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Abstract

For anym ≥ 1, let Hm denote the quantity lim infn→∞(pn+m − pn). A celebrated recent
result of Zhang showed the finiteness of H1, with the explicit bound H1 ≤ 70, 000, 000.
This was then improved by us (the Polymath8 project) to H1 ≤ 4680, and then by
Maynard to H1 ≤ 600, who also established for the first time a finiteness result for Hm

form ≥ 2, and specifically that Hm ≪ m3e4m. If one also assumes the Elliott-Halberstam
conjecture, Maynard obtained the bound H1 ≤ 12, improving upon the previous
bound H1 ≤ 16 of Goldston, Pintz, and Yıldırım, as well as the bound Hm ≪ m3e2m.
In this paper, we extend the methods of Maynard by generalizing the Selberg sieve
further and by performing more extensive numerical calculations. As a consequence,
we can obtain the bound H1 ≤ 246 unconditionally and H1 ≤ 6 under the assumption
of the generalized Elliott-Halberstam conjecture. Indeed, under the latter conjecture,
we show the stronger statement that for any admissible triple (h1, h2, h3), there are
infinitely many n for which at least two of n + h1, n + h2, n + h3 are prime, and also
obtain a related disjunction asserting that either the twin prime conjecture holds or the
even Goldbach conjecture is asymptotically true if one allows an additive error of at
most 2, or both. We also modify the ‘parity problem’ argument of Selberg to show that
the H1 ≤ 6 bound is the best possible that one can obtain from purely sieve-theoretic
considerations. For largerm, we use the distributional results obtained previously by

our project to obtain the unconditional asymptotic bound Hm ≪ me
(

4− 28
157

)

m or
Hm ≪ me2m under the assumption of the Elliott-Halberstam conjecture. We also
obtain explicit upper bounds for Hm whenm = 2, 3, 4, 5.
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Background

For any natural numberm, let Hm denote the quantity

Hm := lim inf
n→∞

( pn+m − pn) ,

where pn denotes the nth prime. The twin prime conjecture asserts that H1 = 2; more

generally, the Hardy-Littlewood prime tuples conjecture [1] implies that Hm = H(m+ 1)

for all m ≥ 1, where H(k) is the diameter of the narrowest admissible k-tuple (see the

‘Outline of the key ingredients’ section for a definition of this term). Asymptotically, one

has the bounds
(

1

2
+ o(1))k log k ≤ H(k) ≤ (1 + o(1)

)

k log k
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as k → ∞ (see Theorem 17 below); thus, the prime tuples conjecture implies that Hm is

comparable tom logm asm → ∞.

Until very recently, it was not known if any of the Hm were finite, even in the easi-

est case m = 1. In the breakthrough work of Goldston et al. [2], several results in this

direction were established, including the following conditional result assuming the Elliott-

Halberstam conjecture EH[ϑ] (see Claim 8 below) concerning the distribution of the

prime numbers in arithmetic progressions:

Theorem 1 (GPY theorem). Assume the Elliott-Halberstam conjecture EH[ϑ] for all

0 < ϑ < 1. Then, H1 ≤ 16.

Furthermore, it was shown in [2] that any result of the form EH
[

1
2 + 2̟

]

for some fixed

0 < ̟ < 1/4 would imply an explicit finite upper bound onH1 (with this bound equal to

16 for ̟ > 0.229855). Unfortunately, the only results of the type EH[ϑ] that are known

come from the Bombieri-Vinogradov theorem (Theorem 9), which only establishes EH[ϑ]

for 0 < ϑ < 1/2.

The first unconditional bound on H1 was established in a breakthrough work of Zhang

[3]:

Theorem 2 (Zhang’s theorem). H1 ≤ 70, 000, 000.

Zhang’s argument followed the general strategy from [2] on finding small gaps between

primes, with the major new ingredient being a proof of a weaker version of EH
[

1
2 + 2̟

]

,

which we call MPZ[̟ , δ] (see Claim 10) below. It was quickly realized that Zhang’s

numerical bound on H1 could be improved. By optimizing many of the components

in Zhang’s argument, we were able (Polymath, DHJ: New equidistribution estimates of

Zhang type, submitted), [4] to improve Zhang’s bound to

H1 ≤ 4, 680.

Very shortly afterwards, a further breakthrough was obtained by Maynard [5] (with

related work obtained independently in an unpublished work of Tao), who developed a

more flexible ‘multidimensional’ version of the Selberg sieve to obtain stronger bounds on

Hm. This argument worked without using any equidistribution results on primes beyond

the Bombieri-Vinogradov theorem, and among other things was able to establish finite-

ness ofHm for allm, not just form = 1.More precisely, Maynard established the following

results.

Theorem 3 (Maynard’s theorem). Unconditionally, we have the following bounds:

(i) H1 ≤ 600

(ii) Hm ≤ Cm3e4m for allm ≥ 1 and an absolute (and effective) constant C

Assuming the Elliott-Halberstam conjecture EH[ϑ] for all 0 < ϑ < 1, we have the

following improvements:

(iii) H1 ≤ 12

(iv) H2 ≤ 600

(v) Hm ≤ Cm3e2m for allm ≥ 1 and an absolute (and effective) constant C
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For a survey of these recent developments, see [6].

In this paper, we refine Maynard’s methods to obtain the following further

improvements.

Theorem 4. Unconditionally, we have the following bounds:

(i) H1 ≤ 246

(ii) H2 ≤ 398, 130

(iii) H3 ≤ 24, 797, 814

(iv) H4 ≤ 1, 431, 556, 072

(v) H5 ≤ 80, 550, 202, 480

(vi) Hm ≤ Cm exp
((

4 − 28
157

)

m
)

for allm ≥ 1 and an absolute (and effective) constant C

Assume the Elliott-Halberstam conjecture EH[ϑ] for all 0 < ϑ < 1. Then, we have the

following improvements:

(vii) H2 ≤ 270

(viii) H3 ≤ 52, 116

(ix) H4 ≤ 474, 266.

(x) H5 ≤ 4, 137, 854.

(xi) Hm ≤ Cme2m for allm ≥ 1 and an absolute (and effective) constant C

Finally, assume the generalized Elliott-Halberstam conjecture GEH[ϑ] (see Claim 12

below) for all 0 < ϑ < 1. Then,

(xii) H1 ≤ 6

(xiii) H2 ≤ 252

In the ‘Outline of the key ingredients’ section, we will describe the key propositions

that will be combined together to prove the various components of Theorem 4. As with

Theorem 1, the results in (vii)-(xiii) do not require EH[ϑ] or GEH[ϑ] for all 0 < ϑ < 1,

but only for a single explicitly computable ϑ that is sufficiently close to 1.

Of these results, the bound in (xii) is perhaps the most interesting, as the parity problem

[7] prohibits one from achieving any better bound on H1 than 6 from purely sieve-

theoretic methods; we review this obstruction in the ‘The parity problem’ section. If

one only assumes the Elliott-Halberstam conjecture EH[ϑ] instead of its generalization

GEH[ϑ], we were unable to improve upon Maynard’s bound H1 ≤ 12; however, the par-

ity obstruction does not exclude the possibility that one could achieve (xii) just assuming

EH[ϑ] rather than GEH[ϑ], by some further refinement of the sieve-theoretic arguments

(e.g. by finding a way to establish Theorem 20(ii) below using only EH[ϑ] instead of

GEH[ϑ]).

The bounds (ii)-(vi) rely on the equidistribution results on primes established in our

previous paper. However, the bound (i) uses only the Bombieri-Vinogradov theorem, and

the remaining bounds (vii)-(xiii) of course use either the Elliott-Halberstam conjecture or

a generalization thereof.

A variant of the proof of Theorem 4(xii), which we give in ‘Additional remarks’ section,

also gives the following conditional ‘near miss’ to (a disjunction of) the twin prime

conjecture and the even Goldbach conjecture:
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Theorem 5 (Disjunction). Assume the generalized Elliott-Halberstam conjecture

GEH[ϑ] for all 0 < ϑ < 1. Then, at least one of the following statements is true:

(a) (Twin prime conjecture) H1 = 2.

(b) (near-miss to even Goldbach conjecture) If n is a sufficiently large multiple of 6, then

at least one of n and n − 2 is expressible as the sum of two primes, similarly with

n − 2 replaced by n + 2. (In particular, every sufficiently large even number lies

within 2 of the sum of two primes.)

We remark that a disjunction in a similar spirit was obtained in [8], which established

(prior to the appearance of Theorem 2) that either H1 was finite or that every interval

[ x, x+xε] contained the sum of two primes if xwas sufficiently large depending on ε > 0.

There are two main technical innovations in this paper. The first is a further general-

ization of the multidimensional Selberg sieve introduced by Maynard and Tao, in which

the support of a certain cutoff function F is permitted to extend into a larger domain than

was previously permitted (particularly under the assumption of the generalized Elliott-

Halberstam conjecture). As in [5], this largely reduces the task of bounding Hm to that

of efficiently solving a certain multidimensional variational problem involving the cutoff

function F. Our second main technical innovation is to obtain efficient numerical meth-

ods for solving this variational problem for small values of the dimension k, as well as

sharpened asymptotics in the case of large values of k.

The methods of Maynard and Tao have been used in a number of subsequent appli-

cations [9-21]. The techniques in this paper should be able to be used to obtain slight

numerical improvements to such results, although we did not pursue these matters

here.

Organization of the paper

The paper is organized as follows. After some notational preliminaries, we recall in the

‘Distribution estimates on arithmetic functions’ section the known (or conjectured) dis-

tributional estimates on primes in arithmetic progressions that we will need to prove

Theorem 4. Then, in the section ‘Outline of the key ingredients’, we give the key

propositions that will be combined together to establish this theorem. One of these

propositions, Lemma 18, is an easy application of the pigeonhole principle. Two fur-

ther propositions, Theorem 19 and Theorem 20, use the prime distribution results from

the ‘Distribution estimates on arithmetic functions’ section to give asymptotics for cer-

tain sums involving sieve weights and the von Mangoldt function; they are established

in the ‘Multidimensional Selberg sieves’ section. Theorems 22, 24, 26, and 28 use the

asymptotics established in Theorems 19 and 20, in combination with Lemma 18, to give

various criteria for bounding Hm, which all involve finding sufficiently strong candi-

dates for a variety of multidimensional variational problems; these theorems are proven

in the ‘Reduction to a variational problem’ section. These variational problems are anal-

ysed in the asymptotic regime of large k in the ‘Asymptotic analysis’ section, and for

small and medium k in the ‘The case of small and medium dimension’ section, with the

results collected in Theorems 23, 25, 27, and 29. Combining these results with the previ-

ous propositions gives Theorem 16, which, when combined with the bounds on narrow

admissible tuples in Theorem 17 that are established in the ‘Narrow admissible tuples’
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section, will give Theorem 4. (See also Table 1 for more details of the logical dependencies

between the key propositions.)

Finally, in the ‘The parity problem’ section, we modify an argument of Selberg to show

that the boundH1 ≤ 6 may not be improved using purely sieve-theoretic methods, and in

the ‘Additional remarks’ section, we establish Theorem 5 and make some miscellaneous

remarks.

Notation

The notation used here closely follows the notation in our previous paper.

We use |E| to denote the cardinality of a finite set E, and 1E to denote the indicator

function of a set E; thus, 1E(n) = 1 when n ∈ E and 1E(n) = 0 otherwise.

All sums and products will be over the natural numbers N := {1, 2, 3, . . .} unless other-
wise specified, with the exceptions of sums and products over the variable p, which will

be understood to be over primes.

The following important asymptotic notation will be in use throughout the paper.

Definition 6 (Asymptotic notation). We use x to denote a large real parameter, which

one should think of as going off to infinity; in particular, we will implicitly assume that it is

larger than any specified fixed constant. Some mathematical objects will be independent

of x and referred to as fixed; but unless otherwise specified, we allow all mathematical

objects under consideration to depend on x (or to vary within a range that depends on x,

e.g. the summation parameter n in the sum
∑

x≤n≤2x f (n)). If X and Y are two quantities

depending on x, we say that X = O(Y ) or X ≪ Y if one has |X| ≤ CY for some fixed

C (which we refer to as the implied constant), and X = o(Y ) if one has |X| ≤ c(x)Y

for some function c(x) of x (and of any fixed parameters present) that goes to zero as

x → ∞ (for each choice of fixed parameters). We use X ≺≺ Y to denote the estimate

X ≤ xo(1)Y , X ∼ Y to denote the estimate Y ≪ X ≪ Y , and X ≈ Y to denote the

estimate Y ≺≺ X ≺≺ Y . Finally, we say that a quantity n is of polynomial size if one has

n = O
(

xO(1)
)

.

If asymptotic notation such as O() or ≺≺ appears on the left-hand side of a statement,

this means that the assertion holds true for any specific interpretation of that notation. For

instance, the assertion
∑

n=O(N) |α(n)| ≺≺ N means that for each fixed constant C > 0,

one has
∑

|n|≤CN |α(n)| ≺≺ N .

If q and a are integers, we write a|q if a divides q. If q is a natural number and a ∈ Z, we

use a (q) to denote the residue class

a (q) :=
{

a + nq : n ∈ Z
}

Table 1 Results used to prove various components of Theorem 16

Theorem 16 Results used

(i) Theorems 9, 26, and 27

(ii)-(vi) Theorems 11, 24, and 25

(vii)-(xi) Theorems 22 and 23

(xii) Theorems 28 and 29

(xiii) Theorems 26 and 27

Note that Theorems 22, 24, 26, and 28 are in turn proven using Theorems 19 and 20 and Lemma 18.
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and let Z/qZ denote the ring of all such residue classes a(q). The notation b = a (q) is

synonymous to b ∈ a (q). We use (a, q) to denote the greatest common divisor of a and

q, and [a, q] to denote the least common multiplea. We also let

(Z/qZ)× :=
{

a (q) : (a, q) = 1
}

denote the primitive residue classes of Z/qZ.

We use the following standard arithmetic functions:

(i) ϕ(q) := |(Z/qZ)×| denotes the Euler totient function of q.

(ii) τ(q) :=
∑

d|q 1 denotes the divisor function of q.

(iii) 	(q) denotes the von Mangoldt function of q ; thus, 	(q) = log p if q is a power of a

prime p, and 	(q) = 0 otherwise.

(iv) θ(q) is defined to equal log q when q is a prime, and θ(q) = 0 otherwise.

(v) μ(q) denotes the Möbius function of q ; thus, μ(q) = (−1)k if q is the product of k

distinct primes for some k ≥ 0, and μ(q) = 0 otherwise.

(vi) �(q) denotes the number of prime factors of q (counting multiplicity).

We recall the elementary divisor bound

τ(n) ≺≺ 1 (1)

whenever n ≪ xO(1), as well as the related estimate

∑

n≪x

τ(n)C

n
≪ logO(1) x (2)

for any fixed C > 0 (see, e.g. [Lemma 1.5]).

The Dirichlet convolution α ⋆ β : N → C of two arithmetic functions α,β : N → C is

defined in the usual fashion as

α ⋆ β(n) :=
∑

d|n
α(d)β

(n

d

)

=
∑

ab=n

α(a)β(b).

Distribution estimates on arithmetic functions

As mentioned in the introduction, a key ingredient in the Goldston-Pintz-Yıldırım

approach to small gaps between primes comes from distributional estimates on the

primes, or more precisely on the von Mangoldt function 	, which serves as a proxy for

the primes. In this work, we will also need to consider distributional estimates on more

general arithmetic functions, although we will not prove any new such estimates in this

paper, relying instead on estimates that are already in the literature.

More precisely, we will need averaged information on the following quantity:

Definition 7 (Discrepancy). For any function α : N → C with finite support (that is, α

is non-zero only on a finite set) and any primitive residue class a (q), we define the (signed)

discrepancy �(α; a (q)) to be the quantity

�(α; a (q)) :=
∑

n=a (q)

α(n) −
1

ϕ(q)

∑

(n,q)=1

α(n). (3)

For any fixed 0 < ϑ < 1, let EH[ϑ] denote the following claim:
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Claim 8 (Elliott-Halberstam conjecture, EH[ϑ]). If Q ≺≺ xϑ and A ≥ 1 is fixed, then

∑

q≤Q

sup
a∈(Z/qZ)×

∣

∣�
(

	1[x,2x]; a (q)
)
∣

∣≪ x log−A x. (4)

In [22], it was conjectured that EH[ϑ] held for all 0 < ϑ < 1. (The conjecture fails at the

endpoint case ϑ = 1; see [23,24] for a more precise statement.) The following classical

result of Bombieri [25] and Vinogradov [26] remains the best partial result of the form

EH[ϑ]:

Theorem 9 (Bombieri-Vinogradov theorem). [25,26] EH[ϑ] holds for every fixed 0 <

ϑ < 1/2.

In [2], it was shown that any estimate of the form EH[ϑ] with some fixed ϑ > 1/2 would

imply the finiteness of H1. While such an estimate remains unproven, it was observed

by Motohashi and Pintz [27] and by Zhang [3] that a certain weakened version of EH[ϑ]

would still suffice for this purpose. More precisely (and following the notation of our

previous paper), let ̟ , δ > 0 be fixed, and let MPZ[̟ , δ] be the following claim:

Claim 10 (Motohashi-Pintz-Zhang estimate, MPZ[̟ , δ]). Let I ⊂
[

1, xδ
]

and Q ≺≺
x1/2+2̟ . Let PI denote the product of all the primes in I, and let SI denote the square-free

natural numbers whose prime factors lie in I. If the residue class a (PI) is primitive (and is

allowed to depend on x), and A ≥ 1 is fixed, then

∑

q≤Q
q∈SI

∣

∣�
(

	1[x,2x]; a (q)
)
∣

∣≪ x log−A x, (5)

where the implied constant depends only on the fixed quantities (A,̟ , δ), but not on a.

It is clear that EH
[

1
2 + 2̟

]

impliesMPZ[̟ , δ] whenever̟ , δ ≥ 0. The first non-trivial

estimate of the form MPZ[̟ , δ] was established by Zhang [3], who (essentially) obtained

MPZ[̟ , δ] whenever 0 ≤ ̟ , δ < 1
1,168 . In [Theorem 2.17], we improved this result to the

following.

Theorem 11. MPZ[̟ , δ] holds for every fixed ̟ , δ ≥ 0 with 600̟ + 180δ < 7.

In fact, a stronger result was established, in which the moduli q were assumed to be

densely divisible rather than smooth, but we will not exploit such improvements here. For

our application, the most important thing is to get ̟ as large as possible; in particular,

Theorem 11 allows one to get ̟ arbitrarily close to 7
600 ≈ 0.01167.

In this paper, we will also study the following generalization of the Elliott-Halberstam

conjecture:

Claim 12 (Generalized Elliott-Halberstam conjecture, GEH[ϑ]). Let ε > 0 and A ≥ 1

be fixed. Let N ,M be quantities such that xε ≺≺ N ,M ≺≺ x1−ε with NM ≍ x, and let
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α,β : N → R be sequences supported on [N , 2N] and [M, 2M], respectively, such that one

has the pointwise bound

|α(n)| ≪ τ(n)O(1) logO(1) x; |β(m)| ≪ τ(m)O(1) logO(1) x (6)

for all natural numbers n,m. Suppose also that β obeys the Siegel-Walfisz type bound
∣

∣�
(

β1(·,r)=1; a (q)
)
∣

∣≪ τ(qr)O(1)M log−A x (7)

for any q, r ≥ 1, any fixed A, and any primitive residue class a (q). Then for any Q ≺≺ xϑ ,

we have
∑

q≤Q

sup
a∈(Z/qZ)×

∣

∣� (α ⋆ β ; a (q))
∣

∣≪ x log−A x. (8)

In [28, Conjecture 1], it was essentially conjecturedb that GEH[ϑ] was true for all 0 <

ϑ < 1. This is stronger than the Elliott-Halberstam conjecture:

Proposition 13. For any fixed 0 < ϑ < 1, GEH[ϑ] implies EH[ϑ].

Proof. (Sketch) As this argument is standard, we give only a brief sketch. Let A > 0 be

fixed. For n ∈[x, 2x], we have Vaughan’s identityc [29]

	(n) = μ< ⋆ L(n) − μ< ⋆ 	< ⋆ 1(n) + μ≥ ⋆ 	≥ ⋆ 1(n),

where L(n) := log(n) and

	≥(n) := 	(n)1n≥x1/3 , 	<(n) := 	(n)1n<x1/3 (9)

μ≥(n) := μ(n)1n≥x1/3 , μ<(n) := μ(n)1n<x1/3 . (10)

By decomposing each of the functions μ<, μ≥, 1, 	<, 	≥ into O
(

logA+1 x
)

func-

tions supported on intervals of the form [N , (1 + log−A x)N], and discarding those

contributions which meet the boundary of [x, 2x] (cf. [3,28,30,31]), and using GEH[ϑ]

(with A replaced by a much larger fixed constant A′) to control all remaining contri-

butions, we obtain the claim (using the Siegel-Walfisz theorem; see, e.g. [32, Satz 4] or

[33, Th. 5.29]).

By modifying the proof of the Bombieri-Vinogradov theorem, Motohashi [34] estab-

lished the following generalization of that theorem:

Theorem 14 (Generalized Bombieri-Vinogradov theorem). [34] GEH[ϑ] holds for

every fixed 0 < ϑ < 1/2.

One could similarly describe a generalization of the Motohashi-Pintz-Zhang estimate

MPZ[̟ , δ], but unfortunately, the arguments in [3] or Theorem 11 do not extend to this

setting unless one is in the ‘Type I/Type II’ case in whichN,M are constrained to be some-

what close to x1/2, or if one has ‘Type III’ structure to the convolution α ⋆ β , in the sense

that it can refactored as a convolution involving several ‘smooth’ sequences. In any event,

our analysis would not be able to make much use of such incremental improvements to

GEH[ϑ], as we only use this hypothesis effectively in the case when ϑ is very close to 1.

In particular, we will not directly use Theorem 14 in this paper.
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Outline of the key ingredients

In this section, we describe the key subtheorems used in the proof of Theorem 4, with the

proofs of these subtheorems mostly being deferred to later sections.

We begin with a weak version of the Dickson-Hardy-Littlewood prime tuples conjec-

ture [1], which (following Pintz [35]) we refer to as [k, j]. Recall that for any k ∈ N, an

admissible k-tuple is a tupleH = (h1, . . . , hk) of k increasing integers h1 < . . . < hk which

avoids at least one residue class ap (p) := {ap + np : n ∈ Z} for every p. For instance,

(0, 2, 6) is an admissible 3-tuple, but (0, 2, 4) is not.

For any k ≥ j ≥ 2, we let DHL[k; j] denote the following claim:

Claim 15 (Weak Dickson-Hardy-Littlewood conjecture, DHL[k; j]). For any admissible

k-tupleH = (h1, . . . , hk), there exist infinitely many translates n+H = (n+h1, . . . , n+hk)

ofH which contain at least j primes.

The full Dickson-Hardy-Littlewood conjecture is then the assertion that DHL[k; k]

holds for all k ≥ 2. In our analysis, we will focus on the case when j is much smaller than

k; in fact, j will be of the order of log k.

For any k, let H(k) denote the minimal diameter hk − h1 of an admissible k-tuple; thus

for instance, H(3) = 6. It is clear that for any natural numbersm ≥ 1 and k ≥ m + 1, the

claim DHL[ k;m + 1] implies that Hm ≤ H(k) (and the claim DHL[k; k] would imply that

Hk−1 = H(k)). We will therefore deduce Theorem 4 from a number of claims of the form

DHL[k; j]. More precisely, we have

Theorem 16. Unconditionally, we have the following claims:

(i) DHL[50; 2].

(ii) DHL[35, 410; 3].

(iii) DHL[1, 649, 821; 4].

(iv) DHL[75, 845, 707; 5].

(v) DHL[3, 473, 955, 908; 6].

(vi) DHL[k;m + 1] wheneverm ≥ 1 and k ≥ C exp
((

4 − 28
157

)

m
)

for some sufficiently

large absolute (and effective) constant C.

Assume the Elliott-Halberstam conjecture EH[θ ] for all 0 < θ < 1. Then, we have the

following improvements:

(vii) DHL[54; 3].

(viii) DHL[5, 511; 4].

(ix) DHL[41, 588; 5].

(x) DHL[309, 661; 6].

(xi) DHL[k;m + 1] wheneverm ≥ 1 and k ≥ C exp(2m) for some sufficiently large

absolute (and effective) constant C.

Assume the generalized Elliott-Halberstam conjecture GEH[θ ] for all 0 < θ < 1. Then

(xii) DHL[3; 2].

(xiii) DHL[51; 3].

Theorem 4 then follows from Theorem 16 and the following bounds on H(k) (ordered

by increasing value of k):
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Theorem 17 (Bounds on H(k)).

(xii) H(3) = 6.

(i) H(50) = 246.

(xiii) H(51) = 252.

(vii) H(54) = 270.

(viii) H(5, 511) ≤ 52, 116.

(ii) H(35, 410) ≤ 398, 130.

(ix) H(41, 588) ≤ 474, 266.

(x) H(309, 661) ≤ 4, 137, 854.

(iii) H(1, 649, 821) ≤ 24, 797, 814.

(iv) H(75, 845, 707) ≤ 1, 431, 556, 072.

(v) H(3, 473, 955, 908) ≤ 80, 550, 202, 480.

(vi), (xi) In the asymptotic limit k → ∞, one has H(k) ≤ k log k + k log log k − k + o(k),

with the bounds on the decay rate o(k) being effective.

We prove Theorem 17 in the ‘Narrow admissible tuples’ section. In the opposite direc-

tion, an application of the Brun-Titchmarsh theorem gives H(k) ≥
(

1
2 + o(1)

)

k log k as

k → ∞ (see [4, §3.9] for this bound, as well as with some slight refinements).

The proof of Theorem 16 follows the Goldston-Pintz-Yıldırım strategy that was also

used in all previous progress on this problem (e.g. [2,3,5,27]), namely that of constructing

a sieve function adapted to an admissible k-tuple with good properties. More precisely,

we set

w := log log log x

and

W :=
∏

p≤w

p,

and observe the crude bound

W ≪ log logO(1) x. (11)

We have the following simple ‘pigeonhole principle’ criterion for DHL[ k;m + 1] (cf.

[Lemma 4.1], though the normalization here is slightly different):

Lemma 18 (Criterion for DHL). Let k ≥ 2 and m ≥ 1 be fixed integers and define the

normalization constant

B :=
ϕ(W )

W
log x. (12)

Suppose that for each fixed admissible k-tuple (h1, . . . , hk) and each residue class b (W )

such that b + hi is coprime to W for all i = 1, . . . , k, one can find a non-negative weight

function ν : N → R
+ and fixed quantities α > 0 and β1, . . . ,βk ≥ 0, such that one has the

asymptotic upper bound

∑

x≤n≤2x
n=b (W )

ν(n) ≤ (α + o(1))B−k x

W
, (13)
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the asymptotic lower bound

∑

x≤n≤2x
n=b (W )

ν(n)θ(n + hi) ≥ (βi − o(1))B1−k x

ϕ(W )
(14)

for all i = 1, . . . , k, and the key inequality

β1 + · · · + βk

α
> m. (15)

Then, DHL[k;m + 1] holds.

Proof. Let (h1, . . . , hk) be a fixed admissible k-tuple. Since it is admissible, there is at

least one residue class b (W ) such that (b + hi,W ) = 1 for all hi ∈ H. For an arithmetic

function ν as in the lemma, we consider the quantity

N :=
∑

x≤n≤2x
n=b (W )

ν(n)

⎛

⎝

k
∑

i=1

θ(n + hi) − m log 3x

⎞

⎠ .

Combining (13) and (14), we obtain the lower bound

N ≥ (β1 + · · · + βk − o(1))B1−k x

ϕ(W )
− (mα + o(1))B−k x

W
log 3x.

From (12) and the crucial condition (15), it follows that N > 0 if x is sufficiently large.

On the other hand, the sum

k
∑

i=1

θ(n + hi) − m log 3x

can be positive only if n+ hi is prime for at least m+ 1 indices i = 1, . . . , k. We conclude

that, for all sufficiently large x, there exists some integer n ∈[x, 2x] such that n + hi is

prime for at leastm + 1 values of i = 1, . . . , k.

Since (h1, . . . , hk) is an arbitrary admissible k-tuple, DHL[k;m + 1] follows.

The objective is then to construct non-negative weights ν whose associated ratio
β1+···+βk

α
has provable lower bounds that are as large as possible. Our sieve majorants will

be a variant of the multidimensional Selberg sieves used in [5]. As with all Selberg sieves,

the ν are constructed as the square of certain (signed) divisor sums. The divisor sums we

will use will be finite linear combinations of products of ‘one-dimensional’ divisor sums.

More precisely, for any fixed smooth compactly supported function F : [0,+∞) → R,

define the divisor sum λF : Z → R by the formula

λF(n) :=
∑

d|n
μ(d)F(logx d) (16)

where logx denotes the base x logarithm

logx n :=
log n

log x
. (17)

One should think of λF as a smoothed out version of the indicator function to numbers

n which are ‘almost prime’ in the sense that they have no prime factors less than xε for

some small fixed ε > 0 (see Proposition 14 for a more rigorous version of this heuristic).
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The functions ν we will use will take the form

ν(n) =

⎛

⎝

J
∑

j=1

cjλFj,1(n + h1) . . . λFj,k (n + hk)

⎞

⎠

2

(18)

for some fixed natural number J , fixed coefficients c1, . . . , cJ ∈ R and fixed smooth com-

pactly supported functions Fj,i : [0,+∞) → R with j = 1, . . . , J and i = 1, . . . , k. (One

can of course absorb the constant cj into one of the Fj,i if one wishes.) Informally, ν is a

smooth restriction to those n for which n + h1, . . . , n + hk are all almost prime.

Clearly, ν is a (positive-definite) linear combination of functions of the form

n �→
k
∏

i=1

λFi(n + hi)λGi(n + hi)

for various smooth functions F1, . . . , Fk ,G1, . . . ,Gk : [0,+∞) → R. The sum appearing

in (13) can thus be decomposed into linear combinations of sums of the form

∑

x≤n≤2x
n=b (W )

k
∏

i=1

λFi(n + hi)λGi(n + hi). (19)

Also, since from (16) we clearly have

λF(n) = F(0) (20)

when n ≥ x is prime and F is supported on [0, 1], the sum appearing in (14) can be

similarly decomposed into linear combinations of sums of the form
∑

x≤n≤2x
n=b (W )

θ(n + hi)
∏

1≤i′≤k;i′ �=i

λFi′ (n + hi′)λGi′ (n + hi′). (21)

To estimate the sums (21), we use the following asymptotic, proven in the

‘Multidimensional Selberg sieves’ section. For each compactly supported F : [0,+∞) →
R, let

S(F) := sup{x ≥ 0 : F(x) �= 0} (22)

denote the upper range of the support of F (with the convention that S(0) = 0).

Theorem 19 (Asymptotic for prime sums). Let k ≥ 2 be fixed, let (h1, . . . , hk) be a fixed

admissible k-tuple, and let b (W ) be such that b+ hi is coprime to W for each i = 1, . . . , k.

Let 1 ≤ i0 ≤ k be fixed, and for each 1 ≤ i ≤ k distinct from i0, let Fi,Gi : [0,+∞) → R

be fixed smooth compactly supported functions. Assume one of the following hypotheses:

(i) (Elliott-Halberstam) There exists a fixed 0 < ϑ < 1 such that EH[ϑ] holds and such

that
∑

1≤i≤k;i�=i0

(S(Fi) + S(Gi)) < ϑ . (23)

(ii) (Motohashi-Pintz-Zhang) There exists fixed 0 ≤ ̟ < 1/4 and δ > 0 such that

MPZ[̟ , δ] holds and such that

∑

1≤i≤k;i�=i0

(S(Fi) + S(Gi)) <
1

2
+ 2̟ (24)
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and

max
1≤i≤k;i�=i0

{S(Fi), S(Gi)} < δ. (25)

Then, we have
∑

x≤n≤2x
n=b (W )

θ(n + hi0)
∏

1≤i≤k;i�=i0

λFi(n + hi)λGi(n + hi) = (c + o(1))B1−k x

ϕ(W )
(26)

where

c :=
∏

1≤i≤k;i�=i0

(∫ 1

0
F ′
i (ti)G

′
i(ti) dti

)

.

Here of course F ′ denotes the derivative of F.

To estimate the sums (19), we use the following asymptotic, also proven in the

‘Multidimensional Selberg sieves’ section.

Theorem 20 (Asymptotic for non-prime sums). Let k ≥ 1 be fixed, let (h1, . . . , hk) be

a fixed admissible k-tuple, and let b (W ) be such that b + hi is coprime to W for each

i = 1, . . . , k. For each fixed 1 ≤ i ≤ k, let Fi,Gi : [0,+∞) → R be fixed smooth compactly

supported functions. Assume one of the following hypotheses:

(i) (Trivial case) One has

k
∑

i=1

(S(Fi) + S(Gi)) < 1. (27)

(ii) (Generalized Elliott-Halberstam) There exists a fixed 0 < ϑ < 1 and i0 ∈ {1, . . . , k}
such that GEH[ϑ] holds, and

∑

1≤i≤k;i�=i0

(S(Fi) + S(Gi)) < ϑ . (28)

Then, we have

∑

x≤n≤2x
n=b (W )

k
∏

i=1

λFi(n + hi)λGi(n + hi) = (c + o(1))B−k x

W
, (29)

where

c :=
k
∏

i=1

(∫ 1

0
F ′
i(ti)G

′
i(ti) dti

)

. (30)

A key point in (ii) is that no upper bound on S(Fi0) or S(Gi0) is required (although, as

we will see in the ‘The generalized Elliott-Halberstam case’ section, the result is a little

easier to prove when one has S(Fi0) + S(Gi0) < 1). This flexibility in the Fi0 ,Gi0 functions

will be particularly crucial to obtain part (xii) of Theorem 16 and Theorem 4.

Remark 21. Theorems 19 and 20 can be viewed as probabilistic assertions of the follow-

ing form: if n is chosen uniformly at random from the set {x ≤ n ≤ 2x : n = b (W )},
then the random variables θ(n + hi) and λFj(n + hj)λGj(n + hj) for i, j = 1, . . . , k have

mean (1 + o(1)) W
ϕ(W )

and
(

∫ 1
0 F

′
j (t)G

′
j(t) dt + o(1)

)

B−1, respectively, and furthermore,
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these random variables enjoy a limited amount of independence, except for the fact (as

can be seen from (20)) that θ(n + hi) and λFi(n + hi)λGi(n + hi) are highly correlated.

Note though that we do not have asymptotics for any sum which involves two or more

factors of θ , as such estimates are of a difficulty at least as great as that of the twin prime

conjecture (which is equivalent to the divergence of the sum
∑

n θ(n)θ(n + 2)).

Theorems 19 and 20may be combined with Lemma 18 to reduce the task of establishing

estimates of the form DHL[k;m + 1] to that of establishing certain variational problems.

For instance, in the ‘Proof of Theorem 22’ section, we reprove the following result of

Maynard ([5, Proposition 4.2]):

Theorem 22 (Sieving on the standard simplex). Let k ≥ 2 and m ≥ 1 be fixed integers.

For any fixed compactly supported square-integrable function F : [0,+∞)k → R, define

the functionals

I(F) :=
∫

[0,+∞)k
F(t1, . . . , tk)

2 dt1 . . . tk (31)

and

Ji(F) :=
∫

[0,+∞)k−1

(∫ ∞

0
F(t1, . . . , tk) dti

)2

dt1 . . . dti−1dti+1 . . . dtk (32)

for i = 1, . . . , k, and let Mk be the supremum

Mk := sup

∑k
i=1 Ji(F)

I(F)
(33)

over all square integrable functions F that are supported on the simplex

Rk :=
{

(t1, . . . , tk) ∈ [0,+∞)k : t1 + · · · + tk ≤ 1
}

and are not identically zero (up to almost everywhere equivalence, of course). Suppose that

there is a fixed 0 < ϑ < 1 such that EH[ϑ] holds and such that

Mk >
2m

ϑ
.

Then, DHL[k;m + 1] holds.

Parts (vii)-(xi) of Theorem 16 (and hence Theorem 4) are then immediate from the

following results, proven in the ‘Asymptotic analysis’ and ‘The case of small and medium

dimension’ sections, and ordered by increasing value of k:

Theorem 23 (Lower bounds onMk).

(vii) M54 > 4.00238.

(viii) M5,511 > 6.

(ix) M41,588 > 8.

(x) M309,661 > 10.

(xi) One hasMk ≥ log k−C for all k ≥ C, where C is an absolute (and effective) constant.

For the sake of comparison, in ([5, Proposition 4.3]), it was shown that M5 > 2,

M105 > 4, and Mk ≥ log k − 2 log log k − 2 for all sufficiently large k. As remarked in

that paper, the sieves used on the bounded gap problem prior to the work in [5] would
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essentially correspond, in this notation, to the choice of functions F of the special form

F(t1, . . . , tk) := f (t1 + · · · + tk), which severely limits the size of the ratio in (33) (in

particular, the analogue ofMk in this special case cannot exceed 4, as shown in [36]).

In the converse direction, in Corollary 37, we will also show the upper bound Mk ≤
k

k−1 log k for all k ≥ 2, which shows in particular that the bounds in (vii) and (xi) of the

above theorem cannot be significantly improved.We remark that Theorem 23(vii) and the

Bombieri-Vinogradov theorem also give a weaker version DHL[54; 2] of Theorem 16(i).

We also have a variant of Theorem 22 which can accept inputs of the form MPZ[̟ , δ]:

Theorem 24 (Sieving on a truncated simplex). Let k ≥ 2 and m ≥ 1 be fixed integers.

Let 0 < ̟ < 1/4 and 0 < δ < 1/2 be such that MPZ[̟ , δ] holds. For any α > 0, let

M
[α]
k be defined as in (33), but where the supremum now ranges over all square-integrable

F supported in the truncated simplex
{

(t1, . . . , tk) ∈ [0,α]k : t1 + · · · + tk ≤ 1
}

(34)

and are not identically zero. If

M

[

δ
1/4+̟

]

k >
m

1/4 + ̟
,

then DHL[k;m + 1] holds.

In the ‘Asymptotic analysis’ section, we will establish the following variant of

Theorem 23, which when combined with Theorem 11, allows one to use Theorem 24 to

establish parts (ii)-(vi) of Theorem 16 (and hence Theorem 4):

Theorem 25 (Lower bounds onM
[α]
k ).

(ii) There exist δ,̟ > 0 with 600̟ + 180δ < 7 andM

[

δ
1/4+̟

]

35 410 > 2
1/4+̟

.

(iii) There exist δ,̟ > 0 with 600̟ + 180δ < 7 andM

[

δ
1/4+̟

]

1 649 821 > 3
1/4+̟

.

(iv) There exist δ,̟ > 0 with 600̟ + 180δ < 7 andM

[

δ
1/4+̟

]

75 845 707 > 4
1/4+̟

.

(v) There exist δ,̟ > 0 with 600̟ + 180δ < 7 andM

[

δ
1/4+̟

]

3 473 955 908 > 5
1/4+̟

.

(vi) For all k ≥ C, there exist δ,̟ > 0 with 600̟ + 180δ < 7, ̟ ≥ 7
600 − C

log k , and

M

[

δ
1/4+̟

]

k ≥ log k − C for some absolute (and effective) constant C.

The implication is clear for (ii)-(v). For (vi), observe that from Theorem 25(vi),

Theorem 11, and Theorem 24, we see that DHL[k;m+ 1] holds whenever k is sufficiently

large and

m ≤ (log k − C)

(

1

4
+

7

600
−

C

log k

)

which is in particular implied by

m ≤
log k

4 − 28
157

− C′

for some absolute constant C′, giving Theorem 16(vi).
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Now we give a more flexible variant of Theorem 22, in which the support of F is

enlarged, at the cost of reducing the range of integration of the Ji.

Theorem 26 (Sieving on an epsilon-enlarged simplex). Let k ≥ 2 and m ≥ 1 be fixed

integers, and let 0 < ε < 1 be fixed also. For any fixed compactly supported square-

integrable function F : [0,+∞)k → R, define the functionals

Ji,1−ε(F) :=
∫

(1−ε)·Rk−1

(∫ ∞

0
F(t1, . . . , tk) dti

)2

dt1 . . . dti−1dti+1 . . . dtk

for i = 1, . . . , k, and let Mk,ε be the supremum

Mk,ε := sup

∑k
i=1 Ji,1−ε(F)

I(F)

over all square-integrable functions F that are supported on the simplex

(1 + ε) · Rk =
{

(t1, . . . , tk) ∈ [0,+∞)k : t1 + · · · + tk ≤ 1 + ε
}

and are not identically zero. Suppose that there is a fixed 0 < ϑ < 1, such that one of the

following two hypotheses hold:

(i) EH[ϑ] holds, and 1 + ε < 1
ϑ
.

(ii) GEH[ϑ] holds, and ε < 1
k−1 .

If

Mk,ε >
2m

ϑ

then DHL[k;m + 1] holds.

We prove this theorem in the ‘Proof of Theorem 26’ section. We remark that due to

the continuity of Mk,ε in ε, the strict inequalities in (i) and (ii) of this theorem may be

replaced by non-strict inequalities. Parts (i) and (xiii) of Theorem 16, and a weaker ver-

sion DHL[4; 2] of part (xii), then follow from Theorem 9 and the following computations,

proven in the ‘BoundingMk,ε for medium k’ and ‘BoundingM4,ε ’ sections:

Theorem 27 (Lower bounds onMk,ε).

(i) M50,1/25 > 4.0043.

(xii’) M4,0.168 > 2.00558.

(xiii) M51,1/50 > 4.00156.

We remark that computations in the proof of Theorem 27(xii’) are simple enough that

the boundmay be checked by hand, without use of a computer. The computations used to

establish the full strength of Theorem 16(xii) are however significantly more complicated.

In fact, we may enlarge the support of F further. We give a version corresponding to

part (ii) of Theorem 26; there is also a version corresponding to part (i), but we will not

give it here as we will not have any use for it.

Theorem 28 (Going beyond the epsilon enlargement). Let k ≥ 2 and m ≥ 1 be

fixed integers, let 0 < ϑ < 1 be a fixed quantity such that GEH[ϑ] holds, and let 0 <

ε < 1
k−1 be fixed also. Suppose that there is a fixed non-zero square-integrable function
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F : [0,+∞)k → R supported in k
k−1 · Rk , such that for i = 1, . . . , k, one has the vanishing

marginal condition
∫ ∞

0
F(t1, . . . , tk) dti = 0 (35)

whenever t1, . . . , ti−1, ti+1, . . . , tk ≥ 0 are such that

t1 + · · · + ti−1 + ti+1 + · · · + tk > 1 + ε.

Suppose that we also have the inequality
∑k

i=1 Ji,ε(F)

I(F)
>

2m

ϑ
.

Then DHL[k;m + 1] holds.

This theorem is proven in the ‘Proof of Theorem 28’ section. Theorem 16(xii) is then

an immediate consequence of Theorem 28 and the following numerical fact, established

in the ‘Three-dimensional cutoffs’ section.

Theorem 29 (A piecewise polynomial cutoff ). Set ε := 1
4 . Then, there exists a piecewise

polynomial function F : [0,+∞)3 → R supported on the simplex

3

2
· R3 =

{

(t1, t2, t3) ∈ [0,+∞)3 : t1 + t2 + t3 ≤
3

2

}

and symmetric in the t1, t2, t3 variables, such that F is not identically zero and obeys the

vanishing marginal condition
∫ ∞

0
F(t1, t2, t3) dt3 = 0

whenever t1, t2 ≥ 0 with t1 + t2 > 1 + ε and such that

3
∫

t1+t2≤1−ε

(∫∞
0 F(t1, t2, t3) dt3

)2
dt1dt2

∫

[0,∞)3
F(t1, t2, t3)2 dt1dt2dt3

> 2.

There are several other ways to combine Theorems 19 and 20 with equidistribution

theorems on the primes to obtain results of the formDHL[ k;m+1], but all of our attempts

to do so either did not improve the numerology or else were numerically infeasible to

implement.

Multidimensional Selberg sieves

In this section, we prove Theorems 19 and 20. A key asymptotic used in both theorems is

the following:

Lemma 30 (Asymptotic). Let k ≥ 1 be a fixed integer, and let N be a natural number

coprime to W with logN = O
(

logO(1) x
)

. Let F1, . . . , Fk ,G1, . . . ,Gk : [0,+∞) → R be

fixed smooth compactly supported functions. Then,

∑

d1,...,dk ,d
′
1,...,d

′
k

[d1,d′
1],...,

[

dk ,d
′
k

]

,W ,Ncoprime

k
∏

j=1

μ
(

dj
)

μ
(

d′
j

)

Fj
(

logx dj
)

Gj

(

logx d
′
j

)

[

dj, d
′
j

] = (c+o(1))B−k Nk

ϕ(N)k

(36)
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where B was defined in (12), and

c :=
k
∏

j=1

∫ ∞

0
F ′
j (tj)G

′
j(tj) dtj.

The same claim holds if the denominators
[

dj, d
′
j

]

are replaced by ϕ
([

dj, d
′
j

])

.

Such asymptotics are standard in the literature (see, e.g. [37] for some similar com-

putations). In older literature, it is common to establish these asymptotics via contour

integration (e.g. via Perron’s formula), but we will use the Fourier analytic approach here.

Of course, both approaches ultimately use the same input, namely the simple pole of the

Riemann zeta function at s = 1.

Proof. We begin with the first claim. For j = 1, . . . , k, the functions t �→ etFj(t), t �→
etGj(t) may be extended to smooth compactly supported functions on all of R, and so we

have Fourier expansions

etFj(t) =
∫

R
e−itξ fj(ξ) dξ (37)

and

etGj(t) =
∫

R
e−itξ gj(ξ) dξ

for some fixed functions fj, gj : R → C that are smooth and rapidly decreasing in the sense

that fj(ξ), gj(ξ) = O
(

(1 + |ξ |)−A
)

for any fixed A > 0 and all ξ ∈ R (here the implied

constant is independent of ξ and depends only on A).

We may thus write

Fj
(

logx dj
)

=
∫

R

fj(ξj)

d

1+iξj
log x

j

dξj

and

Gj

(

logx d
′
j

)

=
∫

R

gj

(

ξ ′
j

)

(

d′
j

)

1+iξ ′
j

log x

dξ ′
j

for all dj, d
′
j ≥ 1. We note that

∑

dj ,d
′
j

|μ
(

dj
)

μ
(

d′
j

)

|
[

dj, d
′
j

]

d
1/ log x
j

(

d′
j

)1/ log x
=
∏

p

(

1 +
2

p1+1/ log x
+

1

p1+2/ log x

)

≤ exp(O(log log x)).

Therefore, if we substitute the Fourier expansions into the left-hand side of (36), the

resulting expression is absolutely convergent. Thus, we can apply Fubini’s theorem, and

the left-hand side of (36) can thus be rewritten as

∫

R
. . .

∫

R
K
(

ξ1, . . . , ξk , ξ
′
1, . . . , ξ

′
k

)

k
∏

j=1

fj
(

ξj
)

gj

(

ξ ′
j

)

dξjdξ ′
j , (38)

where

K(ξ1, . . . , ξk , ξ
′
1, . . . , ξ

′
k) :=

∑

d1 ,...,dk ,d
′
1 ,...,d

′
k

[d1 ,d′
1],...,

[

dk ,d
′
k

]

,W ,Ncoprime

k
∏

j=1

μ
(

dj
)

μ
(

d′
j

)

[

dj, d
′
j

]

d

1+iξj
log x

j

(

d′
j

)

1+iξ ′
j

log x

.
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This latter expression factorizes as an Euler product

K =
∏

p∤WN

Kp,

where the local factors Kp are given by

Kp

(

ξ1, . . . , ξk , ξ
′
1, . . . , ξ

′
k

)

:= 1 +
1

p

∑

d1 ,...,dk ,d
′
1 ,...,d

′
k

[

d1 ,...,dk ,d
′
1 ,...,d

′
k

]

=p

[d1 ,d′
1],...,

[

dk ,d
′
k

]

coprime

k
∏

j=1

μ
(

dj
)

μ
(

d′
j

)

d

1+iξj
log x

j

(

d′
j

)

1+iξ ′
j

log x

.
(39)

We can estimate each Euler factor as

Kp

(

ξ1, . . . , ξk , ξ
′
1, . . . , ξ

′
k

)

=
(

1 + O

(

1

p2

)) k
∏

j=1

(

1 − p
−1−

1+iξj
log x

)

(

1 − p
−1−

1+iξ ′
j

log x

)

1 − p
−1−

2+iξj+iξ ′
j

log x

.
(40)

Since

∏

p:p>w

(

1 + O

(

1

p2

))

= 1 + o(1),

we have

K
(

ξ1, . . . , ξk , ξ
′
1, . . . , ξ

′
k

)

= (1 + o(1))

k
∏

j=1

ζWN

(

1 +
2+iξj+iξ ′

j

log x

)

ζWN

(

1 + 1+iξj
log x

)

ζWN

(

1 +
1+iξ ′

j

log x

)

where the modified zeta function ζWN is defined by the formula

ζWN (s) :=
∏

p∤WN

(

1 −
1

ps

)−1

for ℜ(s) > 1.

For ℜ(s) ≥ 1 + 1
log x , we have the crude bounds

|ζWN (s)|, |ζWN (s)|−1 ≤
∏

p

(

1 +
1

p1+1/ log x
+ O

(

1

p2

))

≪ exp

⎛

⎝

∑

p

1

p1+1/ log x

⎞

⎠

≤ exp(log log x + O(1))

≪ log x.

Thus,

K
(

ξ1, . . . , ξk , ξ
′
1, . . . , ξ

′
k

)

= O
(

log3k x
)

.

Combining this with the rapid decrease of fj, gj, we see that the contribution to (38)

outside of the cube
{

max
(

ξ1, . . . , ξk , ξ
′
1, . . . , ξ

′
k

)

≤
√

log x
}

(say) is negligible. Thus, it will

suffice to show that

∫

√
log x

−
√

log x
. . .

∫

√
log x

−
√

log x
K
(

ξ1, . . . , ξk , ξ
′
1, . . . , ξ

′
k

)

k
∏

j=1

fj
(

ξj
)

gj

(

ξ ′
j

)

dξjdξ ′
j = (c + o(1))B−k Nk

ϕ(N)k
.
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When |ξj| ≤
√

log x, we see from the simple pole of the Riemann zeta function ζ(s) =
∏

p

(

1 − 1
ps

)−1
at s = 1 that

ζ

(

1 +
1 + iξj

log x

)

= (1 + o(1))
log x

1 + iξj
.

For −
√

log x ≤ ξj ≤
√

log x, we see that

1 −
1

p
1+

1+iξj
log x

= 1 −
1

p
+ O

(

log p

p
√

log x

)

.

Since logWN ≪ logO(1) x, this gives

∏

p|WN

⎛

⎝1 −
1

p
1+

1+iξj
log x

⎞

⎠ =
ϕ(WN)

WN
exp

⎛

⎝O

⎛

⎝

∑

p|WN

log p

p
√

log x

⎞

⎠

⎞

⎠ = (1 + o(1))
ϕ(WN)

WN
,

since the sum is maximized whenWN is composed only of primes p ≪ logO(1) x. Thus,

ζWN

(

1 +
1 + iξj

log x

)

=
(1 + o(1))Bϕ(N)

(1 + iξj)N
,

similarly with 1 + iξj replaced by 1 + iξ ′
j or 2 + iξj + iξ ′

j . We conclude that

K
(

ξ1, . . . , ξk , ξ
′
1, . . . , ξ

′
k

)

= (1 + o(1))B−k Nk

ϕ(N)k

k
∏

j=1

(

1 + iξj
)

(

1 + iξ ′
j

)

2 + iξj + iξ ′
j

. (41)

Therefore, it will suffice to show that

∫

R
. . .

∫

R

k
∏

j=1

(

1 + iξj
)

(

1 + iξ ′
j

)

2 + iξj + iξ ′
j

fj(ξj)gj

(

ξ ′
j

)

dξjdξ ′
j = c,

since the errors caused by the 1 + o(1) multiplicative factor in (41) or the truncation

|ξj|, |ξ ′
j | ≤

√

log x can be seen to be negligible using the rapid decay of fj, gj. By Fubini’s

theorem, it suffices to show that
∫

R

∫

R

(1 + iξ)(1 + iξ ′)

2 + iξ + iξ ′ fj(ξ)gj(ξ
′) dξdξ ′ =

∫ +∞

0
F ′
j (t)G

′
j(t) dt

for each j = 1, . . . , k. But from dividing (37) by et and differentiating under the integral

sign, we have

F ′
j (t) = −

∫

R
(1 + iξ)e−t(1+iξ)fj(ξ) dξ ,

and the claim then follows from Fubini’s theorem.

Finally, suppose that we replace
[

dj, d
′
j

]

with ϕ
([

dj, d
′
j

])

. An inspection of the above

argument shows that the only change that occurs is that the 1
p term in (39) is replaced by

1
p−1 ; but this modification may be absorbed into the 1 + O

(

1
p2

)

factor in (40), and the

rest of the argument continues as before.

The trivial case

We can now prove the easiest case of the two theorems, namely case (i) of Theorem 20;

a closely related estimate also appears in ([5, Lemma 6.2]). We may assume that x is suf-
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ficiently large depending on all fixed quantities. By (16), the left-hand side of (29) may be

expanded as

∑

d1,...,dk ,d
′
1,...,d

′
k

⎛

⎝

k
∏

i=1

μ(di)μ
(

d′
i

)

Fi
(

logx di
)

Gi

(

logx d
′
i

)

⎞

⎠ S
(

d1, . . . , dk , d
′
1, . . . , d

′
k

)

(42)

where

S
(

d1, . . . , dk , d
′
1, . . . , d

′
k

)

:=
∑

x≤n≤2x
n=b (W )

n+hi=0 ([di,d
′
i]) ∀i

1.

By hypothesis, b+ hi is coprime toW for all i = 1, . . . , k, and |hi − hj| < w for all distinct

i, j. Thus, S
(

d1, . . . , dk , d
′
1, . . . , d

′
k

)

vanishes unless the
[

di, d
′
i

]

are coprime to each other

and to W . In this case, S
(

d1, . . . , dk , d
′
1, . . . , d

′
k

)

is summing the constant function 1 over

an arithmetic progression in [x, 2x] of spacingW
[

d1, d
′
1

]

. . .
[

dk , d
′
k

]

, and so

S
(

d1, . . . , dk , d
′
1, . . . , d

′
k

)

=
x

W
[

d1, d
′
1

]

. . .
[

dk , d
′
k

] + O(1).

By Lemma 30, the contribution of the main term x
W[d1,d′

1]...
[

dk ,d
′
k

] to (29) is (c +

o(1))B−k x
W ; note that the restriction of the integrals in (30) to [0, 1] instead of [0,+∞) is

harmless since S(Fi), S(Gi) < 1 for all i. Meanwhile, the contribution of the O(1) error is

then bounded by

O

⎛

⎝

∑

d1,...,dk ,d
′
1,...,d

′
k

⎛

⎝

k
∏

i=1

|Fi(logx di)||Gi(logx d
′
i)|

⎞

⎠

⎞

⎠ .

By the hypothesis in Theorem 20(i), we see that for d1, . . . , dk , d
′
1, . . . , d

′
k contributing a

non-zero term here, one has

[

d1, d
′
1

]

. . .
[

dk , d
′
k

]

≺≺ x1−ε

for some fixed ε > 0. From the divisor bound (1), we see that each choice of
[

d1, d
′
1

]

. . .
[

dk , d
′
k

]

arises from ≺≺ 1 choices of d1, . . . , dk , d
′
1, . . . , d

′
k . We conclude that

the net contribution of the O(1) error to (29) is ≺≺ x1−ε , and the claim follows.

The Elliott-Halberstam case

Nowwe show case (i) of Theorem 19. For the sake of notation, we take i0 = k, as the other

cases are similar. We use (16) to rewrite the left-hand side of (26) as

∑

d1,...,dk−1,d
′
1,...,d

′
k−1

⎛

⎝

k−1
∏

i=1

μ(di)μ
(

d′
i

)

Fi
(

logx di
)

Gi

(

logx d
′
i

)

⎞

⎠ S̃
(

d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

(43)

where

S̃
(

d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

:=
∑

x≤n≤2x
n=b (W )

n+hi=0 ([di,d′
i]) ∀i=1,...,k−1

θ(n + hk).
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As in the previous case, S̃
(

d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

vanishes unless the
[

di, d
′
i

]

are

coprime to each other and toW , and so the summand in (43) vanishes unless the modulus

qW ,d1,...,d
′
k−1

defined by

qW ,d1,...,d
′
k−1

:= W
[

d1, d
′
1

]

. . .
[

dk−1, d
′
k−1

]

(44)

is square-free. In that case, we may use the Chinese remainder theorem to concatenate

the congruence conditions on n into a single primitive congruence condition

n + hk = aW ,d1,...,d
′
k−1

(

qW ,d1,...,d
′
k−1

)

for some aW ,d1,...,d
′
k−1

depending onW , d1, . . . , dk−1, d
′
1, . . . , d

′
k−1, and conclude using (3)

that

S̃
(

d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

=
1

ϕ
(

qW ,d1,...,d
′
k−1

)

∑

x+hk≤n≤2x+hk

θ(n)

+ �
(

1[x+hk ,2x+hk ]θ ; aW ,d1,...,d
′
k−1

(

qW ,d1,...,d
′
k−1

))

.

(45)

From the prime number theorem, we have
∑

x+hk≤n≤2x+hk

θ(n) = (1 + o(1))x

and this expression is clearly independent of d1, . . . , d
′
k−1. Thus, by Lemma 30, the con-

tribution of the main term in (45) is (c + o(1))B1−k x
ϕ(W )

. By (11) and (12), it thus suffices

to show that for any fixed A we have

∑

d1,...,dk−1,d
′
1,...,d

′
k−1

⎛

⎝

k−1
∏

i=1

∣

∣Fi
(

logx di
)
∣

∣

∣

∣Gi

(

logx d
′
i

)
∣

∣

⎞

⎠

∣

∣�
(

1[x+hk ,2x+hk ]θ ; a (q)
)
∣

∣≪ x log−A x,

(46)

where a = aW ,d1,...,d
′
k−1

and q = qW ,d1,...,d
′
k−1

. For future reference, we note that we may

restrict the summation here to those d1, . . . , d
′
k−1 for which qW ,d1,...,d

′
k−1

is square-free.

From the hypotheses of Theorem 19(i), we have

qW ,d1,...,d
′
k−1

≺≺ xϑ

whenever the summand in (43) is non-zero, and each choice q of qW ,d1,...,d
′
k−1

is associated

to O
(

τ(q)O(1)
)

choices of d1, . . . , dk−1, d
′
1, . . . , d

′
k−1. Thus, this contribution is

≪
∑

q≺≺xϑ

τ(q)O(1) sup
a∈(Z/qZ)×

∣

∣�
(

1[x+hk ,2x+hk ]θ ; a (q)
)
∣

∣ .

Using the crude bound
∣

∣�
(

1[x+hk ,2x+hk ]θ ; a (q)
)
∣

∣≪
x

q
logO(1) x

and (2), we have
∑

q≺≺xϑ

τ(q)C sup
a∈(Z/qZ)×

∣

∣�
(

1[x+hk ,2x+hk ]θ ; a (q)
)
∣

∣≪ x logO(1) x

for any fixed C > 0. By the Cauchy-Schwarz inequality, it suffices to show that
∑

q≺≺xϑ

sup
a∈(Z/qZ)×

∣

∣�
(

1[x+hk ,2x+hk ]θ ; a (q)
)
∣

∣≪ x log−A x
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for any fixed A > 0. However, since θ only differs from 	 on powers pj of primes with

j > 1, it is not difficult to show that

∣

∣�
(

1[x+hk ,2x+hk ]θ ; a (q)
)

− �
(

1[x+hk ,2x+hk ]	; a (q)
)
∣

∣ ≺≺
√

x

q
,

so the net error in replacing θ here by 	 is ≺≺ x1−(1−ϑ)/2, which is certainly acceptable.

The claim now follows from the hypothesis EH[ϑ], thanks to Claim 8.

The Motohashi-Pintz-Zhang case

Now we show case (ii) of Theorem 19. We repeat the arguments from the ‘The Elliott-

Halberstam case’ section, with the only difference being in the derivation of (46). As

observed previously, we may restrict qW ,d1,...,d
′
k−1

to be square-free. From the hypotheses

in Theorem 19(ii), we also see that

qW ,d1,...,d
′
k−1

≺≺ xϑ

and that all the prime factors of qW ,d1,...,d
′
k−1

are at most xδ . Thus, if we set I := [1, xδ], we

see (using the notation from Claim 10) that qW ,d1,...,d
′
k−1

lies in SI and is thus a factor of PI .

If we then letA ⊂ Z/PIZ denote all the primitive residue classes a (PI) with the property

that a = b (W ), and such that for each prime w < p ≤ xδ , one has a+hi = 0 (p) for some

i = 1, . . . , k, then we see that aW ,d1,...,d
′
k−1

lies in the projection of A to Z/qW ,d1,...,d
′
k−1

Z.

Each q ∈ SI is equal to qW ,d1,...,d
′
k−1

for O
(

τ(q)O(1)
)

choices of d1, . . . , d
′
k−1. Thus, the

left-hand side of (46) is

≪
∑

q∈SI :q≺≺xϑ

τ(q)O(1) sup
a∈A

∣

∣�
(

1[x+hk ,2x+hk ]θ ; a (q)
)
∣

∣ .

Note from the Chinese remainder theorem that for any given q, if one lets a range uni-

formly in A, then a (q) is uniformly distributed among O
(

τ(q)O(1)
)

different moduli.

Thus, we have

sup
a∈A

∣

∣�
(

1[x+hk ,2x+hk ]θ ; a (q)
)
∣

∣≪
τ(q)O(1)

|A|
∑

a∈A

∣

∣�
(

1[x+hk ,2x+hk ]θ ; a (q)
)
∣

∣ ,

and so it suffices to show that

∑

q∈SI :q≺≺xϑ

τ(q)O(1)

|A|
∑

a∈A

∣

∣�(1[x+hk ,2x+hk ]θ ; a (q))
∣

∣≪ x log−A x

for any fixed A > 0. We see it suffices to show that
∑

q∈SI :q≺≺xϑ

τ(q)O(1)
∣

∣�(1[x+hk ,2x+hk ]θ ; a (q))
∣

∣≪ x log−A x

for any given a ∈ A. But this follows from the hypothesis MPZ[̟ , δ] by repeating the

arguments of the ‘The Elliott-Halberstam case’ section.

Crude estimates on divisor sums

To proceed further, we will need some additional information on the divisor sums λF

(defined in (16)), namely that these sums are concentrated on ‘almost primes’; results of

this type have also appeared in [38].

Proposition 14 (Almost primality). Let k ≥ 1 be fixed, let (h1, . . . , hk) be a fixed admis-

sible k-tuple, and let b (W ) be such that b + hi is coprime to W for each i = 1, . . . , k.
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Let F1, . . . , Fk : [0,+∞) → R be fixed smooth compactly supported functions, and let

m1, . . . ,mk ≥ 0 and a1, . . . , ak ≥ 1 be fixed natural numbers. Then,

∑

x≤n≤2x:n=b (W )

k
∏

j=1

(

|λFj(n + hj)|ajτ(n + hj)
mj
)

≪ B−k x

W
. (47)

Furthermore, if 1 ≤ j0 ≤ k is fixed and p0 is a prime with p0 ≤ x
1

10k , then we have the

variant

∑

x≤n≤2x:n=b (W )

k
∏

j=1

(

|λFj(n + hj)|ajτ(n + hj)
mj
)

1p0|n+hj0
≪

logx p0

p0
B−k x

W
. (48)

As a consequence, we have

∑

x≤n≤2x:n=b (W )

k
∏

j=1

(

|λFj(n + hj)|ajτ(n + hj)
mj
)

1p(n+hj0 )≤xε ≪ εB−k x

W
, (49)

for any ε > 0, where p(n) denotes the least prime factor of n.

The exponent 1
10k can certainly be improved here, but for our purposes, any fixed

positive exponent depending only on k will suffice.

Proof. The strategy is to estimate the alternating divisor sums λFj(n + hj) by non-

negative expressions involving prime factors of n + hj, which can then be bounded

combinatorially using standard tools.

We first prove (47). As in the proof of Proposition 30, we can use Fourier expansion to

write

Fj
(

logx d
)

=
∫

R

fj(ξ)

d
1+iξ
log x

dξ

for some rapidly decreasing fj : R → C and all natural numbers d. Thus,

λFj(n) =
∫

R

⎛

⎝

∑

d|n

μ(d)

d
1+iξ
log x

⎞

⎠ fj(ξ) dξ ,

which factorizes using Euler products as

λFj(n) =
∫

R

∏

p|n

⎛

⎝1 −
1

p
1+iξ
log x

⎞

⎠ fj(ξ) dξ .

The function s �→ p
−s
log x has a magnitude of O(1) and a derivative of O

(

logx p
)

when

ℜ(s) > 1, and thus

1 −
1

p
1+iξ
log x

= O
(

min((1 + |ξ |) logx p, 1)
)

.

From the rapid decrease of fj and the triangle inequality, we conclude that

|λFj(n)| ≪
∫

R

⎛

⎝

∏

p|n
O
(

min((1 + |ξ |) logx p, 1)
)

⎞

⎠

dξ

(1 + |ξ |)A
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for any fixed A > 0. Thus, noting that
∏

p|nO(1) ≪ τ(n)O(1), we have

|λFj(n)|aj ≪ τ(n)O(1)

∫

R
. . .

∫

R

⎛

⎝

∏

p|n

aj
∏

l=1

min((1 + |ξl|) logx p, 1)

⎞

⎠

dξ1 . . . dξaj

(1 + |ξ1|)A . . . (1 + |ξaj |)A

for any fixed aj,A. However, we have

aj
∏

i=1

min
(

(1 + |ξi|) logx p, 1
)

≪ min
((

1 + |ξ1| + · · · + |ξaj |
)

logx p, 1
)

,

and so

|λFj(n)|aj ≪ τ(n)O(1)

∫

R
. . .

∫

R

(

∏

p|nmin
((

1 + |ξ1| + · · · + |ξaj |
)

logx p, 1
)

)

dξ1 . . . dξaj
(

1 + |ξ1| + · · · + |ξaj |
)A

.

Making the change of variables σ := 1 + |ξ1| + · · · + |ξaj |, we obtain

|λFj(n)|aj ≪ τ(n)O(1)

∫ ∞

1

⎛

⎝

∏

p|n
min(σ logx p, 1)

⎞

⎠

dσ

σA

for any fixed A > 0. In view of this bound and the Fubini-Tonelli theorem, it suffices to

show that

∑

x≤n≤2x:n=b (W )

k
∏

j=1

⎛

⎝τ(n + hj)
O(1)

∏

p|n
min(σj logx p, 1)

⎞

⎠≪ B−k x

W
(σ1 +· · ·+σk)

O(1)

for all σ1, . . . , σk ≥ 1. By setting σ := σ1 + · · · + σk , it suffices to show that

∑

x≤n≤2x:n=b (W )

k
∏

j=1

⎛

⎝τ
(

n + hj
)O(1)

∏

p|n+hj

min
(

σ logx p, 1
)

⎞

⎠≪ B−k x

W
σO(1) (50)

for any σ ≥ 1.

To proceed further, we factorize n + hj as a product

n + hj = p1 . . . pr

of primes p1 ≤ · · · ≤ pr in increasing order and then write

n + hj = djmj

where dj := p1 . . . pij and ij is the largest index for which p1 . . . pij < x
1

10k , and mj :=
pij+1 . . . pr . By construction, we see that 0 ≤ ij < r, dj ≤ x

1
10k . Also, we have

pij+1 ≥
(

p1 . . . pij+1

)

1
ij+1 ≥ x

1

10k(ij+1) .

Since n ≤ 2x, this implies that

r = O(ij + 1)

and so

τ(n + hj) ≤ 2O(1+�(dj)),
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where we recall that �(dj) = ij denotes the number of prime factors of dj, counting

multiplicity. We also see that

p(mj) ≥ x
1

10k(1+�(dj)) ≥ x
1

10k(1+�(d1 ...dk)) =: R,

where p(n) denotes the least prime factor of n. Finally, we have that

∏

p|n+hj

min
(

σ logx p, 1
)

≤
∏

p|dj

min
(

σ logx p, 1
)

,

and we see that the d1, . . . , dk ,W are coprime. We may thus estimate the left-hand side of

(50) by

≪
∑

∗

⎛

⎝

k
∏

j=1

2O(1+�(dj)
∏

p|dj

min(σ logx p, 1)

⎞

⎠

∑

∗∗
1

where the outer sum
∑

∗ is over d1, . . . , dk ≤ x
1

10k with d1, . . . , dk ,W coprime, and the

inner sum
∑

∗∗ is over x ≤ n ≤ 2x with n = b (W ) and n + hj = 0 (dj) for each j, with

p
(

n+hj
dj

)

≥ R for each j.

We bound the inner sum
∑

∗∗ 1 using a Selberg sieve upper bound. Let G be a smooth

function supported on [0, 1] with G(0) = 1, and let d = d1 . . . dk . We see that

∑

∗∗
1 ≤

∑

x≤n≤2x
n+hi≡0 (di)
n≡b (W )

k
∏

i=1

⎛

⎜

⎜

⎝

∑

e|n+hi
(e,dW )=1

μ(e)G(logR e)

⎞

⎟

⎟

⎠

2

,

since the product is G(0)2k = 1 if p
(

n+hj
dj

)

≥ R, and non-negative otherwise. The right-

hand side may be expanded as

∑

e1,...,ek ,e
′
1,...,e

′
k

(eie′i,dW)=1∀i

⎛

⎝

k
∏

i=1

μ(ei)μ
(

e′i
)

G
(

logR ei
)

G
(

logR e
′
i

)

⎞

⎠

∑

x≤n≤2x
n+hi≡0 (di[ei,e

′
i])

n≡b (W )

1.

As in the ‘The trivial case’ section, the inner sum vanishes unless the eie
′
i are coprime to

each other and dW, in which case it is

x

dW [ e1, e
′
1] . . . [ ek , e

′
k]

+ O(1).

TheO(1) term contributes≺≺ Rk ≺≺ x1/10, which is negligible. By Lemma 30, if�(d) ≪
log1/2 x, then the main term contributes

≪
(

d

ϕ(d)

)k x

dW
(logR)−k ≪ 2�(d)B−k x

dW
.

We see that this final bound applies trivially if �(d) ≫ log1/2 x. The bound (50) thus

reduces to

∑

∗

⎛

⎝

k
∏

j=1

2O(1+�(dj))

dj

∏

p|dj

min(σ logx p, 1)

⎞

⎠≪ σO(1). (51)
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Ignoring the coprimality conditions on the dj for an upper bound, we see this is bounded

by

∏

w<p≤x
1

10k

⎛

⎝1 +
O(min(σ logx(p), 1))

p

∑

j≥0

O(1)j

pj

⎞

⎠

k

≪ exp

⎛

⎝O

⎛

⎝

∑

p≤x

(min(σ logx(p), 1))

p

⎞

⎠

⎞

⎠ .

But fromMertens’ theorem, we have

∑

p≤x

min(σ logx p, 1)

p
= O

(

log
1

σ

)

,

and the claim (47) follows.

The proof of (48) is a minor modification of the argument above used to prove (47).

Namely, the variable dj0 is now replaced by [d0, p0]< x1/5k , which upon factoring out p0

has the effect of multiplying the upper bound for (51) by O
(

σ logx p0
p0

)

(at the negligible

cost of deleting the prime p0 from the sum
∑

p≤x

)

, giving the claim; we omit the details.

Finally, (49) follows immediately from (47) when ε > 1
10k , and from (48) and Mertens’

theorem when ε ≤ 1
10k .

Remark 32. As in [38], one can use Proposition 14, together with the observation that

the quantity λF(n) is bounded whenever n = O(x) and p(n) ≥ xε , to conclude that when-

ever the hypotheses of Lemma 18 are obeyed for some ν of the form (18), then there exists

a fixed ε > 0 such that for all sufficiently large x, there are ≫ x

logk x
elements n of [ x, 2x]

such that n + h1, . . . , n + hk have no prime factor less than xε , and that at least m of the

n + h1, . . . , n + hk are prime.

The generalized Elliott-Halberstam case

Now we show case (ii) of Theorem 20. For the sake of notation, we shall take i0 = k, as

the other cases are similar; thus, we have

k−1
∑

i=1

(S(Fi) + S(Gi)) < ϑ . (52)

The basic idea is to view the sum (29) as a variant of (26), with the role of the function

θ now being played by the product divisor sum λFkλGk
, and to repeat the arguments in

the ‘The Elliott-Halberstam case’ section. To do this, we rely on Proposition 14 to restrict

n + hi to the almost primes.

We turn to the details. Let ε > 0 be an arbitrary fixed quantity. From (49) and Cauchy-

Schwarz, one has

∑

x≤n≤2x
n=b (W )

⎛

⎝

k
∏

i=1

λFi(n + hi)λGi(n + hi)

⎞

⎠ 1p(n+hk)≤xε = O
(

εB−k x

W

)
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with the implied constant uniform in ε, so by the triangle inequality and a limiting

argument as ε → 0, it suffices to show that

∑

x≤n≤2x
n=b (W )

⎛

⎝

k
∏

i=1

λFi(n + hi)λGi(n + hi)

⎞

⎠ 1p(n+hk)>xε = (cε + o(1))B−k x

W
(53)

where cε is a quantity depending on ε but not on x, such that

lim
ε→0

cε =
k
∏

i=1

∫ 1

0
F ′
i(t)G

′
i(t) dt.

We use (16) to expand out λFi , λGi for i = 1, . . . , k − 1, but not for i = k, so that the

left-hand side of (29) becomes

∑

d1,...,dk−1,d
′
1,...,d

′
k−1

⎛

⎝

k
∏

i=1

μ(di)μ
(

d′
i

)

Fi
(

logx di
)

Gi

(

logx d
′
i

)

⎞

⎠ S′ (d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

(54)

where

S′ (d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

:=
∑

x≤n≤2x
n=b (W )

n+hi=0 ([di,d
′
i]) ∀i=1,...,k−1

λFk (n + hk)λGk
(n + hk)1p(n+hk)>xε .

As before, the summand in (54) vanishes unless the modulusd qW ,d1,...,d
′
k−1

defined in

(44) is square-free, in which case we have the analogue

S′ (d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

=
1

ϕ(q)

∑

x+hk≤n≤2x+hk
(n,q)=1

λFk (n)λGk
(n)1p(n)>xε

+ �
(

1[x+hk ,2x+hk ]λFkλGk
1p(·)>xε ; a (q)

)

(55)

of (45). Here we have put q = qW ,d1,...,d
′
k−1

and a = aW ,d1,...,d
′
k−1

for convenience. We thus

split

S′ = S′
1 − S′

2 + S′
3,

where,

S′
1

(

d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

=
1

ϕ(q)

∑

x+hk≤n≤2x+hk

λFk (n)λGk
(n)1p(n)>xε , (56)

S′
2

(

d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

=
1

ϕ(q)

∑

x+hk≤n≤2x+hk ;(n,q)>1

λFk (n)λGk
(n)1p(n)>xε ,

(57)

S′
3

(

d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

= �
(

1[x+hk ,2x+hk ]λFkλGk
1p(·)>xε ; a (q)

)

, (58)

when q = qW ,d1,...,d
′
k−1

is square-free, with S′
1 = S′

2 = S′
3 = 0 otherwise.

For j ∈ {1, 2, 3}, let

�j =
∑

d1,...,dk−1,d
′
1,...,d

′
k−1

⎛

⎝

k
∏

i=1

μ (di) μ
(

d′
i

)

Fi
(

logx di
)

Gi

(

logx d
′
i

)

⎞

⎠

S′
j

(

d1, . . . , dk−1, d
′
1, . . . , d

′
k−1

)

.

(59)
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To show (53), it thus suffices to show the main term estimate

�1 = (cε + o(1))B−k x

W
, (60)

the first error term estimate

�2 ≺≺ x1−ε , (61)

and the second error term estimate

�3 ≪ x log−A x (62)

for any fixed A > 0.

We begin with (61). Observe that if p(n) > xε , then the only way that
(

n, qW ,d1,...,d
′
k−1

)

can exceed 1 is if there is a prime xε < p ≪ xwhich divides both n and one of d1, . . . , d
′
k−1;

in particular, this case can only occur when k > 1. For the sake of notation, we will just

consider the contribution when there is a prime that divides p and d1, as the other 2k − 3

cases are similar. By (57), this contribution to �2 can then be crudely bounded (using (1))

by

�2 ≺≺
∑

xε<p≪x

∑

d1,...,dk−1,d
′
1,...,d

′
k−1≤x;p|d1

1
[

d1, d
′
1

]

. . .
[

dk−1, d
′
k−1

]

∑

n≪x:p|n
1

≺≺
∑

xε<p≪x

x

p

⎛

⎝

∑

e1≤x2;p|e1

τ(e1)

e1

⎞

⎠

k−1
∏

i=2

⎛

⎝

∑

ei≤x2

τ(ei)

ei

⎞

⎠

≺≺
∑

xε<p≪x

x

p2

≺≺ x1−ε

as required, where we have made the change of variables ei := [di, d
′
i], using the divisor

bound to control the multiplicity.

Now we show (62). From the hypothesis (28), we have qW ,d1,...,d
′
k−1

≺≺ xθ whenever

the summand in (62) is non-zero. From the divisor bound, for each q ≺≺ xθ , there are

O
(

τ(q)O(1)
)

choices of d1, . . . , d
′
k−1 with qW ,d1,...,d

′
k−1

= q. We see that the product in (59)

is O(1). Thus, by (58), we may bound �3 by

�3 ≪
∑

q≺≺xθ

τ(q)O(1) sup
a∈(Z/qZ)×

∣

∣�
(

1[x+hk ,2x+hk ]λFkλGk
1p(·)>xε ; a (q)

)
∣

∣ .

From (2), we easily obtain the bound

�3 ≪
∑

q≺≺xθ

τ(q)O(1) sup
a∈(Z/qZ)×

∣

∣�
(

1[x+hk ,2x+hk ]λFkλGk
1p(·)>xε ; a (q)

)∣

∣≪ x logO(1) x,

so by Cauchy-Schwarz, it suffices to show that
∑

q≺≺xθ

sup
a∈(Z/qZ)×

∣

∣�
(

1[x+hk ,2x+hk ]λFkλGk
1p(·)>xε ; a (q)

)∣

∣≪ x log−A x (63)

for any fixed A > 0.

If we had the additional hypothesis S(Fk)+S(Gk) < 1, then this would follow easily from

the hypothesis GEH[ϑ] thanks to Claim 12, since one can write λFkλGk
1p(·)>xε = α ⋆ β

with

α(n) := 1p(n)>xε

∑

d,d′:[d,d′]=n

μ(d)Fk
(

logx d
)

μ
(

d′)Gk

(

logx d
′)
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and

β(n) := 1p(n)>xε .

But even in the absence of the hypothesis S(Fk)+S(Gk) < 1, we can still invoke GEH[ϑ]

after appealing to the fundamental theorem of arithmetic. Indeed, if n ∈[ x+ hk , 2x+ hk]

with p(·) > ε, then we have

n = p1 . . . pr

for some primes xε < p1 ≤ · · · ≤ pr ≤ 2x + hk , which forces r ≤ 1
ε

+ 1. If we then

partition [xε , 2x + hk] by O
(

logA+1 x
)

intervals I1, . . . , Im, with each Ij contained in an

interval of the form
[

N ,
(

1 + log−A x
)

N
]

, then we have pi ∈ Iji for some 1 ≤ j1 ≤
· · · ≤ jr ≤ m, with the product interval Ij1 · · · · · Ijr intersecting [x + hk , 2x + hk]. For

fixed r, there are O
(

logAr+r x
)

such tuples ( j1, . . . , jr), and a simple application of the

prime number theorem with classical error term (and crude estimates on the discrepancy

�) shows that each tuple contributes O
(

x log−Ar+O(1) x
)

to (63) (here, and for the rest

of this section, implied constants will be independent of A unless stated otherwise). In

particular, the O
(

logA(r−1) x
)

tuples ( j1, . . . , jr) with one repeated ji, or for which the

interval Ij1 · · · · · Ijr meets the boundary of [ x+hk , 2x+hk], contributesO
(

log−A+O(1) x
)

.

This is an acceptable error to (63), and so these tuples may be removed. Thus, it suffices

to show that

∑

q≺≺xθ

sup
a∈(Z/qZ)×

∣

∣

∣
�
(

λFkλGk
1Aj1,...,jr

; a (q)
)
∣

∣

∣
≪ x log−A(r+1)+O(1) x

for any 1 ≤ r ≤ 1
ε

+ 1 and 1 ≤ j1 < · · · < jr ≤ m with Ij1 · · · · · Ijr contained in

[x+hk , x+2hk], whereAj1,...,jr is the set of all products p1 . . . pr with pi ∈ Iji for i = 1, . . . , r,

and where we allow implied constants in the ≪ notation to depend on ε. But for n in

Aj1,...,jr , the 2r factors of n are just the products of subsets of {p1, . . . , pr}, and from the

smoothness of Fk ,Gk , we see that λFk (n) is equal to some bounded constant (depending

on j1, . . . , jr , but independent of p1, . . . , pr), plus an error of O(log−A x). As before, the

contribution of this error is O
(

log−A(r+1)+O(1) x
)

, so it suffices to show that

∑

q≺≺xθ

sup
a∈(Z/qZ)×

∣

∣

∣
�
(

1Aj1,...,jr
; a (q)

)
∣

∣

∣
≪ x log−A(r+1)+O(1) x.

But one can write 1Aj1,...,jr
as a convolution 1Aj1

⋆ · · · ⋆ 1Ajr
, where Aji denotes the primes

in Iji ; assigning Ajr (for instance) to be β and the remaining portion of the convolution

to be α, the claim now follows from the hypothesis GEH[ϑ], thanks to the Siegel-Walfisz

theorem (see, e.g. [32, Satz 4] or [33, Th. 5.29]).
Finally, we show (60). By Lemma 30, we have

∑

d1 ,...,dk−1 ,d
′
1 ,...,d

′
k−1

d1d
′
1 ,...,dk−1d

′
k−1 ,Wcoprime

∏k−1
i=1 μ (di) μ

(

d′
i

)

Fi
(

logx di
)

Gi

(

logx d
′
i

)

ϕ
(

qW ,d1 ,...,d
′
k−1

) =
1

ϕ(W )

(

C′ + o(1)
)

B−k+1,

where

C′ :=
k−1
∏

i=1

∫ 1

0
F ′
i(t)G

′
i(t) dt
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(note that Fi,Gi are supported on [0, 1] by hypothesis), so by (56) it suffices to show that
∑

x+hk≤n≤2x+hk

λFk (n)λGk
(n)1p(n)>xε =

(

C′′
ε + o(1)

) x

log x
, (64)

where C′′
ε is a quantity depending on ε but not on x such that

lim
ε→0

C′′
ε =

∫ 1

0
F ′
k(t)G

′
k(t) dt.

In the case S(Fk) + S(Gk) < 1, this would follow easily from (the k = 1 case of)

Theorem 20(i) and Proposition 14. In the general case, we may appeal once more to the

fundamental theorem of arithmetic. As before, we may factor n = p1 . . . pr for some

xε ≤ p1 ≤ · · · ≤ pr ≤ 2x+ hk and r ≤ 1
ε

+ 1. The contribution of those n with a repeated

prime factor pi = pi+1 can easily be shown to be ≺≺ x1−ε in the same manner we dealt

with �2, so we may restrict attention to the square-free n, for which the pi are strictly

increasing. In that case, one can write

λFk (n) = (−1)r∂(logx p1)
. . . ∂(logx pr)

Fk(0)

and

λGk
(n) = (−1)r∂(logx p1)

. . . ∂(logx pr)
Gk(0)

where ∂(h)F(x) := F(x+ h) − F(x). On the other hand, a standard application of Mertens’

theorem and the prime number theorem (and an induction on r) shows that for any fixed

r ≥ 1 and any fixed continuous function f : Rr → R, we have
∑

xε≤p1<···<pr :x+hk≤p1≤...pr≤2x+hk

f
(

logx p1, . . . , logx pr
)

=
(

cf + o(1)
) x

log x

where cf is the quantity

cf :=
∫

ε≤t1<···<tr :t1+···+tr=1
f (t1, . . . , tr)

n1 . . . dtr−1

t1 . . . tr

where we lift Lebesgue measure dt1 . . . dtr−1 up to the hyperplane t1 + · · · + tr = 1, and

thus
∫

t1+···+tr=1
F(t1, . . . , tr) dt1 . . . dtr−1 :=

∫

Rr−1
F(t1, . . . , tr−1, 1−t1−· · ·−tr−1)dt1 . . . dtr−1.

Putting all these together, we see that we obtain an asymptotic (64) with

C′′
ε :=

∑

1≤r≤ 1
ε
+1

∫

ε≤t1<···<tr :t1+···+tr=1
∂(t1) . . . ∂(tr)Fk(0)∂(t1) . . . ∂(tr)Gk(0)

dt1 . . . dtr−1

t1 . . . tr
.

By Proposition 14, we have C′′
ε + O(ε) = O(1). In the case Fk = Gk , we see that this

implies ′
ε converges to a limit as ε → 0, and the general case Fk �= Gk then follows from

using the Cauchy-Schwarz inequality. Therefore, we have the absolute convergence

∑

r>0

∫

0<t1<···<tr :t1+···+tr=1
|∂t1 . . . ∂trFk(0)||∂t1 . . . ∂trGk(0)|

dt1 . . . dtr−1

t1 . . . tr
< ∞, (65)

and so, by the dominated convergence theorem, it suffices to establish the identity

∑

r>0

∫

0<t1<···<tr :t1+···+tr=1
∂t1 . . . ∂trFk(0)∂t1 . . . ∂trGk(0)

dt1 . . . dtr−1

t1 . . . tr
=
∫ 1

0
F ′
k(t)G

′
k(t) dt.

(66)
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It will suffice to show the identity

∑

r>0

∫

0<t1<···<tr :t1+···+tr=1
|∂t1 . . . ∂trF(0)|2

dt1 . . . dtr−1

t1 . . . tr
=
∫ 1

0
|F ′(t)|2 dt (67)

for any smooth F : [0,+∞) → R, since (66) follows by replacing F with Fk + Gk and

Fk − Gk and then subtracting.

At this point, we use the following identity:

Lemma 33. For any positive reals t1, . . . , tr with r ≥ 1, we have

1

t1 . . . tr
=
∑

σ∈Sr

1
∏r

i=1

(

∑r
j=i tσ(j)

) . (68)

Thus, for instance, when r = 2, we have

1

t1t2
=

1

(t1 + t2)t1
+

1

(t1 + t2)t2
.

Proof. If the right-hand side of (68) is denoted fr (t1, . . . , tr), then one easily verifies the

identity

fr(t1, . . . , tr) =
1

t1 + · · · + tr

r
∑

i=1

fr−1(t1, . . . , ti−1, ti+1, . . . , tr)

for any r > 1; but the left-hand side of (68) also obeys this identity, and the claim then

follows from induction.

From this lemma and symmetrisation, we may rewrite the left-hand side of (67) as

∑

r>0

∫

t1,...,tr≥0
t1+···+tr=1

|∂(t1) . . . ∂(tr)F(0)|2
dt1 . . . dtr−1
∏r

i=1

(

∑r
j=i ti

) .

Let

Ia(F) :=
∫ a

0
F ′(t)2 dt,

and

Ja(F) := (∂(a)F(0))2.

One can then rewrite (67) as the identity

I1(F) =
∞
∑

r=1

K1,r(F), (69)

where

Ka,r(F) :=
∫

t1,...,tr≥0
t1+···+tr=a

Jtr
(

∂(t1) . . . ∂(tr−1)F
) dt1 . . . dtr−1

a (a − t1) . . . (a − t1 − · · · − tr−1)
.

To prove this, we first observe the identity

Ia(F) =
1

a
Ja(F) +

∫

0≤t≤a
Ia−t

(

∂(t)F
) dt

a
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for any a > 0; indeed, we have

∫

0≤t≤a
Ia−t(∂(t)F)

dt

a
=
∫

0≤t≤a;0≤u≤a−t
|F ′(t + u) − F ′(t)|2

dudt

a

=
∫

0≤t≤s≤a
|F ′(s) − F ′(t)|2

dsdt

a

=
1

2

∫ a

0

∫ a

0
|F ′(s) − F ′(t)|2

dsdt

a

=
∫ a

0
|F ′(s)|2 ds −

1

a

(∫ a

0
F ′(s) ds

)(∫ a

0
F ′(t) dt

)

= Ia(F) −
1

a
Ja(F),

and the claim follows. Iterating this identity k times, we see that

Ia(F) =
k
∑

r=1

Ka,r(F) + La,k(F) (70)

for any k ≥ 1, where

La,k(F) :=
∫

t1,...,tk≥0
t1+···+tk≤a

I1−t1−···−tk

(

∂(t1) . . . ∂(tk)F
) dt1 . . . dtk

a(a − t1) . . . (a − t1 − · · · − tk−1)
.

In particular, dropping the La,k(F) term and sending k → ∞ yields the lower bound

∞
∑

r=1

Ka,r(F) ≤ Ia(F). (71)

On the other hand, we can expand La,k(F) as

∫

t1,...,tk ,t≥0
t1+···+tk+t≤a

|∂(t1) . . . ∂(tk)F
′(t)|2

dt1 . . . dtkdt

a(a − t1) . . . (a − t1 − · · · − tk−1)
.

Writing s := t1 + · · · + tk , we obtain the upper bound

La,k(F) ≤
∫

s,t≥0:s+t≤a
Ks,k(F

′
t) dt,

where Ft(x) := F(x + t). Summing this and using (71) and the monotone convergence

theorem, we conclude that

∞
∑

k=1

La,k(F) ≤
∫

s,t≥0:s+t≤a
Is(Ft) dt < ∞,

and in particular La,k(F) → 0 as k → ∞. Sending k → ∞ in (70), we obtain (69) as

desired.

Reduction to a variational problem

Now that we have proven Theorems 19 and 20, we can now establish Theorems 22, 24,

26 and 28. The main technical difficulty is to take the multidimensional measurable func-

tions F appearing in these functions and approximate them by tensor products of smooth

functions, for which Theorems 19 and 20 may be applied.
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Proof of Theorem 22

We now prove Theorem 22. Let k,m,ϑ obey the hypotheses of that theorem, and thus we

may find a fixed square-integrable function F : [0,+∞)k → R supported on the simplex

Rk :=
{

(t1, . . . , tk) ∈[0,+∞)k : t1 + · · · + tk ≤ 1
}

and not identically zero and with

∑k
i=1 Ji(F)

I(F)
>

2m

ϑ
. (72)

We now perform a number of technical steps to further improve the structure of F. Our

arguments here will be somewhat convoluted and are not the most efficient way to prove

Theorem 22 (which in any event was already established in [5]), but they will motivate

the similar arguments given below to prove the more difficult results in Theorems 24, 26

and 28. In particular, we will use regularisation techniques which are compatible with the

vanishing marginal condition (35) that is a key hypothesis in Theorem 28.

We first need to rescale and retreat a little bit from the slanted boundary of the simplex

Rk . Let δ1 > 0 be a sufficiently small fixed quantity, and write F1 : [0,+∞)k → R to be

the rescaled function

F1(t1, . . . , tk) := F

(

t1

ϑ/2 − δ1
, . . . ,

tk

ϑ/2 − δ1

)

.

Thus, F1 is a fixed square-integrable measurable function supported on the rescaled

simplex

(ϑ/2 − δ1) · Rk =
{

(t1, . . . , tk) ∈[0,+∞)k : t1 + · · · + tk ≤ ϑ/2 − δ1

}

.

From (72), we see that if δ1 is small enough, then F1 is not identically zero and

∑k
i=1 Ji(F1)

I(F1)
> m. (73)

Let δ1 and F1 be as above. Next, let δ2 > 0 be a sufficiently small fixed quantity (smaller

than δ1), and write F2 : [0,+∞)k → R to be the shifted function, defined by setting

F2(t1, . . . , tk) := F1(t1 − δ2, . . . , tk − δ2)

when t1, . . . , tk ≥ δ2, and F2(t1, . . . , tk) = 0 otherwise. As F1 was square-integrable, com-

pactly supported, and not identically zero, and because spatial translation is continuous

in the strong operator topology on L2, it is easy to see that we will have F2 not identically

zero and that

∑k
i=1 Ji(F2)

I(F2)
> m (74)

for δ2 small enough (after restricting F2 back to [0,+∞)k , of course). For δ2 small enough,

this function will be supported on the region

{

(t1, . . . , tk) ∈ R
k : t1 · · · + tk ≤ ϑ/2 − δ2; t1, . . . , tk ≥ δ2

}

,

and thus F2 stays away from all the boundary faces ofRk .
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By convolving F2 with a smooth approximation to the identity that is supported suf-

ficiently close to the origin, one may then find a smooth function F3 : [0,+∞)k → R,

supported on
{

(t1, . . . , tk) ∈ R
k : t1 · · · + tk ≤ ϑ/2 − δ2/2; t1, . . . , tk ≥ δ2/2

}

,

which is not identically zero and such that

∑k
i=1 Ji(F3)

I(F3)
> m. (75)

We extend F3 by zero to all of Rk and then define the function f3 : R
k → R by

f3(t1, . . . , tk) :=
∫

s1≥t1,...,sk≥tk

F3(s1, . . . , sk) ds1 . . . dsk ,

and thus f3 is smooth, not identically zero and supported on the region
⎧

⎨

⎩

(t1, . . . , tk) ∈ R
k :

k
∑

i=1

max(ti, δ2/2) ≤ ϑ/2 − δ2/2

⎫

⎬

⎭

. (76)

From the fundamental theorem of calculus, we have

F3(t1, . . . , tk) := (−1)k
∂k

∂t1 . . . ∂tk
f3(t1, . . . , tk), (77)

and so I(F3) = Ĩ( f3) and Ji(F3) = J̃i( f3) for i = 1, . . . , k, where

Ĩ(f3) :=
∫

[0,+∞)k

∣

∣

∣

∣

∣

∂k

∂t1 . . . ∂tk
f3(t1, . . . , tk)

∣

∣

∣

∣

∣

2

dt1 . . . dtk (78)

and

J̃i( f3) :=
∫

[0,+∞)k−1

∣

∣

∣

∣

∣

∂k−1

∂t1 . . . ∂ti−1∂ti+1 . . . ∂tk
f3(t1, . . . , ti−1, 0, ti+1, . . . , tk)

∣

∣

∣

∣

∣

2

dt1 . . . dti−1dti+1 . . . dtk .

(79)

In particular,

∑k
i=1 J̃i( f3)

Ĩ( f3)
> m. (80)

Now we approximate f3 by linear combinations of tensor products. By the Stone-

Weierstrass theorem, we may express f3 as the uniform limit of functions of the form

(t1, . . . , tk) �→
J
∑

j=1

cjf1,j(t1) . . . fk,j(tk) (81)

where c1, . . . , cJ are real scalars, and fi,j : R → R are smooth compactly supported func-

tions. Since f3 is supported in (76), we can ensure that all the components f1,j(t1) . . . fk,j(tk)

are supported in the slightly larger region
⎧

⎨

⎩

(t1, . . . , tk) ∈ R
k :

k
∑

i=1

max(ti, δ2/4) ≤ ϑ/2 − δ2/4

⎫

⎬

⎭

.
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Observe that if one convolves a function of the form (81) by a smooth approxima-

tion to the identity which is of tensor product form (t1, . . . , tk) �→ ϕ1(t1) . . . ϕ1(tk), one

obtains another function of this form. Such a convolution converts a uniformly conver-

gent sequence of functions to a uniformly smoothly convergent sequence of functions

(that is to say, all derivatives of the functions converge uniformly). From this, we con-

clude that f3 can be expressed as the smooth limit of functions of the form (81), with each

component f1,j(t1) . . . fk,j(tk) supported in the region

⎧

⎨

⎩

(t1, . . . , tk) ∈ R
k :

k
∑

i=1

max(ti, δ2/8) ≤ ϑ/2 − δ2/8

⎫

⎬

⎭

.

Thus, we may find such a linear combination

f4(t1, . . . , tk) =
J
∑

j=1

cjf1,j(t1) . . . fk,j(tk) (82)

with J , cj, fi,j fixed and f4 not identically zero, with

∑k
i=1 J̃i( f4)

Ĩ( f4)
> m. (83)

Furthermore, by construction we have

S( f1,j) + · · · + S( fk,j) <
ϑ

2
≤

1

2
(84)

for all j = 1, . . . , J , where S() was defined in (22).

Now we construct the sieve weight ν : N → R by the formula

ν(n) :=

⎛

⎝

J
∑

j=1

cjλf1,j(n + h1) . . . λfk,j(n + hk)

⎞

⎠

2

, (85)

where the divisor sums λf were defined in (16).

Clearly ν is non-negative. Expanding out the square and using Theorem 20(i) and (84),

we see that

∑

x≤n≤2x
n=b (W )

ν(n) = (α + o(1))B−k x

log x

where

α :=
J
∑

j=1

J
∑

j′=1

cjcj′

k
∏

i=1

∫ ∞

0
f ′
i,j(ti)f

′
i,j′(ti) dti

which factorizes using (82) and (78) as

α =
∫

[0,+∞)k

∣

∣

∣

∣

∣

∂k

∂t1 . . . ∂tk
f4(t1, . . . , tk)

∣

∣

∣

∣

∣

2

dt1 . . . dtk

= Ĩ( f4).
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Now consider the sum

∑

x≤n≤2x
n=b (W )

ν(n)θ(n + hk).

By (20), one has

λfk,j(n + hk) = fk,j(0)

whenever n gives a non-zero contribution to the above sum. Expanding out the square in

(85) again and using Theorem 19(i) and (84) (and the hypothesis EH[ϑ]), we thus see that

∑

x≤n≤2x
n=b (W )

ν(n)θ(n + hk) = (βk + o(1))B1−k x

ϕ(W )

where

βk :=
J
∑

j=1

J
∑

j′=1

cjcj′ fi,j(0)fi,j′(0)

k−1
∏

i=1

∫ ∞

0
f ′
i,j(ti)f

′
i,j′(ti) dti

which factorizes using (82) and (79) as

βk =
∫

[0,+∞)k

∣

∣

∣

∣

∣

∂k

∂t1 . . . ∂tk−1
f4(t1, . . . , tk−1, 0)

∣

∣

∣

∣

∣

2

dt1 . . . dtk−1

= J̃k(f4).

More generally, we see that

∑

x≤n≤2x
n=b (W )

ν(n)θ(n + hk) = (βi + o(1))B1−k x

ϕ(W )

for i = 1, . . . , k, with βi := J̃i( f4). Applying Lemma 18 and (75), we obtain DHL[k;m + 1]

as required.

Proof of Theorem 24

Now we prove Theorem 24, which uses a very similar argument to that of the previous

section. Let k,m,̟ , δ, F be as in Theorem 24. By performing the same rescaling as in the

previous section (but with 1/2+2̟ playing the role of ϑ), we see that we can find a fixed

square-integrable measurable function F1 supported on the rescaled truncated simplex

{

(t1, . . . , tk) ∈[0,+∞)k : t1 + · · · + tk ≤
1

4
+ ̟ − δ1; t1, . . . , tk < δ − δ1

}
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for some sufficiently small fixed δ1 > 0, such that (73) holds. By repeating the arguments

of the previous section, we may eventually arrive at a smooth function f4 : Rk → R of

the form (82), which is not identically zero and obeys (83) and such that each component

f1,j(t1) . . . fk,j(tk) is supported in the region

⎧

⎨

⎩

(t1, . . . , tk) ∈ R
k :

k
∑

i=1

max(ti, δ2/8) ≤
1

4
+ ̟ − δ2/8; t1, . . . , tk < δ − δ2/8

⎫

⎬

⎭

for some sufficiently small δ2 > 0. In particular, one has

S( f1,j) + · · · + S( fk,j) <
1

4
+ ̟ ≤

1

2

and

S( f1,j), . . . , S( fk,j) < δ

for all j = 1, . . . , J . If we then define ν by (85) as before, and repeat all of the above

arguments (but use Theorem 19(ii) andMPZ[̟ , δ] in place of Theorem 19(i) and EH[ϑ]),

we obtain the claim; we leave the details to the interested reader.

Proof of Theorem 26

Now we prove Theorem 26. Let k,m, ε,ϑ be as in that theorem. Then, one may find a

square-integrable function F : [0,+∞)k → R supported on (1 + ε) · Rk which is not

identically zero, and with

∑k
i=1 Ji,1−ε(F)

I(F)
>

2m

ϑ
.

By truncating and rescaling as in the ‘Proof of Theorem 22’ section, we may find a fixed

bounded measurable function F1 : [0,+∞)k → R on the simplex (1 + ε)
(

ϑ
2 − δ1

)

· Rk

such that

∑k
i=1 Ji,(1−ε) ϑ

2
(F1)

I(F1)
> m.

By repeating the arguments in the ‘Proof of Theorem 22’ section, we may eventually

arrive at a smooth function f4 : Rk → R of the form (82), which is not identically zero

and obeys

∑k
i=1 J̃i,(1−ε) ϑ

2
( f4)

Ĩ( f4)
> m (86)

with

J̃i,(1−ε) ϑ
2
(f4) :=

∫

(1−ε) ϑ
2 ·Rk−1

∣

∣

∣

∣

∣

∂k−1

∂t1 . . . ∂ti−1∂ti+1 . . . ∂tk
f4(t1, . . . , ti−1, 0, ti+1, . . . , tk)

∣

∣

∣

∣

∣

2

dt1 . . . dti−1dti+1 . . . dtk ,
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and such that each component f1,j(t1) . . . fk,j(tk) is supported in the region

⎧

⎨

⎩

(t1, . . . , tk) ∈ R
k :

k
∑

i=1

max(ti, δ2/8) ≤ (1 + ε)
ϑ

2
−

δ2

8

⎫

⎬

⎭

for some sufficiently small δ2 > 0. In particular, we have

S( f1,j) + · · · + S( fk,j) ≤ (1 + ε)
ϑ

2
−

δ2

8
(87)

for all 1 ≤ j ≤ J .

Let δ3 > 0 be a sufficiently small fixed quantity (smaller than δ1 or δ2). By a smooth

partitioning, we may assume that all of the fi,j are supported in intervals of length at most

δ3, while keeping the sum

J
∑

j=1

|cj|| f1,j(t1)| . . . | fk,j(tk)| (88)

bounded uniformly in t1, . . . , tk and in δ3.

Now let ν be as in (85), and consider the expression

∑

x≤n≤2x
n=b (W )

ν(n).

This expression expands as a linear combination of the expressions

∑

x≤n≤2x
n=b (W )

k
∏

i=1

λfi,j(n + hi)λfi,j′ (n + hi)

for various 1 ≤ j, j′ ≤ J . We claim that this sum is equal to

⎛

⎝

k
∏

i=1

∫ 1

0
f ′
i,j(ti)f

′
i,j′(ti) dti + o(1)

⎞

⎠B−k x

W
.

To see this, we divide into two cases. First, suppose that hypothesis (i) from Theorem 26

holds, then from (87) we have

k
∑

i=1

S( fi,j) + S( fi,j′) < (1 + ε)ϑ < 1

and the claim follows from Theorem 20(i). Now suppose instead that hypothesis (ii) from

Theorem 26 holds, then from (87) one has

k
∑

i=1

S( fi,j) + S( fi,j′) < (1 + ε)ϑ <
k

k − 1
ϑ ,

and so from the pigeonhole principle, we have

∑

1≤i≤k:i�=i0

S( fi,j) + S( fi,j′) < ϑ

for some i0 = 1, . . . , k. The claim now follows from Theorem 20(ii).
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Putting these together as in the ‘Proof of Theorem 22’ section, we conclude that
∑

x≤n≤2x
n=b (W )

ν(n) = (α + o(1))B−k x

W

where

α := Ĩ(f4).

Now we consider the sum
∑

x≤n≤2x
n=b (W )

ν(n)θ(n + hk). (89)

From Proposition 13, we see that we have EH[ϑ] as a consequence of the hypotheses of

Theorem 26. However, this and Theorem 19 are not strong enough to obtain an asymp-

totic for the sum (89), as there is an epsilon loss in (87). But observe that Lemma 18 only

requires a lower bound on the sum (89), rather than an asymptotic.

To obtain this lower bound, we partition {1, . . . , J} into J1 ∪ J2, where J1 consists of

those indices j ∈ {1, . . . , J} with

S( f1,j) + · · · + S( fk−1,j) < (1 − ε)
ϑ

2
(90)

and J2 is the complement. From the elementary inequality

(x1 + x2)
2 = x21 + 2x1x2 + x22 ≥ (x1 + 2x2)x1,

we obtain the pointwise lower bound

ν(n) ≥

⎛

⎝

⎛

⎝

∑

j∈J1

+2
∑

j∈J2

⎞

⎠ cjλf1,j(n + h1) . . . λfk,j(n + hk)

⎞

⎠

×

⎛

⎝

∑

j′∈J1

cj′λf1,j′ (n + h1) . . . λfk,j′ (n + hk)

⎞

⎠ .

The point of performing this lower bound is that if j ∈ J1 ∪ J2 and j′ ∈ J1, then from

(87) and (90) one has

k−1
∑

i=1

S
(

fi,j
)

+ S
(

fi,j′
)

< ϑ

which makes Theorem 19(i) available for use. Indeed, for any j ∈ {1, . . . , J} and i =
1, . . . , k, we have from (87) that

S
(

fi,j
)

≤ (1 + ε)
ϑ

2
< ϑ < 1,

and so by (20), we have

ν(n)θ(n + hk) ≥

⎛

⎝

⎛

⎝

∑

j∈J1

+2
∑

j∈J2

⎞

⎠ cjλf1,j (n + h1) . . . λfk−1,j

(

n + hk−1

)

fk,j(0)

⎞

⎠

×

⎛

⎝

∑

j′∈J1

cj′λf1,j′ (n + h1) . . . λfk−1,j′
(

n + hk−1

)

fk,j′(0)

⎞

⎠ θ(n + hk)

(91)
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for x ≤ n ≤ 2x. If we then apply Theorem 19(i) and the hypothesis EH[ϑ], we obtain the

lower bound

∑

x≤n≤2x
n=b (W )

ν(n)θ(n + hk) ≥ (βk − o(1))B1−k x

ϕ(W )

with

βk :=

⎛

⎝

∑

j∈J1

+2
∑

j∈J2

⎞

⎠

∑

j′∈J1

cjcj′ fk,j(0)fk,j′(0)

k−1
∏

i=1

∫ ∞

0
f ′
i,j(ti)f

′
i,j′(ti) dti

which we can rearrange as

βk =
∫

[0,+∞)k−1

(

∂k−1

∂t1 . . . ∂tk−1
f4,1(t1, . . . , tk−1, 0) + 2

∂k−1

∂t1 . . . ∂tk−1
f4,2(t1, . . . , tk−1, 0)

)

∂k−1

∂t1 . . . ∂tk−1
f4,1(t1, . . . , tk−1, 0) dt1 . . . dtk−1

where

f4,l(t1, . . . , tk) :=
∑

j∈Jl

cjf1,j(t1) . . . fk,j(tk)

for l = 1, 2. Note that f4,1, f4,2 are both bounded pointwise by (88), and their supports only

overlap on a set of measure O(δ3). We conclude that

βk = J̃k( f4,1) + O(δ3)

with the implied constant independent of δ3, and thus

βk = J̃k,(1−ε) ϑ
2
( f4) + O(δ3).

A similar argument gives

∑

x≤n≤2x
n=b (W )

ν(n)θ(n + hi) ≥ (βi − o(1))B1−k x

ϕ(W )

for i = 1, . . . , k with

βi = J̃i,(1−ε) ϑ
2
( f4) + O(δ3).

If we choose δ3 small enough, then the claimDHL[k;m+1] now follows from Lemma 18

and (86).

Proof of Theorem 28

Finally, we prove Theorem 28. Let k,m, ε, F be as in that theorem. By rescaling as in previ-

ous sections, we may find a square-integrable function F1 : [0,+∞)k → R supported on
(

k
k−1

ϑ
2 − δ1

)

· Rk for some sufficiently small fixed δ1 > 0, which is not identically zero,

which obeys the bound

∑k
i=1 Ji,(1−ε) ϑ

2
(F1)

I(F1)
> m
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and also obeys the vanishing marginal condition (35) whenever t1, . . . , ti−1, ti+1, . . . , tk ≥
0 are such that

t1 + · · · + ti−1 + ti+1 + · · · + tk > (1 + ε)
ϑ

2
− δ1.

As before, we pass from F1 to F2 by a spatial translation, and from F2 to F3 by a regu-

larisation; crucially, we note that both of these operations interact well with the vanishing

marginal condition (35), with the end product being that we obtain a smooth function

F3 : [0,+∞)k → R, supported on the region
{

(t1, . . . , tk) ∈ R
k : t1 · · · + tk ≤

k

k − 1

ϑ

2
−

δ2

2
; t1, . . . , tk ≥

δ2

2

}

for some sufficiently small δ2 > 0, which is not identically zero, obeying the bound

∑k
i=1 Ji,(1−ε) ϑ

2
(F3)

I(F3)
> m

and also obeying the vanishing marginal condition (35) whenever t1, . . . , ti−1,

ti+1, . . . , tk ≥ 0 are such that

t1 + · · · + ti−1 + ti+1 + · · · + tk > (1 + ε)
ϑ

2
−

δ2

2
.

As before, we now define the function f3 : R
k → R by

f3(t1, . . . , tk) :=
∫

s1≥t1,...,sk≥tk

F3(s1, . . . , sk) ds1 . . . dsk ,

and thus, f3 is smooth, not identically zero and supported on the region

⎧

⎨

⎩

(t1, . . . , tk) ∈ R
k :

k
∑

i=1

max(ti, δ2/2) ≤
k

k − 1

ϑ

2
−

δ2

2

⎫

⎬

⎭

.

Furthermore, from the vanishing marginal condition, we see that we also have

f3(t1, . . . , tk) = 0

whenever we have some 1 ≤ i ≤ k for which ti ≤ δ2/2 and

t1 + · · · + ti−1 + ti+1 + · · · + tk ≥ (1 + ε)
ϑ

2
−

δ2

2
.

From the fundamental theorem of calculus as before, we have

∑k
i=1 J̃i,(1−ε) ϑ

2
( f3)

Ĩ( f3)
> m.

Using the Stone-Weierstrass theorem as before, we can then find a function f4 of the

form

(t1, . . . , tk) �→
J
∑

j=1

cjf1,j(t1) . . . fk,j(tk) (92)
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where c1, . . . , cJ are real scalars, and fi,j : R → R are smooth functions supported of

intervals of length at most δ3 > 0 for some sufficiently small δ3 > 0, with the support of

each component f1,j(t1) . . . fk,j(tk) supported in the region

⎧

⎨

⎩

(t1, . . . , tk) ∈ R
k :

k
∑

i=1

max(ti, δ2/8) ≤
k

k − 1

ϑ

2
− δ2/8

⎫

⎬

⎭

and avoiding the regions

{

(t1, . . . , tk) ∈ R
k : ti ≤ δ2/8; t1 + · · · + ti−1 + ti+1 + · · · + tk ≥ (1 + ε)

ϑ

2
− δ2/8

}

for each i = 1, . . . , k, and such that

∑k
i=1 J̃i,(1−ε) ϑ

2

(

f4
)

Ĩ( f4)
> m.

In particular, for any j = 1, . . . , J we have

S
(

f1,j
)

+ · · · + S
(

fk,j
)

<
k

k − 1

ϑ

2
<

1

2

k

k − 1
≤ 1 (93)

and for any i = 1, . . . , k with fk,i not vanishing at zero, we have

S
(

f1,j
)

+ · · · + S
(

fk,i−1

)

+ S
(

fk,i+1

)

+ · · · + S
(

fk,j
)

< (1 + ε)
ϑ

2
. (94)

Let ν be defined by (85). From (93), the hypothesis GEH[ϑ], and the argument from the

previous section used to prove Theorem 26(ii), we have

∑

x≤n≤2x
n=b (W )

ν(n) = (α + o(1))B−k x

W

where

α := Ĩ
(

f4
)

.

Similarly, from (94) (and the upper bound S
(

fi,j
)

< 1 from (93)), the hypothesis EH[ϑ]

(which is available by Proposition 13), and the argument from the previous section, we

have

∑

x≤n≤2x
n=b (W )

ν(n)θ(n + hi) ≥ (βi − o(1))B1−k x

ϕ(W )

for i = 1, . . . , k with

βi = J̃i,(1−ε) ϑ
2
( f4) + O(δ3).

Setting δ3 small enough, the claim DHL[k;m + 1] now follows from Lemma 18.

Asymptotic analysis

We now establish upper and lower bounds on the quantity Mk defined in (33), as well as

for the related quantities appearing in Theorem 24.

To obtain an upper bound on Mk , we use the following consequence of the Cauchy-

Schwarz inequality.
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Lemma 34 (Cauchy-Schwarz). Let k ≥ 2, and suppose that there exist positive

measurable functions Gi : Rk → (0,+∞) for i = 1, . . . , k such that
∫ ∞

0
Gi(t1, . . . , tk) dti ≤ 1 (95)

for all t1, . . . , ti−1, ti+1, . . . , tk ≥ 0, where we extend Gi by zero to all of [0,+∞)k . Then, we

have

Mk ≤ ess sup
(t1,...,tk)∈Rk

k
∑

i=1

1

Gi(t1, . . . , tk)
. (96)

Here ess sup refers to essential supremum (thus, we may ignore a subset of Rk of measure

zero in the supremum).

Proof. Let F : [0,+∞)k → R be a square-integrable function supported on Rk . From

the Cauchy-Schwarz inequality and (95), we have

(∫ ∞

0
F(t1, . . . , tk) dti

)2

≤
∫ ∞

0

F(t1, . . . , tk)
2

Gi(t1, . . . , tk)
dti

for any t1, . . . , ti−1, ti+1, . . . , tk ≥ 0. Inserting this into (32) and integrating, we conclude

that

Ji(F) ≤
∫

Rk

F(t1, . . . , tk)
2

Gi(t1, . . . , tk)
dt1 . . . dtk .

Summing in i and using (31), (33), and (96), we obtain the claim.

As a corollary, we can computeMk exactly if we can locate a positive eigenfunction:

Corollary 35. Let k ≥ 2, and suppose that there exists a positive function F : Rk →
(0,+∞) obeying the eigenfunction equation

λF(t1, . . . , tk) =
k
∑

i=1

∫ ∞

0
F(t1, . . . , ti−1, t

′
i , ti+1, . . . , tk) dt

′
i (97)

for some λ > 0 and all (t1, . . . , tk) ∈ Rk , where we extend F by zero to all of [0,+∞)k .

Then, λ = Mk .

Proof. On the one hand, if we integrate (97) against F and use (31) and (32), we see that

λI(F) =
k
∑

i=1

Ji(F),

and thus by (33), we see thatMk ≥ λ. On the other hand, if we apply Lemma 34 with

Gi(t1, . . . , tk) :=
F(t1, . . . , tk)

∫∞
0 F(t1, . . . , ti−1, t

′
i , ti+1, . . . , tk) dt

′
i

,

we see thatMk ≤ λ, and the claim follows.

This allows for an exact calculation ofM2:
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Corollary 36 (Computation ofM2). We have

M2 =
1

1 − W (1/e)
= 1.38593 . . .

where the Lambert W-function W (x) is defined for positive x as the unique positive

solution to x = W (x)eW (x).

Proof. If we set λ := 1
1−W (1/e) = 1.38593 . . . , then a brief calculation shows that

2λ − 1 = λ log λ − λ log(λ − 1). (98)

Now if we define the function f : [0, 1]→[0,+∞) by the formula

f (x) :=
1

λ − 1 + x
+

1

2λ − 1
log

λ − x

λ − 1 + x
,

then a further brief calculation shows that

∫ 1−x

0
f (y) dy =

λ − 1 + x

2λ − 1
log

λ − x

λ − 1 + x
+

λ log λ − λ log(λ − 1)

2λ − 1

for any 0 ≤ x ≤ 1, and hence by (98) that

∫ 1−x

0
f (y) dy = (λ − 1 + x)f (x).

If we then define the function F : R2 → (0,+∞) by F(x, y) := f (x) + f (y), we conclude

that

∫ 1−x

0
F(x′, y) dx′ +

∫ 1−y

0
F(x, y′) dy′ = λF(x, y)

for all (x, y) ∈ R2, and the claim now follows from Corollary 35.

We conjecture that a positive eigenfunction forMk exists for all k ≥ 2, not just for k = 2;

however, we were unable to produce any such eigenfunctions for k > 2. Nevertheless,

Lemma 34 still gives us a general upper bound:

Corollary 37. We have Mk ≤ k
k−1 log k for any k ≥ 2.

Thus, for instance, one has M2 ≤ 2 log 2 = 1.38629 . . . , which compares well with

Corollary 36. On the other hand, Corollary 37 also gives

M4 ≤
4

3
log 4 = 1.8454 . . . ,

so that one cannot hope to establish DHL[4; 2] (or DHL[3; 2]) solely through Theorem 22

even when assuming GEH, and must rely instead on more sophisticated criteria for

DHL[k;m] such as Theorem 26 or Theorem 28.

Proof. If we set Gi : Rk → (0,+∞) for i = 1, . . . , k to be the functions

Gi(t1, . . . , tk) :=
k − 1

log k

1

1 − t1 − · · · − tk + kti
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then direct calculation shows that

∫ ∞

0
Gi(t1, . . . , tk) dti ≤ 1

for all t1, . . . , ti−1, ti+1, . . . , tk ≥ 0, where we extend Gi by zero to all of [0,+∞)k . On the

other hand, we have

k
∑

i=1

1

Gi(t1, . . . , tk)
=

k

k − 1
log k

for all (t1, . . . , tk) ∈ Rk . The claim now follows from Lemma 34.

The upper bound arguments for Mk can be extended to other quantities such as Mk,ε ,

although the bounds do not appear to be as sharp in that case. For instance, we have the

following variant of Lemma 37, which shows that the improvement in constants when

moving fromMk toMk,ε is asymptotically modest:

Proposition 38. For any k ≥ 2 and ε ≥ 0, we have

Mk,ε ≤
k

k − 1
log(2k − 1).

Proof. Let F : [0,+∞)k → R be a square-integrable function supported on (1+ ε) ·Rk .

If i = 1, . . . , k and (t1, . . . , ti−1, ti+1, . . . , tk) ∈ (1 − ε) · Rk , then if we write s := 1 − t1 −
· · · − ti−1 − ti+1 − · · · − tk , we have s ≥ ε and hence

∫ 1−t1−···−ti−1−ti+1−···−tk+ε

0

1

1 − t1 − · · · − tk + kti
dti =

∫ s+ε

0

1

s + (k − 1)ti
dti

=
1

k − 1
log

ks + (k − 1)ε

s

≤
1

k − 1
log(2k − 1).

By Cauchy-Schwarz, we conclude that

(∫ ∞

0
F(t1, . . . , tk) dti

)2

≤
1

k − 1
log(2k−1)

∫ ∞

0
(1−t1−· · ·−tk+kti)F(t1, . . . , tk)

2 dti.

Integrating in t1, . . . , ti−1, ti+1, . . . , tk and summing in i, we obtain the claim.

Remark 39. The same argument, using the weight 1 + a(−t1 − · · · − tk + kti), gives the

more general inequality

Mk,ε ≤
k

a(k − 1)
log

(

k +
(a(1 + ε) − 1)(k − 1)

1 − a(1 − ε)

)

whenever 1
1+ε

< a < 1
1−ε

; the case a = 1 is Proposition 38, and the limiting case a = 1
1+ε

recovers Lemma 37 when one sends ε to zero.
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One can also adapt the computations in Corollary 36 to obtain exact expressions for

M2,ε , although the calculations are rather lengthy and will only be summarized here. For

fixed 0 < ε < 1, the eigenfunctions F one seeks should take the form

F(x, y) := f (x) + f (y)

for x, y ≥ 0 and x + y ≤ 1 + ε, where

f (x) := 1x≤1−ε

∫ 1+ε−x

0
F(x, t) dt.

In the regime 0 < ε < 1/3, one can calculate that f will (up to scalar multiples) take the

form

f (x) = 1x≤2ε
C1

λ − 1 − ε + x

+ 12ε≤x≤1−ε

(

log(λ − x) − log(λ − 1 − ε + x)

2λ − 1 − ε
+

1

λ − 1 − ε + x

)

where

C1 :=
log(λ − 2ε) − log(λ − 1 + ε)

1 − log(λ − 1 + ε) + log(λ − 1 − ε)

and λ is the largest root of the equation

1 = C1(log(λ − 1 + ε) − log(λ − 1 − ε)) − log(λ − 1 + ε)

+
(λ − 1 + ε) log(λ − 1 + ε) − (λ − 2ε) log(λ − 2ε)

2λ − 1 − ε
.

In the regime 1/3 ≤ ε < 1, the situation is significantly simpler, and one has the exact

expressions

f (x) =
1x≤1−ε

λ − 1 − ε + x

and

λ =
e(1 + ε) − 2ε

e − 1
.

In both cases, a variant of Corollary 35 can be used to show thatM2,ε will be equal to λ;

thus, for instance,

M2,ε =
e(1 + ε) − 2ε

e − 1

for 1/3 ≤ ε < 1. In particular, M2,ε increases to 2 in the limit ε → 1; the lower

bound lim infε→1M2,ε ≥ 2 can also be established by testing with the function F(x, y) :=
1x≤δ,y≤1+ε−δ + 1y≤δ,x≤1+ε−δ for some sufficiently small δ > 0.

Now we turn to lower bounds on Mk , which are of more relevance for the purpose

of establishing results such as Theorem 23. If one restricts attention to those functions

F : Rk → R of the special form F(t1, . . . , tk) = f (t1 + · · · + tk) for some function

f : [0, 1]→ R, then the resulting variational problem has been optimized in previous

works [39] (and originally in an unpublished work of Conrey), giving rise to the lower

bound

Mk ≥
4k(k − 1)

j2k−2
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where jk−2 is the first positive zero of the Bessel function Jk−2. This lower bound is

reasonably strong for small k; for instance, when k = 2 it shows that

M2 ≥ 1.383 . . .

which compares well with Corollary 36, and also shows thatM6 > 2, recovering the result

of Goldston, Pintz, and Yıldırım that DHL[6; 2] (and hence H1 ≤ 16) was true on the

Elliott-Halberstam conjecture. However, one can show that 4k(k−1)

j2
k−2

< 4 for all k (see [36]),

so this lower bound cannot be used to forceMk to be larger than 4.

In [5], the lower bound

Mk ≥ log k − 2 log log k − 2 (99)

was established for all sufficiently large k. In fact, the arguments in [5] can be used to show

this bound for all k ≥ 200 (for k < 200, the right-hand side of (99) is either negative or

undefined). Indeed, if we use the bound ([5], (7.19)) with A chosen so that A2eA = k, then

3 < A < log k when k ≥ 200, hence eA = k/A2 > k/ log2 k and so A ≥ log k − 2 log log k.

By using the bounds A
eA−1

< 1
6 (since A > 3) and eA/k = 1/A2 < 1/9, we see that the

right-hand side of ([5], (8.17)) exceeds A − 1
(1−1/6−1/9)2

≥ A − 2, which gives (99).

We will remove the log log k term in (99) via the following explicit estimate.

Theorem 40. Let k ≥ 2, and let c,T , τ > 0 be parameters. Define the function g :

[ 0,T]→ R by

g(t) :=
1

c + (k − 1)t
(100)

and the quantities

m2 :=
∫ T

0
g(t)2 dt (101)

μ :=
1

m2

∫ T

0
tg(t)2 dt (102)

σ 2 :=
1

m2

∫ T

0
t2g(t)2 dt − μ2. (103)

Assume the inequalities

kμ ≤ 1 − τ (104)

kμ < 1 − T (105)

kσ 2 < (1 + τ − kμ)2. (106)

Then, one has

k

k − 1
log k − M

[T]
k ≤

k

k − 1

Z + Z3 + WX + VU

(1 + τ/2)
(

1 − kσ 2

(1+τ−kμ)2

) (107)
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where Z,Z3,W ,X,V ,U are the explicitly computable quantities

Z :=
1

τ

∫ 1+τ

1

(

r

(

log
r − kμ

T
+

kσ 2

4(r − kμ)2 log r−kμ
T

)

+
r2

4kT

)

dr (108)

Z3 :=
1

m2

∫ T

0
kt log

(

1 +
t

T

)

g(t)2 dt (109)

W :=
1

m2

∫ T

0
log
(

1 +
τ

kt

)

g(t)2 dt (110)

X :=
log k

τ
c2 (111)

V :=
c

m2

∫ T

0

1

2c + (k − 1)t
g(t)2 dt (112)

U :=
log k

c

∫ 1

0

(

(1 + uτ − (k − 1)μ − c)2 + (k − 1)σ 2
)

du. (113)

Of course, since M
[T]
k ≤ Mk , the bound (107) also holds with M

[T]
k replaced by Mk .

Proof. From (33), we have

k
∑

i=1

Ji(F) ≤ M
[T]
k I(F)

whenever F : [0,+∞)k → R is square-integrable and supported on [0,T]k ∩Rk . By

rescaling, we conclude that

k
∑

i=1

Ji(F) ≤ rM
[T]
k I(F)

whenever r > 0 and F : [0,+∞)k → R is square-integrable and supported on [0, rT]k ∩r ·
Rk . We apply this inequality with the function

F(t1, . . . , tk) := 1t1+···+tk≤rg(t1) . . . g(tk)

where r > 1 is a parameter which we will eventually average over, and g is extended by

zero to [0,+∞). We thus have

I(F) = mk
2

∫ ∞

0
. . .

∫ ∞

0
1t1+···+tk≤r

k
∏

i=1

g(ti)
2 dti

m2
.

We can interpret this probabilistically as

I(F) = mk
2P(X1 + · · · + Xk � r)

where X1, . . . ,Xk are independent random variables taking values in [0,T] with probabil-

ity distribution 1
m2

g(t)2 dt. In a similar fashion, we have

Jk(F) = mk−1
2

∫ ∞

0
. . .

∫ ∞

0

(

∫

[0,r−t1−···−tk−1]
g(t) dt

)2 k−1
∏

i=1

g(ti)
2 dti

m2
,
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where we adopt the convention that
∫

[a,b] vanishes when b < a. In probabilistic language,

we thus have

Jk(F) = mk−1
2 E

(

∫

[0,r−X1−···−Xk−1]
g(t) dt

)2

.

Also by symmetry, we see that Ji(F) = Jk(F) for all i = 1, . . . , k. Putting all these

together, we conclude that

E

(∫ r−X1−···−Xk−1

0
g(t) dt

)2

≤
m2M

[T]
k r

k
P(X1 + · · · + Xk ≥ r)

for all r > 1. Writing Si := X1 + · · · + Xi, we abbreviate this as

E

(

∫

[0,r−Sk−1]
g(t) dt

)2

≤
m2M

[T]
k r

k
P(Sk ≥ r). (114)

Now we run a variant of the Cauchy-Schwarz argument used to prove Corollary 37. If,

for fixed r > 0, we introduce the random function h : (0,+∞) → R by the formula

h(t) :=
1

r − Sk−1 + (k − 1)t
1Sk−1<r (115)

and observe that whenever Sk−1 < r, we have

∫

[0,r−Sk−1]
h(t) dt =

log k

k − 1
(116)

and thus by the Legendre identity, we have

(

∫

[0,r−Sk−1]
g(t) dt

)2

=
log k

k − 1

∫

[0,r−Sk−1]

g(t)2

h(t)
dt −

1

2

∫

[0,r−Sk−1]

∫

[0,r−Sk−1]

(g(s)h(t) − g(t)h(s))2

h(s)h(t)
dsdt

for Sk−1 < r; but the claim also holds when r ≤ Sk−1 since all integrals vanish in that case.

On the other hand, we have

E

∫

[0,r−Sk−1]

g(t)2

h(t)
dt = m2E

(

r − Sk−1 + (k − 1)Xk

)

1Xk≤r−Sk−1

= m2E(r − Sk + kXk) 1Sk≤r

= m2Er1Sk≤r

= m2rP(Sk ≤ r)

where we have used symmetry to get the third equality. We conclude that

E

(

∫

[0,r−Sk−1]
g(t) dt

)2

=
log k

k − 1
m2rP(Sk ≤ r) −

1

2
E

∫

[0,r−Sk−1]

∫

[0,r−Sk−1]

(g(s)h(t) − g(t)h(s))2

h(s)h(t)
dsdt.
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Combining this with (114), we conclude that

�rP(Sk ≤ r) ≤
k

2m2
E

∫

[0,r−Sk−1]

∫

[0,r−Sk−1]

(

g(s)h(t) − g(t)h(s)
)2

h(s)h(t)
dsdt

where

� :=
k

k − 1
log k − M

[T]
k .

Splitting into regions where s, t are less than T or greater than T , and noting that g(s)

vanishes for s > T , we conclude that

�rP(Sk ≤ r) ≤ Y1(r) + Y2(r)

where

Y1(r) :=
k

m2
E

∫

[0,T]

∫

[T ,r−Sk−1]

g(t)2

h(t)
h(s) dsdt

and

Y2(r) :=
k

2m2
E

∫

[0,min(T ,r−Sk−1)]

∫

[0,min(T ,r−Sk−1)]

(

g(s)h(t) − g(t)h(s)
)2

h(s)h(t)
dsdt.

We average this from r = 1 to r = 1 + τ , to conclude that

�

(

1

τ

∫ 1+τ

1
rP(Sk ≤ r) dr

)

≤
1

τ

∫ 1+τ

1
Y1(r) dr +

1

τ

∫ 1+τ

1
Y2(r) dr.

Thus, to prove (107), it suffices (by (106)) to establish the bounds

1

τ

∫ 1+τ

1
rP(Sk ≤ r) dr ≥ (1 + τ/2)

(

1 −
kσ 2

(1 + τ − kμ)2

)

, (117)

k

k − 1
Y1(r) ≤ Z + Z3 (118)

for all 1 < r ≤ 1 + τ , and

1

τ

∫ 1+τ

1
Y2(r) dr ≤

k

k − 1
(WX + VU). (119)

We begin with (117). Since

1

τ

∫ 1+τ

1
r dr = 1 +

τ

2
,

it suffices to show that

P(Sk > 1 + τ) ≤
kσ 2

(1 + τ − kμ)2
.

But from (102) and (103), we see that each Xi has mean μ and variance σ 2, so Sk has

mean kμ and variance kσ 2. The claim now follows fromChebyshev’s inequality and (104).
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Now we show (118). The quantity Y1(r) is vanishing unless r − Sk−1 ≥ T . Using the

crude bound h(s) ≤ 1
(k−1)s from (115), we see that

∫

[T ,r−Sk−1]
h(s) ds ≤

1

k − 1
log+

r − Sk−1

T

where log+(x) := max(log x, 0). We conclude that

Y1(r) ≤
k

k − 1

1

m2
E

∫

[0,T]

g(t)2

h(t)
dt log+

r − Sk−1

T
.

We can rewrite this as

Y1(r) ≤
k

k − 1
E
1Sk≤r

h(Xk)
log+

r − Sk−1

T
.

By (115), we have

1Sk≤r

h(Xk)
= (r − Sk + kXk) 1Sk≤r .

Also, from the elementary bound log+(x+ y) ≤ log+ x+ log(1+ y) for any x, y ≥ 0, we

see that

log+
r − Sk−1

T
≤ log+

r − Sk

T
+ log

(

1 +
Xk

T

)

.

We conclude that

Y1(r) ≤
k

k − 1
E (r − Sk + kXk)

(

log+
r − Sk

T
+ log

(

1 +
Xk

T

))

1Sk≤r

≤
k

k − 1

(

E(r − Sk + kXk) log+
r − Sk

T
+ max(r − Sk , 0)

Xk

T
+ kXk log

(

1 +
Xk

T

))

using the elementary bound log(1+ y) ≤ y. Symmetrizing in the X1, . . . ,Xk , we conclude

that

Y1(r) ≤
k

k − 1
(Z1(r) + Z2(r) + Z3) (120)

where

Z1(r) := Er log+
r − Sk

T

Z2(r) := E(r − Sk)1Sk≤r
Sk

kT

and Z3 was defined in (109).

For the minor error term Z2, we use the crude bound (r − Sk)1Sk≤rSk ≤ r2

4 , so

Z2(r) ≤
r2

4kT
. (121)

For Z1, we upper bound log+ x by a quadratic expression in x. More precisely, we

observe the inequality

log+ x ≤
(

x − 2a log a − a
)2

4a2 log a
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for any a > 1 and x ∈ R, since the left-hand side is concave in x for x ≥ 1, while the

right-hand side is convex in x, non-negative, and tangent to the left-hand side at x = a.

We conclude that

log+
r − Sk

T
≤
(

r − Sk − 2aT log a − aT
)2

4a2T2 log a
.

On the other hand, from (102) and (103), we see that each Xi has mean μ and variance

σ 2, so Sk has mean kμ and variance kσ 2. We conclude that

Z1(r) ≤ r

(

r − kμ − 2aT log a − aT
)2 + kσ 2

4a2T2 log a

for any a > 1.

From (105) and the assumption r > 1, we may choose a := r−kμ
T here, leading to the

simplified formula

Z1(r) ≤ r

(

log
r − kμ

T
+

kσ 2

4(r − kμ)2 log r−kμ
T

)

. (122)

From (120), (121), (122), and (108) we conclude (118).

Finally, we prove (119). Here, we finally use the specific form (100) of the function g.

Indeed, from (100) and (115), we observe the identity

g(t) − h(t) = (r − Sk−1 − c)g(t)h(t)

for t ∈[ 0,min(r − Sk−1,T)]. Thus,

Y2(r) =
k

2m2
E

∫

[0,min(r−Sk−1,T)]

∫

[0,min(r−Sk−1,T)]

(

(g − h)(s)h(t) − (g − h)(t)h(s)
)2

h(s)h(t)
dsdt

=
k

2m2
E(r − Sk−1 − c)2

∫

[0,min(r−Sk−1,T)]

∫

[0,min(r−Sk−1,T)]

(

g(s) − g(t)
)2

h(s)h(t) dsdt.

Using the crude bound (g(s) − g(t))2 ≤ g(s)2 + g(t)2 and using symmetry, we conclude

Y2(r) ≤
k

m2
E
(

r − Sk−1 − c
)2
∫

[0,min(r−Sk−1,T)]

∫

[0,min(r−Sk−1,T)]
g(s)2h(s)h(t) dsdt.

From (116) and (115), we conclude that

Y2(r) ≤
k

k − 1
Z4(r)

where

Z4(r) :=
log k

m2
E

(

(

r − Sk−1 − c
)2
∫

[0,min(r−Sk−1,T)]

g(s)2

r − Sk−1 + (k − 1)s
ds

)

.

To prove (119), it thus suffices (after making the change of variables r = 1+uτ ) to show

that

∫ 1

0
Z4(1 + uτ) du ≤ WX + VU . (123)
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We will exploit the averaging in u to deal with the singular nature of the factor
1

r−Sk−1+(k−1)s . By Fubini’s theorem, the left-hand side of (123) may be written as

log k

m2
E

∫ 1

0
Q(u) du

where Q(u) is the random variable

Q(u) :=
(

1 + uτ − Sk−1 − c
)2
∫

[0,min(1+uτ−Sk−1,T)]

g(s)2

1 + uτ − Sk−1 + (k − 1)s
ds.

Note that Q(u) vanishes unless 1 + uτ − Sk−1 > 0. Consider first the contribution of

those Q(u) for which

0 < 1 + uτ − Sk−1 ≤ 2c.

In this regime, we may bound

(

1 + uτ − Sk−1 − c
)2 ≤ c2,

so this contribution to (123) may be bounded by

log k

m2
c2E

∫

[0,T]
g(s)2

(∫ 1

0

11+uτ−Sk−1≥s

1 + uτ − Sk−1 + (k − 1)s
du

)

ds.

Observe on making the change of variables v := 1 + uτ − Sk−1 + (k − 1)s that

∫ 1

0

11+uτ−Sk−1≥s

1 + uτ − Sk−1 + (k − 1)s
du =

1

τ

∫

[max(ks,1−Sk−1+(k−1)s),1−Sk−1+τ+(k−1)s]

dv

v

≤
1

τ
log

ks + τ

ks

and so this contribution to (123) is bounded byWX, whereW ,X are defined in (110) and

(111).

Now we consider the contribution to (123) whene

1 + uτ − Sk−1 > 2c.

In this regime, we bound

1

1 + uτ − Sk−1 + (k − 1)s
≤

1

2c + (k − 1)t
,

and so this portion of
∫ 1
0 Z4[ 1 + uτ ] dumay be bounded by

∫ 1

0

log k

c
E
(

1 + uτ − Sk−1 − c
)2

V du = VU

where V ,U are defined in (112) and (113). The proof of the theorem is now complete.

We can now perform an asymptotic analysis in the limit k → ∞ to establish

Theorem 23(xi) and Theorem 25(vi). For k sufficiently large, we select the parameters

c :=
1

log k
+

α

log2 k

T :=
β

log k

τ :=
γ

log k
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for some real parameters α ∈ R and β , γ > 0 independent of k to be optimized in later.

From (100) and (101), we have

m2 =
1

k − 1

(

1

c
−

1

c + (k − 1)T

)

=
log k

k

(

1 −
α

log k
+ o

(

1

log k

))

where we use o
(

f (k)
)

to denote a function g(k) of k with g(k)/f (k) → 0 as k → ∞. On

the other hand, we have from (100) and (102) that

m2(c + (k − 1)μ) =
∫ T

0
(c + (k − 1)t) g(t)2 dt

=
1

k − 1
log

c + (k − 1)T

c

=
log k

k

(

1 +
logβ

log k
+ o

(

1

log k

))

and thus

kμ =
k

k − 1

(

1 +
logβ + α

log k
+ o

(

1

log k

))

−
kc

k − 1

= 1 +
logβ + α

log k
+ o

(

1

log k

)

−
(

1

log k
+ o

(

1

log k

))

= 1 +
logβ + α − 1

log k
+ o

(

1

log k

)

.

Similarly, from (100), (102), and (103), we have

m2

(

c2 + 2c(k − 1)μ + (k − 1)2
(

μ2 + σ 2
))

=
∫ T

0
(c + (k − 1)t)2 g(t)2 dt

= T

and thus

kσ 2 =
k

(k − 1)2

(

T

m2
− c2 − 2c(k − 1)μ

)

− kμ2

=
β

log2 k
+ o

(

1

log2 k

)

.

We conclude that the hypotheses (104), (105), and (106) will be obeyed for sufficiently

large k if we have

logβ + α + γ < 1

logβ + α + β < 1

β <
(

1 + γ − α − logβ
)2

.

These conditions can be simultaneously obeyed, for instance by setting β = γ = 1 and

α = −1.

Now we crudely estimate the quantities Z,Z3,W ,X,V ,U in (108)-(113). For 1 ≤ r ≤
1 + τ , we have r − kμ ∼ 1/ log k, and so

r − kμ

T
≍ 1;

kσ 2

(r − kμ)2
≍ 1;

r2

4kT
= o(1)



Polymath Research in theMathematical Sciences 2014, 1:12 Page 56 of 83

http://www.resmathsci.com/content/1/1/12

and so by (108) Z = O(1). Using the crude bound log
(

1 + t
T

)

= O(1) for 0 ≤ t ≤ T , we

see from (109) and (102) that Z3 = O(kμ) = O(1). It is clear that X = O(1), and using the

crude bound 1
2c+(k−1)t ≤ 1

c we see from (112) and (101) that V = O(1). For 0 ≤ u ≤ 1 we

have 1+ uτ − (k − 1)μ − c = O(1/ log k), so from (113) we have U = O(1). Finally, from

(110) and the change of variables t = s
k log k , we have

W =
log k

km2

∫ kT log k

0
log
(

1 +
γ

s

) ds
(

1 + α
log k + k−1

k s
)2

= O

(∫ ∞

0
log
(

1 +
γ

s

) ds

(1 + o(1))(1 + s)2

)

= O(1).

Finally, we have

1 −
kσ 2

(1 + τ − kμ)2
∼ 1.

Putting all these together, we see from (107) that

Mk ≥ M
[T]
k ≥

k

k − 1
log k − O(1)

giving Theorem 23(xi). Furthermore, if we set

̟ :=
7

600
−

C

log k

and

δ :=
(

1

4
+

7

600

)

β

log k
,

then we will have 600̟ + 180δ < 7 for C large enough, and Theorem 25(vi) also follows

(as one can verify from inspection that all implied constants here are effective).

Finally, Theorem 23(viii), (ix), and (x) follow by setting

c :=
θ

log k

T :=
β

log k

τ = 1 − kμ

with θ ,β given by Table 2, with (107) then giving the boundM
[T]
k > M withM as given by

the table, after verifying of course that the conditions (104), (105), and (106) are obeyed.

Similarly, Theorem 25 (ii), (iii), (iv), and (v) follows with θ ,β given by the same table, with

̟ chosen so that

M =
m

1
4 + ̟

withm = 2, 3, 4, 5 for (ii), (iii), (iv), (v), respectively, and δ chosen by the formula

δ := T

(

1

4
+ ̟

)

.
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Table 2 Parameter choices for Theorems 23 and 25

k θ β M

5,511 0.965 0.973 6.000048609

35,410 0.99479 0.85213 7.829849259

41,588 0.97878 0.94319 8.000001401

309,661 0.98627 0.92091 10.00000032

1,649,821 1.00422 0.80148 11.65752556

75,845,707 1.00712 0.77003 15.48125090

3,473,955,908 1.0079318 0.7490925 19.30374872

The case of small andmedium dimension

In this section, we establish lower bounds for Mk (and related quantities, such as Mk,ε)

both for small values of k (in particular, k = 3 and k = 4) and medium values of k (in par-

ticular, k = 50 and k = 54). Specifically, we will establish Theorem 23(vii), Theorem 27,

and Theorem 29.

BoundingMk for medium k

We begin with the problem of lower bounding Mk . We first formalize an observationf of

Maynard [5] that one may restrict without loss of generality to symmetric functions:

Lemma 41. For any k ≥ 2, one has

Mk := sup
kJ1(F)

I(F)

where F ranges over symmetric square-integrable functions on Rk that are not identically

zero.

Proof. Firstly, observe that if one replaces a square-integrable function F : [0,+∞)k →
Rwith its absolute value |F|, then I(|F|) = I(F) and Ji(|F|) ≥ Ji(F). Thus, one may restrict

the supremum in (33) to non-negative functions without loss of generality. We may thus

find a sequence Fn of square-integrable non-negative functions onRk , normalized so that

I(Fn) = 1, and such that
∑k

i=1 Ji(Fn) → Mk as n → ∞.

Now let

Fn(t1, . . . , tk) :=
1

k!

∑

σ∈Sk

Fn(tσ(1), . . . , tσ(k))

be the symmetrisation of Fn. Since the Fn are non-negative with I(Fn) = 1, we see that

I(Fn) ≥ I

(

1

k!
Fn

)

=
1

(k! )2

and so I(Fn) is bounded away from zero. Also, from (33), we know that the quadratic form

Q(F) := MkI(F) −
k
∑

i=1

Ji(F)
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is positive semi-definite and is also invariant with respect to symmetries, and so from the

triangle inequality for inner product spaces, we conclude that

Q
(

Fn
)

≤ Q (Fn) .

By construction, Q(Fn) goes to zero as n → ∞, and thus Q(Fn) also goes to zero. We

conclude that

kJ1
(

Fn
)

I
(

Fn
) =

∑k
i=1 Ji

(

Fn
)

I
(

Fn
) → Mk

as n → ∞, and so

Mk ≥ sup
kJ1(F)

I(F)
.

The reverse inequality is immediate from (33), and the claim follows.

To establish a lower bound of the form Mk > C for some C > 0, one thus seeks to

locate a symmetric function F : [0,+∞)k → R supported onRk such that

kJ1(F) > CI(F). (124)

To do this numerically, we follow [5] (see also [2] for some related ideas) and can restrict

attention to functions F that are linear combinations

F =
n
∑

i=1

aibi

of some explicit finite set b1, . . . , bn : [0,+∞)k → R supported on Rk and some real

scalars a1, . . . , an that we may optimize in. The condition (124) then may be rewritten as

aTM2a − CaTM1a > 0 (125)

where a is the vector

a :=

⎛

⎜

⎜

⎝

a1
...

an

⎞

⎟

⎟

⎠

andM1,M2 are the real symmetric and positive semi-definite n × nmatrices

M1 =
(∫

Rk
bi(t1, . . . , tk)bj(t1, . . . , tk) dt1 . . . dtk

)

1≤i,j≤n

(126)

M2 =
(

k

∫

Rk+1
bi(t1, . . . , tk)bj(t1, . . . , tk−1, t

′
k) dt1 . . . dtkdt

′
k

)

1≤i,j≤n

. (127)

If the b1, . . . , bn are linearly independent in L2(Rk), thenM1 is strictly positive definite,

and (as observed in [5, Lemma 8.3]), one can find a obeying (125) if and only if the largest

eigenvalue of M2M
−1
1 exceeds C. This is a criterion that can be numerically verified for

medium-sized values of n, if the b1, . . . , bn are chosen so that the matrix coefficients of

M1,M2 are explicitly computable.
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In order to facilitate computations, it is natural to work with bases b1, . . . , bn of

symmetric polynomials. We have the following basic integration identity:

Lemma 42 (Beta function identity). For any non-negative a, a1, . . . , ak , we have

∫

Rk

(1 − t1 − · · · − tk)
at

a1
1 . . . t

ak
k dt1 . . . dtk =

Ŵ(a + 1)Ŵ(a1 + 1) . . . Ŵ(ak + 1)

Ŵ(a1 + · · · + ak + k + a + 1)

whereŴ(s) :=
∫∞
0 ts−1e−t dt is the Gamma function. In particular, if a1, . . . , ak are natural

numbers, then

∫

Rk

(1 − t1 − · · · − tk)
at

a1
1 . . . t

ak
k dt1 . . . dtk =

a! a1! . . . ak !

(a1 + · · · + ak + k + a)!
.

Proof. Since

∫

Rk

(1 − t1 − · · · − tk)
at

a1
1 . . . t

ak
k dt1 . . . dtk = a

∫

Rk+1

t
a1
1 . . . t

ak
k ta−1

k+1 dt1 . . . dtk+1,

we see that to establish the lemma, it suffices to do so in the case a = 0.

If we write

X :=
∫

t1+···+tk=1
t
a1
1 . . . t

ak
k dt1 . . . dtk−1,

then by homogeneity we have

ra1+···+ak+k−1X =
∫

t1+···+tk=r
t
a1
1 . . . t

ak
k dt1 . . . dtk−1

for any r > 0, and hence on integrating r from 0 to 1, we conclude that

X

a1 + · · · + ak + k
=
∫

Rk

t
a1
1 . . . t

ak
k dt1 . . . dtk .

On the other hand, if we multiply by e−r and integrate r from 0 to ∞, we obtain instead

∫ ∞

0
ra1+···+ak+k−1Xe−r dr =

∫

[0,+∞)k
t
a1
1 . . . t

ak
k e−t1−···−tk dt1 . . . dtk .

Using the definition of the Gamma function, this becomes

Ŵ(a1 + · · · + ak + k)X = Ŵ(a1 + 1) . . . Ŵ(ak + 1)

and the claim follows.

Define a signature to be a non-increasing sequence α = (α1,α2, . . . ,αk) of natural num-

bers; for brevity, we omit zeroes; thus, for instance if k = 6, then (2, 2, 1, 1, 0, 0) will be
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abbreviated as (2, 2, 1, 1). The number of non-zero elements of α will be called the length

of the signature α, and as usual the degree of α with be α1 + · · · + αk . For each signature

α, we then define the symmetric polynomials Pα = P
(k)
α by the formula

Pα(t1, . . . , tk) =
∑

a:s(a)=α

t
a1
1 . . . t

ak
k

where the summation is over all tuples a = (a1, . . . , ak) whose non-increasing rearrange-

ment s(a) is equal to α. Thus, for instance

P(1)(t1, . . . , tk) = t1 + · · · + tk

P(2)(t1, . . . , tk) = t21 + · · · + t2k

P(1,1)(t1, . . . , tk) =
∑

1≤i<j≤k

titj

P(2,1)(t1, . . . , tk) =
∑

1≤i<j≤k

t2i tj + tit
2
j

and so forth. Clearly, the Pα form a linear basis for the symmetric polynomials of t1, . . . , tk .

Observe that if α = (α′, 1) is a signature containing 1, then one can express Pα as P(1)Pα′

minus a linear combination of polynomials Pβ with the length of β less than that of α.

This implies that the functions Pa(1)Pα , with a ≥ 0 and α avoiding 1, are also a basis for

the symmetric polynomials. Equivalently, the functions (1 − P(1))
aPα with a ≥ 0 and α

avoiding 1 form a basis.

After extensive experimentation, we have discovered that a good basis b1, . . . , bn to use

for the above problem comes by setting the bi to be all the symmetric polynomials of the

form (1 − P(1))
aPα , where a ≥ 0 and α consists entirely of even numbers, whose total

degree a + α1 + · · · + αk is less than or equal to some chosen threshold d. For such

functions, the coefficients ofM1,M2 can be computed exactly using Lemma 42.

More explicitly, first we quickly compute a look-up table for the structure constants

cα,β ,γ ∈ Z derived from simple products of the form

PαPβ =
∑

γ

cα,β ,γ Pγ

where deg(α) + deg(β) ≤ d. Using this look-up table, we rewrite the integrands of the

entries of the matrices in (126) and (127) as integer linear combinations of nearly ‘pure’

monomials of the form (1− P(1))
at

a1
1 . . . t

ak
k . We then calculate the entries ofM1 andM2,

as exact rational numbers, using Lemma 42.

We next run a generalized eigenvector routine on (real approximations to) M1 and M2

to find a vector a′ which nearly maximize the quantityC in (125). Taking a rational approx-

imation a to a′, we then do the quick (and exact) arithmetic to verify that (125) holds for

some constant C > 4. This generalized eigenvector routine is time-intensive when the

sizes of M1 and M2 are large (say, bigger than 1, 500 × 1, 500) and in practice is the most

computationally intensive step of our calculation. When one does not care about an exact

arithmetic proof that C > 4, instead one can run a test for positive-definiteness for the

matrix CM1 − M2, which is usually much faster and less RAM intensive.

Using this method, we were able to demonstrate M54 > 4.00238, thus establishing

Theorem 23(vii). We took d = 23 and imposing the restriction on signatures α that they

be composed only of even numbers. It is likely that d = 22 would suffice in the absence of
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this restriction on signatures, but we found that the gain in M54 from lifting this restric-

tion is typically only in the region of 0.005, whereas the execution time is increased by a

large factor. We do not have a good understanding of why this particular restriction on

signatures is so inexpensive in terms of the trade-off between the accuracy of M-values

and computational complexity. The total run-time for this computation was under 1 h.

We now describe a second choice for the basis elements b1, . . . , bn, which uses the

Krylov subspace method; it gives faster and more efficient numerical results than the pre-

vious basis, but does not seem to extend as well to more complicated variational problems

such asMk,ε . We introduce the linear operator L : L2(Rk) → L2(Rk) defined by

Lf (t1, . . . , tk) :=
k
∑

i=1

∫ 1−t1−···−ti−1−ti+1−···−tk

0
f (t1, . . . , ti−1, t

′
i , ti+1, . . . , tk) dt

′
i .

This is a self-adjoint and positive semi-definite operator on L2(Rk). For symmetric

b1, . . . , bn ∈ L2(Rk), one can then write

M1 =
(

〈bi, bj〉
)

1≤i,j≤n

M2 =
(

〈Lbi, bj〉
)

1≤i,j≤n
.

If we then choose

bi := Li−11

where 1 is the unit constant function on Rk , then the matrices M1,M2 take the Hankel

form

M1 =
(

〈Li+j−21, 1〉
)

1≤i,j≤n

M2 =
(

〈Li+j−11, 1〉
)

1≤i,j≤n
,

and so can be computed entirely in terms of the 2n numbers 〈Li1, 1〉 for i = 0, . . . , 2n− 1.

The operator L maps symmetric polynomials to symmetric polynomials; for instance,

one has

L1 = k − (k − 1)P(1)

LP(1) =
k

2
−

k − 1

2
P(2) − (k − 2)P(1,1)

and so forth. From this and Lemma 42, the quantities 〈Li1, 1〉 are explicitly computable

rational numbers; for instance, one can calculate

〈1, 1〉 =
1

k!

〈L1, 1〉 =
2k

(k + 1)!

〈L21, 1〉 =
k(5k + 1)

(k + 2)!

〈L31, 1〉 =
2k2(7k + 5)

(k + 3)!

and so forth.

With Maple, we were able to compute 〈Li1, 1〉 for i ≤ 50 and k ≤ 100, leading to lower

bounds onMk for these values of k, a selection of which is given in Table 3.
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Table 3 Selected lower bounds onMk obtained from the Krylov subspacemethod, with
k

k−1 log k upper bound displayed for comparison

k Lower bound onMk
k

k−1 log k

2 1.38593 1.38629

3 1.64644 1.64791

4 1.84540 1.84839

5 2.00714 2.01179

10 2.54547 2.55842

20 3.12756 3.15340

30 3.48313 3.51848

40 3.73919 3.78346

50 3.93586 3.99186

53 3.98621 4.04664

54 4.00223 4.06424

60 4.09101 4.16374

100 4.46424 4.65168

BoundingMk,ε for medium k

When bounding Mk,ε , we have not been able to implement the Krylov method because

the analogue of Li1 in this context is piecewise polynomial instead of polynomial, and we

were only able to compute it explicitly for very small values of i, such as i = 1, 2, 3, which

are insufficient for good numerics. Thus, we rely on the previously discussed approach,

in which symmetric polynomials are used for the basis functions. Instead of computing

integrals over the regionRk , we pass to the regions (1±ε)Rk . In order to apply Lemma 42

over these regions, this necessitates working with a slightly different basis of polynomials.

We chose to work with those polynomials of the form (1 + ε − P(1))
aPα , where α is a

signature with no 1’s. Over the region (1 + ε)Rk , a single change of variables converts

the needed integrals into those of the form in Lemma 42, and we can then compute the

entries ofM1.

On the other hand, over the region (1−ε)Rk , we instead want to work with polynomials

of the form (1− ε −P(1))
aPα . Since (1+ ε −P(1))

a = (2ε + (1− ε −P(1)))
a, an expansion

using the binomial theorem allows us to convert from our given basis to polynomials of

the needed form.

With these modifications, and calculating as in the previous section, we find that

M50,1/25 > 4.00124 if d = 25 and M50,1/25 > 4.0043 if d = 27, thus establishing

Theorem 27(i). As before, we found it optimal to restrict signatures to contain only

even entries, which greatly reduced execution time while only reducing M by a few

thousandths.

One surprising additional computational difficulty introduced by allowing ε > 0 is that

the ‘complexity’ of ε as a rational number affects the run-time of the calculations. We

found that choosing ε = 1/m (where m ∈ Z has only small prime factors) reduces this

effect.

A similar argument givesM51,1/50 > 4.00156, thus establishing Theorem 27(xiii). In this

case, our polynomials were of maximum degree d = 22.

Code and data for these calculations may be found at http://www.dropbox.com/sh/

0xb4xrsx4qmua7u/WOhuo2Gx7f/Polymath8b.

http://www.dropbox.com/sh/0xb4xrsx4qmua7u/WOhuo2Gx7f/Polymath8b
http://www.dropbox.com/sh/0xb4xrsx4qmua7u/WOhuo2Gx7f/Polymath8b
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BoundingM4,ε

We now prove Theorem 27(xii’), which can be established by a direct numerical calcula-

tion. We introduce the explicit function F : [0,+∞)4 → R defined by

F(t1, t2, t3, t4) := (1 − α(t1 + t2 + t3 + t4))1t1+t2+t3+t4≤1+ε

with ε := 0.168 and α := 0.784. As F is symmetric in t1, t2, t3, t4, we have Ji,1−ε(F) =
J1,1−ε(F), so to show Theorem 27(xii’) it will suffice to show that

4J1,1−ε(F)

I(F)
> 2.00558. (128)

By making the change of variables s = t1 + t2 + t3 + t4, we see that

I(F) =
∫

t1+t2+t3+t4≤1+ε

(1 − α(t1 + t2 + t3 + t4))
2 dt1dt2dt3dt4

=
∫ 1+ε

0
(1 − αs)2

s3

3!
ds

= α2 (1 + ε)6

36
− α

(1 + ε)5

15
+

(1 + ε)4

24

= 0.00728001347 . . .

and similarly by making the change of variables u = t1 + t2 + t3

J1,1−ε(F) =
∫

t1+t2+t3≤1−ε

(∫ 1+ε−t1−t2−t3

0
(1 − α(t1 + t2 + t3 + t4)) dt4

)2

dt1dt2dt3

=
∫ 1−ε

0

(∫ 1+ε−u

0
(1 − α(u + t4)) dt4

)2
u2

2!
du

=
∫ 1−ε

0
(1 + ε − u)2

(

1 − α
1 + ε + u

2

)2 u2

2
du

= 0.003650160667 . . .

and so (128) follows.

Remark 43. If we use the truncated function

F̃(t1, t2, t3, t4) := F(t1, t2, t3, t4)1t1,t2,t3,t4≤1

in place of F and set ε to 0.18 instead of 0.168, one can compute that

4J1,1−ε(F̃)

I(F̃)
> 2.00235.

Thus, it is possible to establish Theorem 27(xii’) using a cutoff function F ′ that is also

supported in the unit cube [0, 1]4. This allows for a slight simplification to the proof of

DHL[4; 2] assuming GEH, as one can add the additional hypothesis S(Fi0) + S(Gi0) < 1

to Theorem 20(ii) in that case.

Remark 44. By optimizing in ε and taking F to be a symmetric polynomial of degree

higher than 1, one can get slightly better lower bounds for M4,ε ; for instance, setting

ε = 5/21 and choosing F to be a cubic polynomial, we were able to obtain the bound

M4,ε ≥ 2.05411. On the other hand, the best lower bound for M3,ε that we were able

to obtain was 1.91726 (taking ε = 56/113 and optimizing over cubic polynomials).
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Again, see www.dropbox.com/sh/0xb4xrsx4qmua7u/WOhuo2Gx7f/Polymath8b for the

relevant code and data.

Three-dimensional cutoffs

In this section, we establish Theorem 29. We relabel the variables (t1, t2, t3) as (x, y, z);

thus, our task is to locate a piecewise polynomial function F : [0,+∞)3 → R supported

on the simplex

R :=
{

(x, y, z) ∈[0,+∞)3 : x + y + z ≤
3

2

}

and symmetric in the x, y, z variables, obeying the vanishing marginal condition

∫ ∞

0
F(x, y, z) dz = 0 (129)

whenever x, y ≥ 0 with x + y > 1 + ε, and such that

J(F) > 2I(F) (130)

where

J(F) := 3

∫

x+y≤1−ε

(∫ ∞

0
F(x, y, z) dz

)2

dxdy (131)

and

I(F) :=
∫

R
F(x, y, z)2 dxdydz (132)

and

ε := 1/4.

Our strategy will be as follows. We will decompose the simplex R (up to null sets) into

a carefully selected set of disjoint open polyhedra P1, . . . ,Pm (in fact m will be 60), and

on each Pi we will take F(x, y, z) to be a low-degree polynomial Fi(x, y, z) (indeed, the

degree will never exceed 3). The left-hand and right-hand sides of (130) become quadratic

functions in the coefficients of the Fi. Meanwhile, the requirement of symmetry, as well as

the marginal requirement (129), imposes some linear constraints on these coefficients. In

principle, this creates a finite-dimensional quadratic program, which one can try to solve

numerically. However, to make this strategy practical, one needs to keep the number of

linear constraints imposed on the coefficients to be fairly small, as compared with the

total number of coefficients. To achieve this, the following properties on the polynomials

Pi are desirable:

• (Symmetry) If Pi is a polytope in the partition, then every reflection of Pi formed by

permuting the x, y, z coordinates should also lie in the partition.

• (Graph structure) Each polytope Pi should be of the form

{

(x, y, z) : z ∈ Qi; ai(x, y) < z < bi(x, y)
}

, (133)

where ai(x, y), bi(x, y) are linear forms and Qi is a polygon.

• (Epsilon splitting) Each Qi is contained in one of the regions
{

(x, y) : x + y < 1 − ε
}

,
{

(x, y) : 1 − ε < x + y < 1 + ε
}

, or
{

(x, y) : 1 + ε < x + y < 3/2
}

.

http://www.dropbox.com/sh/0xb4xrsx4qmua7u/WOhuo2Gx7f/Polymath8b
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Observe that the vanishing marginal condition (129) now takes the form

∑

i:(x,y)∈Qi

∫ bi(x,y)

ai(x,y)
Fi(x, y, z) dz = 0 (134)

for every x, y > 0 with x + y > 1 + ε. If the set {i : (x, y) ∈ Qi} is fixed, then the left-hand

side of (134) is a polynomial in x, y whose coefficients depend linearly on the coefficients

on the Fi, and thus (134) imposes a set of linear conditions on these coefficients for each

possible set {i : (x, y) ∈ Qi} with x + y > 1 + ε.

Now we describe the partition we will use. This partition can in fact be used for all ε in

the interval [1/4, 1/3], but the endpoint ε = 1/4 has some simplifications which allowed

for reasonably good numerical results. To obtain the symmetry property, it is natural to

split R (modulo null sets) into six polyhedra Rxyz,Rxzy,Ryxz,Ryzx,Rzxy,Rzyx, where

Rxyz :=
{

(x, y, z) ∈ R : x + y < y + z < z + x
}

=
{

(x, y, z) : 0 < y < x < z; x + y + z ≤ 3/2
}

and the other polyhedra are obtained by permuting the indices x, y, z, thus for instance

Ryxz :=
{

(x, y, z) ∈ R : y + x < x + z < z + y
}

=
{

(x, y, z) : 0 < x < y < z; x + y + z ≤ 3/2
}

.

To obtain the epsilon splitting property, we decompose Rxyz (modulo null sets) into

eight sub-polytopes

Axyz =
{

(x, y, z) ∈ R : x + y < y + z < z + x < 1 − ε
}

,

Bxyz =
{

(x, y, z) ∈ R : x + y < y + z < 1 − ε < z + x < 1 + ε
}

,

Cxyz =
{

(x, y, z) ∈ R : x + y < 1 − ε < y + z < z + x < 1 + ε
}

,

Dxyz =
{

(x, y, z) ∈ R : 1 − ε < x + y < y + z < z + x < 1 + ε
}

,

Exyz =
{

(x, y, z) ∈ R : x + y < y + z < 1 − ε < 1 + ε < z + x
}

,

Fxyz =
{

(x, y, z) ∈ R : x + y < 1 − ε < y + z < 1 + ε < z + x
}

,

Gxyz =
{

(x, y, z) ∈ R : x + y < 1 − ε < 1 + ε < y + z < z + x
}

,

Hxyz =
{

(x, y, z) ∈ R : 1 − ε < x + y < y + z < 1 + ε < z + x
}

;

the other five polytopes Rxzy,Ryxz,Ryzx,Rzxy,Rzyx are decomposed similarly, leading to a

partition of R into 6×8 = 48 polytopes. This is almost the partition we will use; however,

there is a technical difficulty arising from the fact that some of the permutations of Fxyz

do not obey the graph structure property. So we will split Fxyz further into the three pieces

Sxyz =
{

(x, y, z) ∈ Fxyz : z < 1/2 + ε
}

,

Txyz =
{

(x, y, z) ∈ Fxyz : z > 1/2 + ε; x > 1/2 − ε
}

,

Uxyz =
{

(x, y, z) ∈ Fxyz : x < 1/2 − ε
}

.

Thus, Rxyz is now partitioned into ten polytopes Axyz, Bxyz, Cxyz, Dxyz, Exyz, Sxyz, Txyz,

Uxyz, Gxyz, Hxyz, and similarly for permutations of Rxyz, leading to a decomposition of R

into 6 × 10 = 60 polytopes.

A symmetric piecewise polynomial function F supported on R can now be described

(almost everywhere) by specifying a polynomial function F ⇂P : P → R for the ten
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polytopes P = Axyz,Bxyz,Cxyz,Dxyz,Exyz, Sxyz,Txyz,Uxyz,Gxyz,Hxyz, and then extending by

symmetry, thus for instance

F ⇂Ayzx (x, y, z) = F ⇂Axyz (z, x, y).

As discussed earlier, the expressions I(F), J(F) can now be written as quadratic forms

in the coefficients of the F ⇂P , and the vanishing marginal condition (129) imposes some

linear constraints on these coefficients.

Observe that the polytope Dxyz and all of its permutations make no contribution to

either the functional J(F) or to the marginal condition (129), and give a non-negative

contribution to I(F). Thus, without loss of generality we may assume that

F ⇂Dxyz= 0.

However, the other nine polytopes Axyz,Bxyz,Cxyz,Exyz, Sxyz,Txyz,Uxyz,Gxyz,Hxyz have

at least one permutation which gives a non-trivial contribution to either J(F) or to (129),

and cannot be easily eliminated.

Now we compute I(F). By symmetry, we have

I(F) = 3! I(F ⇂Rxyz) = 6
∑

P

I(F ⇂P)

where P ranges over the nine polytopes Axyz,Bxyz,Cxyz,Exyz, Sxyz,Txyz,Uxyz,Gxyz,Hxyz. A

tedious but straightforward computation shows that

I(F ⇂Axyz) =
∫ 1/2−ε/2

x=0

∫ x

y=0

∫ 1−ε−x

z=x
F ⇂2Axyz

dz dy dx

I(F ⇂Bxyz) =
(∫ 1/2+ε/2

z=1/2−ε/2

∫ z

x=1−ε−z
+
∫ 1−ε

z=1/2+ε/2

∫ 1+ε−z

x=1−ε−z

)∫ 1−ε−z

y=0
F ⇂2Bxyz dy dx dz

I(F ⇂Cxyz) =
(∫ 1/2−3ε/2

y=0

∫ y+2ε

x=y
+
∫ 1/2−ε

y=1/2−3ε/2

∫ 1−ε−y

x=y

)∫ 1+ε−x

z=1−ε−y

+
∫ 1/2−ε/2

y=1/2−ε

∫ 1−ε−y

x=y

∫ 3/2−x−y

z=1−ε−y
F ⇂2Cxyz

dz dx dy

I(F ⇂Exyz) =
∫ 1−ε

z=1/2+ε/2

∫ z

x=1+ε−z

∫ 1−ε−z

y=0
F ⇂2Exyz dy dx dz

I(F ⇂Sxyz) =
(∫ 1/2−3ε/2

y=0

∫ 1/2+ε

z=1−ε−y
+
∫ 1/2−ε

y=1/2−3ε/2

∫ 1/2+ε

z=y+2ε

)∫ 1−ε−y

x=1+ε−z
F ⇂Sxyz dx dz dy

I(F ⇂Txyz) =
(∫ 1/2+2ε

z=1/2+ε

∫ 3/2−z

x=1+ε−z
+
∫ 1+ε

z=1/2+2ε

∫ 3/2−z

x=1/2−ε

)∫ 3/2−x−z

y=0
F ⇂2Txyz

dy dz dx

I(F ⇂Uxyz) =
∫ 1/2−ε

x=0

∫ x

y=0

∫ 1+ε−y

z=1+ε−x
F ⇂Uxyz dz dy dx

I(F ⇂Gxyz) =
∫ 1/2−ε

x=0

∫ x

y=0

∫ 3/2−x−y

z=1+ε−y
F ⇂2Gxyz

dx dz dy

and

I(F ⇂Hxyz) =
(∫ 1−ε

x=1/2+ε/2

∫ 3/2−2x

y=1−ε−x
+
∫ 3/4

x=1−ε

∫ 3/2−2x

y=0

)∫ 3/2−x−y

z=x

+
∫ 1/2+ε/2

x=1/2

∫ 1/2−ε

y=1−ε−x

∫ 3/2−x−y

z=1+ε−x
F ⇂2Hxyz

dz dy dx.



Polymath Research in theMathematical Sciences 2014, 1:12 Page 67 of 83

http://www.resmathsci.com/content/1/1/12

Now we consider the quantity J(F). Here we only have the symmetry of swapping x and

y, so that

J(F) = 6

∫

0<y<x;x+y<1−ε

(∫ 3/2−x−y

0
F(x, y, z) dz

)2

dxdy.

The region of integrationmeets the polytopesAxyz,Ayzx,Azyx, Bxyz, Bzyx,Cxyz, Exyz, Ezyx,

Sxyz, Txyz, Uxyz, and Gxyz.

Projecting these regions to the (x, y)-plane, we have the diagram:

This diagram is drawn to scale in the case when ε = 1/4; otherwise, there is a sep-

aration between the J5 and J7 regions. For each of these eight regions, there are eight

corresponding integrals J1, J2, . . . , J8, and thus

J = 2 (J1 + · · · + J8) .

We have

J1 =
∫ 1/2−ε

x=0

∫ x

y=0

(∫ y

z=0
F ⇂Ayzx +

∫ x

z=y
F ⇂Azyx +

∫ 1−ε−x

z=x
F ⇂Axyz +

∫ 1−ε−y

z=1−ε−x
F ⇂Bxyz

+
∫ 1+ε−x

z=1−ε−y
F ⇂Cxyz +

∫ 1+ε−y

z=1+ε−x
F ⇂Uxyz +

∫ 3/2−x−y

z=1+ε−y
F ⇂Gxyz dz

)2

dy dx.

Next comes

J2 =
∫ 1/2−ε/2

x=1/2−ε

∫ x

y=1/2−ε

(∫ y

z=0
F ⇂Ayzx +

∫ x

z=y
F ⇂Azyx +

∫ 1−ε−x

z=x
F ⇂Axyz +

∫ 1−ε−y

z=1−ε−x
F ⇂Bxyz

+
∫ 3/2−x−y

z=1−ε−y
F ⇂Cxyz dz

)2

dy dx.

Third is the piece

J3 =
∫ 1/2−ε/2

x=1/2−ε

∫ 1/2−ε

y=0

(∫ y

z=0
F ⇂Ayzx +

∫ x

z=y
F ⇂Azyx +

∫ 1−ε−x

z=x
F ⇂Axyz +

∫ 1−ε−y

z=1−ε−x
F ⇂Bxyz

+
∫ 1+ε−x

z=1−ε−y
F ⇂Cxyz +

∫ 3/2−x−y

z=1+ε−x
F ⇂Txyz dz

)2

dy dx.
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We now have dealt with all integrals involving Axyz, and all remaining integrals pass

through Bzyx. Continuing, we have

J4 =
∫ 1/2

x=1/2−ε/2

∫ 1−ε−x

y=1/2−ε

(∫ y

z=0
F ⇂Ayzx +

∫ 1−ε−x

z=y
F ⇂Azyx +

∫ x

z=1−ε−x
F ⇂Bzyx

+
∫ 1−ε−y

z=x
F ⇂Bxyz +

∫ 3/2−x−y

z=1−ε−y
F ⇂Cxyz dz

)2

dy dx.

Another component is

J5 =
∫ 1/2

x=1/2−ε/2

∫ 1/2−ε

y=0

(∫ y

z=0
F ⇂Ayzx +

∫ 1−ε−x

z=y
F ⇂Azyx

+
∫ x

z=1−ε−x
F ⇂Bzyx +

∫ 1−ε−y

z=x
F ⇂Bxyz +

∫ 1+ε−x

z=1−ε−y
F ⇂Cxyz

+
∫ 3/2−x−y

z=1+ε−x
F ⇂Txyz dz

)2

dy dx.

The most complicated piece is

J6 =
(∫ 2ε

x=1/2

∫ 1−ε−x

y=0
+
∫ 1/2+ε/2

x=2ε

∫ 1−ε−x

y=x−2ε

)(∫ y

z=0
F ⇂Ayzx +

∫ 1−ε−x

z=y
F ⇂Azyx

+
∫ x

z=1−ε−x
F ⇂Bzyx +

∫ 1−ε−y

z=x
F ⇂Bxyz +

∫ 1+ε−x

z=1−ε−y
F ⇂Cxyz +

∫ 1/2+ε

z=1+ε−x
F ⇂Sxyz

+
∫ 3/2−x−y

z=1/2+ε

F ⇂Txyz dz

)2

dy dx.

Here we use
(

∫ 2ε
x=1/2

∫ 1−ε−x
y=0 +

∫ 1/2+ε/2
x=2ε

∫ 1−ε−x
y=x−2ε

)

f (x, y) dydx as an abbreviation for

∫ 2ε

x=1/2

∫ 1−ε−x

y=0
f (x, y) dydx +

∫ 1/2+ε/2

x=2ε

∫ 1−ε−x

y=x−2ε
f (x, y) dydx.

We have now exhausted Cxyz. The seventh piece is

J7 =
∫ 1/2+ε/2

x=2ε

∫ x−2ε

y=0

(∫ y

z=0
F ⇂Ayzx +

∫ 1−ε−x

z=y
F ⇂Azyx +

∫ x

z=1−ε−x
F ⇂Bzyx

+
∫ 1+ε−x

z=x
F ⇂Bxyz +

∫ 1−ε−y

z=1+ε−x
F ⇂Exyz +

∫ 1/2+ε

1−ε−y
F ⇂Sxyz

+
∫ 3/2−x−y

1/2+ε

F ⇂Txyz dz

)2

dy dx.

Finally, we have

J8 =
∫ 1−ε

x=1/2+ε/2

∫ 1−ε−x

y=0

(∫ y

z=0
F ⇂Ayzx +

∫ 1−ε−x

z=y
F ⇂Azyx +

∫ 1+ε−x

z=1−ε−x
F ⇂Bzyx

+
∫ x

z=1+ε−x
F ⇂Ezyx +

∫ 1−ε−y

z=x
F ⇂Exyz +

∫ 1/2+ε

1−ε−y
F ⇂Sxyz

+
∫ 3/2−x−y

1/2+ε

F ⇂Txyz dz

)2

dy dx.
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In the case ε = 1/4, the marginal conditions (129) reduce to requiring

∫ 3/2−x−y

z=0
F ⇂Gyzx dz = 0 (135)

∫ y

z=0
F ⇂Gyzx +

∫ 3/2−x−y

z=y
F ⇂Gzyx dz = 0 (136)

∫ 1+ε−x

z=0
F ⇂Uyzx +

∫ y

z=1+ε−x
F ⇂Gyzx +

∫ 3/2−x−y

z=y
F ⇂Gzyx dz = 0 (137)

∫ 1+ε−x

z=0
F ⇂Uyzx +

∫ 3/2−x−y

z=1+ε−x
F ⇂Gyzx dz = 0 (138)

∫ 3/2−x−y

z=0
F ⇂Tyzx dz = 0 (139)

∫ 1−ε−x

z=0
F ⇂Eyzx +

∫ 1−ε−y

z=1−ε−x
F ⇂Syzx +

∫ 3/2−x−y

z=1−ε−y
F ⇂Hyzx dz = 0. (140)

Each of these constraints is only required to hold for some portion of the parameter

space {(x, y) : 1+ ε ≤ x+ y ≤ 3/2}, but as the left-hand sides are all polynomial functions

in x, y (using the signed definite integral
∫ a
b = −

∫ b
a ), it is equivalent to require that all

coefficients of these polynomial functions vanish.

Now we specify F. After some numerical experimentation, we have found that the sim-

plest choice of F which still achieves the desired goal comes by taking F(x, y, z) to be a

polynomial of degree 1 on each of Exyz, Sxyz, and Hxyz; degree 2 on Txyz, vanishing on

Dxyz; and degree 3 on the remaining five relevant components of Rxyz. After solving the

quadratic program, rounding, and clearing denominators, we arrive at the choice

F ⇂Axyz := −66 + 96x − 147x2 + 125x3 + 128y − 122xy + 104x2y − 275y2 + 394y3

+ 99z − 58xz + 63x2z − 98yz + 51xyz + 41y2z − 112z2 + 24xz2 + 72yz2

+ 50z3

F ⇂Bxyz := −41 + 52x − 73x2 + 25x3 + 108y − 66xy + 71x2y − 294y2 + 56xy2

+ 363y3 + 33z + 15xz + 22x2z − 40yz − 42xyz + 75y2z − 36z2 − 24xz2

+ 26yz2 + 20z3

F ⇂Cxyz := −22 + 45x − 35x2 + 63y − 99xy + 82x2y − 140y2 + 54xy2 + 179y3

F ⇂Exyz := −12 + 8x + 32y

F ⇂Sxyz := −6 + 8x + 16y

F ⇂Txyz := 18 − 30x + 12x2 + 42y − 20xy − 66y2 − 45z + 34xz + 22z2

F ⇂Uxyz := 94 − 1, 823x + 5, 760x2 − 5, 128x3 + 54y − 168x2y + 105y2 + 1, 422xz

− 2, 340x2z − 192y2z − 128z2 − 268xz2 + 64z3

F ⇂Gxyz := 5, 274 − 19, 833x + 18, 570x2 − 5, 128x3 − 18, 024y + 44, 696xy

− 20, 664x2y + 16, 158y2 − 19, 056xy2 − 4, 592y3 − 10, 704z

+ 26, 860xz − 12, 588x2z + 24, 448yz − 30, 352xyz − 10, 980y2z + 7, 240z2

− 9, 092xz2 − 8, 288yz2 − 1, 632z3

F ⇂Hxyz := 8z.
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One may compute that

I(F) =
62, 082, 439, 864, 241

507, 343, 011, 840

and

J(F) =
9, 933, 190, 664, 926, 733

40, 587, 440, 947, 200

with all the marginal conditions (135)-(140) obeyed, and thus

J(F)

I(F)
= 2 +

286, 648, 173

4, 966, 595, 189, 139, 280

and (130) follows.

The parity problem

In this section, we argue why the ‘parity barrier’ of Selberg [7] prohibits sieve-theoretic

methods, such as the ones in this paper, from obtaining any bound on H1 that is stronger

than H1 ≤ 6, even on the assumption of strong distributional conjectures such as the

generalized Elliott-Halberstam conjecture GEH[ϑ] and even if one uses sieves other than

the Selberg sieve. Our discussion will be somewhat informal and heuristic in nature.

We begin by briefly recalling how the bound H1 ≤ 6 on GEH (i.e., Theorem 4(xii)) was

proven. This was deduced from the claim DHL[3; 2], or more specifically from the claim

that the set

A := {n ∈ N : at least two ofn, n + 2, n + 6 are prime} (141)

was infinite.

To do this, we (implicitly) established a lower bound

∑

n

ν(n)1A(n) > 0

for some non-negative weight ν : N → R
+ supported on [x, 2x] for a sufficiently large

x. This bound was in turn established (after a lengthy sieve-theoretic analysis, and with a

carefully chosen weight ν) from upper bounds on various discrepancies. More precisely,

one required good upper bounds (on average) for the expressions
∣

∣

∣

∣

∣

∣

∑

x≤n≤2x:x=a (q)

f (n + h) −
1

ϕ(q)

∑

x≤n≤2x:(n+h,q)=1

f (n + h)

∣

∣

∣

∣

∣

∣

(142)

for all h ∈ {0, 2, 6} and various residue classes a (q) with q ≤ x1−ε and arithmetic functions

f , such as the constant function f = 1, the von Mangoldt function f = 	, or Dirichlet

convolutions f = α ⋆ β of the type considered in Claim 12. (In the presentation of this

argument in previous sections, the shift by h was eliminated using the change of variables

n′ = n + h, but for the current discussion, it is important that we do not use this shift.)

One also required good asymptotic control on the main terms

∑

x≤n≤2x:(n+h,q)=1

f (n + h). (143)

An inspection of these arguments (which no longer exploit change of variables such as

n′ = n + h in the n variable) shows that they would be equally valid if one inserted a
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further non-negative weight ω : N → R
+ in the summation over n. More precisely, the

above sieve-theoretic argument would also deduce the lower bound

∑

n

ν(n)1A(n)ω(n) > 0

if one had control on the weighted discrepancies
∣

∣

∣

∣

∣

∣

∑

x≤n≤2x:x=a (q)

f (n + h)ω(n) −
1

ϕ(q)

∑

x≤n≤2x:(n+h,q)=1

f (n + h)ω(n)

∣

∣

∣

∣

∣

∣

(144)

and on the weighted main terms

∑

x≤n≤2x:(n+h,q)=1

f (n + h)ω(n) (145)

that were of the same form as in the unweighted case ω = 1.

Now suppose for instance that one was trying to prove the bound H1 ≤ 4. A natural

way to proceed here would be to replace the set A in (141) with the smaller set

A′ := {n ∈ N : n, n + 2are both prime} ∪ {n ∈ N : n + 2, n + 6are both prime} (146)

and hope to establish a bound of the form

∑

n

ν(n)1A′(n) > 0

for a well-chosen function ν : N → R
+ supported on [x, 2x], by deriving this bound from

suitable (averaged) upper bounds on the discrepancies (142) and control on the main

terms (143). If the arguments were sieve-theoretic in nature, then (as in the H1 ≤ 6 case)

one could then also deduce the lower bound

∑

n

ν(n)1A′(n)ω(n) > 0 (147)

for any non-negative weight ω : N → R
+, provided that one had the same control on the

weighted discrepancies (144) and weighted main terms (145) that one did on (142) and

(143).

We apply this observation to the weight

ω(n) := (1 − λ(n)λ(n + 2))(1 − λ(n + 2)λ(n + 6))

= 1 − λ(n)λ(n + 2) − λ(n + 2)λ(n + 6) + λ(n)λ(n + 6)

where λ(n) := (−1)�(n) is the Liouville function. Observe that ω vanishes for any n ∈ A′,

and hence

∑

n

ν(n)1A′(n)ω(n) = 0 (148)

for any ν. On the other hand, the ‘Möbius randomness law’ (see, e.g. [33]) predicts a

significant amount of cancellation for any non-trivial sum involving the Möbius function

μ or the closely related Liouville function λ. For instance, the expression

∑

x≤n≤2x:n=a (q)

λ(n + h)
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is expected to be very small (of sizeg O
(

x
q log

−A x
)

for any fixed A) for any residue class a

(q) with q ≤ x1−ε , and any h ∈ {0, 2, 6}; similarly for more complicated expressions such

as
∑

x≤n≤2x:n=a (q)

λ(n + 2)λ(n + 6)

or
∑

x≤n≤2x:n=a (q)

	(n)λ(n + 2)λ(n + 6)

or more generally
∑

x≤n≤2x:n=a (q)

f (n)λ(n + 2)λ(n + 6)

where f is a Dirichlet convolution α ⋆ β of the form considered in Claim 12. Similarly for

expressions such as
∑

x≤n≤2x:n=a (q)

f (n)λ(n)λ(n + 2);

note from the complete multiplicativity of λ that (α ⋆ β)λ = (αλ) ⋆ (βλ), so if f is of the

form in Claim 12, then f λ is also. In view of these observations (and similar observations

arising from permutations of {0, 2, 6}), we conclude (heuristically, at least) that all the

bounds that are believed to hold for (142) and (143) should also hold (up tominor changes

in the implied constants) for (144) and (145). Thus, if the bound H1 ≤ 4 could be proven

in a sieve-theoretic fashion, one should be able to conclude the bound (147), which is in

direct contradiction to (148).

Remark 45. Similar arguments work for any set of the form

AH := {n ∈ N : ∃n ≤ p1 < p2 ≤ n + H ; p1, p2 both prime, p2 − p1 ≤ 4}

and any fixed H > 0, to prohibit any non-trivial lower bound on
∑

n ν(n)1AH (n) from

sieve-theoretic methods. Indeed, one uses the weight

ω(n) :=
∏

0≤i≤i′≤H ;(n+i,3)=(n+i′,3)=1;i′−i≤4

(1 − λ(n + i)λ(n + i′));

we leave the details to the interested reader. This seems to block any attempt to use any

argument based only on the distribution of the prime numbers and related expressions in

arithmetic progressions to prove H1 ≤ 4.

The same arguments of course also prohibit a sieve-theoretic proof of the twin prime

conjecture H1 = 2. In this case, one can use the simpler weight ω(n) = 1 − λ(n)λ(n + 2)

to rule out such a proof, and the argument is essentially due to Selberg [7].

Of course, the parity barrier could be circumvented if one were able to introduce

stronger sieve-theoretic axioms than the ‘linear’ axioms currently available (which only

control sums of the form (142) or (143)). For instance, if one were able to obtain

non-trivial bounds for ‘bilinear’ expressions such as
∑

x≤n≤2x

f (n)	(n + 2) =
∑

d

∑

m

α(d)β(m)1[x,2x](dm)	(dm + 2)
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for functions f = α ⋆ β of the form in Claim 12, then (by a modification of the proof of

Proposition 13) one would very likely obtain non-trivial bounds on

∑

x≤n≤2x

	(n)	(n + 2)

which would soon lead to a proof of the twin prime conjecture. Unfortunately, we do not

know of any plausible way to control such bilinear expressions. (Note however that there

are some other situations in which bilinear sieve axioms may be established, for instance

in the argument of Friedlander and Iwaniec [40] establishing an infinitude of primes of

the form a2 + b4.)

Additional remarks

The proof of Theorem 16(xii) may be modified to establish the following variant:

Proposition 46. Assume the generalized Elliott-Halberstam conjecture GEH[ θ ] for all

0 < θ < 1. Let 0 < ε < 1/2 be fixed. Then, if x is a sufficiently large multiple of 6, there

exists a natural number n with εx ≤ n ≤ (1 − ε)x such that at least two of n, n − 2, x − n

are prime, and similarly if n − 2 is replaced by n + 2.

Note that if at least two of n, n− 2, x− n are prime, then either n, n+ 2 are twin primes

or else at least one of x, x − 2 is expressible as the sum of two primes, and Theorem 5

easily follows.

Proof. (Sketch) We just discuss the case of n − 2, as the n + 2 case is similar. Observe

from the Chinese remainder theorem (and the hypothesis that x is divisible by 6) that one

can find a residue class b (W ) such that b, b− 2, x− b are all coprime toW (in particular,

one has b = 1 (6)). By a routine modification of the proof of Lemma 18, it suffices to find

a non-negative weight function ν : N → R
+ and fixed quantities α > 0 and β1,β2,β3 ≥ 0,

such that one has the asymptotic upper bound

∑

εx≤n≤(1−ε)x
n=b (W )

ν(n) ≤ S(α + o(1))B−k (1 − 2ε)x

W
,

the asymptotic lower bounds

∑

εx≤n≤(1−ε)x
n=b (W )

ν(n)θ(n) ≥ S(β1 − o(1))B1−k (1 − 2ε)x

ϕ(W )

∑

εx≤n≤(1−ε)x
n=b (W )

ν(n)θ(n + 2) ≥ S(β2 − o(1))B1−k (1 − 2ε)x

ϕ(W )

∑

εx≤n≤(1−ε)x
n=b (W )

ν(n)θ(x − n) ≥ S(β3 − o(1))B1−k (1 − 2ε)x

ϕ(W )

and the inequality

β1 + β2 + β3 > 2α,



Polymath Research in theMathematical Sciences 2014, 1:12 Page 74 of 83

http://www.resmathsci.com/content/1/1/12

whereS is the singular series

S :=
∏

p|x(x−2);p>w

p

p − 1
.

We select ν to be of the form

ν(n) =

⎛

⎝

J
∑

j=1

cjλFj,1(n)λFj,2(n + 2)λFj,3(x − n)

⎞

⎠

2

for various fixed coefficients c1, . . . , cJ ∈ R and fixed smooth compactly supported func-

tions Fj,i : [0,+∞) → R with j = 1, . . . , J and i = 1, . . . , 3. It is then routineh to verify that

analogues of Theorem 19 and Theorem 20 hold for the various components of ν, with

the role of x in the right-hand side replaced by (1 − 2ε)x, and the claim then follows by a

suitable modification of Theorem 28, taking advantage of the function F constructed in

Theorem 29.

It is likely that the bounds in Theorem 4 can be improved further by refining the sieve-

theoretic methods employed in this paper, with the exception of part (xii) for which the

parity problem prevents further improvement, as discussed in the ‘The parity problem’

section. We list some possible avenues to such improvements as follows:

1. In Theorem 27, the boundMk,ε > 4 was obtained for some ε > 0 and k = 50. It is

possible that k could be lowered slightly, for instance to k = 49, by further

numerical computations, but we were only barely able to establish the k = 50

bound after 2 weeks of computation. However, there may be a more efficient way

to solve the required variational problem (e.g. by selecting a more efficient basis

than the symmetric monomial basis) that would allow one to advance in this

direction; this would improve the bound H1 ≤ 246 slightly. Extrapolation of

existing numerics also raises the possibility thatM53 exceeds 4, in which case the

bound of 270 in Theorem 4(vii) could be lowered to 264.

2. To reduce k (and thus H1) further, one could try to solve another variational

problem, such as the one arising in Theorem 24 or in Theorem 28, rather than

trying to lower boundMk orMk,ε . It is also possible to use the more complicated

versions of MPZ[̟ , δ] established (in which the modulus q is assumed to be

densely divisible rather than smooth) to replace the truncated simplex appearing in

Theorem 24 with a more complicated region (such regions also appear implicitly in

[§4.5]). However, in the medium-dimensional setting k ≈ 50, we were not able to

accurately and rapidly evaluate the various integrals associated to these variational

problems when applied to a suitable basis of functions. One key difficulty here is

that whereas polynomials appear to be an adequate choice of basis for theMk , an

analysis of the Euler-Lagrange equation reveals that one should use piecewise

polynomial basis functions instead for more complicated variational problems such

as theMk,ε problem (as was done in the three-dimensional case in the

‘Three-dimensional cutoffs’ section), and these are difficult to work with in

medium dimensions. From our experience with the low k problems, it looks like

one should allow these piecewise polynomials to have relatively high degree on
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some polytopes and low degree on other polytopes, and vanish completely on yet

further polytopesi, but we do not have a systematic understanding of what the

optimal placement of degrees should be.

3. In Theorem 28, the function F was required to be supported in the simplex
k

k−1 · Rk . However, one can consider functions F supported in other regions R,

subject to the constraint that all elements of the sumset R + R lie in a region

treatable by one of the cases of Theorem 20. This could potentially lead to other

optimization problems that lead to superior numerology, although again it appears

difficult to perform efficient numerics for such problems in the medium k regime

k ≈ 50. One possibility would be to adopt a ‘free boundary’ perspective, in which

the support of F is not fixed in advance, but is allowed to evolve by some iterative

numerical scheme.

4. To improve the bounds on Hm form = 2, 3, 4, 5, one could seek a better lower

bound onMk than the one provided by Theorem 40; one could also try to lower

bound more complicated quantities such asMk,ε .

5. One could attempt to improve the range of ̟ , δ for which estimates of the form

MPZ[̟ , δ] are known to hold, which would improve the results of

Theorem 4(ii)-(vi). For instance, we believe that the condition 600̟ + 180δ < 7 in

Theorem 11 could be improved slightly to 1, 080̟ + 330δ < 13 by refining the

arguments, but this requires a hypothesis of square root cancellation in a certain

four-dimensional exponential sum over finite fields, which we have thus far been

unable to establish rigorously. Another direction to pursue would be to improve

the δ parameter, or to otherwise relax the requirement of smoothness in the

moduli, in order to reduce the need to pass to a truncation of the simplexRk ,

which is the primary reason why them = 1 results are currently unable to use the

existing estimates of the form MPZ[̟ , δ]. Another speculative possibility is to seek

MPZ[̟ , δ] type estimates which only control distribution for a positive proportion

of smooth moduli, rather than for all moduli, and then to design a sieve ν adapted

to just that proportion of moduli (cf. [41]). Finally, there may be a way to combine

the arguments currently used to prove MPZ[̟ , δ] with the automorphic forms (or

‘Kloostermania’) methods used to prove nontrivial equidistribution results with

respect to a fixed modulus, although we do not have any ideas on how to actually

achieve such a combination.

6. It is also possible that one could tighten the argument in Lemma 18, for instance by

establishing a non-trivial lower bound on the portion of the sum
∑

n ν(n) when

n + h1, . . . , n + hk are all composite, or a sufficiently strong upper bound on the

pair correlations
∑

n θ(n + hi)θ(n + hj) (see [9, §6] for a recent implementation of

this latter idea). However, our preliminary attempts to exploit these adjustements

suggested that the gain from the former idea would be exponentially small in k,

whereas the gain from the latter would also be very slight (perhaps reducing k by

O(1) in large k regimes, e.g. k ≥ 5, 000).

7. All of our sieves used are essentially of Selberg type, being the square of a divisor

sum. We have experimented with a number of non-Selberg type sieves (for instance

trying to exploit the obvious positivity of 1 −
∑

p≤x:p|n
log p
log x when n ≤ x); however,

none of these variants offered a numerical improvement over the Selberg sieve.

Indeed it appears that after optimizing the cutoff function F, the Selberg sieve is in
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some sense a ‘local maximum’ in the space of non-negative sieve functions, and one

would need a radically different sieve to obtain numerically superior results.

8. Our numerical bounds for the diameter H(k) of the narrowest admissible k -tuple

are known to be exact for k ≤ 342, but there is scope for some slight improvement

for larger values of k, which would lead to some improvements in the bounds on

Hm form = 2, 3, 4, 5. However, we believe that our bounds on Hm are already fairly

close (e.g. within 10%) of optimal, so there is only a limited amount of gain to be

obtained solely from this component of the argument.

Narrow admissible tuples

In this section, we outline the methods used to obtain the numerical bounds on H(k)

given by Theorem 17, which are reproduced below:

1. H(3) = 6,

2. H(50) = 246,

3. H(51) = 252,

4. H(54) = 270,

5. H(5, 511) ≤ 52, 116,

6. H(35, 410) ≤ 398, 130,

7. H(41, 588) ≤ 474, 266,

8. H(309, 661) ≤ 4, 137, 854,

9. H(1, 649, 821) ≤ 24, 797, 814,

10. H(75, 845, 707) ≤ 1, 431, 556, 072,

11. H(3, 473, 955, 908) ≤ 80, 550, 202, 480.

H(k) values for small k

The equalities in the first four bounds (1)-(4) were previously known. The case H(3) = 6

is obvious: the admissible 3-tuples (0, 2, 6) and (0, 4, 6) have diameter 6 and no 3-tuple of

smaller diameter is admissible. The cases H(50) = 246, H(51) = 252, and H(54) = 270

follow from results of Clark and Jarvis [42]. They define ̺∗(x) to be the largest integer k

for which there exists an admissible k-tuple that lies in a half-open interval (y, y + x] of

length x. For each integer k > 1, the largest x for which ̺∗(x) = k is precisely H(k + 1).

Table 1 of [42] lists these largest x values for 2 ≤ k ≤ 170, and we find that H(50) = 246,

H(51) = 252, and H(54) = 270. Admissible tuples that realize these bounds are shown

in Subsubsections “Admissible 50-tuple realizing H(50) = 246”, “Admissible 51-tuple

realizing H(51) = 252” and “Admissible 54-tuple realizing H(54) = 270”.

Admissible 50-tuple realizing H(50) = 246

Admissible 51-tuple realizing H(51) = 252
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Admissible 54-tuple realizing H(54) = 270

H(k) bounds for mid-range k

As previously noted, exact values forH(k) are known only for k ≤ 342. The upper bounds

onH(k) for the five cases (5)-(9) were obtained by constructing admissible k-tuples using

techniques developed during the first part of the Polymath8 project. These are described

in detail in section 3 of [4], but for the sake of completeness, we summarize the most

relevant methods here.

Fast admissibility testing

A key component of all our constructions is the ability to efficiently determine whether a

given k-tuple H = (h1, . . . , hk) is admissible. We say that H is admissible modulo p if its

elements do not form a complete set of residues modulo p. Any k-tupleH is automatically

admissible modulo all primes p > k, since a k-tuple cannot occupy more than k residue

classes; thus, we only need to test admissibility modulo primes p < k.

A simple way to test admissibility modulo p is to enumerate the elements of H mod-

ulo p and keep track of which residue classes have been encountered in a table with p

boolean-valued entries. Assuming the elements of H have absolute value bounded by

O(k log k) (true of all the tuples we consider), this approach yields a total bit-complexity

of O(k2/ log k M(log k)), where M(n) denotes the complexity of multiplying two n-

bit integers, which, up to a constant factor, also bounds the complexity of division

with remainder. Applying the Schönhage-Strassen bound M(n) = O(n log n log log n)

from [43], this is O(k2 log log k log log log k), essentially quadratic in k.

This approach can be improved by observing that for most of the primes p < k, there

are likely to be many unoccupied residue classes modulo p. In order to verify admissibil-

ity at p, it is enough to find one of them, and we typically do not need to check them all

in order to do so. Using a heuristic model that assumes the elements of H are approxi-

mately equidistributed modulo p, one can determine a boundm < p such that k random

elements of Z/pZ are unlikely to occupy all of the residue classes in [0,m]. By represent-

ing the k-tuple H as a boolean vector B = (b0, . . . , bhk−h1) in which bi = 1 if and only

if i = hj − h1 for some hj ∈ H, we can efficiently test whether H occupies every residue

class in [0,m] by examining the the entries

b0, . . . , bm, bp, . . . , bp+m, b2p, . . . , b2p+m, . . .

of B. The key point is that when p < k is large, say p > (1+ǫ)k/ log k, we can choosem so

that we only need to examine a small subset of the entries inB. Indeed, for primes p > k/c

(for any constant c), we can take m = O(1) and only need to examine O(log k) elements

of B (assuming its total size isO(k log k), which applies to all the tuples we consider here).

Of course it may happen thatH occupies every residue class in [0,m] modulo p. In this

case, we revert to our original approach of enumerating the elements of H modulo p,

but we expect this to happen for only a small proportion of the primes p < k. Heuristi-

cally, this reduces the complexity of admissibility testing by a factor of O(log k), making
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it sub-quadratic. In practice, we find this approach to be much more efficient than the

straightforward method when k is large (see [§3.1] for further details.

Sievingmethods

Our techniques for constructing admissible k-tuples all involve sieving an integer interval

[s, t] of residue classes modulo primes p < k and then selecting an admissible k-tuple

from the survivors. There are various approaches one can take, depending on the choice

of interval and the residue classes to sieve. We list four of these below, starting with the

classical sieve of Eratosthenes and proceeding to more modern variations.

• Sieve of Eratosthenes. We sieve an interval [2, x] to obtain admissible k -tuples

pm+1, . . . , pm+k .

withm as small as possible. If we sieve the the residue class 0(p) for all primes p ≤ k,

we havem = π(k) and pm+1 > k. In this case, no admissibility testing is required,

since the residue class 0(p) is unoccupied for all p ≤ k. Applying the Prime Number

Theorem in the forms

pk = k log k + k log log k − k + O

(

k
log log k

log k

)

,

π(x) =
x

log x
+ O

(

x

log2 x

)

,

this construction yields the upper bound

H(k) ≤ k log k + k log log k − k + o(k). (149)

As an optimization, rather than sieving modulo every prime p ≤ k, we instead sieve

modulo increasing primes p and as soon as the first k survivors form an admissible

tuple. This will typically happen for for some pm < k.

• Hensley-Richards sieve. The bound in (149) was improved by Hensley and

Richards [44-46], who observed that rather than sieving [2, x] it is better to sieve the

interval [−x/2, x/2] to obtain admissible k -tuples of the form

−pm+⌊k/2⌋−1, . . . , pm+1, . . . ,−1, 1, . . . , pm+1, . . . , pm+⌊(k+1)/2⌋−1,

where we again wish to makem as small as possible. It follows from Lemma 5 of [45]

that one can takem = o(k/ log k), leading to the improved upper bound

H(k) ≤ k log k + k log log k − (1 + log 2)k + o(k). (150)

• Shifted Schinzel sieve. As noted by Schinzel in [47], in the Hensley-Richards sieve, it

is slightly better to sieve 1(2) rather than 0(2); this leaves unsieved powers of 2 near

the center of the interval [−x/2, x/2] that would otherwise be removed (more

generally, one can sieve 1(p) for many small primes p, but we did not). Additionally,

we find that shifting the interval [−x/2, x/2] can yield significant improvements (one

can also view this as changing the choices of residue classes).

This leads to the following approach: we sieve an interval [s, s + x] of odd integers

and multiples of odd primes p ≤ pm, where x is large enough to ensure at least k

survivors, andm is large enough to ensure that the survivors form an admissible

tuple, with x andmminimal subject to these constraints. A tuple of exactly k

survivors is then chosen to minimize the diameter. By varying s and comparing the

results, we can choose a starting point s ∈[−x/2, x/2] that yields the smallest final
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diameter. For large k, we typically find s ≈ k is optimal, as opposed to

s ≈ −(k/2) log k in the Hensley-Richards sieve.

• Shifted greedy sieve. As a further optimization, we can allow greater freedom in the

choice of residue class to sieve. We begin as in the shifted Schinzel sieve, but for

primes p ≤ pm that exceed 2
√

k log k, rather than sieving 0(p), we choose a

minimally occupied residue class a(p). As above, we sieve the interval [s, s + x] for

varying values of s ∈[−x/2, x/2] and select the best result, but unlike the shifted

Schinzel sieve, for large k, we typically choose s ≈ −(k/ log k − k)/2.

We remark that while one might suppose that it would be better to choose a

minimally occupied residue class at all primes, not just the larger ones, we find that

this is generally not the case. Fixing a structured choice of residue classes for the

small primes avoids the erratic behavior that can result from making greedy choices

to soon (see [48, Fig. 1] for an illustration of this).

Table 4 lists the bounds obtained by applying each of these techniques (in the online

version of this paper, each table entry includes a link to the constructed tuple). To the

admissible tuples obtained using the shifted greedy sieve, we additionally applied various

local optimizations that are detailed in ([§3.6]). As can be seen in the table, the additional

improvement due to these local optimizations is quite small compared to that gained by

using better sieving algorithms, especially when k is large.

Table 4 also lists the value ⌊k log k + k⌋ that we conjecture as an upper bound on H(k)

for all sufficiently large k.

H(k) bounds for large k

The upper bounds on H(k) for the last two cases (10) and (11) were obtained using mod-

ified versions of the techniques described above that are better suited for handling very

large values of k. These entail three types of optimizations that are summarized in the

subsections below.

Improved time complexity

As noted above, the complexity of admissibility testing is quasi-quadratic in k. Each of the

techniques listed in the ‘H(k) bounds for mid-range k’ section involves optimizing over a

parameter space whose size is at least quasi-linear in k, leading to an overall quasi-cubic

time complexity for constructing a narrow admissible k-tuple; this makes it impractical

to handle k > 109. We can reduce this complexity in a number of ways.

First, we can combine parameter optimization and admissibility testing. In both

the sieve of Eratosthenes and Hensley-Richards sieves, taking m = k guarantees an

Table 4 Upper bounds on H(k) for selected values of k

k 5,511 35,410 41,588 309,661 1,649,821

k primes past k 56,538 433,992 516,586 4,505,700 26,916,060

Eratosthenes 55,160 424,636 505,734 4,430,212 26,540,720

Hensley-Richards 54,480 415,642 494,866 4,312,612 25,841,884

Shifted Schinzel 53,774 411,060 489,056 4,261,858 25,541,910

Shifted greedy 52,296 399,936 476,028 4,142,780 24,798,306

Best known 52,116 398,130 474,266 4,137,854 24,797,814

⌊k log k + k⌋ 52,985 406,320 483,899 4,224,777 25,268,951
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admissible k-tuple. For m < k, if the corresponding k-tuple is inadmissible, it is typ-

ically because it is inadmissible modulo the smallest prime pm+1 that appears in the

tuple. This suggests a heuristic approach in which we start with m = k, and then

iteratively reduce m, testing the admissibility of each k-tuple modulo pm+1 as we go,

until we can proceed no further. We then verify that the last k-tuple that was admis-

sible modulo pm+1 is also admissible modulo all primes p > pm+1 (we know it is

admissible at all primes p ≤ pm because we have sieved a residue class for each of

these primes). We expect this to be the case, but if not we can increase m as required.

Heuristically, this yields a quasi-quadratic running time, and in practice, it takes less

time to find the minimal m than it does to verify the admissibility of the resulting

k-tuple.

Second, we can avoid a complete search of the parameter space. In the case of the shifted

Schinzel sieve, for example, we find empirically that taking s = k typically yields an admis-

sible k-tuple whose diameter is not much larger than that achieved by an optimal choice

of s; we can then simply focus on optimizingm using the strategy described above. Similar

comments apply to the shifted greedy sieve.

Improved space complexity

We expect a narrow admissible k-tuple to have diameter d = (1 + o(1))k log k. Whether

we encode this tuple as a sequence of k integers, or as a bitmap of d+ 1 bits, as in the fast

admissibility testing algorithm, we will need approximately k log k bits. For k > 109, this

may be too large to conveniently fit in memory. We can reduce the space to O(k log log k)

bits by encoding the k-tuple as a sequence of k − 1 gaps; the average gap between consec-

utive entries has size log k and can be encoded in O(log log k) bits. In practical terms, for

the sequences we constructed, almost all gaps can be encoded using a single 8-bit byte for

each gap.

One can further reduce space by partitioning the sieving interval into windows. For the

construction of our largest tuples, we used windows of size O(
√
d) and converted to a

gap-sequence representation only after sieving at all primes up to an O(
√
d) bound.

Parallelization

With the exception of the greedy sieve, all the techniques described above are easily paral-

lelized. The greedy sieve is more difficult to parallelize because the choice of a minimally

occupied residue class modulo p depends on the set of survivors obtained after sieving

modulo primes less than p. To address this issue, we modified the greedy approach to

work with batches of consecutive primes of size n, where n is a multiple of the number of

parallel threads of execution. After sieving fixed residue classes modulo all small primes

p < 2
√

k log k, we determine minimally occupied residue classes for the next n primes in

parallel, sieve these residue classes, and then proceed to the next batch of n primes.

In addition to the techniques described above, we also considered a modified Schinzel

sieve in which we check admissibility modulo each successive prime p before sieving mul-

tiples of p, in order to verify that sieving modulo p is actually necessary. For values of p

close to but slightly less than pm, it will often be the case that the set of survivors is already

admissibility modulo p, even though it does contain multiples of p (because some other

residue class is unoccupied). As with the greedy sieve, when using this approach, we sieve

residue classes in batches of size n to facilitate parallelization.
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Table 5 Upper bounds on H(k) for selected values of k

k 75,845,707 3,473,955,908

k primes past k 1,541,858,666 84,449,123,072

Eratosthenes 1,526,698,470 83,833,839,848

Hensley-Richards 1,488,227,220 81,912,638,914

Shifted Schinzel 1,467,584,468 80,761,835,464

Shifted greedy 1,431,556,072 Not available

Best known 1,431,556,072 80,550,202,480

⌊k log k + k⌋ 1,452,006,268 79,791,764,059

Results for large k

Table 5 lists the bounds obtained for the two largest values of k. For k = 75, 845, 707, the

best results were obtained with a shifted greedy sieve that wasmodified for parallel execu-

tion as described above, using the fixed shift parameter s = −(k log k − k)/2. A list of the

sieved residue classes is available at math.mit.edu/∼drew/n75845707_1431556072.txt.

This file contains values of k, s, d, and m, along with a list of prime indices ni > m and

residue classes ri such that sieving the interval [s, s + d] of odd integers, multiples of pn

for 1 < n ≤ m, and at ri modulo pni yields an admissible k-tuple.

For k = 3, 473, 955, 908, we did not attempt any form of greedy sieving due to practical

limits on the time and computational resources available. The best results were obtained

using a modified Schinzel sieve that avoids unnecessary sieving, as described above,

using the fixed shift parameter s = k0. A list of the sieved residue classes is available at

math.mit.edu/∼drew/n75845707_1431556072.txt.

This file contains values of k, s, d, andm, along with a list of prime indices ni > m such

that sieving the interval [s, s + d] of odd integers, multiples of pn for 1 < n ≤ m, and

multiples of pni yields an admissible k-tuple.

Source code for our implementation is available at http://math.mit.edu/~drew/

ompadm_v0.5.tar; this code can be used to verify the admissibility of both the tuples listed

above.

Endnotes
aWhen a, b are real numbers, we will also need to use (a, b) and [a, b] to denote the

open and closed intervals, respectively, with endpoints a, b. Unfortunately, this notation

conflicts with the notation given above, but it should be clear from the context which

notation is in use.
bActually, there are some differences between Conjecture 1 of [28] and the claim here.

Firstly, we need an estimate that is uniform for all a, whereas in [28] only the case of a

fixed modulus a was asserted. On the other hand, α,β were assumed to be controlled in

ℓ2 instead of via the pointwise bounds (6), and Q was allowed to be as large as x log−C x

for some fixed C (although, in view of the negative results in [23,24], this latter

strengthening may be too ambitious).
cOne could also use the Heath-Brown identity [49] here if desired.
dIn the k = 1 case, we of course just have qW ,d1,...,d

′
k−1

= W .
eOne could obtain a small improvement to the bounds here by replacing the threshold

2c with a parameter to be optimized over.
fThe arguments in [5] are rigorous under the assumption of a positive eigenfunction as

in Corollary 35, but the existence of such an eigenfunction remains open for k ≥ 3.

http://math.mit.edu/~drew/n75845707_1431556072.txt
http://math.mit.edu/~drew/n75845707_1431556072.txt
http://math.mit.edu/~drew/ompadm_v0.5.tar
http://math.mit.edu/~drew/ompadm_v0.5.tar
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gIndeed, one might be even more ambitious and conjecture a square-root cancellation

≺≺
√
x/q for such sums (see [50] for some similar conjectures), although such stronger

cancellations generally do not play an essential role in sieve-theoretic computations.
hOne new technical difficulty here is that some of the various moduli [dj, d

′
j] arising in

these arguments are not required to be coprime at primes p > w dividing x or x − 2; this

requires some modification to Lemma 30 that ultimately leads to the appearance of the

singular seriesS. However, these modifications are quite standard, and we do not give

the details here.
iIn particular, the optimal choice F forMk,ε should vanish on the polytope

{(t1, . . . , tk) ∈ (1 + ε) · Rk :
∑

i�=i0
ti ≥ 1 − ε for all i0 = 1, . . . , k}.
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