
O’Brien et al. BMC Genomics (2015) 16:1052
DOI 10.1186/s12864-015-2269-7

SOFTWARE Open Access

VariantSpark: population scale clustering
of genotype information
Aidan R. O’Brien1,2, Neil F. W. Saunders1, Yi Guo5, Fabian A. Buske3,4, Rodney J. Scott2 and Denis C. Bauer1*

Abstract

Background: Genomic information is increasingly used in medical practice giving rise to the need for efficient
analysis methodology able to cope with thousands of individuals and millions of variants. The widely used Hadoop
MapReduce architecture and associated machine learning library, Mahout, provide the means for tackling
computationally challenging tasks. However, many genomic analyses do not fit the Map-Reduce paradigm. We
therefore utilise the recently developed SPARK engine, along with its associated machine learning library, MLlib, which
offers more flexibility in the parallelisation of population-scale bioinformatics tasks. The resulting tool, VARIANTSPARK
provides an interface from MLlib to the standard variant format (VCF), offers seamless genome-wide sampling of
variants and provides a pipeline for visualising results.

Results: To demonstrate the capabilities of VARIANTSPARK, we clustered more than 3,000 individuals with 80 Million
variants each to determine the population structure in the dataset. VARIANTSPARK is 80% faster than the SPARK-based
genome clustering approach, ADAM, the comparable implementation using Hadoop/Mahout, as well as ADMIXTURE, a
commonly used tool for determining individual ancestries. It is over 90% faster than traditional implementations
using R and Python.

Conclusion: The benefits of speed, resource consumption and scalability enables VARIANTSPARK to open up the
usage of advanced, efficient machine learning algorithms to genomic data.

Keywords: Genotype clustering, SPARK, BigData, 1000 Genomes Project, Personal Genome Project,
Population structure

Background
Genomic information is increasingly used in medical
practice. A commonly performed task in such applications
is grouping individuals based on their genomic profile to
identify population association [1] or elucidate haplotype
involvement in diseases susceptibility [2]. The commonly
used tool is ADMIXTURE [3], which performs maximum
likelihood estimation of individual ancestries from multi-
locus SNP genotype datasets.
Due to the decreasing sequencing cost it is now eco-

nomical to generate studies with sample sizes previously
reserved for larger consortia such as the 1000 Genomes
Project [4] or The Cancer Genome Atlas, TCGA [5]. At
the same time, whole genome sequencing enables the
inclusion of rare or even somaticmutations in the analysis,

*Correspondence: Denis.Bauer@CSIRO.au
1CSIRO, Health & Biosecurity Flagship, 11 Julius Av, 2113 Sydney, Australia
Full list of author information is available at the end of the article

increasing the feature space by orders of magnitude. This
drastic increase in both sample numbers and features
per sample requires a massively parallel approach to data
processing [6]. Traditional parallelisation strategies like
MPI/OpenMP or hardware accelerators (GPGPU) cannot
scale with variable data sizes at runtime [7] or require
purpose-built hardware.
Addressing this issue, APACHE HADOOP MAPRE-

DUCE [8] transforms data into ‘key-value pairs’ that can
then be distributed between multiple nodes across a com-
modity computer cluster, depending on the size of the
problem. MapReduce approaches are increasingly being
used in bioinformatics (for reviews see [9–11]). This is
especially the case for sequence analysis tasks, such as
read mapping [12], duplicate removal [13], and variant
calling [14, 15] as well as Genome Wide Analysis Study
based tasks [16, 17]. Apache has also developed a machine
learning library, Mahout [18], which allows efficient out-
of-the-box analysis to be applied to clinical applications,

© 2015 O’Brien et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-2269-7-x&domain=pdf
mailto: Denis.Bauer@CSIRO.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

O’Brien et al. BMC Genomics (2015) 16:1052 Page 2 of 9

such as medical health records [19]. Unfortunately, the
MapReduce paradigm is not always the optimal solu-
tion, specifically for bioinformatics or machine learning
applications that require iterative in-memory computa-
tion. Specifically, Hadoop is relying extensively on hard
disk input-output operations (disk IO), and this can prove
to be a bottleneck in processing-speed.
APACHE SPARK [20] is a more recent compute engine,

which overcomes many of Hadoop’s limitations. One of
the main benefits is that it allows programs to cache
data in memory; potentially eliminating, or at least reduc-
ing, the bottleneck of disk IO. When utilising caching,
Apache claim SPARK to be up to 100x faster than
Hadoop. Although SPARK allows MapReduce-like pro-
grams, it does not require programs to exactly model the
MapReduce paradigm, which in turn allows more flexible
software design. Recognising the capability, Wiewiórka
et al. [21] developed SPARKSEQ for high-throughput
sequence data analysis and the Big Data Genomics (BDG)
group recently demonstrated the strength of SPARK in
a genomic clustering application using ADAM, a set of
formats and APIs as well as processing stage implemen-
tations for genomic data [22]. ADAM is expected to be
one of the cornerstones of the Precision Medicine Initia-
tive and the Global Alliance for Genomics andHealth [23].
While the speedup of ADAM over traditional meth-
ods was impressive (50 fold speedup), being limited by
constraints within this general genomics framework can
hamper performance.
We hence developed a purpose-built approach in SPARK

to perform machine learning tasks on genomic data, such
as clustering of individual genomes. We utilise SPARK’s
machine learning library, MLlib, and provide an interface
to the standard variant data format, Variant Call Format
(VCF) [4], which opens up the application of MLlib’s dif-
ferent machine learning algorithms to a wide range of
genotype-based analysis tasks.
To demonstrate VARIANTSPARK’s capability, we cluster

variant datasets from the 1000 Genomes Project [4] to
determine population structure using the k-means clus-
tering algorithm available in MLlib. In the first section we

benchmark VARIANTSPARK’s performance and accuracy
against ADAM and a Hadoop Mahout implementation
as well as more traditional methods (R, Python) and the
purpose-build tool ADMIXTURE [3]. In the second section
we discuss the pipeline for visualising the resulting clus-
ter. In section three we demonstrate VARIANTSPARK’s full
capacity by seamlessly scaling from 20% to 100% of the
human genome. In the last section we replicate the anal-
ysis by using 478 genomes from the Personal Genome
Project [24].

Results and discussions
SPARK enables faster clustering of individuals compared to
traditional methods
In this section we compare the time required to clus-
ter individuals based on genomic variants using VARI-
ANTSPARK against ADAM and the more traditional
approaches using Hadoop (and Mahout), Python and R,
as well as the purpose-build tool ADMIXTURE. We limit
the genomic variants to only chromosome 22 as the
traditional approaches have substantially larger memory
consumption, rendering a whole-genome input infeasible.
Furthermore, we perform the comparisons on a single vir-
tual machine to ensure the six different approaches have
access to the same resources. We use k-means cluster-
ing algorithms in the respective implementations, which
require the VCF input files to be pre-processed (see meth-
ods). The state-of-the-art tool, ADMIXTURE, also requires
a pre-processing step from VCF to PED format, which we
performed using GATK [15]. We therefore compare the
time required for the pre-processing step, as well as for
k-means clustering.
As shown in Table 1, pre-processing the data is fastest

in VARIANTSPARK, requiring 3 min. This is almost 80%
faster than both the ADAM implementation (13 min)
and our Hadoop implementation (14 min). Unlike VARI-
ANTSPARK and our Hadoop implementation, the ADAM
framework cannot process the VCF files directly but
requires them to be converted into a binary ADAM file
format. Although this additional pre-processing step is
only required once for each input file, it uses an additional

Table 1 The resource consumption of the six compared methods as well as the accuracy measured as adjusted Rand index on
chromosome 22

Tool Pre-processing Clustering Accuracy

Threads Memory Time Threads Memory Time

VARIANTSPARK 8 32 2 min 58 sec 8 32 1 min 20 sec 0.84

ADAM 8 32 12 min 48 sec 8 32 1 min 52 sec 0.84

Hadoop 8 32 14 min 22 sec 8 32 14 min 23 sec 0.84

R 1 32 34 min 30 sec 8 32 7 min 25 sec 0.84

Python 1 32 34 min 15 sec 8 32 11 min 29 sec 0.84

ADMIXTURE 1 32 10 min 08 sec 8 32 8 min 19 sec 0.25

O’Brien et al. BMC Genomics (2015) 16:1052 Page 3 of 9

13 min, rendering our approach almost an order of mag-
nitude faster (see Fig. 1). R and Python are also slower
at pre-processing, each taking approximately 34 min.
This increased pre-processing time is due to the stan-
dard Python and R implementations not natively support-
ing multithreading, while VARIANTSPARK, ADAM and
Hadoop can use the eight available cores. The GATK-
based VCF to PED conversion for ADMIXTURE is also
slower, with a runtime of over 10 min.
Clustering the samples is also fastest in VARIANTSPARK

(1 min and 20 sec, see Table 1), despite VARIANTSPARK
and ADAM both using SPARK’s MLlib k-means imple-
mentation. We attribute the 30% speedup over ADAM
(1 min and 52 sec) to VARIANTSPARK converting the
VCF files to sparse vectors, whereas ADAM creates dense
vectors, which are less memory efficient. Multithreading
k-means clustering is natively supported by both R and
Python, we are therefore able to utilise eight cores. Despite
this, both are an order of magnitude slower than VARI-
ANTSPARK and ADAM, with Python requiring 11 min
and R requiring 8 min. ADMIXTURE is also slower with a
runtime of just over 8 min. Our Hadoop implementation
performs the worst, at 14 min, showcasing the limitations
of the Hadoop engine for iterative algorithms such as k-
means. Hadoop writes the entire output of each k-means
iteration to disk. This feature enables scalability but, in
this case, substantially increases the runtime as disk IO
becomes the limiting factor for this small dataset (chro-
mosome 22). Python and R store the output from each
iteration in memory, thereby eliminating the IO bottle-
neck, but without being able to utilise disk storage they are
limited to datasets that fit into memory. SPARK overcomes

both limitations by performing in-memory caching for
each executor, which eliminates the disk IO bottleneck
on smaller datasets, while maintaining scalability to larger
datasets by spilling data that exceeds memory availability
to disk.
We also investigate the cluster quality for the five

different methods by comparing the annotated super-
population label (AMR, AFR, EAS, SAS) for each indi-
vidual in the 1000 Genomes data to the label assigned
by k-means clustering. For this comparison, we use
the adjusted Rand index (ARI) metric, which returns a
value between -1 (independent labelings) and 1 (perfect
match) [25].
Using chromosome 22, each of the algorithms resulted

in an ARI of 0.84, confirming that the speed-up in
SPARK is not at the cost of quality. The state-of-the-
art tool, ADMIXTURE, returns a low ARI of 0.25. It
should be noted that ADMIXTURE’s underlying statisti-
cal model does not take linkage disequilibrium (LD) into
account. Therefore removing variants with high LD may
result in higher accuracy. We can substantially improve
the accuracy to a perfect classification (ARI=1.0) by
removing the fourth super-population, AMR (American).
This is due to the majority of AMR individuals being
placed in the same group as Europeans, likely reflect-
ing their migrational backgrounds. Only a minority of
AMR individuals form an independent group, likely com-
prising of genetic information otherwise not captured by
the 26 sub-populations of the 1000 Genomes Project.
This indicates that although allelic differences exist
between populations, “genetic diversity is distributed on a
continuum” [26].

0

1000

2000

Pyth
on R

Had
oo

p

Ada
m

ADM
IX

TURE

Var
ian

tS
pa

rk

method

tim
e

in
 s

ec
on

ds task

binary−conversion

clustering

pre−processing

pre−processing clustering

40
45
50
55
60
65

5
10
15
20
25

0

20000

40000

executors
m

em
ory

tim
e

20 40 60 80 10
0 20 40 60 80 10

0

number of variants (%)

va
lu

e

variable

executors

memory

time

Fig. 1 Comparison of method and genome-wide scaling experiment. Left Runtime for clustering variants from chromosome 22 is given in seconds
with 32 GB of memory on 8 threads (except for the pre-processing in R and Python where this was not supported). Right Scaling from 20% to 100%
of variants in the genome with maximal number of executors and lowest possible memory assignment

O’Brien et al. BMC Genomics (2015) 16:1052 Page 4 of 9

Graph visualisation
VARIANTSPARK supports visualisation of the resulting
population clusters by generating a file that can be loaded
into GEPHI [27]. Figure 2 visualises the clusters gener-
ated by VARIANTSPARK from the 1000 Genomes Project
data. As discussed in the previous section, three of the
four clusters (super-populations AFR, EAS and AMR) are
relatively homogeneous; the fourth is more mixed and

consists predominantly of individuals labelled EUR and
AMR providing a visual representation of the ARI of 0.84.

VARIANTSPARK enables genome wide sampling of variants
to improve clustering quality
Although we have demonstrated the advantages of VARI-
ANTSPARK over traditional methods on small datasets,
such as individual chromosomes, the main advantage of

Fig. 2 Visualisation of VARIANTSPARK predicted clusters. The figure shows the four clusters predicted for the 1000 Genomes data. Individuals from
the super-populations AFR, AMR and EAS are accurately grouped into distinct clusters. The fourth cluster contains predominantly EUR + AMR
individuals potentially accurately reflecting migrational backgrounds

O’Brien et al. BMC Genomics (2015) 16:1052 Page 5 of 9

SPARK is its ability to process datasets that exceed mem-
ory limits. To demonstrate this scalability, we increase the
number of variants used in the clustering from the initial
494,328 on chromosome 22 to 38,219,238 variants across
the 1000 Genomes Project dataset (phase 1).
We run this comparison on our in-house HADOOP/

SPARK cluster using 40 cores. Pre-processing the VCF
files takes approximately 12, 19, 27 and 40 min for 20,
40, 60 and 100 percent of the genome, respectively (see
Table 2). In each case, the memory required does not
exceed a modest 2 GB per executor, even for the com-
plete genome. Clustering the data takes 70, 139, 213 and
884min, respectively. For clustering, the memory require-
ments increase approximately linearly to 24 GB per execu-
tor (see Fig. 1). The increase in memory is due to more
distance measurements between variants and k-means
centroids being created, which MLlib stores as dense vec-
tors. While k-means clustering can scale to 100% of the
genome, machine learning algorithms that can deal with
sparse vectors would potentially be able to scale much
further and potentially process more alleles.
We do not observe an increase in cluster accuracy

when providing variants from all chromosomes, indicat-
ing that current practice of clustering based on a subset
of the genome is sufficient to define the existing pop-
ulation boundaries for populations with large genetic
distance [26].
To further demonstrate the scalability of VARI-

ANTSPARK, we also cluster the 1000 Genomes Project
phase 3 data, which contains 3000 individuals from 5
super-populations and as a result has over 80 Million
variants. The uncompressed size of the phase 3 files is
770 GB compared to 161 GB for the phase 1 dataset.
VARIANTSPARK successfully completes the clustering in
30 h (see Table 2) with an ARI of 0.82.

Determining the population structure of the Personal
Genome Project
To demonstrate the versatility of VARIANTSPARK we
also process and cluster individuals from the Personal
Genomics Project (PGP). The PGP is open to the public
for individuals to submit their genomic sequence along

with any metadata, such as diseases or clinical fea-
tures [24]. We obtain and curate the data (see methods)
resulting in 985,790 variants from 478 individuals.
We cluster the individuals allowing five clusters and

compare the assigned labels to the same number of
self-reported ‘Race/ethnicity’ labels (‘White’, ‘Hispanic
or Latino’, ‘Asian’, ‘Black or African American’ and
‘American Indian’). The observed ARI is negative, indicat-
ing the clustering is random. This poor result may be due
to the labels being too broad and not accurately reflecting
genetic diversity. For example, the ‘White’ label includes
individuals with grandparents from United States, Syria,
Arab Republic, or Bulgaria, amongst others. The dataset
is also very one-sided with 433 out of the 478 (over 90%)
of the individuals labeled as white, even though geograph-
ical location of their grandparents are very diverse. We
therefore only include individuals where all grandparents
were reported to be from the same country leaving 35
individuals from 22 different countries, which we group
into their approximate super-populations (see Additional
file 1: Table S1). Clustering these individuals results in an
ARI of 0.45.
Although we see an increase in cluster-accuracy when

removing individuals with a mixed background and oper-
ating at super-population level, the clustering is not as
precise as on the carefully curated and characterised indi-
viduals from the 1000 Genomes Project. This is especially
the case since 65% are ‘White’ Americans, which formed
the group most difficult to cluster in the 1000 Genomes
Project data.
This highlights the issue for clinical application where

ancestry influences treatment (e.g. HLA allele genotyp-
ing from SNP information [28]) and accurate popula-
tion association may not be known for patients with
diverse migrational background. As noted by Patterson
et al. [29], more markers are needed for populations with
low genetic divergence. It is hence likely that higher den-
sity genotyping (e.g. from genome sequencing) would help
in elucidating population structure in this dataset, which
demonstrates the need for fast whole-genome approaches.
Unfortunately, this hypothesis can not be tested as whole
genome information is not available for these individuals.

Table 2 The resources consumption on different subsets of the entire autosome (chromosomes 1–22) of phase 1 as well as all of
phase 3. Memory specified is the memory allocated to each executor

Data Portion Pre-processing Clustering

Executors Memory Time Executors Memory Time

Phase 1 20% 64 2 11 min 53 sec 64 6 1 h 10 min

40% 64 2 19 min 09 sec 64 12 2 h 19 min

60% 64 2 26 min 34 sec 64 17 3 h 33 min

100% 64 2 40 min 48 sec 40 24 14 h 44 min

Phase 3 100% 64 2 3 h 54 min 24 sec 40 24 27 h 46 min

O’Brien et al. BMC Genomics (2015) 16:1052 Page 6 of 9

Conclusions
VARIANTSPARK performs clustering on VCF files with
over 3000 individuals and 80 million variants in 30 h using
minimal memory (24 GB). VARIANTSPARK supports ran-
dom genome-wide sampling of variants allowing faster
clustering for well characterised cohorts where 20% of
the genome is sufficient. On the benchmarking dataset,
it outperforms ADAM by almost an order of magni-
tude (4 vs 28 min) by processing VCF files directly and
storing the information in sparse vectors. VARIANTSPARK
utilises SPARK, which allows for in-memory caching and
hence performs 86% faster than Hadoop (29 min). VARI-
ANTSPARK scales to data sizes that are not feasible to
process using R or Python due their requirement to load
the whole dataset into memory. But even on the small
benchmarking dataset, VARIANTSPARK’s novel paralleli-
sation approach is faster than traditional multithreading
with 90% speedup over R (42 min), and 91% over Python
(45 min). VARIANTSPARK is also superior in performance
and accuracy over the current state-of-the-art tool for
individual ancestries determination, ADMIXTURE. These
benefits of speed, resource consumption and scalability
allow VARIANTSPARK to be the interface for applying
other machine learning tools from MlLib to genomic
data. Utilising MLlib as well as the more recent addition,
SparkML, will enable supervised machine learning appli-
cations to e.g. identify variants that jointly interact with
phenotypes as well as include electronic health record
in addition to the genomic feature vector to e.g. capture
medical history as well as predispositions for diagnosis
and treatment decisions.

Implementation
Computational resources
We completed the Chromosome 22 comparisons on a vir-
tual machine (VM) hosted on Microsoft Azure. This VM
is an A7 Linux instance with 8 cores, 56 GB memory run-
ning Ubuntu. For the whole-genome clustering, we used
our in-house Hadoop cluster with Hadoop 2.5.0, managed
by Cloudera’s CDH 5. We use Spark 1.3.1. This 13 node
cluster has a total of 416 cores and 1.22 TB memory.

Datasets
We use the 22 autosomes from the 1000 Genomes Project
phase 1 dataset. This dataset contains variants from
1092 individuals, across 38,219,238 alleles. For the smaller
dataset, we use the variants from chromosome 22, with
494,328 alleles. The individuals from these datasets are
distributed across four super populations, African (AFR),
Mixed American (AMR), East Asian (EAS) and European
(EUR).We also cluster the Phase 3 dataset, which contains
variants from 2535 individuals, across 81,271,745 variants.
As well as the above for super populations, this dataset
also includes the South Asian (SAS) super population.

VariantSpark implementation
To cluster individuals from a VCF file, we initially need
to pre-process the variants to feature vectors. In VARI-
ANTSPARK we read in VCF files as text files to a Resilient
Distributed Dataset (RDD). RDDs allow us to process the
files, line-by-line, in parallel.
We parse each line as tab-separated values, and store the

values from each line in an array. For each array, we use
SPARK’s ‘zip’ function to create tuples of the values with
their respective heading (sample name). Now each array
element is a key-value pair (KVP) of the previous value
and its heading. For the KVPs that contain an allele as the
value, the key (derived from the heading) is the individual
ID (see Fig. 3, Spark step 1).
For each array, we remove any KVPs that represent data

other than alleles (such as the genomic location). With
the remaining KVPs, which all represent alleles, we apply
a function to convert these from the strings found in
VCF files (i.e. ‘0|1’), to doubles, where the double is the
Hamming distance to the reference. I.e. a 1 represents a
heterozygous variant, 2, a homozygous variant, and 0, no
variant. Because we will eventually be converting this data
to sparse vectors, we remove any KVPs with a value of 0
(i.e. no variant).
At this stage, we can optionally filter variants that do

not match a specific criteria. For the Phase 3 dataset, we
exclude rare variants that are present in only one individ-
ual. Because each array now only contains variants (rather
than every allele), we can simply drop arrays with a length
of one, as the length of each array is equal to the number
of individuals who have a variant at that allele.
Now that the dataset only contains alleles we are inter-

ested in, we zip each array with a unique sequential index
(allele ID). This index will serve as identifier for each allele
(and keep the genome loci order) (step 2).
Although we now have the data we require, the variants

are stored in arrays of alleles, whereas we require the data
to be transposed into arrays of individuals. To facilitate
the grouping of variants by individuals, we use ‘flatMap’
to flatten out the arrays into a collection of KVPs, where
the key is the individual ID, and the value is a tuple of the
variant ID and the variant.
We can now group these KVPs by their key (individual

ID) and save them to sparse vectors (step 4).

ADAM implementation
For our ADAM comparison, we followed the ADAM im-
plementation from (http://bdgenomics.org/blog/2015/02/
02/scalable-genomes-clustering-with-adam-and-spark/).

Hadoop implementation
Our Hadoop implementation is based on the MapReduce
model, which utilises KVPs, similarly to VARIANTSPARK.

http://bdgenomics.org/blog/2015/02/02/scalable-genomes-clustering-with-adam-and-spark/
http://bdgenomics.org/blog/2015/02/02/scalable-genomes-clustering-with-adam-and-spark/

O’Brien et al. BMC Genomics (2015) 16:1052 Page 7 of 9

Fig. 3 Schematic overview of VariantSpark. The image shows the flow from the input VCF file to themachine learning library and onto the visualization.
It highlights the differences between the Hadoop and Spark implementations for converting data in VCF format to a data structure readable by
Mahout and MLlib, respectively

As we need a unique range of identifiers for alleles (in the
smallest range possible), we need to run an initial MapRe-
duce task to index the lines. This is comparable (however,
more verbose) to the ‘zip’ operation in VARIANTSPARK.
The second MapReduce task does the bulk of the work
and is visualised in Fig. 3. The Map stage (step 1) begins
by creating KVPs from the VCF file. For each KVP, the
key is a tuple of a primary and secondary key, where the
primary key is the individual ID and the secondary key
is the allele ID. The value for each KVP is the variant.
The primary key ensures that KVPs for each individual
are distributed to the same node during the MapReduce
shuffle stage. After being distributed, the KVPs for each
individual are sorted by their secondary key. Now that
the KVPs for each individual are physically located on the
same hardware, the Reduce stage (step 2) can efficiently
create a sparse vector for each individual from these
KVPs.

R implementation
We utilise READGT from the VARIANTANNOTATION
package for reading in the VCF file and extracting the
genotype matrix. In the Additional file 1 we demonstrate
that this approach is approximately oneminute faster than
using R’s built-in READ.TABLE function.
As with our VARIANTSPARK pre-processing, we con-

vert the strings that represent each allele to a numeric
value. This process consists of applying our HAMMING
function to the dataframe with SAPPLY. We then trans-
pose the matrix with T(VCFMATRIX), which results in
a data-structure where each row represents an individ-
ual. We convert the matrix to a BIG.MATRIX object, as
required by the k-means algorithm from the ‘bigana-
lytics’ package (https://cran.r-project.org/web/packages/
biganalytics/index.html), and then call BIGKMEANS with

the BIG.MATRIX object and the required number of
clusters as arguments. See git repository for more
details.

Python implementation
Our Python implementation reads in lines from a VCF file
as tab-separated values using DATAFRAME.READ_CSV,
and stores the data in a pandas DataFrame (http://pandas.
pydata.org). The column headings are the individual IDs
and the row headings are the allele locations. We remove
the first 9 columns and convert the remaining allele strings
to numeric values by applying our HAMMING func-
tion to the DataFrame. We then convert the DataFrame
to a matrix with .AS_MATRIX() and cluster the matrix
using ‘scikit-learn’ (http://scikit-learn.org/stable/). See git
repository for more details.

ADMIXTURE implementation
We use Genome Analysis Toolkit (-T VARIANTSTOBINA-
RYPED) [15] to convert the variants from VCF, and a 1000
Genomes Project supplied .ped file, to a binary PLINK
(.bed), binary marker information file (.bim) and pedi-
gree stub file (.fam). These three files are used as input to
ADMIXTURE, with default options and K (the number of
ancestral populations) set to 4.

Personal genome project data
We acquired genomic data from the Personal Genome
Project (PGP) website (https://my.pgp-hms.org/public_
genetic_data). We sort the genotype data from 23andMe
microarray platforms by genome build. Using a cus-
tom shell script, we convert NCBI build 36 files to
BED format, update to build 37 using UCSC liftOver
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) and then
convert back to 23andMe format. We then convert the

https://cran.r-project.org/web/packages/biganalytics/index.html
https://cran.r-project.org/web/packages/biganalytics/index.html
http://pandas.pydata.org
http://pandas.pydata.org
http://scikit-learn.org/stable/
https://my.pgp-hms.org/public_genetic_data
https://my.pgp-hms.org/public_genetic_data
https://genome.ucsc.edu/cgi-bin/hgLiftOver

O’Brien et al. BMC Genomics (2015) 16:1052 Page 8 of 9

23andMe files to VCF using code obtained from the Broad
Institute (http://apol1.blogspot.com.au/2013/08/impute-
apoe-and-apol1-with-23andme.html). Where individuals
had genotype data for both genome builds 36 and 37, we
only use the latter. Finally, we combined the individual
VCF files into one file for clustering, using VCFtools [30].

Availability
The package is written in Scala and available at https://
github.com/BauerLab/VariantSpark.

Additional file

Additional file 1: PGP population labels and implementation details.
Conversionmap self-reported descriptive population labels to super-population
labels. Details of the R implementation. (PDF 22.2 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DCB and FAB designed the overall study. ARO implemented VARIANTSPARK
and conducted the comparison. YG contributed to the implementation
comparison. NFS obtained the PGP data and generated the graphic. RJS
guided the interpretation. All authors contributed to the writing of the
document. All authors read and approved the final manuscript.

Acknowledgements
ARO was funded by the NSW Cancer Institute Big Data Big Impact schema,
FAB by the National Health and Medical Research Council [1051757] and both
DCB and NFS by Commonwealth Scientific and Industrial Research
Organisation’s Transformational Capability Platform, Science and Industry
Endowment Fund and Information Management and Technology Services.
The computation on Azure was funded by Microsoft Azure Research Award.
The authors would like to thank Piotr Szul and Gareth Williams for their help
with setting up Hadoop on the HPC system.

Author details
1CSIRO, Health & Biosecurity Flagship, 11 Julius Av, 2113 Sydney, Australia.
2School of Biomedical Sciences and Pharmacy, Faculty of Health, 2308
Newcastle, Australia. 3Cancer Epigenetics Program, Cancer Research Division,
Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St,
2010 Sydney, Australia. 4UNSW Medicine, University of New South Wales, 2052
Sydney, Australia. 5CSIRO, Data61, 2052 Sydney, Australia.

Received: 29 November 2015 Accepted: 1 December 2015

References
1. Gao X, Starmer J. Human population structure detection via multilocus

genotype clustering. BMC Genet. 2007;8:34. doi:10.1186/1471-2156-8-34.
2. Laitman Y, Feng BJ, Zamir IM, Weitzel JN, Duncan P, Port D, et al.

Haplotype analysis of the 185delag brca1 mutation in ethnically diverse
populations. Eur J Hum Genet. 2013;21(2):212–6. doi:10.1038/ejhg.
2012.124.

3. Alexander DH, Novembre J, Lange K. Fast model-based estimation of
ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64.
doi:10.1101/gr.094052.109.

4. 1000 Genomes Project Consortium. An integrated map of genetic
variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.
doi:10.1038/nature11632.

5. Cancer Genome Atlas Research Network. The cancer genome atlas
pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.
doi:10.1038/ng.2764.

6. Stein LD. The case for cloud computing in genome informatics. Genome
Biol. 2010;11(5):207. doi:10.1186/gb-2010-11-5-207.

7. Reyes-Ortiz JL, Oneto L, Anguita D. Big data analytics in the cloud: Spark
on hadoop vs mpi/openmp on beowulf. Procedia Comput Sci. 2015;53:
121–30. doi:10.1016/j.procs.2015.07.286 {INNS} Conference on Big Data
2015 Program San Francisco, CA, {USA} 8-10 August 2015.

8. Borthakur D. The Hadoop Distributed File System: Architecture and
Design. Hadoop Project Website. 2007;11:21.

9. Zou Q, Li XB, Jiang WR, Lin ZY, Li GL, Chen K. Survey of mapreduce
frame operation in bioinformatics. Brief Bioinform. 2013. doi:10.1093/
bib/bbs088.

10. Qiu J, Ekanayake J, Gunarathne T, Choi JY, Bae SH, Li H, et al. Hybrid
cloud and cluster computing paradigms for life science applications. BMC
Bioinformatics. 2010;11 Suppl 12:3. doi:10.1186/1471-2105-11-S12-S3.

11. Taylor RC. An overview of the hadoop/mapreduce/hbase framework and
its current applications in bioinformatics. BMC Bioinformatics. 2010;11
Suppl 12:1. doi:10.1186/1471-2105-11-S12-S1.

12. Schatz MC. Cloudburst: highly sensitive read mapping with mapreduce.
Bioinformatics. 2009;25(11):1363–9. doi:10.1093/bioinformatics/btp236.

13. Jourdren L, Bernard M, Dillies MA, Le Crom S. Eoulsan: a cloud
computing-based framework facilitating high throughput sequencing
analyses. Bioinformatics. 2012;28(11):1542–3. doi:10.1093/bioinformatics/
bts165.

14. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL. Searching for snps
with cloud computing. Genome Biol. 2009;10(11):134. doi:10.1186/
gb-2009-10-11-r134.

15. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
et al. The genome analysis toolkit: a mapreduce framework for analyzing
next-generation dna sequencing data. Genome Res. 2010;20(9):
1297–303. doi:10.1101/gr.107524.110.

16. Huang H, Tata S, Prill RJ. Bluesnp: R package for highly scalable
genome-wide association studies using hadoop clusters. Bioinformatics.
2013;29(1):135–6. doi:10.1093/bioinformatics/bts647.

17. Guo X, Meng Y, Yu N, Pan Y. Cloud computing for detecting high-order
genome-wide epistatic interaction via dynamic clustering. BMC
Bioinformatics. 2014;15(1):102. doi:10.1186/1471-2105-15-102.

18. Owen S, Anil R, Dunning T, Friedman E. Mahout in Action, 1st ed. 20
Baldwin Road PO Box 261 Shelter Island, NY 11964: Manning Publications
Co.,Manning Publications Co; 2011. http://manning.com/owen/.

19. Ko KD, El-Ghazawi T, Kim D, Morizono H, PRO-AALSCTC. Predicting the
severity of motor neuron disease progression using electronic health
record data with a cloud computing big data approach. Comput Intell
Bioinforma Comput Biol. 2014.

20. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, Mccauley M, et al.
Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory
Cluster Computing. In: Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association;
2012.

21. Wiewiórka MS, Messina A, Pacholewska A, Maffioletti S, Gawrysiak P,
Okoniewski MJ. Sparkseq: fast, scalable and cloud-ready tool for the
interactive genomic data analysis with nucleotide precision.
Bioinformatics. 2014;30(18):2652–3. doi:10.1093/bioinformatics/btu343.

22. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD,
et al. Adam: Genomics formats and processing patterns for cloud scale
computing. Technical Report UCB/EECS-2013-207, EECS Department,
University of California, Berkeley (Dec 2013). http://www.eecs.berkeley.
edu/Pubs/TechRpts/2013/EECS-2013-207.html.

23. Paten B, Diekhans M, Druker BJ, Friend S, Guinney J, Gassner N, et al.
The nih bd2k center for big data in translational genomics. J Am Med
Inform Assoc. 2015;22(6):1143–7. doi:10.1093/jamia/ocv047.

24. Lunshof JE, Ball MP. Our genomes today: time to be clear. Genome Med.
2013;5(6):52. doi:10.1186/gm456.

25. Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2(1):193–218.
doi:10.1007/BF01908075.

26. Pugach I, Stoneking M. Genome-wide insights into the genetic history of
human populations. Investig Genet. 2015;6:6. doi:10.1186/s13323-
015-0024-0.

27. Bastian M, Heymann S, Jacomy M. Gephi: An open source software for
exploring and manipulating networks. In: Proceedings of the
International AAAI Conference on Weblogs and Social Media; 2009.
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

http://apol1.blogspot.com.au/2013/08/impute-apoe-and-apol1-with-23andme.html
http://apol1.blogspot.com.au/2013/08/impute-apoe-and-apol1-with-23andme.html
https://github.com/BauerLab/VariantSpark
https://github.com/BauerLab/VariantSpark
http://dx.doi.org/10.1186/s12864-015-2269-7
http://dx.doi.org/10.1186/1471-2156-8-34
http://dx.doi.org/10.1038/ejhg.2012.124
http://dx.doi.org/10.1038/ejhg.2012.124
http://dx.doi.org/10.1101/gr.094052.109
http://dx.doi.org/10.1038/nature11632
http://dx.doi.org/10.1038/ng.2764
http://dx.doi.org/10.1186/gb-2010-11-5-207
http://dx.doi.org/10.1016/j.procs.2015.07.286
http://dx.doi.org/10.1093/bib/bbs088
http://dx.doi.org/10.1093/bib/bbs088
http://dx.doi.org/10.1186/1471-2105-11-S12-S3
http://dx.doi.org/10.1186/1471-2105-11-S12-S1
http://dx.doi.org/10.1093/bioinformatics/btp236
http://dx.doi.org/10.1093/bioinformatics/bts165
http://dx.doi.org/10.1093/bioinformatics/bts165
http://dx.doi.org/10.1186/gb-2009-10-11-r134
http://dx.doi.org/10.1186/gb-2009-10-11-r134
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1093/bioinformatics/bts647
http://dx.doi.org/10.1186/1471-2105-15-102
http://manning.com/owen/
http://dx.doi.org/10.1093/bioinformatics/btu343
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
http://dx.doi.org/10.1093/jamia/ocv047
http://dx.doi.org/10.1186/gm456
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1186/s13323-015-0024-0
http://dx.doi.org/10.1186/s13323-015-0024-0
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

O’Brien et al. BMC Genomics (2015) 16:1052 Page 9 of 9

28. Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, et al.
Hibag–hla genotype imputation with attribute bagging.
Pharmacogenomics J. 2014;14(2):192–200. doi:10.1038/tpj.2013.18.

29. Patterson N, Price AL, Reich D. Population structure and eigenanalysis.
PLoS Genet. 2006;2(12):190. doi:10.1371/journal.pgen.0020190.

30. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al.
The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.
doi:10.1093/bioinformatics/btr330.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1038/tpj.2013.18
http://dx.doi.org/10.1371/journal.pgen.0020190
http://dx.doi.org/10.1093/bioinformatics/btr330

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Results and discussions
	Spark enables faster clustering of individuals compared to traditional methods
	Graph visualisation
	VariantSpark enables genome wide sampling of variants to improve clustering quality
	Determining the population structure of the Personal Genome Project

	Conclusions
	Implementation
	Computational resources
	Datasets
	VariantSpark implementation
	ADAM implementation
	Hadoop implementation
	R implementation
	Python implementation
	Admixture implementation
	Personal genome project data

	Availability
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

