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Abstract

Gene expression differs among both individuals and populations and is thought to be a major 

determinant of phenotypic variation. Although variation and genetic loci responsible for RNA 

expression levels have been analyzed extensively in human populations1–5, our knowledge is 

limited regarding the differences in human protein abundance and their genetic basis. Variation in 

mRNA expression is not a perfect surrogate for protein expression because the latter is influenced 

by a battery of post-transcriptional regulatory mechanisms, and, empirically, the correlation 

between protein and mRNA levels is generally modest6,7. Here we used isobaric tandem mass tag 

(TMT)-based quantitative mass spectrometry to determine relative protein levels of 5953 genes in 

lymphoblastoid cell lines (LCLs) from 95 diverse individuals genotyped in the HapMap Project8,9. 

We found that protein levels are heritable molecular phenotypes that exhibit considerable variation 

between individuals, populations, and sexes. Levels of specific sets of proteins involved in the 

same biological process co-vary among individuals, indicating that these processes are tightly 

regulated at the protein level. We identified cis-pQTLs (protein quantitative trait loci), including 

variants not detected by previous transcriptome studies. This study demonstrates the feasibility of 

high throughput human proteome quantification which, when integrated with DNA variation and 

transcriptome information, adds a new dimension to the characterization of gene expression 

regulation.

We used TMT-based quantitative mass spectrometry to determine protein expression 

variation of LCL derived from 95 ethnically-diverse individuals genotyped in the HapMap 

Consortium. The samples consisted of 53 Caucasians of northern and western European 

ancestry (CEU); 33 Yorubans of African ancestry from Ibadan, Nigeria (YRI); eight Han 

Chinese from Beijing (CHB) and one Japanese from Tokyo (JPT). CHB and JPT were 
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grouped together as East Asians (ASN). The ASN individuals were unrelated whereas the 

CEU and YRI groups included trios, and had 42 and 23 unrelated individuals, respectively. 

In each experiment, we used unique TMT tags to label trypsin-digested peptides from six 

cell lines, including a reference cell line (GM12878) and five other cell lines followed by 

two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) 

analysis (Fig. 1a).

Fifty-one experiments were performed that included biological replicates; each resulted in 

an average of 54,000 high-confidence peptide identifications and quantifications. Protein 

expression in a cell line was quantified relative to the reference cell line, using peptides that 

uniquely mapped to a gene and lacked any known polymorphic protein coding variant 

among the 95 individuals (Supplementary Methods). A total of 5953 proteins were 

quantified based on the analysis of 2,159,989 peptide spectra (Supplementary Table 1). To 

ensure adequate sample size and statistical power, most of the analyses described below 

focused on the 4053 proteins that were detected in more than 50% of the 74 unrelated 

individuals.

To assess reproducibility, we analyzed the correlation of protein level measurements 

between replicate and non-replicate cell lines. We observed that the Spearman’s rank 

correlation coefficient among non-replicates were much less than that of biological 

replicates, with median values 0.19 vs. 0.56 (Supplementary Fig. 1a), suggesting that TMT-

based quantitative mass spectrometry technique can reproducibly detect variation in protein 

expression across individuals.

We observed considerable inter-individual protein variation: a median of 5.7% of the 

proteome changed more than 1.5 fold between pairs of individuals (Supplementary Fig. 1b). 

This figure is likely an underestimate because of precursor ion interference10,11. Although 

the CEU, YRI, and ASN HapMap cell lines were established in separate batches and differ 

in age, the coefficients of variation (CV) estimated in the different populations are highly 

correlated (Spearman’s rank correlation coefficients 0.68–0.82, Supplementary Fig. 1c and 

Supplementary Table 2), indicating that the level of inter-individual protein variation is 

similar across populations; therefore the observed pattern of protein variation is unlikely 

dominated by these exogenous factors. Furthermore, by estimation of potential peptide 

phosphorylation, we found little evidence that the measurements of protein variation were 

influenced by posttranslational modification (Supplementary Fig. 2).

To characterize the most and least variable proteins, we performed GO Ontology category 

analysis and found that the most variable proteins were enriched in immune response, 

whereas the least variable proteins were enriched in housekeeping processes (Supplementary 

Fig. 3). These findings are similar to that observed in previous mRNA studies12. However, 

caution should be taken when comparing variability between proteins, because peptide ratios 

measured by isobaric tag-based mass spectrometry can be distorted during precursor ion 

isolation10,11. Since precursor ion interference mostly compresses the peptide ratio towards 

one, the underlying variation in some of protein expressions may be substantially 

underestimated. Nonetheless, our results demonstrate a considerable variation in protein 

levels, particularly in immune response proteins.
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As a proof of principle demonstrating that the protein measurements reflect biological 

variation, we sought to detect protein variation associated with biological attributes such as 

sex and ethnicity. To avoid the correlation between parents and offspring, we only used 

unrelated individuals for the analyses below, with the exception of the heritability 

calculations, which were based on the trios.

To identify proteins differentially expressed between males (n=36) and females (n=38), we 

regressed protein levels on sex, adjusting for average population differences (Supplementary 

Table 3). The distribution of P values for proteins exhibiting sex differences shows a modest 

enrichment at small P values (Supplementary Fig. 4a). At an FDR of 10%, 12 proteins are 

differentially expressed between sexes, among which seven have Bonferroni corrected P 

value <0.05 and all seven map to the X or the Y chromosome (Supplementary Fig. 4b). 

These results indicate our study captures bona fide variation in protein expression.

Similarly, we examined population differences in protein expression. We focused on the 

CEU and YRI unrelated individuals (42 CEU vs. 23 YRI), as the ASN sample size was 

smaller. At an FDR of 10%, 247 proteins are differentially expressed between CEU and YRI 

(Supplementary Table 4). The distribution of P values for population differences shows a 

much greater enrichment of small P values than for sex differences, and they are distributed 

throughout the genome (Fig. 1b, 1c). This finding further corroborates that our study can 

detect meaningful biological differences in protein expression.

Proteins that are part of the same complex or in the same biological process might be 

expected to vary synchronously, suggestive of a coordinated regulation of biological 

components and pathways. To determine if this is the case and to identify proteins that 

exhibit covariation, we constructed protein covariation networks using sparse partial 

correlation estimation13. In a sparse network, which connects proteins showing the strongest 

evidence of direct correlation (Supplementary Methods), 223 edges connect 278 proteins; 

these include five major clusters, each with at least 9 proteins (i.e. nodes) (Fig. 2, 

Supplementary Table 5). We performed GO ontology category analysis for the five clusters; 

three were enriched in protein metabolic process (P = 4 × 10−4), translation (P = 2 × 10−9), 

and glycolysis (P = 2 × 10−11), respectively. We also found many smaller clusters that 

consisted of subunits of protein complexes, e.g. minichromosome maintenance complex 

components. Many of these edges connect known interacting proteins. Enrichment analysis 

showed the known interacting proteins are significantly enriched in the protein covariaton 

network (P = 5 × 10−6). Relaxing the stringency of direct correlation while maintaining high 

statistical confidence, assessed by permutation and sub-sampling analyses (Supplementary 

Methods), yielded a denser network with 1012 edges connecting 944 proteins, featuring a 

“megacluster” of proteins that is enriched in translation (P = 2 × 10−6) (Supplementary 

Table 6). These results demonstrated that protein expression in a cell is highly coordinated 

and that, for several important biological processes (e.g. translation and glycolysis), tight 

control of protein levels is maintained.

We also investigated the correspondence between protein-protein covariation and RNA-

RNA covariation obtained by RNA sequencing (RNA-Seq) in CEU and YRI LCLs2,3. We 

observed that covarying proteins tend to correspond to covarying RNAs with median 
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correlation 0.42 for CEU and 0.21 for YRI (Supplementary Fig. 5). However, protein and 

RNA do not correlate perfectly suggesting that variation in protein levels is not entirely 

regulated through RNA expression.

To assess the extent and nature of the genetic factors that affect protein levels, we estimated 

the “narrow-sense” heritability of protein levels, which represents the additive genetic 

component of protein levels and is calculated based on the midparent-offspring regressions 

in trios. Median heritability of protein levels was 0.06 and 0.17 in CEU and YRI, 

respectively; 38% of the CEU proteins and 47% of the YRI proteins had a heritability higher 

than 0.2, respectively (Supplementary Fig. 6, Supplementary Table 7). Overall, proteins in 

YRI cell lines show greater heritability than in CEU cell lines. Previous analyses on RNA 

level heritability have shown a similar trend1, which may be attributable to the newer age of 

the YRI cell lines relative to the CEU cell lines.

We also tested the association of cis genetic variation with protein levels using HapMap 

phase III genotypes9. We limited the search for protein quantitative trait loci (pQTLs) to 

those SNPs located between +/− 20 kb of the gene region with minor allele frequency 

(MAF) > 10% in our samples. We performed a cis-pQTL analysis separately in CEU, YRI, 

and in CEU, YRI, and ASN combined, in an effort to reveal pQTLs common to all 

populations. Multiple loci throughout the genome displayed an excess of small P values 

(Fig. 3a, Supplementary Fig. 7a). At a 10% FDR threshold, we detected 33, 13 and 77 genes 

with at least one significant pQTL in CEU, YRI and in all three populations combined, 

respectively (Table 1, Supplementary Table 8). Of the 77 genes with a pQTL in the analysis 

combining all three populations, 34 were also identified in CEU and/or YRI population. 

Indeed the CEU pQTLs are highly enriched for significant P values and tend to have 

consistent regression coefficients or effect sizes in YRI (Supplementary Fig. 7b, 7c). These 

results suggest that there is a considerable overlap in the genetic architecture of protein 

expression across populations. The lower number of significant pQTLs detected in YRI is 

likely a consequence of the smaller sample size.

To what extent do the genetic determinants that affect RNA levels coincide with those that 

regulate protein levels? To address this question the genetic regions that affect protein 

expression (pQTLs) were compared with those that affect RNA expression (eQTLs) 

previously identified in HapMap individuals using RNA-Seq methods2,3. For each pQTL 

SNP, we obtained the P value for its association with RNA expression in CEU and YRI. 

Overall, we observed enrichment for small P values (Supplementary Fig. 8, Supplementary 

Table 8), and we estimate that approximately one half of pQTLs are likely also eQTLs. On 

the other hand, many pQTLs do not correspond to eQTLs, even at a relaxed statistical 

stringency. We note that the numbers of pQTLs detected in this study are relatively small 

due to the limited sample size. Therefore, the proportions of genetic variants contributing to 

both protein and mRNA variation and specific to protein variation should be considered as 

approximations. Nonetheless, our results indicate that despite an overlap between eQTLs 

and pQTLs, many pQTLs are distinct from eQTLs.

Manual inspection of the individual pQTLs revealed interesting variants in several cases. 

OAS1 (2′-5′-oligoadenylate synthase 1) is an essential protein involved in the innate 

Wu et al. Page 4

Nature. Author manuscript; available in PMC 2014 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



immune response to viral infection. Mutations in OAS1 have been associated with 

susceptibility to viral infection14. We identified a pQTL for OAS1. The variant showing the 

strongest correlation with OAS1 protein level is located at a splice site (rs10774671), where 

the G allele is associated with higher protein level than the A allele. OAS1 protein levels 

were calculated based on the quantification of 14 unique peptides, all of which are located 

before the splice site variant. Nine of them are shared by all known OAS1 isoforms in the 

literature. All of the used peptides have the same expression orientation at rs10774671, 

indicating that this SNP is associated with total protein level variation (Supplementary Fig. 

9). The G allele at rs10774671 has previously been associated with higher enzyme activity 

but the underlying mechanism is unknown15. Our data suggest that this variant may 

influence the overall OAS1 protein expression, in addition to giving rise to different 

isoforms.

A second example, IMPA1 (Inositol monophosphatase 1), is a putative target for lithium in 

the treatment of bipolar disorder16, but no IMPA1 genetic variant has been associated with 

bipolar disease17, nor has an eQTL been identified for this gene in recent RNA-Seq 

studies2,3. We found that SNP rs1058401, located at the 3′ UTR of the IMPA1 gene, is 

associated with protein levels. We first explored a fine cis-pQTL mapping of IMPA1 gene 

using denser SNP coverage. We selected all the SNPs within +/− 200 kb of the IMPA1 gene 

from HapMap phase I, II and III with a MAF > 5%. Several SNPs on or near the 3′UTR 

show significant pQTL effect in CEU and in the three populations combined (Fig. 3b). We 

validated this pQTL by immunoblot analyses in both CEU and YRI (Fig. 3c, 3d, 

Supplementary Fig. 10). The results are consistent with the data obtained using mass 

spectrometry, confirming that rs1058401 is indeed associated with IMPA1 protein levels.

We also evaluated the correlation between IMPA1 protein and mRNA levels, and observed 

a poor correlation between protein and mRNA in the combined sample (r = 0.04, P = 0.76, 

Supplementary Fig. 11) or in CEU alone (r = −0.19, P = 0.27). However, protein and mRNA 

levels do show moderate correlation in YRI (r= 0.50, P = 0.02). The rs1058401 SNP showed 

no evidence of association with RNA levels measured in CEU (P = 0.56), moderate 

evidence of association with RNA levels in YRI (P = 0.008), and much stronger evidence of 

association with protein levels (P = 3 × 10−7, in the combined populations analysis). We 

checked if this SNP is associated with mRNA decay rate using results from a recent 

report18, and found no support for such a hypothesis. Therefore this pQTL may have a 

significant role in regulating gene expression at the translational level.

In summary, we describe the first systematic interrogation of the genetic effects on the 

human proteome using isobaric tag-based quantitative mass spectrometry. Our results 

demonstrate the power of quantitative mass spectrometry data for analysis of protein co-

regulation and uncovering genetic effects influencing protein abundance. With a larger 

number of cell lines and improvement of mass spectrometry technology, the number of 

pQTLs is likely to increase substantially. Some, but not all pQTLs overlap with those 

identified in eQTL studies. These results indicate that distinct and diverse genetic 

mechanisms control gene expression at many different levels, suggesting that important and 

complementary knowledge can be acquired by systematically characterizing the human 

proteome.
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Methods summary

Lymphoblastoid cell lines (LCLs) from 95 HapMap individuals were obtained from the 

Coriell Institute for Medical Research. All trypsin-digest mixtures were analyzed on an LTQ 

Orbitrap Velos (Thermo Scientific) equipped with an online 2D nanoACQUITY UPLC 

System (Waters) as previously described with modifications19. The acquired mass 

spectrometry raw data were searched against a human International Protein Index (IPI) 

database, version 3.7520, concatenated with a decoy database with all the protein sequences 

in reverse order, using SEQUEST algorithm21 (Proteome Discoverer software, version 1.2, 

Thermo Scientific). The correspondence between proteins, genes (Ensembl gene IDs) and 

genomic loci was established based on the protein and gene cross-reference tables of IPI 

database version 3.87 and transcript sequences of Ensembl database release 62. Screening of 

peptides overlapping with protein coding changes was based on genotypes and annotations 

releases by the HapMap and 1000 Genomes Project9,22,23. To estimate the false discovery 

rate for sex, population and pQTL analyses, the QVALUE Bioconductor package was 

used24. For full methods, see Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of workflow and protein association with ethnicity
a) Flow chart of experimental scheme. In each experiment, peptide digests from a reference 

cell line (GM12878) and five other cell lines were each labeled with one of the TMT-sixplex 

tags. Labeled peptides were equally mixed and subjected to identification and quantification 

by mass spectrometry, and then used for protein quantification. A total of 51 experiments 

were performed.

b) The P value distribution for the difference in protein levels between CEU and YRI shows 

enrichment at small P values.

c) P value of protein level differences between CEU and YRI plotted as a function of the 

genomic coordinate for each protein. The dashed line is at significance threshold Bonferroni 

P = 0.05. All the proteins that passed the threshold are highlighted with larger dots and 

labeled with gene names. Proteins that differed between CEU and YRI are distributed 

throughout the genome.
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Fig. 2. Protein covariation network generated by sparse partial correlation estimation
Nodes represent proteins. Edges represent connection by covariation. This sparse network 

displays the 223 strongest connections among 278 proteins. Protein function was annotated 

by node color. Edge color was categorized according to correlation value. Known protein-

protein interacting pairs were highlighted in larger nodes and labeled with gene names.

Wu et al. Page 9

Nature. Author manuscript; available in PMC 2014 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Loci associated with protein expression levels
a) Identification of cis-pQTLs in all three populations combined (n=72). The P value and 

genomic coordinates for each protein/cis-SNP association test were plotted in the Manhattan 

plot. pQTLs with max(T) corrected P value < 0.001 were highlighted with a bigger dot size 

and a black outline. Multiple loci throughout the genome displayed an excess of small P 

values. Arrow indicates the location of the IMPA1 gene which contains a significant cis-

pQTL.

b) Overview of IMPA1 protein level and SNP genotype association in CEU, YRI, and all 

populations combined. The bottom plot is the fine mapping of cis-pQTL for IMPA1 based 

on HapMap I, II and III genotypes release 28. Each dot represents a tested SNP. Dot colors 

represent testing groups. The arrow is indicative of the chromosome location and 

transcription direction of the IMPA1 gene. There are several highly significant associations 

near the IMPA1 region in CEU and all populations combined. The exact locations of these 

associations in the IMPA1 gene region are illustrated in the top plot. The most significant 

SNP is rs1058401, located in IMPA1 3′UTR.

c) Validation of IMPA1 protein expression level. IMPA1 protein expression level was 

validated by immunoblotting in 11 CEU individuals, with their genotype at rs1058401 

labeled at the bottom.

d) The bar plots show the mean of IMPA1 protein level of these 11 individuals in each 

rs1058401 genotype, based on data measured by quantitative mass spectrometry and by 
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densitometry of immunoblot blots. Error bar, standard error of the mean. M.S., mass 

spectrometry. Im., immunoblotting.
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