroup analyses were conducted by age, sex, histology, and tumor location. Maternal 

effects and parent of origin effects were tested using a log-linear model in EMIM 

(Estimation of Maternal, Imprinting and interaction effects using Multinomial modelling). 

This method requires a homogeneous ancestral population and was therefore restricted to 

non-Hispanic whites. This status was determined by performing a principal components 

analysis (PCA) as implemented in EIGENSOFT (Price, et al. 2006)that included HapMap 

samples (CEPH Caucasian, Yoruba, Han Chinese, Japanese) as anchors. We used a 

Bonferroni correction to establish a threshold for statistical significance (p<0.00192 for 26 

tests). The allele frequency of all markers passing quality control was compared between 

CEU HapMap samples and study samples that self-described as white. Those markers with 

significantly different frequencies (p<0.05; n=9,123) were excluded prior to running the 

PCA. The first two principal components from the analysis were plotted and those samples 

clustering tightly with the CEU samples were defined as white non-Hispanic in subsequent 

EMIM analyses.
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Figure 1. 
Subgroup specific associations between rs4624820 (SPRY4) and GCT
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Figure 2. 
Subgroup specific associations between rs210138 (BAK1) and GCT
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Figure 3. 
Subgroup specific associations between rs7107174/rs948662 (GAB2) and GCT
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Table 1

Demographic and tumor characteristics of study subjects included in TDT and EMIM analyses, respectively

TDT analysis (direct effects) EMIM analysis (maternal effects)

N % N %

Sex

Male 184 50.3 121 49.6

Female 182 49.7 123 50.4

Location

extragonadal 102 27.9 65 26.6

intracranial 75 20.5 47 19.3

ovary 98 26.8 64 26.2

testis 91 24.9 68 27.9

Histology

YST 61 16.7 41 16.8

germinoma 105 28.7 71 29.1

mixed/other 117 32.0 84 34.4

teratoma 82 22.4 48 19.7

Age at diagnosis

< 11 years 149 40.7 104 42.6

11–19 years 217 59.3 140 57.4

Ethnicity

African American 17 4.6 0 0.0

Asian 17 4.6 0 0.0

Hispanic 127 34.7 0 0.0

White 205 56.0 244 100.0

Sample structure

Trio 366 100.0 205 84.0

Duo 0 0.0 39 16.0
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